1
|
Peng X, Li Y, Liu N, Xia S, Li X, Lai Y, He L, Sang C, Dong J, Ma C. Plasma Proteomic Insights for Identification of Novel Predictors and Potential Drug Targets in Atrial Fibrillation: A Prospective Cohort Study and Mendelian Randomization Analysis. Circ Arrhythm Electrophysiol 2024; 17:e013037. [PMID: 39355913 DOI: 10.1161/circep.124.013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Currently, there are no reliable methods for predicting and preventing atrial fibrillation (AF) in its early stages. This study aimed to identify plasma proteins associated with AF to discover biomarkers and potential drug targets. METHODS The UK Biobank Pharma Proteomics Project examined 2923 circulating proteins using the Olink platform, forming the basis of this prospective cohort study. The UK Biobank Pharma Proteomics Project included a randomly selected discovery cohort and the consortium-selected replication cohort. The study's end point was incident AF, identified using International Classification of Diseases, Tenth Revision codes. The association between plasma proteins and incident AF was evaluated using Cox proportional hazard models in both cohorts. Proteins present in both cohorts underwent Mendelian randomization analysis to delineate causal connections, utilizing cis-protein quantitative trait loci as genetic tools. The predictive efficacy of the identified proteins for AF was assessed using the area under the receiver operating characteristic curve, and their druggability was explored. RESULTS Data from 38 784 participants were included in this study. Incident AF cases were identified in the discovery cohort (1894; 5.5%) within a median follow-up of 14.5 years and in the replication cohort (451; 10.6%) within a median follow-up of 14.4 years. Twenty-one proteins linked to AF were identified in both cohorts. Specifically, COL4A1 (collagen IV α-1; odds ratio, 1.11 [95% CI, 1.04-1.19]; false discovery rate, 0.016) and RET (proto-oncogene tyrosine-protein kinase receptor Ret; odds ratio, 0.96 [95% CI, 0.94-0.98]; false discovery rate, 0.013) demonstrated a causal link with AF, and RET is druggable. COL4A1 improved the short- and long-term predictive performance of established AF models, as evidenced by significant enhancements in the area under the receiver operating characteristic, integrated discrimination improvement, and net reclassification index, all with P values below 0.05. CONCLUSIONS COL4A1 and RET are associated with the development of AF. RET is identified as a potential drug target for AF prevention, while COL4A1 serves as a biomarker for AF prediction. Future studies are needed to evaluate the effectiveness of targeting these proteins to reduce AF risk.
Collapse
Affiliation(s)
- Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Shijun Xia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Xin Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | | | - Caihua Sang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| |
Collapse
|
2
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Giannino G, Braia V, Griffith Brookles C, Giacobbe F, D'Ascenzo F, Angelini F, Saglietto A, De Ferrari GM, Dusi V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. BIOLOGY 2024; 13:105. [PMID: 38392323 PMCID: PMC10887082 DOI: 10.3390/biology13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The cardiac autonomic nervous system (CANS) plays a pivotal role in cardiac homeostasis as well as in cardiac pathology. The first level of cardiac autonomic control, the intrinsic cardiac nervous system (ICNS), is located within the epicardial fat pads and is physically organized in ganglionated plexi (GPs). The ICNS system does not only contain parasympathetic cardiac efferent neurons, as long believed, but also afferent neurons and local circuit neurons. Thanks to its high degree of connectivity, combined with neuronal plasticity and memory capacity, the ICNS allows for a beat-to-beat control of all cardiac functions and responses as well as integration with extracardiac and higher centers for longer-term cardiovascular reflexes. The present review provides a detailed overview of the current knowledge of the bidirectional connection between the ICNS and the most studied cardiac pathologies/conditions (myocardial infarction, heart failure, arrhythmias and heart transplant) and the potential therapeutic implications. Indeed, GP modulation with efferent activity inhibition, differently achieved, has been studied for atrial fibrillation and functional bradyarrhythmias, while GP modulation with efferent activity stimulation has been evaluated for myocardial infarction, heart failure and ventricular arrhythmias. Electrical therapy has the unique potential to allow for both kinds of ICNS modulation while preserving the anatomical integrity of the system.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Carola Griffith Brookles
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| |
Collapse
|
4
|
Honeycutt SE, N'Guetta PEY, O'Brien LL. Innervation in organogenesis. Curr Top Dev Biol 2022; 148:195-235. [PMID: 35461566 PMCID: PMC10636594 DOI: 10.1016/bs.ctdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
5
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
6
|
Network-Based Functional Prediction Augments Genetic Association To Predict Candidate Genes for Histamine Hypersensitivity in Mice. G3-GENES GENOMES GENETICS 2019; 9:4223-4233. [PMID: 31645420 PMCID: PMC6893195 DOI: 10.1534/g3.119.400740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation is often ad hoc and biased by previous findings. Here we present a technique for prioritizing positional candidates based on computationally inferred gene function. Our method uses machine learning with functional genomic networks, whose links encode functional associations among genes, to identify network-based signatures of functional association to a trait of interest. We demonstrate the method by functionally ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). Histh is characterized by systemic vascular leakage and edema in response to histamine challenge, which can lead to multiple organ failure and death. Although Histh risk is strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to genetic and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Histh locus by predicting functional association with multiple Histh-related processes. We integrated these predictions with new single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred mouse strains and congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had strong functional associations and were proximal to SNPs segregating with Histh. These results demonstrate the power of network-based computational methods to nominate highly plausible quantitative trait genes even in challenging cases involving large QTL and extreme trait complexity.
Collapse
|
7
|
Aguilar-Sanchez Y, Rodriguez de Yurre A, Argenziano M, Escobar AL, Ramos-Franco J. Transmural Autonomic Regulation of Cardiac Contractility at the Intact Heart Level. Front Physiol 2019; 10:773. [PMID: 31333477 PMCID: PMC6616252 DOI: 10.3389/fphys.2019.00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
The relationship between cardiac excitability and contractility depends on when Ca2+ influx occurs during the ventricular action potential (AP). In mammals, it is accepted that Ca2+ influx through the L-type Ca2+ channels occurs during AP phase 2. However, in murine models, experimental evidence shows Ca2+ influx takes place during phase 1. Interestingly, Ca2+ influx that activates contraction is highly regulated by the autonomic nervous system. Indeed, autonomic regulation exerts multiple effects on Ca2+ handling and cardiac electrophysiology. In this paper, we explore autonomic regulation in endocardial and epicardial layers of intact beating mice hearts to evaluate their role on cardiac excitability and contractility. We hypothesize that in mouse cardiac ventricles the influx of Ca2+ that triggers excitation–contraction coupling (ECC) does not occur during phase 2. Using pulsed local field fluorescence microscopy and loose patch photolysis, we show sympathetic stimulation by isoproterenol increased the amplitude of Ca2+ transients in both layers. This increase in contractility was driven by an increase in amplitude and duration of the L-type Ca2+ current during phase 1. Interestingly, the β-adrenergic increase of Ca2+ influx slowed the repolarization of phase 1, suggesting a competition between Ca2+ and K+ currents during this phase. In addition, cAMP activated L-type Ca2+ currents before SR Ca2+ release activated the Na+-Ca2+ exchanger currents, indicating Cav1.2 channels are the initial target of PKA phosphorylation. In contrast, parasympathetic stimulation by carbachol did not have a substantial effect on amplitude and kinetics of endocardial and epicardial Ca2+ transients. However, carbachol transiently decreased the duration of the AP late phase 2 repolarization. The carbachol-induced shortening of phase 2 did not have a considerable effect on ventricular pressure and systolic Ca2+ dynamics. Interestingly, blockade of muscarinic receptors by atropine prolonged the duration of phase 2 indicating that, in isolated hearts, there is an intrinsic release of acetylcholine. In addition, the acceleration of repolarization induced by carbachol was blocked by the acetylcholine-mediated K+ current inhibition. Our results reveal the transmural ramifications of autonomic regulation in intact mice hearts and support our hypothesis that Ca2+ influx that triggers ECC occurs in AP phase 1 and not in phase 2.
Collapse
Affiliation(s)
- Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ainhoa Rodriguez de Yurre
- Laboratorio de Cardio Inmunologia, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Mariana Argenziano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Li Z, Xie J, Fei Y, Gao P, Xie Q, Gao W, Xu Z. GDNF family receptor alpha 2 promotes neuroblastoma cell proliferation by interacting with PTEN. Biochem Biophys Res Commun 2019; 510:339-344. [PMID: 30722993 DOI: 10.1016/j.bbrc.2018.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Abstract
Neuroblastoma is a childhood tumor, and high-stage neuroblastoma has a poor prognosis. The regulatory mechanisms for neuroblastoma progression are poorly understood. In present study, we found that GDNF family receptor alpha 2 (GFRA2) was upregulated in neuroblastoma cells and tissues, and its overexpression promoted neuroblastoma cell proliferation, as revealed using colony formation, soft agar growth, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays Tumor suppressor phosphatase and tensin homolog (PTEN) is an inhibitor of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) pathway that interacts with GFRA2. A luciferase activity assay showed GFRA2 inhibits the transcriptional activity of the forkhead box O (FOXO) family proteins, which suggested that GFRA2 activated the PI3K/AKT pathway. Inhibition of the PI3K/AKT pathway in GFRA2 overexpressing cells decreased cell proliferation, confirming that GFRA2 promoted neuroblastoma cell proliferation by activating the PI3K/AKT pathway. In summary, cell proliferation via the GFRA2-PTEN-PI3K/AKT axis may represent new target to develop treatments for neuroblastoma.
Collapse
Affiliation(s)
- Zuoqing Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juntao Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingchun Fei
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qigen Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenzong Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhe Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Downs AM, Jalloh HB, Prater KJ, Fregoso SP, Bond CE, Hampton TG, Hoover DB. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts. Physiol Rep 2016; 4:4/9/e12779. [PMID: 27162260 PMCID: PMC4873631 DOI: 10.14814/phy2.12779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022] Open
Abstract
The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Hawa B Jalloh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Kayla J Prater
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Santiago P Fregoso
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Cherie E Bond
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | | | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
10
|
Végh AMD, Duim SN, Smits AM, Poelmann RE, Ten Harkel ADJ, DeRuiter MC, Goumans MJ, Jongbloed MRM. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. J Cardiovasc Dev Dis 2016; 3:jcdd3030028. [PMID: 29367572 PMCID: PMC5715672 DOI: 10.3390/jcdd3030028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.
Collapse
Affiliation(s)
- Anna M D Végh
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Sjoerd N Duim
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Anke M Smits
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 20, 2311 EZ Leiden, The Netherlands.
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Marie José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
11
|
New non-renal congenital disorders associated with medullary sponge kidney (MSK) support the pathogenic role of GDNF and point to the diagnosis of MSK in recurrent stone formers. Urolithiasis 2016; 45:359-362. [DOI: 10.1007/s00240-016-0913-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
|
12
|
Sárközy M, Szűcs G, Fekete V, Pipicz M, Éder K, Gáspár R, Sója A, Pipis J, Ferdinandy P, Csonka C, Csont T. Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats. Cardiovasc Diabetol 2016; 15:110. [PMID: 27496100 PMCID: PMC4975916 DOI: 10.1186/s12933-016-0424-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. Methods Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein–protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. Results Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein–protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. Conclusions Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0424-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Andrea Sója
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | | | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
13
|
Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S, Shiraishi M, Ruchaya P, Miller D, Harmer S, Poliandri A, Kogaki S, Sakata Y, Dunkel L, Tinker A, Hadjantonakis AK, Sawa Y, Sasaki H, Ozono K, Suzuki K, Yashiro K. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep 2016; 16:1026-1038. [PMID: 27396331 PMCID: PMC4967477 DOI: 10.1016/j.celrep.2016.06.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/22/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2), specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Rie Saba
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ioannis Kokkinopoulos
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Osaka University Graduate School of Frontier Biosciences, Osaka 565-0871, Japan
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sonja Nowotschin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manabu Shiraishi
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Prashant Ruchaya
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College, London, SE1 1UL, UK
| | - Duncan Miller
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stephen Harmer
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ariel Poliandri
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shigetoyo Kogaki
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrew Tinker
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Osaka University Graduate School of Frontier Biosciences, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Ken Suzuki
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kenta Yashiro
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
15
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
16
|
Fregoso SP, Hoover DB. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart. Neuroscience 2012; 221:28-36. [PMID: 22766236 DOI: 10.1016/j.neuroscience.2012.06.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/21/2023]
Abstract
Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart.
Collapse
Affiliation(s)
- S P Fregoso
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
17
|
Ohshima-Hosoyama S, Simmons HA, Goecks N, Joers V, Swanson CR, Bondarenko V, Velotta R, Brunner K, Wood LD, Hruban RH, Emborg ME. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS One 2012; 7:e39036. [PMID: 22745701 PMCID: PMC3380056 DOI: 10.1371/journal.pone.0039036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/15/2012] [Indexed: 01/12/2023] Open
Abstract
Glial cell line derived neurotrophic factor (GDNF) is a neurotrophic factor that has neuroprotective effects in animal models of Parkinson’s disease (PD) and has been proposed as a PD therapy. GDNF does not cross the blood brain barrier (BBB), and requires direct intracerebral delivery to be effective. Trojan horse technology, in which GDNF is coupled to a monoclonal antibody (mAb) against the human insulin receptor (HIR), has been proposed to allow GDNF BBB transport (ArmaGen Technologies Inc.). In this study we tested the feasibility of HIRMAb-GDNF to induce neuroprotection in parkinsonian monkeys, as well as its tolerability and safety. Adult rhesus macaques were assessed throughout the study with a clinical rating scale, a computerized fine motor skills task and general health evaluations. Following baseline measurements, the animals received a unilateral intracarotid artery MPTP injection. Seven days later the animals were evaluated, matched according to disability and blindly assigned to receive twice a week iv. treatments (vehicle, 1 or 5 mg/kg HIRmAb-GDNF) for a period of three months. HIRmAb-GDNF did not improve parkinsonian motor symptoms and induced a dose-dependent hypersensitivity reaction. Quantification of dopaminergic striatal optical density and stereological nigral cell counts did not demonstrate differences between treatment groups. Focal pancreatic acinar to ductular metaplasia (ADM) was noted in four of seven animals treated with 1 mg/kg HIRmAb-GDNF; two of four with ADM also had focal pancreatic intraepithelial neoplasia 1B (PanIN-1B) lesions. Minimal to mild, focal to multifocal, nonsuppurative myocarditis was noted in all animals in the 5 mg/kg treatment group. Our results demonstrate that HIRmAb-GDNF dosing in a monkey model of PD is not an effective neuroprotective strategy and may present serious health risks that should be considered when planning future use of the IR antibody as a carrier, or of any systemic treatment of a GDNF-containing molecule.
Collapse
Affiliation(s)
- Sachiko Ohshima-Hosoyama
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nichole Goecks
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Valerie Joers
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Christine R. Swanson
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Viktoriya Bondarenko
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Rebecca Velotta
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marina E. Emborg
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
The heart is electrically and mechanically controlled as a syncytium by the autonomic nervous system. The cardiac nervous system comprises the sympathetic, parasympathetic, and sensory nervous systems that together regulate heart function on demand. Sympathetic electric activation was initially considered the main regulator of cardiac function; however, modern molecular biotechnological approaches have provided a new dimension to our understanding of the mechanisms controlling the cardiac nervous system. The heart is extensively innervated, although the innervation density is not uniform within the heart, being high in the subepicardium and the special conduction system. We and others showed previously that the balance between neural chemoattractants and chemorepellents determine cardiac nervous development, with both factors expressed in heart. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this well-organized molecular balance and innervation density can induce sudden cardiac death due to lethal arrhythmias. In diseased hearts, various causes and mechanisms underlie cardiac sympathetic abnormalities, although their detailed pathology and significance remain contentious. We reported that cardiac sympathetic rejuvenation occurs in cardiac hypertrophy and, moreover, interleukin-6 cytokines secreted from the failing myocardium induce cholinergic transdifferentiation of the cardiac sympathetic system via a gp130 signaling pathway, affecting cardiac performance and prognosis. In this review, we summarize the molecular mechanisms involved in sympathetic development, maturation, and transdifferentiation, and propose their investigation as new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Kensuke Kimura
- Division of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
19
|
Zhou QH, Boado RJ, Hui EKW, Lu JZ, Pardridge WM. Chronic dosing of mice with a transferrin receptor monoclonal antibody-glial-derived neurotrophic factor fusion protein. Drug Metab Dispos 2011; 39:1149-54. [PMID: 21502195 DOI: 10.1124/dmd.111.038349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glial-derived neurotrophic factor (GDNF) is a potential neurotrophic factor treatment of brain disorders, including Parkinson's disease. However, GDNF does not cross the blood-brain barrier (BBB). A brain-penetrating form of GDNF, which is a fusion protein of human GDNF and a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), has been engineered for the mouse and is designated the cTfRMAb-GDNF fusion protein. The present study examined the potential toxic side effects and immune response after treatment of mice with twice-weekly cTfRMAb-GDNF fusion protein at a dose of 2 mg/kg i.v. for 12 consecutive weeks. Chronic treatment with the fusion protein caused no change in body weight, no change in 23 serum chemistry measurements, and no histologic changes in brain and cerebellum, kidney, liver, spleen, heart, or pancreas. Chronic treatment caused a low-titer immune response against the fusion protein, which was directed against the variable region of the antibody part of the fusion protein, with no immune response directed against either the constant region of the antibody or against GDNF. A pharmacokinetics and brain uptake study was performed at the end of the 12 weeks of treatment. There was no change in clearance of the fusion protein mediated by the TfR in peripheral organs, and there was no change in BBB permeability to the fusion protein mediated by the TfR at the BBB. The study shows no toxic side effects from chronic cTfRMAb-GDNF systemic treatment and the absence of neutralizing antibodies in vivo.
Collapse
Affiliation(s)
- Qing-Hui Zhou
- Department of Medicine, UCLA, Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
20
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
21
|
Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat 2009; 22:36-46. [PMID: 18846544 DOI: 10.1002/ca.20695] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of homeostatic circulation in mammals and birds is reliant upon autonomic innervation of the heart. Neural branches of mixed cellular origin and function innervate the heart at the arterial and venous poles as it matures, eventually coupling autonomic output to the cardiac components, including the conduction system. The development of neural identity is controlled by specific networks of genes and growth factors, whereas functional properties are governed by the use of different neurotransmitters. In this review, we summarize briefly the anatomic arrangement of the vertebrate autonomic nervous system and describe, in detail, the innervation of the heart. We discuss the timing of cardiac innervation in the chick and mouse, emphasizing the relationship of the cardiac neural networks to the anatomical structures within the heart. We also discuss the variable contribution of the neural crest to vagal cardiac nerves, and summarize the main neurotransmitters secreted by the developing sympathetic and parasympathetic autonomic divisions. We provide an overview of the main growth factor and gene families involved in neural development, discussing how these factors may impact upon the development of cardiac abnormalities in congenital syndromes associated with autonomic dysfunction.
Collapse
Affiliation(s)
- Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
22
|
Mabe AM, Hoover DB. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovasc Res 2009; 82:93-9. [DOI: 10.1093/cvr/cvp029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Young BA, Girard BM, Parsons RL. Neurturin suppresses injury-induced neuronal activating transcription factor 3 expression in cultured guinea pig cardiac ganglia. J Comp Neurol 2008; 508:795-805. [PMID: 18393382 DOI: 10.1002/cne.21711] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cultured guinea pig atrial whole mounts containing the intrinsic cardiac ganglia were used as an in vitro model to investigate the induction of the stress/injury marker activating transcription factor 3 (ATF-3). ATF-3 expression was quantified by using immunocytochemical labeling and real-time PCR. In freshly isolated ganglia, no neuronal or Schwann cell nuclei exhibited ATF-3 immunoreactivity. In 2-hour cultures, the induction of ATF-3 expression was evident in many Schwann cell nuclei, whereas no neuronal nuclei were ATF-3 immunoreactive. Beginning at 4 hours, the percentage of neurons with ATF-3-immunoreactive nuclei increased progressively, and, by 48 hours in culture, approximately 95% of the cardiac neurons had ATF-3-immunoreactive nuclei. Neurturin significantly suppressed ATF-3 expression in 48-hour-cultured neurons without effect on ATF-3 expression in Schwann cell nuclei. Neuturin also could reverse neuronal ATF-3 expression after its induction. The suppression of ATF-3 induction by neurturin was mediated by activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Glial-derived neurotrophic factor (GDNF) also suppressed neuronal ATF-3 induction during culture. However, culture in serum-free media, presence of nerve growth factor, or addition of pituitary adenylate cyclase-activating polypeptide had no effect on ATF-3 induction in the 48-hour-cultured cardiac neurons. By 4 hours in culture, there was a significant increase in ATF-3 transcript levels, and neurturin partially suppressed ATF-3 transcript levels in 48-hour cultures. It is proposed that the loss of target-derived neurturin is a potential mechanism stimulating injury-induced expression of ATF-3 in cardiac neurons.
Collapse
Affiliation(s)
- Beth A Young
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
24
|
Stewart AL, Anderson RB, Kobayashi K, Young HM. Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC DEVELOPMENTAL BIOLOGY 2008; 8:73. [PMID: 18657279 PMCID: PMC2515305 DOI: 10.1186/1471-213x-8-73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/25/2008] [Indexed: 01/09/2023]
Abstract
Background Pelvic ganglia are derived from the sacral neural crest and contain both sympathetic and parasympathetic neurons. Various members of the neurotrophin and GDNF families of neurotrophic factors have been shown to play important roles in the development of a variety of peripheral sympathetic and parasympathetic neurons; however, to date, the role of these factors in the development of pelvic ganglia has been limited to postnatal and older ages. We examined the effects of NGF, NT-3, GDNF, neurturin and artemin on cell migration and neurite outgrowth from explants of the pelvic ganglia from embryonic and newborn mice grown on collagen gels, and correlated the responses with the immunohistochemical localization of the relevant receptors in fixed tissue. Results Cell migration assays showed that GDNF strongly stimulated migration of tyrosine hydroxylase (TH) cells of pelvic ganglia from E11.5, E14.5 and P0 mice. Other factors also promoted TH cell migration, although to a lesser extent and only at discrete developmental stages. The cells and neurites of the pelvic ganglia were responsive to each of the GDNF family ligands – GDNF, neurturin and artemin – from E11.5 onwards. In contrast, NGF and NT-3 did not elicit a significant neurite outgrowth effect until E14.5 onwards. Artemin and NGF promoted significant outgrowth of sympathetic (TH+) neurites only, whereas neurturin affected primarily parasympathetic (TH-negative) neurite outgrowth, and GDNF and NT-3 enhanced both sympathetic and parasympathetic neurite outgrowth. In comparison, collagen gel assays using gut explants from E11.5 and E14.5 mice showed neurite outgrowth only in response to GDNF at E11.5 and to neurturin only in E14.5 mice. Conclusion Our data show that there are both age-dependent and neuron type-dependent differences in the responsiveness of embryonic and neo-natal pelvic ganglion neurons to growth factors.
Collapse
Affiliation(s)
- Ashley L Stewart
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Australia.
| | | | | | | |
Collapse
|
25
|
Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 2008; 333:353-71. [PMID: 18629541 PMCID: PMC2516536 DOI: 10.1007/s00441-008-0634-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/05/2008] [Indexed: 03/24/2023]
Abstract
The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
26
|
Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 2008; 156:129-42. [PMID: 18674600 DOI: 10.1016/j.neuroscience.2008.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/05/2008] [Accepted: 06/28/2008] [Indexed: 11/20/2022]
Abstract
Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs), like those of humans, have a complex neurochemical phenotype that goes beyond the classical view of cardiac parasympathetic neurons. They also suggest that neurotrophins and local NE synthesis might have important effects on neurons of the mouse ICG.
Collapse
Affiliation(s)
- J L Hoard
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
27
|
Habecker BA, Bilimoria P, Linick C, Gritman K, Lorentz CU, Woodward W, Birren SJ. Regulation of cardiac innervation and function via the p75 neurotrophin receptor. Auton Neurosci 2008; 140:40-8. [PMID: 18430612 DOI: 10.1016/j.autneu.2008.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/08/2008] [Accepted: 03/05/2008] [Indexed: 12/01/2022]
Abstract
Homeostatic regulation of cardiac function is dependent on the balance of inputs from the sympathetic and parasympathetic nervous systems. We investigated whether the p75 neurotrophin receptor plays a developmental role in cardiac innervation by analyzing sympathetic and parasympathetic fibers in the atria of p75 knockout and wildtype mice at several stages of postnatal development, and examining the effect on control of heart rate. We found that parasympathetic innervation of the atria in p75-/- mice was similar to wildtype at all time points, but that the density of sympathetic innervation was dynamically regulated. Compared to wildtype mice, the p75-/- mice had less innervation at postnatal day 4, an increase at day 28, and decreased innervation in adult mice. These changes reflect defects in initial fiber in-growth and the timing of the normal developmental decrease in sympathetic innervation density in the atria. Thus, p75 regulates both the growth and stability of cardiac sympathetic fibers. The distribution of sympathetic fibers was also altered, so that many regions lacked innervation. Basal heart rate was depressed in adult p75-/- mice, and these mice exhibited a diminished heart rate response to restraint stress. This resulted from the lack of sympathetic innervation rather than increased parasympathetic transmission or a direct effect of p75 in cardiac cells. Norepinephrine was elevated in p75-/- atria, but stimulating norepinephrine release with tyramine produced less tachycardia in p75-/- mice than wild type mice. This suggests that altered density and distribution of sympathetic fibers in p75-/- atria impairs the control of heart rate.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Hoard JL, Hoover DB, Wondergem R. Phenotypic properties of adult mouse intrinsic cardiac neurons maintained in culture. Am J Physiol Cell Physiol 2007; 293:C1875-83. [PMID: 17913847 DOI: 10.1152/ajpcell.00113.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsic cardiac neurons are core elements of a complex neural network that serves as an important integrative center for regulation of cardiac function. Although mouse models are used frequently in cardiovascular research, very little is known about mouse intrinsic cardiac neurons. Accordingly, we have dissociated neurons from adult mouse heart, maintained these cells in culture, and defined their basic phenotypic properties. Neurons in culture were primarily unipolar, and 89% had prominent neurite outgrowth after 3 days (longest neurite length of 258 ± 20 μm, n = 140). Many neurites formed close appositions with other neurons and nonneuronal cells. Neurite outgrowth was drastically reduced when neurons were kept in culture with a majority of nonneural cells eliminated. This finding suggests that nonneuronal cells release molecules that support neurite outgrowth. All neurons in coculture showed immunoreactivity for a full complement of cholinergic markers, but about 21% also stained for tyrosine hydroxylase, as observed previously in sections of intrinsic cardiac ganglia from mice and humans. Whole cell patch-clamp recordings demonstrated that these neurons have voltage-activated sodium current that is blocked by tetrodotoxin and that neurons exhibit phasic or accommodating patterns of action potential firing during a depolarizing current pulse. Several neurons exhibited a fast inward current mediated by nicotinic ACh receptors. Collectively, this work shows that neurons from adult mouse heart can be maintained in culture and exhibit appropriate phenotypic properties. Accordingly, these cultures provide a viable model for evaluating the physiology, pharmacology, and trophic factor sensitivity of adult mouse cardiac parasympathetic neurons.
Collapse
Affiliation(s)
- Jennifer L Hoard
- Department of Physiology, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | |
Collapse
|
29
|
Lähteenmäki M, Kupari J, Airaksinen MS. Increased apoptosis of parasympathetic but not enteric neurons in mice lacking GFRα2. Dev Biol 2007; 305:325-32. [PMID: 17355878 DOI: 10.1016/j.ydbio.2007.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/26/2007] [Accepted: 02/13/2007] [Indexed: 01/19/2023]
Abstract
Enteric neurons, unlike sympathetic and sensory neurons that require target-derived neurotrophins for survival, do not undergo classical caspase-3-mediated programmed cell death (PCD) during normal development. Whether parasympathetic neurons in the pancreas, which originate from a subpopulation of enteric nervous system (ENS) precursors, or other parasympathetic neurons undergo PCD during normal mammalian development is unknown. In GFRalpha2-deficient mice, many submandibular and intrapancreatic parasympathetic neurons are missing but whether this is due to increased neuronal death is unclear. Here we show that activated caspase-3 and PGP9.5 doubly positive neurons are present in wild-type mouse pancreas between embryonic day E15 and birth. Thus, in contrast to ENS neurons, intrapancreatic neurons undergo PCD via apoptosis during normal development. We also show that, in GFRalpha2-deficient mice, most intrapancreatic neurons are lost during this late fetal period, which coincides with a period of increased apoptosis of the neurons. Since the percentage of BrdU and Phox2b doubly positive cells in the fetal pancreas and the number of intrapancreatic neurons at E15 were similar between the genotypes, impaired precursor proliferation and migration are unlikely to contribute to the loss of intrapancreatic neurons in GFRalpha2-KO mice. Caspase-3-positive neurons were also found in GFRalpha2-deficient submandibular ganglia around birth, suggesting that parasympathetic neurons depend on limited supply of (presumably target-derived neurturin) signaling via GFRalpha2 for survival.
Collapse
Affiliation(s)
- Meri Lähteenmäki
- Neuroscience Center, Viikinkaari 4, 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
30
|
Girard BM, Young BA, Buttolph TR, White SL, Parsons RL. Regulation of neuronal pituitary adenylate cyclase-activating polypeptide expression during culture of guinea-pig cardiac ganglia. Neuroscience 2007; 146:584-93. [PMID: 17367946 PMCID: PMC2048657 DOI: 10.1016/j.neuroscience.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/17/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) increases in many different neuron types following injury; a response postulated to support cell survival and regeneration. In acutely isolated cardiac ganglia, approximately 1% of the cardiac neurons exhibited PACAP immunoreactivity whereas after 72 h in culture, approximately 25% of the neurons were PACAP immunoreactive. In contrast, there was no increase in vasoactive intestinal polypeptide (VIP)-immunoreactive (IR) cells. Using a combination of immunocytochemical and molecular techniques, we have quantified PACAP expression, during explant culture of guinea-pig cardiac ganglia. Using real time polymerase chain reaction, PACAP transcript levels increased progressively up to 48 h in culture with no further increase after 72 h. PACAP transcript levels were reduced by neurturin at 48 h in culture but not after 24 or 72 h in culture. In addition, neurturin partially suppressed the percentage of PACAP-IR neurons after 72 h in culture, an effect mediated by activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways. The addition of different known regulatory molecules, including ciliary neurotrophic factor (CNTF), interleukin-1 beta (Il-1beta), tumor necrosis factor-alpha (TNFalpha), fibroblast growth factor basic (bFGF), transforming growth factor-beta (TGF-beta) and nerve growth factor (NGF) did not increase the percentage of PACAP-IR neurons after 24 h in culture; a result indicating that the generation and secretion of these factors did not stimulate PACAP expression. The presence of 20 nM PACAP or 10 muM forskolin increased the percentage of PACAP-IR cardiac neurons in 24 h cultures, but not in 72 h cultures. Neither treatment enhanced the number of VIP-IR neurons. The addition of the PACAP selective receptor (PAC(1)) receptor antagonist, M65 (100 nM) suppressed the 20 nM PACAP-induced increase in percentage of PACAP-IR cells in 24 h cultures indicating the effect of PACAP was mediated through the PAC(1) receptor. However, 100 nM M65 had no effect on the percentage of PACAP-IR cells in either 24 or 48 h cultures not treated with exogenous PACAP, suggesting that endogenous release of PACAP likely did not contribute to the enhanced peptide expression. We postulate that the enhanced PACAP expression, which occurs in response to injury is facilitated in the explant cultured cardiac ganglia by the loss of a target-derived inhibitory factor, very likely neurturin. In intact tissues the presence of neurturin would normally suppress PACAP expression. Lastly, our results indicate that many common trophic factors do not enhance PACAP expression in the cultured cardiac neurons. However, the stimulatory role of an, as yet, unidentified factor cannot be excluded.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
31
|
Mabe AM, Hoard JL, Duffourc MM, Hoover DB. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene. Cell Tissue Res 2006; 326:57-67. [PMID: 16708241 DOI: 10.1007/s00441-006-0215-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/28/2022]
Abstract
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.
Collapse
Affiliation(s)
- Abigail M Mabe
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | | | |
Collapse
|
32
|
Girard BM, Young BA, Buttolph TR, Locknar SA, White SL, Parsons RL. Trophic factor modulation of cocaine- and amphetamine-regulated transcript peptide expression in explant cultured guinea-pig cardiac neurons. Neuroscience 2006; 139:1329-41. [PMID: 16516394 DOI: 10.1016/j.neuroscience.2006.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 01/10/2006] [Accepted: 01/21/2006] [Indexed: 11/24/2022]
Abstract
The present study investigated the influence of trophic factors on the expression of cocaine- and amphetamine-regulated transcript peptide (CARTp) in guinea-pig cardiac ganglia maintained in explant culture. In acutely isolated cardiac ganglia preparations, <1% of the cholinergic cardiac neurons exhibited CARTp immunoreactivity. In contrast, this number increased to >25% of the cardiac neurons after 72 h in explant culture. This increase in the number of CARTp neurons in cultured cardiac ganglia explants was accompanied by an increase in CARTp transcript levels as assessed by real time polymerase chain reaction. Treatment of cardiac ganglia cultures with neurturin or glial-derived trophic factor (both at 10 ng/ml) for 72 h prevented the increase in neurons that exhibited CARTp immunoreactivity. In contrast, treatment with ciliary neurotrophic factor (50 ng/ml) for 72 h produced a small significant increase in the percentage of CARTp-immunoreactive cardiac neurons and treatment with nerve growth factor (100 ng/ml) had no effect. Neurturin treatment also decreased cardiac neuron CARTp levels after 72 h in explant culture. Cardiac neurons exhibited immunoreactivity to the neurturin receptor GFRalpha2 whereas non-neural cells preferentially exhibited immunoreactivity to the glial-derived neurotrophic factor receptor GFRalpha1 and neurturin transcripts were detected in cardiac tissue extracts. We hypothesize that a target-derived inhibitory factor, very likely neurturin, is a critical factor suppressing the expression of CARTp in guinea-pig cardiac neurons. These observations contrast with those reported in sympathetic neurons that suggest up-regulation of trophic factors after axotomy or during explant culture is a key factor contributing to the up-regulation of many neuropeptides.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
33
|
Young HM, Anderson RB, Anderson CR. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 2004; 112:1-14. [PMID: 15233925 DOI: 10.1016/j.autneu.2004.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/25/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
All peripheral autonomic neurons arise from neural crest cells that migrate away from the neural tube and navigate to the location where ganglia will form. After differentiating into neurons, their axons then navigate to a variety of targets. During the development of the enteric nervous system, GDNF appears to play a role in inducing vagal neural crest cells to enter the gut, in retaining neural crest cells within the gut and in promoting the migration of neural crest cells along the gut. Sema3A regulates the entry of extrinsic axons into the distal hindgut, netrin-DCC signaling is responsible for the centripetal migration of cells to form the submucosal ganglia within the gut, Slit-Robo signaling prevents trunk level neural crest cells from entering the gut, and neurturin plays a role in the innervation of the circular muscle layer. During the development of the sympathetic nervous system, the migration of trunk neural crest cells through the somites is influenced by ephrin-Bs, Sema3A and F-spondin. The migration of neural crest cells ventrally beyond the somites requires neuregulin signaling and the clumping of cells into columns adjacent to the dorsal aorta is regulated by Sema3A. The rostral migration of cells to form the superior cervical ganglion (SCG) and the extension of axons along blood vessels involves artemin signaling through Ret and GFRalpha3, and the entry of sympathetic axons into target tissues involves neurotrophins and GDNF. Relatively little is known about the development of parasympathetic ganglia, but GDNF appears to play a role in the migration of some cranial ganglion precursors to their correct location, and both GDNF and neurturin are involved in the growth of parasympathetic axons into particular targets.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010 VIC, Australia
| | | | | |
Collapse
|
34
|
Hiltunen PH, Airaksinen MS. Sympathetic cholinergic target innervation requires GDNF family receptor GFRα2. Mol Cell Neurosci 2004; 26:450-7. [PMID: 15234349 DOI: 10.1016/j.mcn.2004.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/22/2022] Open
Abstract
Many cholinergic parasympathetic and enteric neurons require neurturin signaling through GDNF family receptor GFRalpha2 for target innervation. Since a distinct minority of sympathetic neurons are cholinergic, we examined whether GFRalpha2 is important for their development. We detected GFRalpha2 in neonatal sympathetic cholinergic neurons and neurturin mRNA in their target tissues, sweat glands in footpads, and periosteum. Lack of GFRalpha2 in mice did not affect the number of sympathetic cholinergic neurons, but their soma size was decreased in comparison to wild types. In adult and in 3-week-old GFRalpha2 knockout mice, the density of sympathetic cholinergic innervation was reduced by 50-70% in the sweat glands, and was completely absent in the periosteum. Sympathetic noradrenergic innervation of blood vessels in the footpads was unchanged. The density of sympathetic axons in sweat glands was unaffected at postnatal day P4 reflecting successful growth into the target area. Our results indicate that the cholinergic subpopulation of sympathetic neurons requires GFRalpha2 signaling for soma size and for growth or maintenance of target innervation. Thus, neurturin may be a general target-derived innervation factor for postganglionic cholinergic neurons in all parts of the autonomic nervous system.
Collapse
|
35
|
Wanigasekara Y, Airaksinen MS, Heuckeroth RO, Milbrandt J, Keast JR. Neurturin signalling via GFRα2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol Cell Neurosci 2004; 25:288-300. [PMID: 15019945 DOI: 10.1016/j.mcn.2003.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022] Open
Abstract
Neurturin, a member of the glial cell-derived neurotrophic factor familys of ligands, is important for development of many cranial parasympathetic ganglion neurons. We have investigated the sacral component of the parasympathetic nervous system in mice with gene deletions for neurturin or its preferred receptor, GFRalpha2. Disruption of neurturin signalling decreased cholinergic VIP innervation to the mucosa of the reproductive organs, but not to the smooth muscle layers of these organs or to the urinary bladder. Thus, neurturin and its receptor are involved in parasympathetic innervation of a select group of pelvic visceral tissues. In contrast, noradrenergic innervation was not affected by the gene ablations. The epithelium of reproductive organs from knockout animals was atrophied, indicating that cholinergic innervation may be important for the maintenance of normal structure. Cholinergic neurons express GFRalpha2 on their terminals and somata, indicating they can respond to neurotrophic support, and their somata are smaller when neurturin signalling is disrupted. Colocalisation studies showed that many peripheral glia express GFRalpha2 although its role in these cells is yet to be determined. Our results indicate that neurturin, acting through GFRalpha2, is essential for parasympathetic innervation of the mucosae of reproductive organs, as well as for maintenance of a broader group of sacral parasympathetic neurons.
Collapse
Affiliation(s)
- Y Wanigasekara
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick 2031, Australia
| | | | | | | | | |
Collapse
|
36
|
Yan H, Newgreen DF, Young HM. Developmental changes in neurite outgrowth responses of dorsal root and sympathetic ganglia to GDNF, neurturin, and artemin. Dev Dyn 2003; 227:395-401. [PMID: 12815625 DOI: 10.1002/dvdy.10294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ability of glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin to induce neurite outgrowth from dorsal root, superior cervical, and lumbar sympathetic ganglia from mice at a variety of development stages between embryonic day (E) 11.5 and postnatal day (P) 7 was examined by explanting ganglia onto collagen gels and growing them in the presence of agarose beads impregnated with the different GDNF family ligands. Artemin, GDNF, and neurturin were all capable of influencing neurite outgrowth from dorsal root and sympathetic ganglia, but the responses of each neuron type to the different ligands varied during development. Neurites from dorsal root ganglia responded to artemin at P0 and P7, to GDNF at E15.5 and P0, and to neurturin at E15.5, P0, and P6/7; thus, artemin, GDNF, and neurturin are all capable of influencing neurite outgrowth from dorsal root ganglion neurons. Neurites from superior cervical sympathetic ganglia responded significantly to artemin at E15.5, to GDNF at E15.5 and P0, and to neurturin at E15.5. Neurites from lumbar sympathetic ganglia responded to artemin at all stages from E11.5 to P7, to GDNF at P0 and P7 and to neurturin at E11.5 to P6/7. Combined with the data from previous studies that have examined the expression of GDNF family members, our data suggest that artemin plays a role in inducing neurite outgrowth from young sympathetic neurons in the early stages of sympathetic axon pathfinding, whereas GDNF and neurturin are likely to be important at later stages of sympathetic neuron development in inducing axons to enter particular target tissues once they are in the vicinity or to induce branching within target tissues. Superior cervical and lumbar sympathetic ganglia showed temporal differences in their responsiveness to artemin, GDNF, and neurturin, which probably partly reflects the rostrocaudal development of sympathetic ganglia and the tissues they innervate.
Collapse
Affiliation(s)
- H Yan
- Department of Anatomy and Cell Biology, University of Melbourne, VIC, Australia.
| | | | | |
Collapse
|
37
|
Rossi J, Airaksinen MS. GDNF family signalling in exocrine tissues: distinct roles for GDNF and neurturin in parasympathetic neuron development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:19-26. [PMID: 12613884 DOI: 10.1007/978-1-4615-0717-8_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jari Rossi
- Program in Molecular Neurobiology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
38
|
Gabeler EEE, van Hillegersberg R, Statius van Eps RG, Sluiter W, Mulder P, van Urk H. Endovascular photodynamic therapy with aminolaevulinic acid prevents balloon induced intimal hyperplasia and constrictive remodelling. Eur J Vasc Endovasc Surg 2002; 24:322-31. [PMID: 12323175 DOI: 10.1053/ejvs.2002.1723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE intimal hyperplasia (IH) and constrictive remodelling are important causes of restenosis following endovascular interventions, such as percutaneous transluminal angioplasty. Photodynamic therapy (PDT) with 5-aminolaevulinic (ALA) may prevent restenosis by cellular depletion and the elimination of cholinergic innervation. STUDY DESIGN/MATERIALS AND METHODS rats (n=90) were subdivided into 4 main groups. In the experimental group (n=36: 3 replications x 4 doses x 3 examination time-points), ALA was administered (200mg/kg i.v.) 2-3h before balloon injury (BI) of the common iliac artery followed by endovascular illumination with 633nm at either 12.5, 25, 50 or 100J/cm diffuser length (dl BI+PDT group). As control groups served the BI+Light only (LO) group (n=36) that received no ALA, the BI only group (n=9) (BI), and a group (n=9) that received a Sham procedure (Sham group). RESULTS planimetric analysis showed IH of 0.28+/-0.12mm(2) (BI), 0.27+/-0.12mm(2) (BI+LO at 100J/cmdl) in contrast to 0.02+/-0.02mm(2) after BI+PDT at 100J/cmdl at 16 weeks (p<0.05). In the BI+PDT groups, a light-dose increase of a factor 2 led to an IH decrease of 17% (p<0.05). In the BI and BI+LO groups constrictive remodelling was found, in contrast to BI+PDT treated groups at 16 weeks. The staining of cholinergic innervation of the tunic media of the blood vessel wall in BI+PDT showed no damage at the highest fluence. CONCLUSION endovascular ALA-PDT prevents IH and constrictive remodelling after BI without damage of cholinergic innervation of the tunica media. The effective light fluence rate in the rat is 50-100J/cmdl.
Collapse
Affiliation(s)
- E E E Gabeler
- Department of Surgery, University Hospital Rotterdam-Dijkzigt, Erasmus MC, Room H928, Dr Molewaterplein 40, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Shoba T, Dheen ST, Tay SSW. Retinoic acid influences the expression of the neuronal regulatory genes Mash-1 and c-ret in the developing rat heart. Neurosci Lett 2002; 318:129-32. [PMID: 11803116 DOI: 10.1016/s0304-3940(01)02491-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We analyzed the expression of neuronal regulatory genes Mash-1 and c-ret by immunohistochemistry and reverse transcriptase-polymerase chain reaction in the developing heart of rat embryos following exogenous retinoic acid (RA) treatment of the pregnant dams. On E12, expression of Mash-1 and c-ret was confined to cells migrating via the common cardinal vein. On E16.5, Mash-1 and c-ret expression were restricted to cardiac ganglia around the great vessels and posterior atrial wall. While Mash-1 expression was down-regulated at birth, that of c-Ret was maintained. RA-treated hearts showed a down-regulation of both Mash-1 and c-Ret at the mRNA as well as at the protein level on E16.5. The present results show that differentiation of cardiac ganglionic cells is affected after RA treatment, by the down-regulation of Mash-1 and c-Ret.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Survival/drug effects
- Cell Survival/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Female
- Fetus
- Ganglia, Autonomic/drug effects
- Ganglia, Autonomic/embryology
- Ganglia, Autonomic/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Heart/drug effects
- Heart/embryology
- Heart/innervation
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Immunohistochemistry
- Neural Crest/drug effects
- Neural Crest/embryology
- Neural Crest/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ret
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cells/drug effects
- Stem Cells/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- T Shoba
- Department of Anatomy, Faculty of Medicine, MD 10, 4 Medical Drive, National University of Singapore, 117 597, Singapore, Singapore
| | | | | |
Collapse
|
40
|
Affiliation(s)
- S P Cordes
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Rm 865, 600 University Ave, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
41
|
Rossi J, Tomac A, Saarma M, Airaksinen MS. Distinct roles for GFRalpha1 and GFRalpha2 signalling in different cranial parasympathetic ganglia in vivo. Eur J Neurosci 2000; 12:3944-52. [PMID: 11069590 DOI: 10.1046/j.1460-9568.2000.00292.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurturin (NRTN), signalling via the GDNF family receptor alpha2 (GFRalpha2) and Ret tyrosine kinase, has recently been identified as an essential target-derived factor for many parasympathetic neurons. NRTN is expressed in salivary and lacrimal glands, while GFRalpha2 and Ret are expressed in the corresponding submandibular, otic and sphenopalatine ganglia. Here, we have characterized in more detail the role of GDNF and NRTN signalling in the development of cranial parasympathetic neurons and their target innervation. Gfra1 mRNA was expressed at E12 but not in newborn cranial parasympathetic ganglia, while Gfra2 mRNA and protein were strongly expressed in newborn and adult cranial parasympathetic neurons and their projections, respectively. In newborn GFRalpha1- or Ret-deficient mice, where many submandibular ganglion neurons were still present, the otic and sphenopalatine ganglia were completely missing. In contrast, in newborn GFRalpha2-deficient mice, most neurons in all these ganglia were present. In these mice, the loss and atrophy of the submandibular and otic neurons were amplified postnatally, accompanied by complete loss of innervation in some target regions and preservation in others. Surprisingly, GFRalpha2-deficient sphenopalatine neurons, whose targets were completely uninnervated, were not reduced in number and only slightly atrophied. Thus, GDNF signalling via GFRalpha1/Ret is essential in the early gangliogenesis of some, but not all, cranial parasympathetic neurons, whereas NRTN signalling through GFRalpha2/Ret is essential for the development and maintenance of parasympathetic target innervation. These results indicate that GDNF and NRTN have distinct functions in developing parasympathetic neurons, and suggest heterogeneity among and within different parasympathetic ganglia.
Collapse
Affiliation(s)
- J Rossi
- Program in Molecular Neurobiology, Institute of Biotechnology, Viikki Biocentre, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|