1
|
Lee C, Shokrian M, Henry KS, Carney LH, Holt JC, Nam JH. Outer hair cells stir cochlear fluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607009. [PMID: 39149246 PMCID: PMC11326228 DOI: 10.1101/2024.08.07.607009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid-structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently indicate that the outer-hair-cell action in the tail region of cochlear traveling waves is for cochlear fluid circulation.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Mohammad Shokrian
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
| | - Kenneth S. Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Laurel H. Carney
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
2
|
Zhang P, Yang J, Shu Y, Cheng M, Zhao X, Wang K, Lu L, Xing Q, Niu G, Meng L, Wang X, Zhou L, Zhang X. The value of synthetic MRI in detecting the brain changes and hearing impairment of children with sensorineural hearing loss. Front Neurosci 2024; 18:1365141. [PMID: 38919907 PMCID: PMC11197400 DOI: 10.3389/fnins.2024.1365141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Sensorineural hearing loss (SNHL) can arise from a diverse range of congenital and acquired factors. Detecting it early is pivotal for nurturing speech, language, and cognitive development in children with SNHL. In our study, we utilized synthetic magnetic resonance imaging (SyMRI) to assess alterations in both gray and white matter within the brains of children affected by SNHL. Methods The study encompassed both children diagnosed with SNHL and a control group of children with normal hearing {1.5-month-olds (n = 52) and 3-month-olds (n = 78)}. Participants were categorized based on their auditory brainstem response (ABR) threshold, delineated into normal, mild, moderate, and severe subgroups.Clinical parameters were included and assessed the correlation with SNHL. Quantitative analysis of brain morphology was conducted using SyMRI scans, yielding data on brain segmentation and relaxation time.Through both univariate and multivariate analyses, independent factors predictive of SNHL were identified. The efficacy of the prediction model was evaluated using receiver operating characteristic (ROC) curves, with visualization facilitated through the utilization of a nomogram. It's important to note that due to the constraints of our research, we worked with a relatively small sample size. Results Neonatal hyperbilirubinemia (NH) and children with inner ear malformation (IEM) were associated with the onset of SNHL both at 1.5 and 3-month groups. At 3-month group, the moderate and severe subgroups exhibited elevated quantitative T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) compared to the normal group. Additionally, WMV, WMF, MYF, and MYV were significantly reduced relative to the normal group. Additionally, SNHL-children with IEM had high T1 values in IC, and LL and reduced WMV, WMF, MYV and MYF values as compared with SNHL-children without IEM at 3-month group. LL-T1 and WMF were independent risk factors associated with SNHL. Consequently, a prediction model was devised based on LL-T1 and WMF. ROC for training set, validation set and external set were 0.865, 0.806, and 0.736, respectively. Conclusion The integration of T1 quantitative values and brain volume segmentation offers a valuable tool for tracking brain development in children affected by SNHL and assessing the progression of the condition's severity.
Collapse
Affiliation(s)
- Penghua Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinze Yang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yikai Shu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Meiying Cheng
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhao
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kaiyu Wang
- MRI Research, GE Healthcare, Beijing, China
| | - Lin Lu
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingna Xing
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangying Niu
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingsong Meng
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Wang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Zhou
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Henry KS, Guo AA, Abrams KS. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy. Hear Res 2024; 441:108927. [PMID: 38096707 PMCID: PMC10775186 DOI: 10.1016/j.heares.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| | - Anna A Guo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Wang Y, Abrams KS, Youngman M, Henry KS. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2023; 24:473-485. [PMID: 37798548 PMCID: PMC10695905 DOI: 10.1007/s10162-023-00910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking. METHODS We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status. RESULTS Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I. CONCLUSION Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.
Collapse
Affiliation(s)
- Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Margaret Youngman
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA
| | - Kenneth S Henry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Vijayakumar KA, Cho GW, Maharajan N, Jang CH. A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy. Exp Neurobiol 2022; 31:232-242. [PMID: 36050223 PMCID: PMC9471415 DOI: 10.5607/en22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Tinnitus is the perception of phantom noise without any external auditory sources. The degeneration of the function or activity of the peripheral or central auditory nervous systems is one of the causes of tinnitus. This damage has numerous causes, such as loud noise, aging, and ototoxicity. All these sources excite the cells of the auditory pathway, producing reactive oxygen species that leads to the death of sensory neural hair cells. This causes involuntary movement of the tectorial membrane, resulting in the buzzing noise characteristic of tinnitus. Autophagy is an evolutionarily conserved catabolic scavenging activity inside a cell that has evolved as a cell survival mechanism. Numerous studies have demonstrated the effect of autophagy against oxidative stress, which is one of the reasons for cell excitation. This review compiles several studies that highlight the role of autophagy in protecting sensory neural hair cells against oxidative stress-induced damage. This could facilitate the development of strategies to treat tinnitus by activating autophagy.
Collapse
Affiliation(s)
- Karthikeyan A Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea.,BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
6
|
Henry KS. Animal models of hidden hearing loss: Does auditory-nerve-fiber loss cause real-world listening difficulties? Mol Cell Neurosci 2022; 118:103692. [PMID: 34883241 PMCID: PMC8928575 DOI: 10.1016/j.mcn.2021.103692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Afferent innervation of the cochlea by the auditory nerve declines during aging and potentially after sound overexposure, producing the common pathology known as cochlear synaptopathy. Auditory-nerve-fiber loss is difficult to detect with the clinical audiogram and has been proposed to cause 'hidden hearing loss' including impaired speech-in-noise perception. While evidence that auditory-nerve-fiber loss causes hidden hearing loss in humans is controversial, behavioral animal models hold promise to rigorously test this hypothesis because neural lesions can be induced and histologically validated. Here, we review recent animal behavioral studies on the impact of auditory-nerve-fiber loss on perception in a range of species. We first consider studies of tinnitus and hyperacusis inferred from acoustic startle reflexes, followed by a review of operant-conditioning studies of the audiogram, temporal integration for tones of varying duration, temporal resolution of gaps in noise, and tone-in-noise detection. Studies quantifying the audiogram show that tone-in-quiet sensitivity is unaffected by auditory-nerve-fiber loss unless neural lesions exceed 80%, at which point large deficits are possible. Changes in other aspects of perception, which were typically investigated for moderate-to-severe auditory-nerve-fiber loss of 50-70%, appear heterogeneous across studies and might be small compared to impairment caused by hair-cell pathologies. Future studies should pursue recent findings that behavioral sensitivity to brief tones and silent gaps in noise may be particularly vulnerable to auditory-nerve-fiber loss. Furthermore, aspects of auditory perception linked to central inhibition and fine neural response timing, such as modulation masking release and spatial hearing, may be productive directions for further animal behavioral research.
Collapse
Affiliation(s)
- Kenneth S Henry
- Departments of Otolaryngology, Biomedical Engineering, and Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
7
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Guthrie OW, Bhatt IS. Nondeterministic nature of sensorineural outcomes following noise trauma. Biol Open 2021; 10:272549. [PMID: 34668520 PMCID: PMC8543023 DOI: 10.1242/bio.058696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Over 1.1 billion individuals are at risk for noise induced hearing loss yet there is no accepted therapy. A long history of research has demonstrated that excessive noise exposure will kill outer hair cells (OHCs). Such observations have fueled the notion that dead OHCs underlie hearing loss. Therefore, previous and current therapeutic approaches are based on preventing the loss of OHCs. However, the relationship between OHC loss and hearing loss is at best a modest correlation. This suggests that in addition to the death of OHCs, other mechanisms may regulate the type and degree of hearing loss. In the current study, we tested the hypothesis that permanent noise-induced-hearing loss is consequent to additional mechanisms beyond the noise dose and the death of OHCs. Hooded male rats were randomly divided into noise and control groups. Morphological and physiological assessments were conducted on both groups. The combined results suggest that beyond OHC loss, the surviving cochlear elements shape sensorineural outcomes, which can be nondeterministic. These findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead OHCs. Summary: The current findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead cells.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA.,Cell & Molecular Pathology Laboratory, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ishan S Bhatt
- Audiogenomics Research Laboratory, Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Ding D, Qi W, Jiang H, Salvi R. Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 2021; 411:108358. [PMID: 34607211 DOI: 10.1016/j.heares.2021.108358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Excess release of glutamate at the inner hair cell-type I auditory nerve synapse results in excitotoxicity characterized by rapid swelling and disintegration of the afferent synapses, but in some cases, the damage expands to the spiral ganglion soma. Cochlear excitotoxic damage is largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and kainate receptor (KAR) and potentially N-methyl-D-aspartate receptors (NMDAR). Because these receptors are developmentally regulated, the pattern of excitotoxic damage could change during development. To test this hypothesis, we compared AMPAR, NMDAR and KAR immunolabeling and excitotoxic damage patterns in rat postnatal day 3 (P3) and adult cochlear cultures. At P3, AMPAR and KAR immunolabeling, but not NMDAR, was abundantly expressed on peripheral nerve terminals adjacent to IHCs. In contrast, AMPAR, KAR and NMDAR immunolabeling was minimal or undetectable on the SGN soma. In adult rats, however, AMPAR, KAR and NMDAR immunolabeling occurred on both peripheral nerve terminals near IHCs as well as the soma of SGNs. High doses of Glu and KA only damaged peripheral nerve terminals near IHCs, but not SGNs, at P3, consistent with selective expression of AMPAR and KAR expression on the terminals. However, in adults, Glu and KA damaged both peripheral nerve terminals near IHCs and SGNs both of which expressed AMPAR and KAR. These results indicate that cochlear excitotoxic damage is closely correlated with structures that express AMPAR and KAR.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Weidong Qi
- Department of Otolaryngology, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA.
| |
Collapse
|
10
|
Dhukhwa A, Al Aameri RFH, Sheth S, Mukherjea D, Rybak L, Ramkumar V. Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss. Sci Rep 2021; 11:8116. [PMID: 33854102 PMCID: PMC8046767 DOI: 10.1038/s41598-021-87387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, 33169, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Leonard Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
11
|
Henry KS, Abrams KS. Normal Tone-In-Noise Sensitivity in Trained Budgerigars despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss. J Neurosci 2021; 41:118-129. [PMID: 33177067 PMCID: PMC7786208 DOI: 10.1523/jneurosci.2104-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/02/2020] [Accepted: 10/24/2021] [Indexed: 02/01/2023] Open
Abstract
Loss of auditory-nerve (AN) afferent cochlear innervation is a prevalent human condition that does not affect audiometric thresholds and therefore remains largely undetectable with standard clinical tests. AN loss is widely expected to cause hearing difficulties in noise, known as "hidden hearing loss," but support for this hypothesis is controversial. Here, we used operant conditioning procedures to examine the perceptual impact of AN loss on behavioral tone-in-noise (TIN) sensitivity in the budgerigar (Melopsittacus undulatus; of either sex), an avian animal model with complex hearing abilities similar to humans. Bilateral kainic acid (KA) infusions depressed compound AN responses by 40-70% without impacting otoacoustic emissions or behavioral tone sensitivity in quiet. Surprisingly, animals with AN damage showed normal thresholds for tone detection in noise (0.1 ± 1.0 dB compared to control animals; mean difference ± SE), even under a challenging roving-level condition with random stimulus variation across trials. Furthermore, decision-variable correlations (DVCs) showed no difference for AN-damaged animals in their use of energy and envelope cues to perform the task. These results show that AN damage has less impact on TIN detection than generally expected, even under a difficult roving-level condition known to impact TIN detection in individuals with sensorineural hearing loss (SNHL). Perceptual deficits could emerge for different perceptual tasks or with greater AN loss but are potentially minor compared with those caused by SNHL.SIGNIFICANCE STATEMENT Loss of auditory-nerve (AN) cochlear innervation is a common problem in humans that does not affect audiometric thresholds on a clinical hearing test. AN loss is widely expected to cause hearing problems in noise, known as "hidden hearing loss," but existing studies are controversial. Here, using an avian animal model with complex hearing abilities similar to humans, we examined for the first time the impact of an experimentally induced AN lesion on behavioral tone sensitivity in noise. Surprisingly, AN-lesioned animals showed no difference in hearing performance in noise or detection strategy compared with controls. These results show that perceptual deficits from AN damage are smaller than generally expected, and potentially minor compared with those caused by sensorineural hearing loss (SNHL).
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| |
Collapse
|
12
|
Wilson JL, Abrams KS, Henry KS. Effects of Kainic Acid-Induced Auditory Nerve Damage on Envelope-Following Responses in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2020; 22:33-49. [PMID: 33078291 DOI: 10.1007/s10162-020-00776-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 01/11/2023] Open
Abstract
Sensorineural hearing loss is a prevalent problem that adversely impacts quality of life by compromising interpersonal communication. While hair cell damage is readily detectable with the clinical audiogram, this traditional diagnostic tool appears inadequate to detect lost afferent connections between inner hair cells and auditory nerve (AN) fibers, known as cochlear synaptopathy. The envelope-following response (EFR) is a scalp-recorded response to amplitude modulation, a critical acoustic feature of speech. Because EFRs can have greater amplitude than wave I of the auditory brainstem response (ABR; i.e., the AN-generated component) in humans, the EFR may provide a more sensitive way to detect cochlear synaptopathy. We explored the effects of kainate- (kainic acid) induced excitotoxic AN injury on EFRs and ABRs in the budgerigar (Melopsittacus undulatus), a parakeet species used in studies of complex sound discrimination. Kainate reduced ABR wave I by 65-75 % across animals while leaving otoacoustic emissions unaffected or mildly enhanced, consistent with substantial and selective AN synaptic loss. Compared to wave I loss, EFRs showed similar or greater percent reduction following kainate for amplitude-modulation frequencies from 380 to 940 Hz and slightly less reduction from 80 to 120 Hz. In contrast, forebrain-generated middle latency responses showed no consistent change post-kainate, potentially due to elevated "central gain" in the time period following AN damage. EFR reduction in all modulation frequency ranges was highly correlated with wave I reduction, though within-animal effect sizes were greater for higher modulation frequencies. These results suggest that even low-frequency EFRs generated primarily by central auditory nuclei might provide a useful noninvasive tool for detecting synaptic injury clinically.
Collapse
Affiliation(s)
- John L Wilson
- University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Department of Otolaryngology - Head & Neck Surgery, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Kenneth S Henry
- Department of Otolaryngology - Head & Neck Surgery, University of Rochester, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
13
|
Lidocaine protects neurons of the spinal cord in an excitotoxicity model. Neurosci Lett 2019; 698:105-112. [DOI: 10.1016/j.neulet.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
14
|
Wong SJ, Abrams KS, Amburgey KN, Wang Y, Henry KS. Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar. Hear Res 2019; 374:24-34. [PMID: 30703625 PMCID: PMC6382589 DOI: 10.1016/j.heares.2019.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Auditory-nerve fibers are lost steadily with age and as a possible consequence of noise-induced glutamate excitotoxicity. Auditory-nerve loss in the absence of other cochlear pathologies is thought to be undetectable with a pure-tone audiogram while degrading real-world speech perception (hidden hearing loss). Perceptual deficits remain unclear, however, due in part to the limited behavioral capacity of existing rodent models to discriminate complex sounds. The budgerigar is an avian vocal learner with human-like behavioral sensitivity to many simple and complex sounds and the capacity to mimic speech. Previous studies in this species show that intracochlear kainic-acid infusion reduces wave 1 of the auditory brainstem response by 40-70%, consistent with substantial excitotoxic auditory-nerve damage. The present study used operant-conditioning procedures in trained budgerigars to quantify kainic-acid effects on tone detection across frequency (0.25-8 kHz; the audiogram) and as a function of duration (20-160 ms; temporal integration). Tone thresholds in control animals were lowest from 1 to 4 kHz and decreased with increasing duration as in previous studies of the budgerigar. Behavioral results in kainic-acid-exposed animals were as sensitive as in controls, suggesting preservation of the audiogram and temporal integration despite auditory-nerve loss associated with up to 70% wave 1 reduction. Distortion-product otoacoustic emissions were also preserved in kainic-acid exposed animals, consistent with normal hair-cell function. These results highlight considerable perceptual resistance of tone-detection performance with selective auditory-nerve loss. Future behavioral studies in budgerigars with auditory-nerve damage can use complex speech-like stimuli to help clarify aspects of auditory perception impacted by this common cochlear pathology.
Collapse
Affiliation(s)
- Stephanie J Wong
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA
| | - Kassidy N Amburgey
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14642, USA
| | - Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY, 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Kindt KS, Sheets L. Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish. Front Cell Dev Biol 2018; 6:114. [PMID: 30258843 PMCID: PMC6143809 DOI: 10.3389/fcell.2018.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Sensorineural hearing loss is the most common form of hearing loss in humans, and results from either dysfunction in hair cells, the sensory receptors of sound, or the neurons that innervate hair cells. A specific type of sensorineural hearing loss, referred to as auditory synaptopathy, occurs when hair cells are able to detect sound but fail to transmit sound stimuli at the hair-cell synapse. Auditory synaptopathy can originate from genetic alterations that specifically disrupt hair-cell synapse function. Additionally, environmental factors such as noise exposure can leave hair cells intact but result in loss of hair-cell synapses, and represent an acquired form of auditory synaptopathy. The zebrafish model has emerged as a valuable system for studies of hair-cell function, and specifically hair-cell synaptopathy. In this review, we describe the experimental tools that have been developed to study hair-cell synapses in zebrafish. We discuss how zebrafish genetics has helped identify and define the roles of hair-cell synaptic proteins crucial for hearing in humans, and highlight how studies in zebrafish have contributed to our understanding of hair-cell synapse formation and function. In addition, we also discuss work that has used noise exposure or pharmacological mimic of noise-induced excitotoxicity in zebrafish to define cellular mechanisms underlying noise-induced hair-cell damage and synapse loss. Lastly, we highlight how future studies in zebrafish could enhance our understanding of the pathological processes underlying synapse loss in both genetic and acquired auditory synaptopathy. This knowledge is critical in order to develop therapies that protect or repair auditory synaptic contacts.
Collapse
Affiliation(s)
- Katie S. Kindt
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Henry KS, Abrams KS. Persistent Auditory Nerve Damage Following Kainic Acid Excitotoxicity in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2018; 19:435-449. [PMID: 29744730 DOI: 10.1007/s10162-018-0671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/22/2018] [Indexed: 11/30/2022] Open
Abstract
Permanent loss of auditory nerve (AN) fibers occurs with increasing age and sound overexposure, sometimes without hair cell damage or associated audiometric threshold elevation. Rodent studies suggest effects of AN damage on central processing and behavior, but these species have limited capacity to discriminate low-frequency speech-like sounds. Here, we introduce a new animal model of AN damage in an avian communication specialist, the budgerigar (Melopsittacus undulatus). The budgerigar is a vocal learner and speech mimic with sensitive low-frequency hearing and human-like behavioral sensitivity to many complex signals including speech components. Excitotoxic AN damage was induced through bilateral cochlear infusions of kainic acid (KA). Acute KA effects on cochlear function were assessed using AN compound action potentials (CAPs) and hair cell cochlear microphonics (CMs). Long-term KA effects were assessed using auditory brainstem response (ABR) measurements for up to 31 weeks post-KA exposure. KA infusion immediately abolished AN CAPs while having mild impact on the CM. ABR wave I, the far-field AN response, showed a pronounced 40-75 % amplitude reduction at moderate-to-high sound levels that persisted for the duration of the study. In contrast, wave I latency and the amplitude of wave V were nearly unaffected by KA, and waves II-IV were less reduced than wave I. ABR thresholds, calculated based on complete response waveforms, showed no impairment following KA. These results demonstrate that KA exposure in the budgerigar causes irreversible AN damage, most likely through excitotoxic injury to afferent fibers or synapses as in other species, while sparing ABR thresholds. Normal wave V amplitude, assumed to originate centrally, may persist through compensatory mechanisms that restore central response amplitude by downregulating inhibition. Future studies in this new animal model of AN damage can explore effects of this neural lesion, in isolation from hair cell trauma and threshold elevation, on central processing and perception of complex sounds.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, 601 Elmwood Ave., Box 629, Rochester, NY, 14642, USA.
| | - Kristina S Abrams
- Department of Otolaryngology, University of Rochester, 601 Elmwood Ave., Box 629, Rochester, NY, 14642, USA.,Department of Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
Fontenot TE, Giardina CK, Fitzpatrick DC. A Model-Based Approach for Separating the Cochlear Microphonic from the Auditory Nerve Neurophonic in the Ongoing Response Using Electrocochleography. Front Neurosci 2017; 11:592. [PMID: 29123468 PMCID: PMC5662900 DOI: 10.3389/fnins.2017.00592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Abstract
Electrocochleography (ECochG) is a potential clinically valuable technique for predicting speech perception outcomes in cochlear implant (CI) recipients, among other uses. Current analysis is limited by an inability to quantify hair cell and neural contributions which are mixed in the ongoing part of the response to low frequency tones. Here, we used a model based on source properties to account for recorded waveform shapes and to separate the combined signal into its components. The model for the cochlear microphonic (CM) was a sinusoid with parameters for independent saturation of the peaks and the troughs of the responses. The model for the auditory nerve neurophonic (ANN) was the convolution of a unit potential and population cycle histogram with a parameter for spread of excitation. Phases of the ANN and CM were additional parameters. The average cycle from the ongoing response was the input, and adaptive fitting identified CM and ANN parameters that best reproduced the waveform shape. Test datasets were responses recorded from the round windows of CI recipients, from the round window of gerbils before and after application of neurotoxins, and with simulated signals where each parameter could be manipulated in isolation. Waveforms recorded from 284 CI recipients had a variety of morphologies that the model fit with an average r2 of 0.97 ± 0.058 (standard deviation). With simulated signals, small systematic differences between outputs and inputs were seen with some variable combinations, but in general there were limited interactions among the parameters. In gerbils, the CM reported was relatively unaffected by the neurotoxins. In contrast, the ANN was strongly reduced and the reduction was limited to frequencies of 1,000 Hz and lower, consistent with the range of strong neural phase-locking. Across human CI subjects, the ANN contribution was variable, ranging from nearly none to larger than the CM. Development of this model could provide a means to isolate hair cell and neural activity that are mixed in the ongoing response to low-frequency tones. This tool can help characterize the residual physiology across CI subjects, and can be useful in other clinical settings where a description of the cochlear physiology is desirable.
Collapse
Affiliation(s)
- Tatyana E Fontenot
- Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, NC, United States
| | | | - Douglas C Fitzpatrick
- Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, NC, United States.,School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017; 349:138-147. [PMID: 28087419 PMCID: PMC5438769 DOI: 10.1016/j.heares.2017.01.003] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Common causes of hearing loss in humans - exposure to loud noise or ototoxic drugs and aging - often damage sensory hair cells, reflected as elevated thresholds on the clinical audiogram. Recent studies in animal models suggest, however, that well before this overt hearing loss can be seen, a more insidious, but likely more common, process is taking place that permanently interrupts synaptic communication between sensory inner hair cells and subsets of cochlear nerve fibers. The silencing of affected neurons alters auditory information processing, whether accompanied by threshold elevations or not, and is a likely contributor to a variety of perceptual abnormalities, including speech-in-noise difficulties, tinnitus and hyperacusis. Work described here will review structural and functional manifestations of this cochlear synaptopathy and will consider possible mechanisms underlying its appearance and progression in ears with and without traditional 'hearing loss' arising from several common causes in humans.
Collapse
MESH Headings
- Animals
- Auditory Perception
- Auditory Threshold
- Cochlear Nerve/metabolism
- Cochlear Nerve/pathology
- Cochlear Nerve/physiopathology
- Glutamic Acid/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/psychology
- Humans
- Nerve Degeneration
- Noise/adverse effects
- Risk Factors
- Synapses/metabolism
- Synapses/pathology
- Synaptic Transmission
Collapse
Affiliation(s)
- M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA
| | - Sharon G Kujawa
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA.
| |
Collapse
|
19
|
Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation. Sci Rep 2017; 7:41102. [PMID: 28112265 PMCID: PMC5255535 DOI: 10.1038/srep41102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants-fish whose hair-cell organs are devoid of afferent and efferent innervation-to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals.
Collapse
|
20
|
Gaboyard-Niay S, Travo C, Saleur A, Broussy A, Brugeaud A, Chabbert C. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms. Dis Model Mech 2016; 9:1181-1192. [PMID: 27483344 PMCID: PMC5087823 DOI: 10.1242/dmm.024521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. Summary: Early sequence of afferent injury and repair in vestibular sensory epithelium that correlates with balance disorders and functional restoration is detailed in a rodent model of excitotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Chabbert
- INSERM U1051, Montpellier 34090, France Aix Marseille University UMR 7260, 13331 Marseille, France
| |
Collapse
|
21
|
Wang L, Tao Y, Chen Y, Wang H, Zhou H, Fu X. Association of post stroke depression with social factors, insomnia, and neurological status in Chinese elderly population. Neurol Sci 2016; 37:1305-10. [PMID: 27120072 DOI: 10.1007/s10072-016-2590-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/19/2016] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate the association of post stroke depression (PSD) with social factors, insomnia, and neurological status among elderly Chinese patients with ischemic stroke. Six hundred and eight patients over 60 years of age, who had suffered from a first episode of ischemic stroke within 7 days, were enrolled into the study. They were divided into PSD and non-PSD groups according to the Self-rating Depression Scale (SDS) scores. The association of PSD with social factors, insomnia, and neurological status was analyzed using multivariable logistic regression analysis. Compared with the patients who did not develop PSD, those with PSD reported adverse life events more frequently, and more subjects with PSD lived alone, had left carotid artery infarction and cortical infarction (P < 0.05), history of insomnia, and high National Institute of Health Stroke Scale (NIHSS) scores and low Barthel Index (BI) scores (P < 0.01). The multivariable logistic regression analysis showed that the occurrence of PSD was associated with a history of insomnia (HR = 1.59, 95 % CI 1.12-2.36, P < 0.01), NIHSS scores (HR = 2.45, 95 % CI 1.42-3.91, P < 0.01) and BI scores (HR = 2.56, 95 % CI 1.39-4.25, P < 0.01). Insomnia and the degree of neurological deficit were associated with PSD in an elderly population of Chinese people.
Collapse
Affiliation(s)
- Lingru Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yong Tao
- Graduate School, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yang Chen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hua Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Huadong Zhou
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiaoyan Fu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
22
|
Ye HB, Shi HB, Wang J, Ding DL, Yu DZ, Chen ZN, Li CY, Zhang WT, Yin SK. Bilirubin induces auditory neuropathy in neonatal guinea pigs via auditory nerve fiber damage. J Neurosci Res 2012; 90:2201-13. [PMID: 22847875 DOI: 10.1002/jnr.23107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 11/07/2022]
Abstract
Bilirubin can cause temporary or permanent sensorineural deafness in newborn babies with hyperbilirubinemia. However, the underlying targets and physiological effects of bilirubin-induced damage in the peripheral auditory system are unclear. Using cochlear functional assays and electron microscopy imaging of the inner ear in neonatal guinea pigs, we show here that bilirubin exposure resulted in threshold elevation in both compound action potential (CAP) and auditory brainstem response (ABR), which was apparent at 1 hr and peaked 8 hr after drug administration. The threshold elevation was associated with delayed wave latencies and elongated interwave intervals in ABR and CAP. At 72 hr postinjection, these measures returned to control levels, except for the CAP amplitude. Cochlear microphonics remained unchanged during the experiment. Morphological abnormalities were consistent with the electrophysiological dysfunction, revealing fewer auditory nerve fibers (ANFs) in the basal turn, myelin sheath lesions of spiral ganglion neurons (SGNs) and ANFs, and loss of type 1 afferent endings beneath inner hair cells (IHCs) without loss of hair cells at 8 hr posttreatment. Similar to the electrophysiological findings, morphological changes were mostly reversed 10 days after treatment, except for the ANF reduction in the basal turn. These results suggest that hyperbilirubinemia in neonatal guinea pigs impaired auditory peripheral neuromechanisms that targeted mainly the IHC synapses and the myelin sheath of SGNs and their fibers. Our observations indicate a potential connection between hyperbilirubinemia and auditory neuropathy.
Collapse
Affiliation(s)
- Hai-Bo Ye
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci 2009; 29:14077-85. [PMID: 19906956 PMCID: PMC2812055 DOI: 10.1523/jneurosci.2845-09.2009] [Citation(s) in RCA: 1628] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022] Open
Abstract
Overexposure to intense sound can cause temporary or permanent hearing loss. Postexposure recovery of threshold sensitivity has been assumed to indicate reversal of damage to delicate mechano-sensory and neural structures of the inner ear and no persistent or delayed consequences for auditory function. Here, we show, using cochlear functional assays and confocal imaging of the inner ear in mouse, that acoustic overexposures causing moderate, but completely reversible, threshold elevation leave cochlear sensory cells intact, but cause acute loss of afferent nerve terminals and delayed degeneration of the cochlear nerve. Results suggest that noise-induced damage to the ear has progressive consequences that are considerably more widespread than are revealed by conventional threshold testing. This primary neurodegeneration should add to difficulties hearing in noisy environments, and could contribute to tinnitus, hyperacusis, and other perceptual anomalies commonly associated with inner ear damage.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cell Death
- Cochlear Nerve/cytology
- Cochlear Nerve/pathology
- Cochlear Nerve/physiopathology
- Ear, Inner/cytology
- Ear, Inner/pathology
- Ear, Inner/physiopathology
- Ganglia, Sensory/cytology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/physiopathology
- Hearing Loss, Noise-Induced/complications
- Hearing Loss, Noise-Induced/physiopathology
- Male
- Mice
- Mice, Inbred CBA
- Nerve Degeneration/etiology
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neurons/cytology
- Neurons/pathology
- Neurons/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Noise
- Otoacoustic Emissions, Spontaneous
- Synapses/pathology
- Synapses/physiology
- Vestibulocochlear Nerve Diseases/etiology
- Vestibulocochlear Nerve Diseases/physiopathology
Collapse
Affiliation(s)
- Sharon G Kujawa
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
24
|
Chen Z, Peppi M, Kujawa SG, Sewell WF. Regulated expression of surface AMPA receptors reduces excitotoxicity in auditory neurons. J Neurophysiol 2009; 102:1152-9. [PMID: 19515954 DOI: 10.1152/jn.00288.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic regulation of the expression of surface AMPA receptors (AMPARs) is a key mechanism to modulate synaptic strength and efficacy in the CNS and also to regulate auditory sensitivity. Here we address the role of surface AMPAR expression in excitotoxicity by blocking clathrin-mediated AMPAR endocytosis in auditory neurons. We used a membrane-permeable, dynamin-derived, myristoylated peptide (myr-Dyn) to inhibit surface AMPAR endocytosis induced by glutamate receptor agonists in culture and by noise exposure in vivo. Myr-Dyn infused into the mouse cochlea induced excitotoxic responses to acoustic stimuli that were normally not excitotoxic. These included vacuolization in the nerve terminals and spiral ganglion as well as irreversible auditory brain stem response threshold shifts. In cultured spiral ganglion neuronal cells, blockade of the reduction of surface AMPARs exacerbated neuronal death by incubation with N-methyl-d-aspartate and AMPA. This excitotoxic neuronal death could be prevented by calpeptin, a calpain-specific inhibitor. These results suggest that the reduction of surface AMPAR by endocytosis during excitatory stimulation plays an important role in limiting the excitotoxic damage to the neuron.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Anne S, Kisley LB, Tajuddin ST, Leahy P, Alagramam KN, Megerian CA. Molecular Changes Associated With the Endolymphatic Hydrops Model. Otol Neurotol 2007; 28:834-41. [PMID: 17468674 DOI: 10.1097/mao.0b013e3180515381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Hearing loss and cochlear degeneration in the guinea pig model of endolymphatic hydrops (ELH) results, in part, from toxic levels of excitatory amino acids (EAAs) such as glutamate, which in turn leads to changes in the expression of genes linked to intracellular glutamate homeostasis and apoptosis, leading to neuronal cell death. BACKGROUND EAAs have been shown to play a role in normal auditory signal transmission in mammalian cochlea, but have also been implicated in neurotoxicity when levels are elevated. Changes in the expression of specific genes involved in the glutamatergic and apoptotic pathway would serve as evidence for excitotoxicity linked to elevated levels of glutamate. METHODS Guinea pigs underwent surgical obliteration of the endolymphatic duct, and then a timed harvest of the treated (right) and control (left) cochlea and subsequent quantification of gene expression via real-time quantitative polymerase chain reaction. RESULTS Quantitative polymerase chain reaction data show significant upregulation of glutamate aspartate transporter and neuronal nitric oxide synthase mRNA levels 3 weeks postsurgery and Caspase 3 mRNA levels 1 week postsurgery. No significant changes were detected in glutamine synthetase expression levels. CONCLUSION Upregulation of genes involved in glutamate homeostasis and the apoptotic pathway in animals treated with endolymphatic duct obstruction (usually associated with secondary ELH) support the hypothesis that EAAs may play a role in the pathophysiology of ELH-related cochlear injury. Inhibitors to these pathways can be useful for the study of new avenues to delay or prevent ELH-related hearing loss.
Collapse
Affiliation(s)
- Samantha Anne
- Otolaryngology-Head and Neck Surgery, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
26
|
Owens KN, Cunningham DE, MacDonald G, Rubel EW, Raible DW, Pujol R. Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 2007; 502:522-43. [PMID: 17394157 DOI: 10.1002/cne.21345] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observation of hair cells. Labeling with vital dyes revealed a rapid response of hair cells to the aminoglycoside neomycin. Similarly, ultrastructural analysis revealed structural alteration among hair cells within 15 minutes of neomycin exposure. Animals exposed to a low, 25-microM concentration of neomycin exhibited hair cells with swollen mitochondria, but little other damage. Animals treated with higher concentrations of neomycin (50-200 microM) had more severe and heterogeneous cellular changes, as well as fewer hair cells. Both necrotic-like and apoptotic-like cellular damage were observed. Quantitation of the types of alterations observed indicated that mitochondrial defects appear earlier and more predominantly than other structural alterations. In vivo monitoring demonstrated that mitochondrial potential decreased following neomycin treatment. These results indicate that perturbation of the mitochondrion is an early, central event in aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Kelly N Owens
- VM Bloedel Hearing Research Center, Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Manzini MC, Joseph DJ, MacDermott AB, Mason CA. Differential effects of AMPA receptor activation on survival and neurite integrity during neuronal development. Mol Cell Neurosci 2007; 35:328-38. [PMID: 17478096 PMCID: PMC2020849 DOI: 10.1016/j.mcn.2007.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 12/21/2022] Open
Abstract
While neuronal cultures are an established model for analyzing excitotoxic brain injury in the adult, in vitro systems have not been extensively employed to study how developing neurons respond to levels of excitatory compounds that are lethal to mature neurons. Recently, we reported that the in vivo differentiation programs of cerebellar granule cells (CGNs) are recapitulated in purified CGN cultures [Manzini M.C., Ward M.S., Zhang Q., Lieberman M.D., Mason C.A. (2006) The stop-signal revised: immature cerebellar granule neurons in the external germinal layer arrest pontine mossy fiber growth. J. Neurosci. 26:6040-6051]. Here, we have used this model system to compare the response of immature and mature neurons to excitotoxic compounds. We found that immature CGNs are less sensitive to AMPA receptor (AMPA-R) activation than mature cells and that levels of AMPA-R expression on the plasma membrane are critical in regulating the balance between death and survival during maturation of these neurons. However, the majority of immature cells that survive excitotoxic treatment bear a degenerating neurite, suggesting that AMPA-R activation can still cause damage in the absence of cell death.
Collapse
Affiliation(s)
- M Chiara Manzini
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
28
|
Kim YS, Jones TA, Chertoff ME, Nunnally WC. Columella footplate motion and the cochlear microphonic potential in the embryo and hatchling chicken. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:3811-21. [PMID: 17225408 DOI: 10.1121/1.2359236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A piezoelectric (PZE) vibrator was used to mechanically drive the columella footplate and stimulate the cochlea of chicken embryos and hatchlings. Our objectives were to characterize the motion of the PZE driver and determine the relationship between columella footplate motion (displacement/ velocity) and the cochlear microphonic recorded from the recessus scala tympani (CMrst). At each frequency, displacement of the PZE driver probe tip was linearly related to the applied voltage over a wide range of attenuation levels (-60 to -20 dBre:50 Vp-p). The mean displacement across frequencies (100-4000 Hz) was 0.221+/-0.042 micromp-p for a constant applied voltage level of -20 dBre:50 Vp-p. Displacement was within 1.5 dB of the mean for this stimulus level at all frequencies except for 4000 Hz, where it was approximately 3 dB higher (p < 0.01). CMrst amplitudes in hatchlings were larger than amplitudes in embryos (p=0.003). For a given frequency, CM was linearly related to footplate displacement and velocity at both ages. The transform ratio of CMrst/A (CM amplitude/displacement) increased at approximately 6 dB/octave at frequencies between 100 and 1000 Hz in hatchlings suggesting that cochlear impedance (Zc) was resistive at these frequencies. In a large fraction of the embryos, Zc exhibited reactive behavior.
Collapse
Affiliation(s)
- Young S Kim
- Department of Electrical Engineering, College of Engineering, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
29
|
Irons-Brown SR, Jones TA. Effects of selected pharmacological agents on avian auditory and vestibular compound action potentials. Hear Res 2005; 195:54-66. [PMID: 15350279 DOI: 10.1016/j.heares.2004.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/27/2004] [Indexed: 11/24/2022]
Abstract
Glutamate is currently the consensus candidate for the hair cell transmitter in the inner ear of vertebrates. However, other candidate transmitter systems have been proposed and there may be differences in this regard for auditory and vestibular neuroepithelia. In the present study, perilymphatic perfusion was used to deliver prescribed concentrations of ten drugs to the interstitial fluids of the inner ear of hatchling chickens (n = 124). Dose-response curves were obtained for four of these pharmacological agents. The work was carried out in part to distinguish further the neuroepithelial chemical receptors mediating auditory and vestibular compound action potentials (CAPs). Kainic acid (KA) eliminated both auditory and vestibular responses. D-alpha-Aminoadipic acid (DAA) and dizocilpine maleate (MK-801), both NMDA-specific antagonists, failed to alter vestibular CAPs at any concentration. MK-801 significantly and selectively reduced auditory CAPs at concentrations equal to or greater than 1 mM. Similarly, kynurenic acid (4-hydroxyquinoline-2-carboxylic acid, 1 mM), a glutamate antagonist, significantly reduced auditory but not vestibular CAPs. A non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), reduced vestibular CAPs significantly but only at the highest concentration tested (1 mM). In contrast, CNQX reduced auditory responses at concentration as low as 1 microM. The CNQX concentration effective in reducing auditory CAPs by 50% (EC(50)) was approximately 20 microM. Glutamate (1 mM) as well as alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate agonist, significantly reduced auditory CAPs (AMPA EC(50)=100 microM). Bicuculline, a GABA(A) receptor antagonist, and L-NAME, a nitric oxide synthase inhibitor, failed to alter responses from either modality. These findings support the hypothesis that glutamate receptors mediate auditory CAPs in birds. However, the results underscore a remarkable difference in sensitivity of the vestibular neuroepithelium (here gravity receptors) to non-NMDA receptor antagonists. The basis of the vestibular insensitivity to glutamate blockers is unknown but it may reflect differences in receptors themselves, differences in the transmission modes available to vestibular synapses or differences in the access of compounds to vestibular neuroepithelial receptors from the interstitial-perilymphatic fluid spaces.
Collapse
Affiliation(s)
- Shunda R Irons-Brown
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
30
|
Irons-Brown SR, Jones SM, Jones TA. The simultaneous in vivo perilymphatic perfusion of avian auditory and vestibular end organs. J Neurosci Methods 2003; 131:57-64. [PMID: 14659824 DOI: 10.1016/s0165-0270(03)00239-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perilymphatic perfusion is a method that allows the control of fluid parameters throughout the perilymphatic space of the inner ear. We have evaluated a new method for continuous perilymphatic perfusion of the auditory and vestibular end organs with artificial perilymph (APL) in chickens. Perfusate temperature (39.0 degrees C), pH (7.4), osmolarity (328 +/- 2 mosm), and flow rate (2 microl/min) were carefully controlled. Independent functional tests of vestibular and auditory sensory systems were made throughout perfusion periods by recording peripheral compound action potentials (CAPs). The recordings provided a means of monitoring the status of hair cell transduction, synaptic transmission and collective primary afferent activation in response to auditory or vestibular gravity receptor stimuli. Auditory and vestibular responses were stable during perfusion. No significant changes occurred in vestibular or auditory CAP amplitudes during long-term perfusion (50-80 min, n=7) and responses remained stable in one animal perfused for over 3 h. To our knowledge, there have been no reports evaluating vestibular function under these conditions. This technique enables us to systematically study receptor pharmacology in the peripheral vestibular and auditory systems virtually simultaneously in vivo. The model is well suited for use in the study of the pharmacology and toxicology of inner ear sensory systems.
Collapse
Affiliation(s)
- Shunda R Irons-Brown
- Department of Physiology, University of Missouri-Columbia, Columbia, MO 65203, USA
| | | | | |
Collapse
|
31
|
Abstract
Carboplatin preferentially damages inner hair cells (IHC) and type I spiral ganglion neurons (SGNs) in the chinchilla; however, the temporal sequence of events leading to the destruction of these structures is poorly understood. To better understand the mechanisms leading up to the destruction of IHCs and type I SGNs, we measured the activity in single auditory nerve fibers for the first 8 h following carboplatin treatment and also monitored the development of histopathologies in SGNs and IHCs using a dose of carboplatin that killed approximately 50% of the IHCs. The spontaneous discharge rate (SDR) showed a slight increase around 3 h post carboplatin followed by a significant decline at 4-5 h. The saturation driven discharge rate (DDR) showed a significant increase 1-5 h post carboplatin. These physiological changes were associated with the formation of small vacuoles in type I afferent terminals and proximal nerve fibers 1-6 h post carboplatin; signs of IHC damage were first observed around 24-48 h. Thus, the neurotoxic effects of carboplatin occur approximately a day before the IHCs are damaged. The large fluctuations in SDR and DDR that occur several hours after carboplatin treatment are most likely due to the neurotoxic effects of carboplatin.
Collapse
Affiliation(s)
- Jian Wang
- School of Human Communication Disorders, Dalhousie University, 5599 Fenwick Street, B3H 1R2 Halifax, NS, Canada.
| | | | | |
Collapse
|
32
|
Gao J, Zhang JX, Xu TL. Modulation of serotonergic projection from dorsal raphe nucleus to basolateral amygdala on sleep-waking cycle of rats. Brain Res 2002; 945:60-70. [PMID: 12113952 DOI: 10.1016/s0006-8993(02)02625-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Putative serotonergic dorsal raphe nucleus (DRN) neurons display a dramatic role in the modulation of behavior. However, it is not clear how this modulation is mediated. The present study investigated the modulatory effects of serotonergic projection of the DRN to the basolateral amygdala (BLA) on the sleep-waking cycle using polysomnograph (PSG) in rats. DRN microinjection of kainic acid (KA) caused insomnia immediately. From the third day, however, slow wave sleep (SWS) and paradoxical sleep (PS) increased markedly. DRN microinjection of p-chlorophenylalanine (PCPA, once a day for 2 days), which inhibits the synthesis of serotonin (5-HT), led to similar effect to KA administration. The percent of sleep-wakefulness began to change on the third day after PCPA microinjection into the DRN, and the effect was most significant on the sixth day. The percent of sleep-wakefulness started to resume on the seventh day. SWS and PS were reduced after excitation of DRN neurons by microinjection of L-glutamate (L-Glu) into the DRN. Preapplication of the nonselective 5-HT receptor antagonist methysergide (MS) into bilateral BLA blocked the effect of DRN microinjection of L-Glu. Furthermore, bilateral BLA microinjection of 5-hydroxytryptophan (5-HTP), the precursor of 5-HT, on the sixth day after microinjection of PCPA into the DRN, could reverse the effect of PCPA microinjection. These results indicate that the modulation of the DRN on sleep is partially mediated by the serotonergic projection of the DRN to the BLA.
Collapse
Affiliation(s)
- Jun Gao
- Laboratory of Receptor Pharmacology, Department of Neurobiology and Biophysics, University of Science and Technology of China, P.O. Box 4, Hefei 230027, PR China
| | | | | |
Collapse
|
33
|
Reng D, Müller M, Smolders JW. Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 2001; 6:66-78. [PMID: 11385180 DOI: 10.1159/000046812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hair cells in the avian inner ear can regenerate after acoustic trauma or ototoxic insult, and significant functional recovery from hearing loss occurs. However, small residual deficits remain, possibly as a result of incomplete reestablishment of the hair cell neural synaptic contacts. The aim of the present study was to determine if intracochlear application of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), an excitotoxic glutamate agonist, causes reversible disruption of hair cell neural contacts in the bird, and to what extent functional recovery occurs if synaptic contacts are reestablished. Compound action potential (CAP) responses to tone bursts were recorded to determine hearing thresholds during a recovery period of up to 4 months. Subsequently, the response properties of single auditory nerve fibers were analyzed in the same animals. Instillation of AMPA into the perilymph of the scala tympani led to immediate abolition of CAP thresholds. Partial recovery occurred over a period of 2-3 weeks, without further improvement of thresholds thereafter. High-frequency thresholds did not reach control values even after 3-4 months of recovery. Single-ganglion cell response properties, obtained 3-4 months after AMPA treatment, showed elevated thresholds at the fiber's characteristic frequency (CF) for units with CF above 0.3 kHz. Sharpness of tuning (Q(10 dB)) was reduced in units with CF above 0.4 kHz. The spontaneous firing rate was higher in units with CF above 0.18 kHz. The maximum sound-evoked discharge rate was also increased. Transmission electron micrographs of the basilar papilla showed that, following AMPA treatment, the nerve endings went through a sequence of swelling, degeneration and recovery over a period of 3-7 days. The process of neosynaptogenesis was completed 14 days after exposure. The present findings are strong evidence for a role of glutamate or a related excitatory amino acid as the afferent transmitter in the avian inner ear. In addition they show that functional recovery after disruption and regeneration of hair cell neural synapses, without apparent damage to the hair cells, is incomplete.
Collapse
Affiliation(s)
- D Reng
- Physiologisches Institut II, Klinikum der J.W.-Goethe-Universität, Frankfurt am Main, Deutschland
| | | | | |
Collapse
|
34
|
McFadden SL, Ding D, Salvi R. Anatomical, Metabolic and Genetic Aspects of Age-related Hearing Loss in Mice: Aspectos anatómicos, metabólicos y genéticos de la hipoacusia relacionada con la edad en ratones. Int J Audiol 2001. [DOI: 10.3109/00206090109073128] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|