1
|
Rimmele TS, Li S, Andersen JV, Westi EW, Rotenberg A, Wang J, Aldana BI, Selkoe DJ, Aoki CJ, Dulla CG, Rosenberg PA. Neuronal Loss of the Glutamate Transporter GLT-1 Promotes Excitotoxic Injury in the Hippocampus. Front Cell Neurosci 2022; 15:788262. [PMID: 35035352 PMCID: PMC8752461 DOI: 10.3389/fncel.2021.788262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
GLT-1, the major glutamate transporter in the mammalian central nervous system, is expressed in presynaptic terminals that use glutamate as a neurotransmitter, in addition to astrocytes. It is widely assumed that glutamate homeostasis is regulated primarily by glutamate transporters expressed in astrocytes, leaving the function of GLT-1 in neurons relatively unexplored. We generated conditional GLT-1 knockout (KO) mouse lines to understand the cell-specific functions of GLT-1. We found that stimulus-evoked field extracellular postsynaptic potentials (fEPSPs) recorded in the CA1 region of the hippocampus were normal in the astrocytic GLT-1 KO but were reduced and often absent in the neuronal GLT-1 KO at 40 weeks. The failure of fEPSP generation in the neuronal GLT-1 KO was also observed in slices from 20 weeks old mice but not consistently from 10 weeks old mice. Using an extracellular FRET-based glutamate sensor, we found no difference in stimulus-evoked glutamate accumulation in the neuronal GLT-1 KO, suggesting a postsynaptic cause of the transmission failure. We hypothesized that excitotoxicity underlies the failure of functional recovery of slices from the neuronal GLT-1 KO. Consistent with this hypothesis, the non-competitive NMDA receptor antagonist MK801, when present in the ACSF during the recovery period following cutting of slices, promoted full restoration of fEPSP generation. The inclusion of an enzymatic glutamate scavenging system in the ACSF conferred partial protection. Excitotoxicity might be due to excess release or accumulation of excitatory amino acids, or to metabolic perturbation resulting in increased vulnerability to NMDA receptor activation. Previous studies have demonstrated a defect in the utilization of glutamate by synaptic mitochondria and aspartate production in the synGLT-1 KO in vivo, and we found evidence for similar metabolic perturbations in the slice preparation. In addition, mitochondrial cristae density was higher in synaptic mitochondria in the CA1 region in 20–25 weeks old synGLT-1 KO mice in the CA1 region, suggesting compensation for loss of axon terminal GLT-1 by increased mitochondrial efficiency. These data suggest that GLT-1 expressed in presynaptic terminals serves an important role in the regulation of vulnerability to excitotoxicity, and this regulation may be related to the metabolic role of GLT-1 expressed in glutamatergic axon terminals.
Collapse
Affiliation(s)
- Theresa S Rimmele
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Rotenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Jianlin Wang
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Chiye J Aoki
- Center for Neural Science, New York University, NY, United States.,Neuroscience Institute NYU Langone Medical Center, NY, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul Allen Rosenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Ortega A, Olivares-Bañuelos TN. Neurons and Glia Cells in Marine Invertebrates: An Update. Front Neurosci 2020; 14:121. [PMID: 32132895 PMCID: PMC7040184 DOI: 10.3389/fnins.2020.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The nervous system (NS) of invertebrates and vertebrates is composed of two main types of cells: neurons and glia. In both types of organisms, nerve cells have similarities in biochemistry and functionality. The neurons are in charge of the synapse, and the glial cells are in charge of important functions of neuronal and homeostatic modulation. Knowing the mechanisms by which NS cells work is important in the biomedical area for the diagnosis and treatment of neurological disorders. For this reason, cellular and animal models to study the properties and characteristics of the NS are always sought. Marine invertebrates are strategic study models for the biological sciences. The sea slug Aplysia californica and the squid Loligo pealei are two examples of marine key organisms in the neurosciences field. The principal characteristic of marine invertebrates is that they have a simpler NS that consists of few and larger cells, which are well organized and have accessible structures. As well, the close phylogenetic relationship between Chordata and Echinodermata constitutes an additional advantage to use these organisms as a model for the functionality of neuronal cells and their cellular plasticity. Currently, there is great interest in analyzing the signaling processes between neurons and glial cells, both in vertebrates and in invertebrates. However, only few types of glial cells of invertebrates, mostly insects, have been studied, and it is important to consider marine organisms' research. For this reason, the objective of the review is to present an update of the most relevant information that exists around the physiology of marine invertebrate neuronal and glial cells.
Collapse
Affiliation(s)
- Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
3
|
Kempsell AT, Fieber LA. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica. Front Aging Neurosci 2015; 7:173. [PMID: 26388769 PMCID: PMC4558425 DOI: 10.3389/fnagi.2015.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023] Open
Abstract
Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT) in sensory neurons (SN) isolated from mature but not aged animals. Activation of protein kinase A (PKA) and protein kinase C (PKC) signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
4
|
Functional Characterization of a Vesicular Glutamate Transporter in an Interneuron That Makes Excitatory and Inhibitory Synaptic Connections in a Molluscan Neural Circuit. J Neurosci 2015; 35:9137-49. [PMID: 26085636 DOI: 10.1523/jneurosci.0180-15.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Understanding circuit function requires the characterization of component neurons and their neurotransmitters. Previous work on radula protraction in the Aplysia feeding circuit demonstrated that critical neurons initiate feeding via cholinergic excitation. In contrast, it is less clear how retraction is mediated at the interneuronal level. In particular, glutamate involvement was suggested, but was not directly confirmed. Here we study a suspected glutamatergic retraction interneuron, B64. We used the representational difference analysis (RDA) method to successfully clone an Aplysia vesicular glutamate transporter (ApVGLUT) from B64 and from a glutamatergic motor neuron B38. Previously, RDA was used to characterize novel neuropeptides. Here we demonstrate its utility for characterizing other types of molecules. Bioinformatics suggests that ApVGLUT is more closely related to mammalian VGLUTs than to Drosophila and Caenorhabditis elegans VGLUTs. We expressed ApVGLUT in a cell line, and demonstrated that it indeed transports glutamate in an ATP and proton gradient-dependent manner. We mapped the ApVGLUT distribution in the CNS using in situ hybridization and immunocytochemistry. Further, we demonstrated that B64 is ApVGLUT positive, supporting the idea that it is glutamatergic. Although glutamate is primarily an excitatory transmitter in the mammalian CNS, B64 elicits inhibitory PSPs in protraction neurons to terminate protraction and excitatory PSPs in retraction neurons to maintain retraction. Pharmacological data indicated that both types of PSPs are mediated by glutamate. Thus, glutamate mediates the dual function of B64 in Aplysia. More generally, our systematic approaches based on RDA may facilitate analyses of transmitter actions in small circuits with identifiable neurons.
Collapse
|
5
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen Comp Endocrinol 2014; 206:213-26. [PMID: 25072892 DOI: 10.1016/j.ygcen.2014.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023]
Abstract
Androgen-induced masculinization of female aquatic biota poses concerns for natural population stability. This research evaluated the effects of a twelve day exposure of fadrozole hydrochloride on the metabolism and reproductive status of the unionid mussel Lampsilis fasciola. Although this compound is not considered to be widespread in the aquatic environment, it was selected as a model aromatase (enzyme that converts testosterone to estradiol) inhibitor. Adult mussels were exposed to a control and 3 concentrations of fadrozole (2μg/L, 20μg/L, and 50μg/L), and samples of gill tissue were taken on days 4 and 12 for metabolomics analysis. Gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Daily observed mussel behavior included female mantle display, foot protrusion, siphoning, and larval (glochidia) releases. Glochidia mortality was significantly higher in the 20μg/L treatment. Fewer conglutinate (packets of glochidia) releases were observed in the 50μg/L treatment, and mortality was highly correlated to release numbers. Foot protrusion was significantly higher in females in nearly all treatments, including the control, during the first 4days of observations. However, this sex difference was observed only in the 50μg/L treatment during the last 8days. Generally, metabolites were significantly altered in female gill tissue in the 2μg/L treatment whereas males were mostly affected only at the highest (50μg/L) treatment. Both sexes also revealed significant reductions in fadrozole-induced metabolic effects in gill tissue sampled after 12days compared to tissue sampled after 4days, indicating time-dependent mechanisms of disruptions in metabolic pathways and homeostatic processes to compensate for such disruptions.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, 901 South Avenue, Missouri State University, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
6
|
Kempsell AT, Fieber LA. Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica. Front Aging Neurosci 2014; 6:84. [PMID: 24847260 PMCID: PMC4023074 DOI: 10.3389/fnagi.2014.00084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022] Open
Abstract
Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
7
|
Leonard JA, Cope WG, Barnhart MC, Bringolf RB. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:103-116. [PMID: 24667233 DOI: 10.1016/j.aquatox.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
The endocrine disrupting effects of estrogenic compounds in surface waters on fish, such as feminization of males and altered sex ratios, may also occur in aquatic invertebrates. However, the underlying mechanisms of action and toxicity, especially in native freshwater mussels (Order Unionoida), remain undefined. This study evaluated the effects of a 12-day exposure of 17 α-ethinylestradiol (EE2), a synthetic estrogen in oral contraceptives commonly found in surface waters, on the behavior, condition, metabolism, and reproductive status of Lampsilis fasciola. Adult mussels of both sexes were exposed to a control and two concentrations of EE2 (0 ng/L, 5 ng/L considered to be environmentally relevant, and 1,000 ng/L designed to provide a positive metabolic response), and samples of gill tissue were taken on days 4 and 12; gills were used because of the variety of critical processes they mediate, such as feeding, ion exchange, and siphoning. Observations of mussel behavior (mantle display, siphoning, and foot movement) were made daily, and condition of conglutinates (packets of eggs and/or glochidia) released by females was examined. No significant effects of EE2 on glochidia mortality, conglutinate condition, female marsupial gill condition, or mussel foot extension were observed. However, exposure to both concentrations of EE2 significantly reduced male siphoning and mantle display behavior of females. Metabolomics analyses identified 207 known biochemicals in mussel gill tissue and showed that environmentally relevant EE2 concentrations led to decreases in glycogen metabolism end products, glucose, and several essential fatty acids in females after 12 days, indicating reductions in energy reserves that could otherwise be used for growth or reproduction. Moreover, males and females showed significant alterations in metabolites involved in signal transduction, immune response, and neuromodulation. Most of these changes were apparent at 1,000 ng/L EE2, but similar metabolites and pathways were also affected at 5 ng/L EE2. Components of the extracellular matrix of gill tissue were also altered. These results demonstrate the utility of metabolomics when used in conjunction with traditional physiological and behavioral toxicity test endpoints and establish the usefulness of this approach in determining possible underlying toxicological mechanisms of EE2 in exposed freshwater mussels.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, North Carolina State University, Box 7617, Raleigh, NC 27695, United States.
| | - W Gregory Cope
- Department of Applied Ecology, North Carolina State University, Box 7617, Raleigh, NC 27695, United States
| | - M Christopher Barnhart
- Department of Biology, Missouri State University, 901 South Avenue, Springfield, MO 65897, United States
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
8
|
Rahn EJ, Guzman-Karlsson MC, David Sweatt J. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. Neurobiol Learn Mem 2013; 105:133-50. [PMID: 23796633 DOI: 10.1016/j.nlm.2013.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 01/09/2023]
Abstract
Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla.
Collapse
Affiliation(s)
- Elizabeth J Rahn
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
9
|
Wyeth RC, Croll RP. Peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis. J Comp Neurol 2011; 519:1894-913. [PMID: 21452209 DOI: 10.1002/cne.22607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The peripheral nervous system in gastropods plays a key role in the neural control of behaviors, but is poorly studied in comparison with the central nervous system. Peripheral sensory neurons, although known to be widespread, have been studied in a patchwork fashion across several species, with no comprehensive treatment in any one species. We attempted to remedy this limitation by cataloging peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis employing backfills, vital stains, histochemistry, and immunohistochemistry. By using at least two independent methods to corroborate observations, we mapped four different cell types. We have found two different populations of bipolar sensory cells that appear to contain catecholamines(s) and histamine, respectively. Each cell had a peripheral soma, an epithelial process bearing cilia, and a second process projecting to the central nervous system. We also found evidence for two populations of nitric oxide-producing sensory cells, one bipolar, probably projecting centrally, and the second unipolar, with only a single epithelial process and no axon. The various cell types are presumably either mechanosensory or chemosensory, but the complexity of their distributions does not allow formation of hypotheses regarding modality. In addition, our observations indicate that yet more peripheral sensory cell types are present in the cephalic sensory organs of L. stagnalis. These results are an important step toward linking sensory cell morphology to modality. Moreover, our observations emphasize the size of the peripheral nervous system in gastropods, and we suggest that greater emphasis be placed on understanding its role in gastropod neuroethology.
Collapse
Affiliation(s)
- Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada.
| | | |
Collapse
|
10
|
Matsuo R, Ito E. Spontaneous regeneration of the central nervous system in gastropods. THE BIOLOGICAL BULLETIN 2011; 221:35-42. [PMID: 21876109 DOI: 10.1086/bblv221n1p35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Of all organs in mammals including humans, the brain has the most limited regenerative capacity after injury or damage. In spite of extensive efforts to treat ischemic/stroke injury of the brain, thus far no reliable therapeutic method has been developed. However, some molluscan species show remarkable brain regenerative ability and can achieve full functional recovery following injury. The terrestrial pulmonates are equipped with a highly developed olfactory center, called the procerebrum, which is involved in olfactory discrimination and odor-aversion learning. Recent studies revealed that the procerebrum of the land slug can spontaneously recover structurally and functionally relatively soon after injury. Surprisingly, no exogenous interventions are required for this reconstitutive repair. The neurogenesis continues in the procerebrum in adult slugs as in the hippocampus and the olfactory bulb of mammals, and the reconstitutive regeneration seems to be mediated by enhanced neurogenesis. In this review, we discuss the relationship between neurogenesis and the regenerative ability of the brain, and also the evolutionary origin of the brain structures in which adult neurogenesis has been observed.
Collapse
Affiliation(s)
- Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki, Kagawa, Japan.
| | | |
Collapse
|
11
|
Hatakeyama D, Mita K, Kobayashi S, Sadamoto H, Fujito Y, Hiripi L, Elekes K, Ito E. Glutamate transporters in the central nervous system of a pond snail. J Neurosci Res 2010; 88:1374-86. [PMID: 19937812 DOI: 10.1002/jnr.22296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on glutamate (GLU) and its receptors in the pond snail Lymnaea stagnalis have suggested that GLU functions as a neurotransmitter in various behaviors, particularly for generation of feeding rhythm. The uptake mechanism of GLU is not yet known in Lymnaea. In the present study, we characterized the GLU transporters and examined their functions in the feeding circuits of the central nervous system (CNS) in Lymnaea. First, measurement of the accumulation of (3)H-labeled GLU revealed the presence of GLU transport systems in the Lymnaea CNS. The highest accumulation rate was observed in the buccal ganglia, supporting the involvement of GLU transport systems in feeding behavior. Second, we cloned two types of GLU transporters from the Lymnaea CNS, the excitatory amino acid transporter (LymEAAT) and the vesicular GLU transporter (LymVGLUT). When we compared their amino acid sequences with those of mammalian EAATs and VGLUTs, we found that the functional domains of both types are well conserved. Third, in situ hybridization revealed that the mRNAs of LymEAAT and LymVGLUT are localized in large populations of nerve cells, including the major feeding motoneurons in the buccal ganglia. Finally, we inhibited LymEAAT and found that changes in the firing patterns of the feeding motoneurons that have GLUergic input were similar to those obtained following stimulation with GLU. Our results confirmed the presence of GLU uptake systems in the Lymnaea CNS and showed that LymEAAT is required for proper rhythm generation, particularly for generation of the feeding rhythm.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsuo R, Kobayashi S, Murakami J, Ito E. Spontaneous recovery of the injured higher olfactory center in the terrestrial slug limax. PLoS One 2010; 5:e9054. [PMID: 20161701 PMCID: PMC2816995 DOI: 10.1371/journal.pone.0009054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 01/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background Of all organs and tissues in adult mammals, the brain shows the most limited regeneration and recovery after injury. This is one reason why treating neurological damage such as ischemic injury after stroke presents such a challenge. Here we report a novel mode of regeneration which the slug's cognitive center, the procerebrum, shows after surgical lesioning in the adult. It is well known that the land slug Limax possesses the capacity to demonstrate conditioned food aversion. This learning ability critically depends on the procerebrum, which is the higher olfactory center in the brain of the terrestrial mollusk. Principal Findings In the present study, after a 1-month recovery period post-surgical lesioning of the procerebrum we investigated whether the brain of the slug shows recovery from damage. We found that learning ability, local field potential oscillation, and the number of cells in the procerebrum (PC) all recovered spontaneously within 1 month of bilateral lesioning of the PC. Moreover, neurogenesis was enhanced in the lesioned PC. However, memory acquired before the surgery could not be retrieved 1 month after surgery although the procerebrum had recovered from injury by this time, consistent with the notion that the procerebrum is the storage site of odor-aversion memory, or deeply involved in the memory recall process. Significance Our findings are the first to demonstrate that a brain region responsible for the associative memory of an adult organism can spontaneously reconstitute itself, and can recover its function following injury.
Collapse
Affiliation(s)
- Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan.
| | | | | | | |
Collapse
|
13
|
Matsuo R, Kobayashi S, Watanabe S, Namiki S, Iinuma S, Sakamoto H, Hirose K, Ito E. Glutamatergic neurotransmission in the procerebrum (Olfactory center) of a terrestrial mollusk. J Neurosci Res 2009; 87:3011-23. [DOI: 10.1002/jnr.22130] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Habituation in Aplysia: The Cheshire Cat of neurobiology. Neurobiol Learn Mem 2009; 92:147-54. [DOI: 10.1016/j.nlm.2009.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 11/27/2022]
|
15
|
Megalou EV, Brandon CJ, Frost WN. Evidence that the swim afferent neurons of tritonia diomedea are glutamatergic. THE BIOLOGICAL BULLETIN 2009; 216:103-112. [PMID: 19366921 PMCID: PMC3073080 DOI: 10.1086/bblv216n2p103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The escape swim response of the marine mollusc Tritonia diomedea is a well-established model system for studies of the neural basis of behavior. Although the swim neural network is reasonably well understood, little is known about the transmitters used by its constituent neurons. In the present study, we provide immunocytochemical and electrophysiological evidence that the S-cells, the afferent neurons that detect aversive skin stimuli and in turn trigger Tritonia's escape swim response, use glutamate as their transmitter. First, immunolabeling revealed that S-cell somata contain elevated levels of glutamate compared to most other neurons in the Tritonia brain, consistent with findings from glutamatergic neurons in many species. Second, pressure-applied puffs of glutamate produced the same excitatory response in the target neurons of the S-cells as the naturally released S-cell transmitter itself. Third, the glutamate receptor antagonist CNQX completely blocked S-cell synaptic connections. These findings support glutamate as a transmitter used by the S-cells, and will facilitate studies using this model system to explore a variety of issues related to the neural basis of behavior.
Collapse
Affiliation(s)
- E V Megalou
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
16
|
Collado MS, Khabour O, Fioravante D, Byrne JH, Eskin A. Post-translational regulation of an Aplysia glutamate transporter during long-term facilitation. J Neurochem 2008; 108:176-89. [PMID: 19046322 DOI: 10.1111/j.1471-4159.2008.05757.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Collapse
Affiliation(s)
- Maria Sol Collado
- Department of Biology & Biochemistry, University of Houston, Science and Research II, Houston, Texas 77204-5001, USA
| | | | | | | | | |
Collapse
|
17
|
Fulton D, Condro MC, Pearce K, Glanzman DL. The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia. J Neurophysiol 2008; 100:108-16. [PMID: 18480365 DOI: 10.1152/jn.90389.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes IP3 formation, may play an important role in postsynaptic signaling during facilitation and learning in Aplysia. Using the PLC inhibitor U73122, we found that PLC activity is required for synaptic facilitation following a 10-min treatment with 5-HT, as measured at 20 min after 5-HT washout. Prior work has indicated that facilitation at this time is supported primarily by postsynaptic processes. To determine whether postsynaptic PLC activity is involved in 5-HT-mediated facilitatory actions, we examined the effect of U73122 on enhancement of the response of motor neurons isolated in cell culture to glutamate, the sensory neuron transmitter. A 10-min application of 5-HT induced persistent (>40 min) enhancement of glutamate-evoked potentials (Glu-EPs) recorded from isolated motor neurons, and this enhancement was blocked by U73122. Finally, we showed that injecting U73122 into intact animals before behavioral training impaired intermediate-term sensitization, indicating that PLC activity contributes to this form of nonassociative learning.
Collapse
Affiliation(s)
- Daniel Fulton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
18
|
Castellucci VF. Animal models and behaviour: their importance for the study of memory. PROGRESS IN BRAIN RESEARCH 2008; 169:269-75. [PMID: 18394480 DOI: 10.1016/s0079-6123(07)00016-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our overview, we will attempt to justify the use of animal models and suggest that it is the only way to make the successive transitions between changes occurring at the molecular and cellular levels and changes at the level of behaviour in the intact organism. We will also stress the importance of criteria that have to be fulfilled in order to unravel the cellular mechanisms of memory: detectability, mimicry, anterograde alteration and retrograde alteration. We will also propose that a large number of animal models should be used to explore the great variety of potential mechanisms that may exist to explain behaviours and their modifications and in particular memory. Finally using the experimental model of Aplysia as example we will insist that to explain the total reflex in an intact animal, all the neurons - sensory neurons and different layers of excitatory and inhibitory interneurons - have to be investigated.
Collapse
|
19
|
Glanzman DL. New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. PROGRESS IN BRAIN RESEARCH 2008; 169:277-92. [PMID: 18394481 DOI: 10.1016/s0079-6123(07)00017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine snail Aplysia has served for more than four decades as an important model system for neurobiological analyses of learning and memory. Until recently, it has been believed that learning and memory in Aplysia were due predominately, if not exclusively, to presynaptic mechanisms. For example, two nonassociative forms of learning exhibited by Aplysia, sensitization and dishabituation of its defensive withdrawal reflex, have been previously ascribed to presynaptic facilitation of the connections between sensory and motor neurons that mediate the reflex. Recent evidence, however, indicates that postsynaptic mechanisms play a far more important role in learning and memory in Aplysia than formerly appreciated. In particular, dishabituation and sensitization depend on a rise in intracellular Ca(2+) in the postsynaptic motor neuron, postsynaptic exocytosis, and modulation of the functional expression of postsynaptic AMPA-type glutamate receptors. In addition, the expression of the persistent presynaptic changes that occur during intermediate- and long-term dishabituation and sensitization appears to require retrograde signals that are triggered by elevated postsynaptic Ca(2+). The model for learning-related synaptic plasticity proposed here for Aplysia is similar to current mammalian models. This similarity suggests that the cellular mechanisms of learning and memory have been highly conserved during evolution.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
20
|
Villareal G, Li Q, Cai D, Glanzman DL. The role of rapid, local, postsynaptic protein synthesis in learning-related synaptic facilitation in aplysia. Curr Biol 2007; 17:2073-80. [PMID: 18006316 DOI: 10.1016/j.cub.2007.10.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/17/2022]
Abstract
The discovery that dendrites of neurons in the mammalian brain possess the capacity for protein synthesis stimulated interest in the potential role of local, postsynaptic protein synthesis in learning-related synaptic plasticity. But it remains unclear how local, postsynaptic protein synthesis actually mediates learning and memory in mammals. Accordingly, we examined whether learning in an invertebrate, the marine snail Aplysia, involves local, postsynaptic protein synthesis. Previously, we showed that the dishabituation and sensitization of the defensive withdrawal reflex in Aplysia require elevated postsynaptic Ca(2+), postsynaptic exocytosis, and functional upregulation of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. Here, we tested whether the synaptic facilitation that underlies dishabituation and sensitization in Aplysia requires local, postsynaptic protein synthesis. We found that the facilitatory transmitter, serotonin (5-HT), enhanced the response of the motor neuron to glutamate, the sensory neuron transmitter, and this enhancement depended on rapid protein synthesis. By using individual motor neurites surgically isolated from their cell bodies, we showed that the 5-HT-dependent protein synthesis occurred locally. Finally, by blocking postsynaptic protein synthesis, we disrupted the facilitation of the sensorimotor synapse. By demonstrating its critical role in a synaptic change that underlies learning and memory in a major model invertebrate system, our study suggests that local, postsynaptic protein synthesis is of fundamental importance to the cell biology of learning.
Collapse
Affiliation(s)
- Greg Villareal
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1761, USA
| | | | | | | |
Collapse
|
21
|
Hatakeyama D, Aonuma H, Ito E, Elekes K. Localization of glutamate-like immunoreactive neurons in the central and peripheral nervous system of the adult and developing pond snail, Lymnaea stagnalis. THE BIOLOGICAL BULLETIN 2007; 213:172-186. [PMID: 17928524 DOI: 10.2307/25066633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
22
|
Collado MS, Lyons LC, Levenson JM, Khabour O, Pita-Almenar JD, Schrader L, Eskin A. In vivo regulation of an Aplysia glutamate transporter, ApGT1, during long-term memory formation. J Neurochem 2007; 100:1315-28. [PMID: 17316403 DOI: 10.1111/j.1471-4159.2006.04298.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of glutamate transporters often accompanies glutamatergic synaptic plasticity. We investigated the mechanisms responsible for the increase in glutamate uptake associated with increased glutamate release at the Aplysia sensorimotor synapse during long-term sensitization (LTS) and long-term facilitation. An increase in the V(max) of transport, produced by LTS training, suggested that the increased glutamate uptake was due to an increase in the number of transporters in the membrane. We cloned a high-affinity, Na(+)-dependent glutamate transporter, ApGT1, from Aplysia central nervous system that is highly enriched in pleural sensory neurons, and in pleural-pedal synaptosome and cell/glial fractions. ApGT1, expressed in Xenopus oocytes, demonstrated a similar pharmacological profile to glutamate uptake in Aplysia synaptosome and cell/glial fractions (strong inhibition by threo-beta-benzyloxyaspartate and weak inhibition by dihydrokainate) suggesting that ApGT1 may be the primary glutamate transporter in pleural-pedal ganglia. Levels of ApGT1 and glutamate uptake were increased in synaptosomes 24 h after induction of LTS by electrical stimulation or serotonin. Regulation of ApGT1 during LTS appears to occur post-transcriptionally and results in an increased number of transporters in synaptic membranes. These results suggest that an increase in levels of ApGT1 is responsible, at least in part, for the long-term increase in glutamate uptake associated with long-term memory.
Collapse
Affiliation(s)
- Maria Sol Collado
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ha TJ, Kohn AB, Bobkova YV, Moroz LL. Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: relevance to memory mechanisms. THE BIOLOGICAL BULLETIN 2006; 210:255-70. [PMID: 16801499 DOI: 10.2307/4134562] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor belongs to the group of ionotropic glutamate receptors and has been implicated in synaptic plasticity, memory acquisition, and learning in both vertebrates and invertebrates, including molluscs. However, the molecular identity of NMDA-type receptors in molluscs remains unknown. Here, we cloned two NMDA-type receptors from the sea slug Aplysia californica, AcNR1-1 and AcNR1-2, as well as their homologs from the freshwater pulmonate snail Lymnaea stagnalis, LsNR1-1 and LsNR1-2. The cloned receptors contain a signal peptide, two extracellular segments with predicted binding sites for glycine and glutamate, three recognized transmembrane regions, and a fourth hydrophobic domain that makes a hairpin turn to form a pore-like structure. Phylogenetic analysis suggests that both the AcNR1s and LsNR1s belong to the NR1 subgroup of ionotrophic glutamate receptors. Our in situ hybridization data indicate highly abundant, but predominantly neuron-specific expression of molluscan NR1-type receptors in all central ganglia, including identified motor neurons in the buccal and abdominal ganglia as well as groups of mechanosensory cells. AcNR1 transcripts were detected extrasynaptically in the neurites of metacerebral cells of Aplysia. The widespread distribution of AcNR1 and LsNR1 transcripts also implies diverse functions, including their involvement in the organization of feeding, locomotory, and defensive behaviors.
Collapse
Affiliation(s)
- Thomas J Ha
- The Whitney Laboratory for Marine Bioscience, Evelyn F. & William McKnight Brain Institute of the University of Florida, Florida 32080, USA
| | | | | | | |
Collapse
|
24
|
Glanzman DL. The cellular mechanisms of learning in Aplysia: of blind men and elephants. THE BIOLOGICAL BULLETIN 2006; 210:271-9. [PMID: 16801500 DOI: 10.2307/4134563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Until recently, investigations of the neurobiological substrates of simple forms of learning and memory in the marine snail Aplysia have focused mostly on plastic changes that occur within the presynaptic sensory neurons. Here, I summarize the results of recent studies that indicate that exclusively presynaptic processes cannot account for simple forms of learning in Aplysia. In particular, I present evidence that postsynaptic mechanisms play a far more important role in nonassociative learning in Aplysia than has been appreciated before now. Moreover, I describe recent data that suggests the intriguing hypothesis that the persistent, learning-induced changes in Aplysia sensory neurons might depend critically on postsynaptic signals for their induction. Finally, I discuss the potential applicability of this hypothesis to learning-related synaptic plasticity in the mammalian brain.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, and Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
25
|
Lovell P, Jezzini SH, Moroz LL. Electroporation of neurons and growth cones in Aplysia californica. J Neurosci Methods 2006; 151:114-20. [PMID: 16174534 DOI: 10.1016/j.jneumeth.2005.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 11/19/2022]
Abstract
Specific labeling of individual neurons and neuronal processes is virtually an everyday task for neuroscientists. Many traditional ways for delivery of intracellular dyes have limitations in terms of speed, efficiency and reproducibility. Electroporation is a fast, reliable and efficient method to deliver microscopic amounts of polar and charged molecules into neurons and their compartments such as individual neurites and growth cones. Here, we present a simple and highly effective procedure for intracellular labeling of individual Aplysia neurons both in intact ganglia and in cell culture. Pleural mechanoreceptor neurons have been used as illustrative examples to demonstrate applicability of direct and local labeling of the smallest individual neurites (< 2 microm) and single growth cones. Specifically, a 3-s train of 1.0 V hyperpolarizing pulses at 50 Hz effectively filled discrete neurites in contact with the tip of the micropipette with no dye transfer visible to other, non-contacted neurites. Application of this localized dye labeling technique to single neurites reveals a surprisingly complex morphology for patterns of axonal branching in culture. The protocol can be easily applied to a variety of models in neuroscience including accessible nervous systems of invertebrate animals.
Collapse
Affiliation(s)
- Peter Lovell
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9005 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | | | | |
Collapse
|
26
|
Jezzini SH, Bodnarova M, Moroz LL. Two-color in situ hybridization in the CNS of Aplysia californica. J Neurosci Methods 2005; 149:15-25. [PMID: 16061289 DOI: 10.1016/j.jneumeth.2005.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/04/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Aplysia californica is an attractive model organism for cellular and systems neuroscience. Currently, there is a growing body of sequence data from Aplysia that includes many interesting genes. To fully exploit this molecular data it must be integrated with the large body of physiological data that are already available for identified neurons in Aplysia networks. In situ hybridization is a powerful technique that enables this to be done. Expression patterns of selected mRNA transcripts can be mapped to individual cells in the central nervous system (CNS). Here, we describe a detailed non-radioactive in situ hybridization protocol optimized for whole-mount preparations of Aplysia ganglia. The indirect alkaline phosphatase-based chromogenic detection method we employ may be used with one or two colors in order to detect one or two different transcripts in the same preparation. The procedure is also compatible with intracellular dye labeling, making it possible to couple localization of transcripts with electrophysiological studies in positively identified neurons. Double labeling was done for transcripts encoding the neuropeptides FMRFamide and sensorin. The sensitive detection of mRNA and great preservation of CNS morphology makes this method a useful tool for analyzing expression patterns of neuron specific genes in Aplysia.
Collapse
Affiliation(s)
- Sami H Jezzini
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | | | | |
Collapse
|
27
|
Drake TJ, Jezzini S, Lovell P, Moroz LL, Tan W. Single cell glutamate analysis in Aplysia sensory neurons. J Neurosci Methods 2005; 144:73-7. [PMID: 15848241 DOI: 10.1016/j.jneumeth.2004.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 10/05/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. However, techniques and assays available for the determination and detection of glutamate are limited. Here we have applied an effective glutamate assay toward the high-throughput analysis of single neurons. Initial physiological studies and recent immunohistochemical data strongly suggested that mechanosensory neurons could use L-glutamate as a co-transmitter (in addition to sensorin) in the sensory-motor synapse of Aplysia californica. We have evaluated the levels of glutamate in these cells and compared them to other non-sensory Aplysia neurons. Since this is the first report of this assay in single cellular analysis, a series of chemical and cellular controls were also done. Based on our results, we were able to determine the concentration levels inside single Aplysia sensory neurons to be 29 mM, with significant heterogeneity between individual cells. In comparison to the pleural mechanosensory neurons, non-sensory abdominal neurons contained approximately 3 mM glutamate. These elevated levels in the sensory neurons confirm the earlier findings [Dale N, Kandel ER. L-glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc Natl Acad Sci USA 1993;90:7163-7.], suggesting that glutamate plays a role as neurotransmitter in these cells.
Collapse
Affiliation(s)
- Timothy J Drake
- Department of Chemistry, University of Florida, Box 100072, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
28
|
Khabour O, Levenson J, Lyons LC, Kategaya LS, Chin J, Byrne JH, Eskin A. Coregulation of glutamate uptake and long-term sensitization in Aplysia. J Neurosci 2005; 24:8829-37. [PMID: 15470149 PMCID: PMC6729961 DOI: 10.1523/jneurosci.2167-04.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Aplysia, long-term facilitation (LTF) at sensorimotor synapses of the pleural-pedal ganglia is mediated by an increase in the release of a neurotransmitter, which appears to be glutamate. Glutamate uptake also is increased in sensory neurons 24 hr after the induction of long-term sensitization (Levenson et al., 2000b). The present study investigated whether the same signaling pathways were involved in the long-term increase in glutamate uptake as in the induction of LTF. Thus, roles for cAMP, PKA (cAMP-dependent protein kinase), MAPK (mitogen-activated protein kinase), and tyrosine kinase in the regulation of glutamate uptake were tested. We found that 5-HT increased cAMP and activated PKA in sensory neurons. Exposure of pleural-pedal ganglia to analogs of cAMP or forskolin increased glutamate uptake 24 hr after treatments. Inhibitors of PKA (KT5720), MAPK (U0126 and PD98059), and tyrosine kinase (genistein) blocked the long-term increase in glutamate uptake produced by 5-HT. In addition, bpV, a tyrosine phosphatase inhibitor, facilitated the ability of subthreshold levels of 5-HT to increase glutamate uptake. Inhibition of PKC, which is not involved in LTF, had no effect on the long-term increase in glutamate uptake produced by 5-HT. Furthermore, activation of PKC by phorbol-12,13-dibutyrate did not produce long-term changes in glutamate uptake. The results demonstrate that the same constellation of second messengers and kinases is involved in the long-term regulation of both glutamate release and glutamate uptake. These similarities in signaling pathways suggest that regulation of glutamate release and uptake during formation of long-term memory are coordinated through coregulation of these two processes.
Collapse
Affiliation(s)
- Omar Khabour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Plasticity of the Aplysia sensorimotor synapse plays a crucial role in learning and memory of withdrawal reflexes. During the past ten years, a growing body of evidence has indicated that the sensorimotor synapse is glutamatergic. This new information has guided several studies that implicate AMPA and NMDA receptors in synaptic plasticity. However, further work is necessary to delineate the exact properties of the postsynaptic receptors, and their role in transmission and plasticity. Despite the still incomplete picture of the intrinsic properties of the sensorimotor synapse, identifying the endogenous transmitter has provided a foundation for new avenues of research, the results of which will further improve our understanding of the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Evangelos G Antzoulatos
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Walters ET, Bodnarova M, Billy AJ, Dulin MF, Díaz-Ríos M, Miller MW, Moroz LL. Somatotopic organization and functional properties of mechanosensory neurons expressing sensorin-A mRNA inAplysia californica. J Comp Neurol 2004; 471:219-40. [PMID: 14986314 DOI: 10.1002/cne.20042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previous study reported that a peptide, sensorin-A, is expressed exclusively in mechanosensory neurons having somata in central ganglia of Aplysia. The present study utilized in situ hybridization, staining by nerve back-fill and soma injection, and electrophysiological methods to characterize the locations, numbers, and functions of sensorin-A-expressing neurons and to define the relationships between soma locations and the locations of peripheral axons and receptive fields. Approximately 1,000 cells express sensorin-A mRNA in young adult animals (10-30 g) and 1,200 cells in larger adults (100-300 g). All of the labeled somata are in the CNS, primarily in the abdominal LE, rLE, RE and RF, pleural VC, cerebral J and K, and buccal S clusters. Expression also occurs in a few sparsely distributed cells in most ganglia. Together, receptive fields of all these mechanosensory clusters cover the entire body surface. Each VC cluster forms a somatotopic map of the ipsilateral body, a "sensory aplunculus." Cells in the pleural and cerebral clusters have partially overlapping sensory fields and synaptic targets. Buccal S cells have receptive fields on the buccal mass and lips and display notable differences in electrophysiological properties from other sensorin-A-expressing neurons. Neurons in all of the clusters have relatively high mechanosensory thresholds, responding preferentially to threatening or noxious stimuli. Synaptic outputs to target cells having defensive functions support a nociceptive role, as does peripheral sensitization following noxious stimulation, although additional functions are likely in some clusters. Interesting questions arise from observations that mRNA for sensorin-A is present not only in the somata but also in synaptic regions, connectives, and peripheral fibers.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Antzoulatos EG, Cleary LJ, Eskin A, Baxter DA, Byrne JH. Desensitization of postsynaptic glutamate receptors contributes to high-frequency homosynaptic depression of aplysia sensorimotor connections. Learn Mem 2003; 10:309-13. [PMID: 14557602 DOI: 10.1101/lm.61403] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Withdrawal reflexes of Aplysia are mediated in part by a monosynaptic circuit of sensory (SN) and motor (MN) neurons. A brief high-frequency burst of spikes in the SN produces excitatory postsynaptic potentials (EPSPs) that rapidly decrease in amplitude during the burst of activity. It is generally believed that this and other (i.e., low-frequency) forms of homosynaptic depression are entirely caused by presynaptic mechanisms (e.g., depletion of releasable transmitter). The present study examines the contribution that desensitization of postsynaptic glutamate receptors makes to homosynaptic depression. Bath application of cyclothiazide, an agent that reduces desensitization of non-NMDA glutamate receptors, reduced high-, but not low-frequency synaptic depression. Thus, a postsynaptic mechanism, desensitization of glutamate receptors, can also contribute to homosynaptic depression of sensorimotor synapses.
Collapse
Affiliation(s)
- Evangelos G Antzoulatos
- Department of Neurobiology and Anatomy, W M Keck Center for the Neurobiology of Learning and Memory, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Until recently, learning and memory in invertebrate organisms was believed to be mediated by relatively simple presynaptic mechanisms. By contrast, learning and memory in vertebrate organisms is generally thought to be mediated, at least in part, by postsynaptic mechanisms. But new experimental evidence from research using a model invertebrate organism, the marine snail Aplysia, indicates that this apparent distinction between invertebrate and vertebrate synaptic mechanisms of learning is invalid: learning in Aplysia cannot be explained in terms of exclusively presynaptic mechanisms. NMDA-receptor-dependent LTP appears to be necessary for classical conditioning in Aplysia. Furthermore, modulation of trafficking of postsynaptic ionotropic glutamate receptors underlies behavioral sensitization in this snail. Exclusively presynaptic processes appear to support only relatively brief memory in Aplysia. More persistent memory is likely to be mediated by postsynaptic processes, or by presynaptic processes whose expression depends upon retrograde signals.
Collapse
Affiliation(s)
- Adam C Roberts
- Interdepartmental PhD Program in Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
33
|
Prolonged habituation of the gill-withdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity, and postsynaptic glutamate receptors. J Neurosci 2003. [PMID: 14573538 DOI: 10.1523/jneurosci.23-29-09585.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite representing perhaps the simplest form of memory, habituation is not yet well understood mechanistically. We used a reduced preparation to analyze the neurobiological mechanisms of persistent habituation of a simple behavior, the defensive withdrawal reflex of the marine snail Aplysia californica. This preparation permits direct infusion of drugs into the abdominal ganglion during training via a cannula in the abdominal artery. Using siphon-elicited gill withdrawal, we demonstrate habituation of withdrawal that persists for 1-6 hr after repeated, spaced blocks of habituating stimulation. This form of habituation exhibits site specificity and requires protein synthesis because it is blocked by the presence of anisomycin, a protein synthesis inhibitor. We also find that habituation of gill withdrawal requires protein phosphatase activity, because it is blocked by okadaic acid, an inhibitor of protein phosphatase. Finally, habituation of gill withdrawal requires activation of NMDA-type and AMPA-type postsynaptic receptors within the abdominal ganglion, because it is blocked by infusion of dl-2-amino-5-phosphonovaleric acid or 6,7-dinitroquinoxaline-2,3-dione. The requirement for activation of postsynaptic glutamatergic receptors indicates that homosynaptic depression, an exclusively presynaptic mechanism that has been implicated previously in habituation in Aplysia, does not play a significant role in persistent habituation of the withdrawal reflex. Our results indicate that postsynaptic mechanisms, possibly including modulation of glutamate receptor function, play a major, heretofore unsuspected, role in habituation in Aplysia.
Collapse
|
34
|
Tamse CT, Xu Y, Song H, Nie L, Yamoah EN. Protein kinase A mediates voltage-dependent facilitation of Ca2+ current in presynaptic hair cells in Hermissenda crassicornis. J Neurophysiol 2003; 89:1718-26. [PMID: 12626635 DOI: 10.1152/jn.00766.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The simplest cellular model for classical conditioning in the nudibranch mollusk, Hermissenda crassicornis, involves the presynaptic hair cells and postsynaptic photoreceptors. Whereas the cellular mechanisms for postsynaptic photoreceptors have been studied extensively, the presynaptic mechanisms remain uncertain. Here, we determined the phenotype of the voltage-dependent Ca(2+) current in the presynaptic hair cells that may be directly involved in changes in synaptic efficacy during classical conditioning. The Ca(2+) current can be classified as a P-type current because its activation voltage under seawater recording conditions is approximately -30 mV, it showed slow inactivation, and it is reversibly blocked by omega-agatoxin-IVA. The steady-state activation and inactivation curves revealed a window current, and the single-channel conductance is approximately 20 pS. The P-type current was enhanced by cAMP analogs (approximately 1.3-fold), and by forskolin, an activator of adenylyl cyclase (approximately 1.25-fold). In addition, the P-type current showed voltage-dependent facilitation, which is mediated by protein kinase A (PKA). Specifically, the PKA inhibitor peptide [PKI(6-22)amide] blocked the enhancement of the Ca(2+) current produced by conditioning depolarization prepulses. Because neurotransmitter release is mediated by Ca(2+) influx via voltage-gated Ca(2+) channels, and because of the nonlinear relationship between the Ca(2+) influx and neurotransmitter release, we propose that voltage-dependent facilitation of the P-type current in hair cells would produce a robust change in synaptic efficacy.
Collapse
Affiliation(s)
- Catherine T Tamse
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
35
|
Hattar S, Lyons LC, Eskin A. Circadian regulation of a transcription factor, ApC/EBP, in the eye of Aplysia californica. J Neurochem 2002; 83:1401-11. [PMID: 12472894 DOI: 10.1046/j.1471-4159.2002.01249.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor, ApC/EBP (Aplysia CCAAT enhancer-binding protein) is an immediate early gene that is rapidly induced by serotonin and the cAMP signaling pathway. ApC/EBP acts as an important link following the activation of protein kinase A (PKA) in the consolidation of long-term memory in Aplysia californica. In this study, we report that levels of ApC/EBP mRNA in the eye of Aplysia are modulated by serotonin or light. These responses of ApC/EBP to serotonin and light are mimicked by analogs of cAMP and cGMP. Expression of ApC/EBP in the eye is also under the control of the circadian oscillator with circadian rhythms of ApC/EBP mRNA present under constant dark conditions. Therefore, ApC/EBP is a candidate gene for a circadian transcription factor to mediate circadian responses activated by the cAMP and cGMP second messenger signaling pathways.
Collapse
Affiliation(s)
- Samer Hattar
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA
| | | | | |
Collapse
|
36
|
Constance CM, Green CB, Tei H, Block GD. Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms 2002; 17:413-27. [PMID: 12375618 DOI: 10.1177/074873002237136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors cloned the period (per) gene from the marine mollusk Bulla gouldiana, a well-characterized circadian model system. This allowed them to examine the characteristics of the per gene in a new phylum, and to make comparisons with the conserved PER domains previously characterized in insects and vertebrates. Only one copy of the per gene is present in the Bulla genome, and it is most similar to PER in two insects: the cockroach, Periplaneta americana, and silkmoth, Antheraea pernyi. Comparison with Drosophila PER (dPER) and murine PER 1 (mPER1) sequence reveals that there is greater sequence homology between Bulla PER (bPER) and dPER in the regions of dPER shown to be important to heterodimerization between dPER and Drosophila timeless. Although the structure suggests conservation between dPER and bPER, expression patterns differ. In all cells and tissues examined that are peripheral to the clock neurons in Bulla, bPer mRNA and protein are expressed constitutively in light:dark (LD) cycles. In the identified clock neurons, the basal retinal neurons (BRNs), a rhythm in bPer expression could be detected in LD cycles with a peak at zeitgeber time (ZT) 5 and trough expression at ZT 13. This temporal profile of expression more closely resembles that of mPER1 than that of dPER. bPer rhythms in the BRNs were not detected in continuous darkness. These analyses suggest that clock genes may be uniquely regulated in different circadian systems, but lead to similar control of rhythms at the cellular, tissue, and organismal levels.
Collapse
Affiliation(s)
- Cara M Constance
- National Science Foundation Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903-2477, USA
| | | | | | | |
Collapse
|
37
|
Chin J, Burdohan JA, Eskin A, Byrne JH. Inhibitor of glutamate transport alters synaptic transmission at sensorimotor synapses in Aplysia. J Neurophysiol 2002; 87:3165-8. [PMID: 12037218 DOI: 10.1152/jn.2002.87.6.3165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aplysia sensory neurons possess high-affinity glutamate uptake activity that is regulated by serotonin. To gain insight into the physiological role of glutamate uptake in sensory neurons, we examined whether blockade of glutamate transport altered synaptic transmission. We also examined whether glutamate transport affected homosynaptic depression and posttetanic potentiation (PTP). In the presence of DL-threo-beta-hydroxyaspartic acid (THA), previously shown to block glutamate uptake in Aplysia, the duration of unitary excitatory postsynaptic potentials (EPSPs) was significantly increased and their amplitude was significantly reduced. Similar effects were observed in the properties of summated EPSPs. However, no effect on the induction of homosynaptic depression or PTP was observed. Although it is unclear whether THA exerted its effect by modulating neuronal and/or glial mechanisms, at least one target of THA was neuronal, as the duration of unitary EPSPs measured in cultured sensorimotor synapses was also increased in the presence of THA. These results support the hypotheses that glutamate is the transmitter released by the sensory neurons and that glutamate transport plays an important role in regulating features of synaptic transmission in Aplysia.
Collapse
Affiliation(s)
- Jeannie Chin
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, University of Texas-Houston Medical School, Houston 77030, Texas, USA
| | | | | | | |
Collapse
|
38
|
Levine MZ, Harrison PJ, Walthall WW, Tai PC, Derby CD. A CUB-serine protease in the olfactory organ of the spiny lobster Panulirus argus. JOURNAL OF NEUROBIOLOGY 2001; 49:277-302. [PMID: 11745665 DOI: 10.1002/neu.10010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full-length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including Complement subcomponents Clr/Cls, Uegf, and Bone morphogenic protein-1). RT-PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains.
Collapse
Affiliation(s)
- M Z Levine
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
40
|
Levenson J, Endo S, Kategaya LS, Fernandez RI, Brabham DG, Chin J, Byrne JH, Eskin A. Long-term regulation of neuronal high-affinity glutamate and glutamine uptake in Aplysia. Proc Natl Acad Sci U S A 2000; 97:12858-63. [PMID: 11050153 PMCID: PMC18854 DOI: 10.1073/pnas.220256497] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Indexed: 11/18/2022] Open
Abstract
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.
Collapse
Affiliation(s)
- J Levenson
- University of Houston, Department of Biology and Biochemistry, 4800 Calhoun Road, Houston, TX 77204-5513, USA
| | | | | | | | | | | | | | | |
Collapse
|