1
|
Peters GJ, Kathmann I, Giovannetti E, Smid K, Assaraf YG, Jansen G. The role of l-leucovorin uptake and metabolism in the modulation of 5-fluorouracil efficacy and antifolate toxicity. Front Pharmacol 2024; 15:1450418. [PMID: 39234107 PMCID: PMC11371747 DOI: 10.3389/fphar.2024.1450418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Background L-Leucovorin (l-LV; 5-formyltetrahydrofolate, folinic acid) is a precursor for 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is important for the potentiation of the antitumor activity of 5-fluorouracil (5FU). LV is also used to rescue antifolate toxicity. LV is commonly administered as a racemic mixture of its l-LV and d-LV stereoisomers. We compared dl-LV with l-LV and investigated whether d-LV would interfere with the activity of l-LV. Methods Using radioactive substrates, we characterized the transport properties of l-LV and d-LV, and compared the efficacy of l-LV with d-LV to potentiate 5FU-mediated thymidylate synthase (TS) inhibition. Using proliferation assays, we investigated their potential to protect cancer cells from cytotoxicity of the antifolates methotrexate, pemetrexed (Alimta), raltitrexed (Tomudex) and pralatrexate (Folotyn). Results l-LV displayed an 8-fold and 3.5-fold higher substrate affinity than d-LV for the reduced folate carrier (RFC/SLC19A1) and proton coupled folate transporter (PCFT/SLC46A1), respectively. In selected colon cancer cell lines, the greatest enhanced efficacy of 5FU was observed for l-LV (2-fold) followed by the racemic mixture, whereas d-LV was ineffective. The cytotoxicity of antifolates in lymphoma and various solid tumor cell lines could be protected very efficiently by l-LV but not by d-LV. This protective effect of l-LV was dependent on cellular RFC expression as corroborated in RFC/PCFT-knockout and RFC/PCFT-transfected cells. Assessment of TS activity in situ showed that TS inhibition by 5FU could be enhanced by l-LV and dl-LV and only partially by d-LV. However, protection from inhibition by various antifolates was solely achieved by l-LV and dl-LV. Conclusion In general l-LV acts similar to the dl-LV formulations, however disparate effects were observed when d-LV and l-LV were used in combination, conceivably by d-LV affecting (anti)folate transport and intracellular metabolism.
Collapse
Affiliation(s)
- Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ietje Kathmann
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
3
|
Tajan M, Vousden KH. Dietary Approaches to Cancer Therapy. Cancer Cell 2020; 37:767-785. [PMID: 32413275 DOI: 10.1016/j.ccell.2020.04.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/25/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
4
|
Kim SE. Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 2020; 14:95-101. [PMID: 32256983 PMCID: PMC7075736 DOI: 10.4162/nrp.2020.14.2.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Folate plays a critical role in DNA synthesis and methylation. Intracellular folate homeostasis is maintained by the enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH). FPGS adds glutamate residues to folate upon its entry into the cell through a process known as polyglutamylation to enhance folate retention in the cell and to maintain a steady supply of utilizable folate derivatives for folate-dependent enzyme reactions. Thereafter, GGH catalyzes the hydrolysis of polyglutamylated folate into monoglutamylated folate, which can subsequently be exported from the cell. The objective of this review is to summarize the scientific evidence available on the effects of intracellular folate homeostasis-associated enzymes on cancer chemotherapy. METHODS This review discusses the effects of FPGS and GGH on chemosensitivity to cancer chemotherapeutic agents such as antifolates, such as methotrexate, and 5-fluorouracil. RESULTS AND DISCUSSION Polyglutamylated (anti)folates are better substrates for intracellular folate-dependent enzymes and retained for longer within cells. In addition to polyglutamylation of (anti)folates, FPGS and GGH modulate intracellular folate concentrations, which are an important determinant of chemosensitivity of cancer cells toward chemotherapeutic agents. Therefore, FPGS and GGH affect chemosensitivity to antifolates and 5-fluorouracil by altering intracellular retention status of antifolates and folate cofactors such as 5,10-methylenetetrahydrofolate, subsequently influencing the cytotoxic effects of 5-fluorouracil, respectively. Generally, high FPGS and/or low GGH activity is associated with increased chemosensitivity of cancer cells to methotrexate and 5-fluorouracil, while low FPGS and/or high GGH activity seems to correspond to resistance to these drugs. Further preclinical and clinical studies elucidating the pharmocogenetic ramifications of these enzyme-induced changes are warranted to provide a framework for developing rational, effective, safe, and customized chemotherapeutic practices.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
5
|
Radziejewska A, Chmurzynska A. Folate and choline absorption and uptake: Their role in fetal development. Biochimie 2018; 158:10-19. [PMID: 30529042 DOI: 10.1016/j.biochi.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
SCOPE In this review, we attempt to assess how choline and folate transporters affect fetal development. We focus on how the expression of these transporters in response to choline and folate intake affects transport effectiveness. We additionally describe allelic variants of the genes encoding these transporters and their phenotypic effects. METHODS AND RESULTS We made an extensive review of recent articles describing role of choline and folate - with particularly emphasize on their transporters - in fetal development. Folate and choline are necessary for the proper functioning of the cell and body. During pregnancy, the requirements of these nutrients increase because of elevated maternal demand and the rapid division of fetal cells. The concentrations of folate and choline in cells depend on food intake, the absorption of nutrients, and the cellular transport system, which is tissue-specific and developmentally regulated. Relatively few studies have investigated the role of choline transporters in fetal development. CONCLUSIONS In this review we show relations between functioning of folate and choline transporters and fetal development.
Collapse
Affiliation(s)
- Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland.
| |
Collapse
|
6
|
van Zweeden AA, van Groeningen CJ, Honeywell RJ, Giovannetti E, Ruijter R, Smorenburg CH, Giaccone G, Verheul HMW, Peters GJ, van der Vliet HJ. Randomized phase 2 study of gemcitabine and cisplatin with or without vitamin supplementation in patients with advanced esophagogastric cancer. Cancer Chemother Pharmacol 2018; 82:39-48. [PMID: 29696360 PMCID: PMC6010482 DOI: 10.1007/s00280-018-3588-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022]
Abstract
Purpose Preclinical research and prior clinical observations demonstrated reduced toxicity and suggested enhanced efficacy of cisplatin due to folic acid and vitamin B12 suppletion. In this randomized phase 2 trial, we evaluated the addition of folic acid and vitamin B12 to first-line palliative cisplatin and gemcitabine in patients with advanced esophagogastric cancer (AEGC). Methods Patients with AEGC were randomized to gemcitabine 1250 mg/m2 (i.v. days 1, 8) and cisplatin 80 mg/m2 (i.v. day 1) q 3 weeks with or without folic acid (450 µg/day p.o.) and vitamin B12 (1000 µg i.m. q 9 weeks). The primary endpoint was response rate (RR). Secondary endpoints included overall survival (OS), time to progression (TTP), toxicity, and exploratory biomarker analyses. Cisplatin sensitivity and intracellular platinum levels were determined in adenocarcinoma cell lines cultured under high and low folate conditions in vitro. Results Adenocarcinoma cells cultured in medium with high folate levels were more sensitive to cisplatin and this was associated with increased intracellular platinum levels. In the randomized phase 2 clinical trial, which ran from October 2004 to September 2013, treatment was initiated in 78 of 82 randomized pts, 39 in each study arm. The RR was similar; 42.1% for supplemented patients vs. 32.4% for unsupplemented patients; p = 0.4. Median OS and TTP were 10.0 and 5.9 months for supplemented vs. 7.7 and 5.4 months for unsupplemented patients (OS, p = 0.9; TTP, p = 0.9). Plasma homocysteine was lower in the supplemented group [n = 20, 6.9 ± 1.6 (mean ± standard error of mean, SEM) µM; vs. 12.5 ± 4.0 µM; p < 0.001]. There was no significant difference in the Cmax of gemcitabine and cisplatin in the two treatment groups. Conclusion Folic acid and vitamin B12 supplementation do not improve the RR, PFS, or OS of cisplatin and gemcitabine in patients with AEGC.
Collapse
Affiliation(s)
- A A van Zweeden
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - C J van Groeningen
- Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - R J Honeywell
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - E Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - R Ruijter
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - C H Smorenburg
- Department of Internal Medicine, Noordwest Ziekenhuisgroep Alkmaar, Alkmaar, The Netherlands
| | - G Giaccone
- Department of Medical Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - H M W Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - G J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Room 3A38, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Schunselaar LM, Quispel-Janssen JMMF, Kim Y, Alifrangis C, Zwart W, Baas P, Neefjes J. Chemical Profiling of Primary Mesothelioma Cultures Defines Subtypes with Different Expression Profiles and Clinical Responses. Clin Cancer Res 2017; 24:1761-1770. [PMID: 29066506 DOI: 10.1158/1078-0432.ccr-17-1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Finding new treatment options for patients with malignant pleural mesothelioma is challenging due to the rarity and heterogeneity of this cancer type. The absence of druggable targets further complicates the development of new therapies. Current treatment options are therefore limited, and prognosis remains poor.Experimental Design: We performed drug screening on primary mesothelioma cultures to guide treatment decisions of corresponding patients that were progressive after first- or second-line treatment.Results: We observed a high concordance between in vitro results and clinical outcomes. We defined three subgroups responding differently to the anticancer drugs tested. In addition, gene expression profiling yielded distinct signatures that segregated the differently responding subgroups. These genes signatures involved various pathways, most prominently the fibroblast growth factor pathway.Conclusions: Our primary mesothelioma culture system has proved to be suitable to test novel drugs. Chemical profiling of primary mesothelioma cultures allows personalizing treatment for a group of patients with a rare tumor type where clinical trials are notoriously difficult. This personalized treatment strategy is expected to improve the poor prospects of patients with mesothelioma. Clin Cancer Res; 24(7); 1761-70. ©2017 AACRSee related commentary by John and Chia, p. 1513.
Collapse
Affiliation(s)
- Laurel M Schunselaar
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Yongsoo Kim
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Wilbert Zwart
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacques Neefjes
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Honeywell RJ, Sarkisjan D, Kathmann I, Kristensen MH, Peters GJ. Sensitive liquid chromatography mass spectrometry (LC-MS) assay reveals novel insights on DNA methylation and incorporation of gemcitabine, its metabolite difluorodeoxyuridine, deoxyuridine, and RX-3117 into DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:652-662. [PMID: 27906622 DOI: 10.1080/15257770.2016.1216566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Antimetabolites are incorporated into DNA and RNA, affecting their function. Liquid-chromatography-mass-spectrometry (LC-MS-MS) permits the sensitive, selective analysis of normal nucleosides. The method was adapted to measure the incorporation of deoxyuridine, gemcitabine (difluorodeoxycytidine), its metabolite difluorodeoxyuridine (dFdU), and the novel compound fluorocyclopentenylcytosine (RX3117). DNA was degraded to its deoxynucleotides for quantification by LC-MS-MS, gradient chromatography on a Phenomenex prodigy-3-ODS with positive ionization. The range of deoxyuridine DNA-mis-incorporation varied nine-fold in 27 cell lines (leukemia, colon, ovarian, lung cancer). At low-folate conditions a 2.1-fold increase in deoxyuridine was observed. Global methylation (given as % 5-methyl-deoxycytidine) was comparable between the cell lines (4.6-6.5%). Exposure of A2780 cells to 1 μM gemcitabine (4 hours) resulted in 3.6 pmol gemcitabine/μg DNA, but in AG6000 cells (deoxycytidine-kinase-deficient) no incorporation was found. However, when A2780, AG6000, or CCRF-CEM cells were exposed to 100 μM dFdU we found it as gemcitabine, 20.5, 19.6, and 0.51 pmol gemcitabine/μg DNA, respectively. Preincubation of CCRF-CEM cells with cyclopentenyl-cytosine (a CTP-synthetase inhibitor) increased dFdU incorporation four-fold. Apparently dFdU is activated independently of deoxycytidine-kinase and possibly converted in-situ to dFdCMP. RX3117 was incorporated into both DNA and RNA (0.0037 and 0.00515 pmol/μg, respectively). In summary, a sensitive method to quantify the incorporation of gemcitabine, deoxyuridine, and RX-3117 was developed, which revealed that dFdU was incorporated into DNA as the parent compound gemcitabine.
Collapse
Affiliation(s)
- Richard J Honeywell
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Dzjemma Sarkisjan
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Ietje Kathmann
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Michael H Kristensen
- b Department of Clinical Pathology , Hospital South, Naestved Hospital , Naestved, Zealand Region , Denmark
| | - Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
9
|
Ishiguro L, Yang M, Sohn KJ, Streutker CJ, Grin A, Croxford R, Kim YI. Folic Acid Supplementation Adversely Affects Chemosensitivity of Colon Cancer Cells to 5-fluorouracil. Nutr Cancer 2016; 68:780-90. [DOI: 10.1080/01635581.2016.1170168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
De Mattia E, Cecchin E, Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist Updat 2015; 20:39-70. [DOI: 10.1016/j.drup.2015.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
|
11
|
Hu J, Wang B, Sahyoun NR. Application of the Key Events Dose-response Framework to Folate Metabolism. Crit Rev Food Sci Nutr 2015; 56:1325-33. [DOI: 10.1080/10408398.2013.807221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Huang L, Zhang T, Xie C, Liao X, Yu Q, Feng J, Ma H, Dai J, Li M, Chen J, Zang A, Wang Q, Ge S, Qin K, Cai J, Yuan X. SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer. PLoS One 2013; 8:e77223. [PMID: 24143213 PMCID: PMC3797132 DOI: 10.1371/journal.pone.0077223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Background Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens. Materials and Methods Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing Results Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher's exact test p=0.002). Their significances were all maintained even after multiple testing (all pc < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival. Conclusions Polymorphisms of solute carriers’ may be useful to predict rapid response to irinotecan plus fluoropyrimidine and PFS in mCRC patients. Trial Registry ClinicalTrials.gov NCT01282658 http://www.clinicaltrials.gov/ct2/show/NCT01282658
Collapse
Affiliation(s)
- Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tao Zhang
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Xin Liao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jueping Feng
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Hong Ma
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Min Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jigui Chen
- Department of Surgery, Wuhan 8 Hospital, Wuhan, P.R. China
| | - Aihua Zang
- Hubei Cancer Hospital, Wuhan, P. R. China
| | - Qian Wang
- Department of Surgery, Wuhan 8 Hospital, Wuhan, P.R. China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Cai
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, P. R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
13
|
γ-Glutamyl hydrolase modulation and folate influence chemosensitivity of cancer cells to 5-fluorouracil and methotrexate. Br J Cancer 2013; 109:2175-88. [PMID: 24045662 PMCID: PMC3798974 DOI: 10.1038/bjc.2013.579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND γ-Glutamyl hydrolase (GGH) regulates intracellular folate and antifolates for optimal nucleotide biosynthesis and antifolate-induced cytotoxicity, respectively. The modulation of GGH may therefore affect chemosensitivity of cancer cells, and exogenous folate levels may further modify this effect. METHODS We generated a novel model of GGH modulation in human HCT116 and MDA-MB-435 cancer cells and investigated the effect of GGH modulation on chemosensitivity to 5-fluorouracil (5FU) and methotrexate (MTX) at different folate concentrations in vitro and in vivo. RESULTS Overexpression of GGH significantly decreased chemosensitivity of MDA-MB-435 cells to 5FU and MTX at all folate concentrations as expected. In contrast, in HCT116 cells this predicted effect was observed only at very high folate concentration, and as the folate concentration decreased this effect became null or paradoxically increased. This in vitro observation was confirmed in vivo. Inhibition of GGH significantly increased chemosensitivity of both cancer cells to 5FU at all folate concentrations. Unexpectedly, GGH inhibition significantly decreased chemosensitivity of both cancer cells to MTX at all folate concentrations. In both GGH modulation systems and cell lines, the magnitude of chemosensitivity effect incrementally increased as folate concentration increased. CONCLUSION Modulation of GGH affects chemosensitivity of cancer cells to 5FU and MTX, and exogenous folate levels can further modify the effects.
Collapse
|
14
|
Corominas-Faja B, Quirantes-Piné R, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Martin-Castillo B, Micol V, Joven J, Segura-Carretero A, Menendez JA. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging (Albany NY) 2012; 4:480-98. [PMID: 22837425 PMCID: PMC3433934 DOI: 10.18632/aging.100472] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metabolomic fingerprint of breast cancer cells treated with the antidiabetic drug metformin revealed a significant accumulation of 5-formimino-tetrahydrofolate, one of the tetrahydrofolate forms carrying activated one-carbon units that are essential for the de novo synthesis of purines and pyrimidines. De novo synthesis of glutathione, a folate-dependent pathway interconnected with one-carbon metabolism was concomitantly depleted in response to metformin. End-product reversal studies demonstrated that thymidine alone leads to a significant but incomplete protection from metformin's cytostatic effects. The addition of the substrate hypoxanthine for the purine salvage pathway produces major rightward shifts in metformin's growth inhibition curves. Metformin treatment failed to activate the DNA repair protein ATM kinase and the metabolic tumor suppressor AMPK when thymidine and hypoxanthine were present in the extracellular milieu. Our current findings suggest for the first time that metformin can function as an antifolate chemotherapeutic agent that induces the ATM/AMPK tumor suppressor axis secondarily following the alteration of the carbon flow through the folate-related one-carbon metabolic pathways.
Collapse
|
15
|
Suchy SL, Landreneau RJ, Schuchert MJ, Wang D, Ervin PR, Brower SL. Adaptation of a chemosensitivity assay to accurately assess pemetrexed in ex vivo cultures of lung cancer. Cancer Biol Ther 2012; 14:39-44. [PMID: 23114649 DOI: 10.4161/cbt.22622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Pemetrexed is the only FDA approved treatment for mesothelioma and is a second line agent for treatment of non-small cell lung carcinoma (NSCLC). Pemetrexed is inhibited by folate and its analogs, which are components of many culture media, making it challenging to study pemetrexed in vitro. In order to accurately evaluate pemetrexed's effects in vitro, the protocol for a standard chemosensitivity assay, the ChemoFx drug response marker, had to be modified. EXPERIMENTAL DESIGN Novel rinse and media change steps were assessed and then added to the assay protocol in order to observe pemetrexed activity. The intraday and interday stability of pemetrexed were also established under the adapted protocol. Then, the modified protocol was used to examine pemetrexed in 65 ex vivo lung cancer specimens. RESULTS Substituting 5% RPMI + EGF for BEGM allowed pemetrexed to exert its anticancer activity in the ChemoFx DRM. ChemoFx classified 6.2% of the lung specimens as responsive, 9.2% as intermediate responsive and 84.6% as non-responsive to pemetrexed. CONCLUSIONS Adapting the ChemoFx protocol allowed for the accurate evaluation of pemetrexed anticancer activity in ex vivo lung specimens. ChemoFx evaluation may provide an indication of a patient's clinical response to the drug prior to pemetrexed treatment. Having this information when treatment options are being considered could avoid wasted time, unnecessary costs and needless side effects that are the result of an inappropriate chemotherapy regimen.
Collapse
|
16
|
Holmes RS, Zheng Y, Baron JA, Li L, McKeown-Eyssen G, Newcomb PA, Stern MC, Haile RW, Grady WM, Potter JD, Le Marchand L, Campbell PT, Figueiredo JC, Limburg PJ, Jenkins MA, Hopper JL, Ulrich CM. Use of folic acid-containing supplements after a diagnosis of colorectal cancer in the Colon Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 2010; 19:2023-34. [PMID: 20696661 DOI: 10.1158/1055-9965.epi-09-1097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Supplement use among cancer patients is high, and folic acid intake in particular may adversely affect the progression of colorectal cancer. Few studies have evaluated the use of folic acid-containing supplements (FAS) and its predictors in colorectal cancer patients. OBJECTIVE To assess the use of FAS, change in use, and its predictors after colorectal cancer diagnosis. DESIGN We used logistic regression models to investigate predictors of FAS use and its initiation after colorectal cancer diagnosis in 1,092 patients recruited through the Colon Cancer Family Registry. RESULTS The prevalence of FAS use was 35.4% before and 55.1% after colorectal cancer diagnosis (P = 0.004). Women were more likely than men to use FAS after diagnosis [odds ratio (OR), 1.47; 95% confidence interval (95% CI), 1.14-1.89], as were those consuming more fruit (P(trend) < 0.0001) or vegetables (P(trend) = 0.001), and U.S. residents (P < 0.0001). Less likely to use FAS after diagnosis were nonwhite patients (OR, 0.66; 95% CI, 0.45-0.97), current smokers (OR, 0.67; 95% CI, 0.46-0.96), and those with higher meat intake (P(trend) = 0.03). Predictors of FAS initiation after diagnosis were generally similar to those of FAS use after diagnosis, although associations with race and vegetable intake were weaker and those with exercise stronger. CONCLUSIONS Our analysis showed substantial increases in the use of FAS after diagnosis with colorectal cancer, with use or initiation more likely among women, Caucasians, U.S. residents, and those with a health-promoting life-style. IMPACT Studies of cancer prognosis that rely on prediagnostic exposure information may result in substantial misclassification.
Collapse
Affiliation(s)
- Rebecca S Holmes
- National Center for Tumor Diseases Heidelberg, Division of Preventive Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoon SA, Choi JR, Kim JO, Shin JY, Zhang X, Kang JH. Influence of reduced folate carrier and dihydrofolate reductase genes on methotrexate-induced cytotoxicity. Cancer Res Treat 2010; 42:163-71. [PMID: 20948922 DOI: 10.4143/crt.2010.42.3.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/21/2010] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the effect of genetic variations and the expression of the reduced folate carrier (RFC) and dihydrofolate reductase (DHFR) on the drug sensitivity to methotrexate (MTX) in different cancer cell lines. MATERIALS AND METHODS We examined the six human cancer cell lines (MCF-7, AGS, A549, NCI-H23, HCT-116 and Saos-2). The cytotoxicity of MTX was measured by sulforhodamine B (SRB) assay. The expressions of the DHFR and RFC were evaluated by real-time PCR and western blotting. Four single nucleotide polymorphisms (SNPs) of the DHFR and two SNPs of the RFC were genotyped. RESULTS The IC₅₀s of MTX was in an extensively broad range from 6.05±0.81 nM to>1,000 nM in the cell lines. The Saos-2 (>1,000 nM) and MCF-7 (114.31±5.34 nM) cells were most resistant to MTX; in contrast, the AGS and HCT-116 cells were highly sensitive to MTX with an IC(50) of 6.05±0.81 nM and 13.56±3.76 nM, respectively. A reciprocal change of the RFC and DHFR mRNA expression was found between the MTX-sensitive AGS and MTX-resistant Saos-2 cells. There was no significant difference in the expression levels of RFC protein in both the AGS and Saos-2 cells, whereas DHFR protein was more increased in the MTX-resistant Saos-2 cells treated with MTX. The genotype of the MTX-sensitive AGS cells were mutant variants of the DHFR; in contrast, the Saos-2 cells had the wild-type of the DHFR. CONCLUSION In conclusion, this study showed that inverse change of the RFC and DHFR mRNA and protein expression was associated with RFC and DHFR polymorphisms and it is postulated that this phenomenon might play an important role in sensitivity of certain cancers to MTX.
Collapse
Affiliation(s)
- Seong-Ae Yoon
- Laboratory of Medical Oncology, Catholic Research Institute of Medical Science, The Catholic University of Korea School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
18
|
The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells. Eur J Pharmacol 2010; 640:29-37. [DOI: 10.1016/j.ejphar.2010.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 04/23/2010] [Indexed: 12/25/2022]
|
19
|
Hamid A, Wani NA, Kaur J. New perspectives on folate transport in relation to alcoholism-induced folate malabsorption--association with epigenome stability and cancer development. FEBS J 2009; 276:2175-91. [PMID: 19292860 DOI: 10.1111/j.1742-4658.2009.06959.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Folates are members of the B-class of vitamins, which are required for the synthesis of purines and pyrimidines, and for the methylation of essential biological substances, including phospholipids, DNA, and neurotransmitters. Folates cannot be synthesized de novo by mammals; hence, an efficient intestinal absorption process is required. Intestinal folate transport is carrier-mediated, pH-dependent and electroneutral, with similar affinity for oxidized and reduced folic acid derivatives. The various transporters, i.e. reduced folate carrier, proton-coupled folate transporter, folate-binding protein, and organic anion transporters, are involved in the folate transport process in various tissues. Any impairment in uptake of folate can lead to a state of folate deficiency, the most prevalent vitamin deficiency in world, affecting 10% of the population in the USA. Such impairments in folate transport occur in a variety of conditions, including chronic use of ethanol, some inborn hereditary disorders, and certain diseases. Among these, ethanol ingestion has been the major contributor to folate deficiency. Ethanol-associated folate deficiency can develop because of dietary inadequacy, intestinal malabsorption, altered hepatobiliary metabolism, enhanced colonic metabolism, and increased renal excretion. Ethanol reduces the intestinal and renal uptake of folate by altering the binding and transport kinetics of folate transport systems. Also, ethanol reduces the expression of folate transporters in both intestine and kidney, and this might be a contributing factor for folate malabsorption, leading to folate deficiency. The maintenance of intracellular folate homeostasis is essential for the one-carbon transfer reactions necessary for DNA synthesis and biological methylation reactions. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. Ethanol, a toxin that is consumed regularly, has been found to affect the methylation of DNA. In addition to its effect on DNA methylation due to folate deficiency, ethanol could directly exert its effect through its interaction with one-carbon metabolism, impairment of methyl group synthesis, and affecting the enzymes regulating the synthesis of S-adenosylmethionine, the primary methyl group donor for most biological methylation reactions. Thus, ethanol plays an important role in the pathogenesis of several diseases through its potential ability to modulate the methylation of biological molecules. This review discusses the underlying mechanism of folate malabsorption in alcoholism, the mechanism of methylation-associated silencing of genes, and how the interaction between ethanol and folate deficiency affects the methylation of genes, thereby modulating epigenome stability and the risk of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | | | |
Collapse
|
20
|
Lemos C, Kathmann I, Giovannetti E, Beliën JAM, Scheffer GL, Calhau C, Jansen G, Peters GJ. Cellular folate status modulates the expression of BCRP and MRP multidrug transporters in cancer cell lines from different origins. Mol Cancer Ther 2009; 8:655-64. [PMID: 19240161 DOI: 10.1158/1535-7163.mct-08-0768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As cellular folate levels seem to have a different effect on cancer cells from different origins, we extended our initial study to a broader panel of cancer cells. BCRP and MRP1-5 expression was determined in KB, OVCAR-3, IGROV-1, ZR75-1/R/MTX, SCC-11B, SCC-22B, and WiDr either grown in standard RPMI 1640 containing 2.3 micromol/L supraphysiologic concentration of folic acid [high folate (HF)] or adapted to more physiologic concentrations [1-5 nmol/L folic acid or leucovorin; low folate (LF)]. Compared with the HF counterparts, KB LF cells displayed 16.1-fold increased MRP3 and OVCAR-3 LF cells showed 4.8-fold increased MRP4 mRNA levels along with increased MRP3 and MRP4 protein expression, respectively. A marked increase on BCRP protein and mRNA expression was observed in WiDr LF cells. These cells acquired approximately 2-fold resistance to mitoxantrone compared with the HF cell line, a phenotype that could be reverted by the BCRP inhibitor Ko143. Of note, WiDr cells expressed BCRP in the intracellular compartment, similarly to what we have described for Caco-2 cells. Our results provide further evidence for an important role of cellular folate status in the modulation of the expression of multidrug resistance transporters in cancer cells. We show that up-regulation of intracellularly localized BCRP in response to adaptation to LF conditions may be a common feature within a panel of colon cancer cell lines. Under these circumstances, folate supplementation might improve the efficacy of chemotherapeutic drugs by decreasing BCRP expression.
Collapse
Affiliation(s)
- Clara Lemos
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Codacci-Pisanelli G, Noordhuis P, van der Wilt CL, Peters GJ. Selective protection by uridine of growth inhibition by 5-fluorouracil (5FU) mediated by 5FU incorporation into RNA, but not the thymidylate synthase mediated growth inhibition by 5FU-leucovorin. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:733-9. [PMID: 18600533 DOI: 10.1080/15257770802145496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fluorouracil (5FU) acts by RNA-incorporation and inhibition of thymidylate synthase; the first action is counteracted by uridine, and the second is enhanced by leucovorin (LV). Growth inhibition of C26-10 colon cancer cells by 5FU was enhanced by LV and rescued by uridine, but 5FU-LV was only partially rescued by uridine. In WiDr cells, 5FU sensitivity was not enhanced by LV, while both 5FU and 5FU-LV were rescued by uridine. Intermediate trends were found in SW948 and HT29 cells. Uridine rescue in mice allowed 1.5-fold increase in 5FU dose, leading to 2-fold increase in the antitumor effect and thymidylate synthase inhibition in resistant Colon-26 tumors. In the sensitive Colon-26-10 tumor, uridine rescue decreased 5FU-RNA incorporation > 10-fold, without affecting the antitumor activity. The use of LV and uridine can differentiate between two mechanisms of action of 5FU.
Collapse
Affiliation(s)
- G Codacci-Pisanelli
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Sienkiewicz N, Jarosławski S, Wyllie S, Fairlamb AH. Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Mol Microbiol 2008; 69:520-33. [PMID: 18557814 PMCID: PMC2610392 DOI: 10.1111/j.1365-2958.2008.06305.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase–thymidylate synthase (DHFR–TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR–TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR–TS is essential for parasite survival and represents a promising target for drug discovery.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
23
|
Ifergan I, Jansen G, Assaraf YG. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. J Biol Chem 2008; 283:20687-95. [PMID: 18499665 PMCID: PMC3258945 DOI: 10.1074/jbc.m802812200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/20/2008] [Indexed: 11/06/2022] Open
Abstract
The reduced folate carrier (RFC), a bidirectional anion transporter, is the major uptake route of reduced folates essential for a spectrum of biochemical reactions and thus cellular proliferation. However, here we show that ectopic overexpression of the RFC, but not of folate receptor alpha, a high affinity unidirectional folate uptake route serving here as a negative control, resulted in an approximately 15-fold decline in cellular viability in medium lacking folates but not in folate-containing medium. Moreover to explore possible mechanisms of adaptation to folate deficiency in various cell lines that express the endogenous RFC, we first determined the gene expression status of the following genes: (a) RFC, (b) ATP-driven folate exporters (i.e. MRP1, MRP5, and breast cancer resistance protein), and (c) folylpoly-gamma-glutamate synthetase and gamma-glutamate hydrolase (GGH), enzymes catalyzing folate polyglutamylation and hydrolysis, respectively. Upon 3-7 days of folate deprivation, semiquantitative reverse transcription-PCR analysis revealed a specific approximately 2.5-fold decrease in RFC mRNA levels in both breast cancer and T-cell leukemia cell lines that was accompanied by a consistent fall in methotrexate influx, serving here as an RFC transport activity assay. Likewise a 2.4-fold decrease in GGH mRNA levels and approximately 19% decreased GGH activity was documented for folate-deprived breast cancer cells. These results along with those of a novel mathematical biomodeling devised here suggest that upon severe short term (i.e. up to 7 days) folate deprivation RFC transport activity becomes detrimental as RFC, but not ATP-driven folate exporters, efficiently extrudes folate monoglutamates out of cells. Hence down-regulation of RFC and GGH may serve as a novel adaptive response to severe folate deficiency.
Collapse
Affiliation(s)
- Ilan Ifergan
- The Fred Wyszkowski Cancer Research
Laboratory, Department of Biology, Technion-Israel Institute of Technology,
Haifa 32000, Israel and the Department of
Rheumatology, Vrije Universiteit University Medical Center, 1081 Amsterdam,
The Netherlands
| | - Gerrit Jansen
- The Fred Wyszkowski Cancer Research
Laboratory, Department of Biology, Technion-Israel Institute of Technology,
Haifa 32000, Israel and the Department of
Rheumatology, Vrije Universiteit University Medical Center, 1081 Amsterdam,
The Netherlands
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research
Laboratory, Department of Biology, Technion-Israel Institute of Technology,
Haifa 32000, Israel and the Department of
Rheumatology, Vrije Universiteit University Medical Center, 1081 Amsterdam,
The Netherlands
| |
Collapse
|
24
|
Chattopadhyay S, Tamari R, Min SH, Zhao R, Tsai E, Goldman ID. Commentary: a case for minimizing folate supplementation in clinical regimens with pemetrexed based on the marked sensitivity of the drug to folate availability. Oncologist 2008; 12:808-15. [PMID: 17673612 DOI: 10.1634/theoncologist.12-7-808] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pemetrexed is a novel antifolate recently approved for the treatment of pleural mesothelioma and non-small cell lung cancer. In clinical regimens, pemetrexed is administered in conjunction with folic acid to minimize toxicity. However, excessive folate supplementation may also diminish the activity of this agent. The current study demonstrates, in several human solid tumor cell lines, that when extracellular 5-formyltetrahydrofolate levels are increased in vitro, within the range of normal human blood levels, there is a substantial decrease in pemetrexed activity upon continuous exposure to the drug. This was accompanied by a comparable lower level of trimetrexate activity consistent with an expansion of tumor cell folate pools. Likewise, when cells were exposed to pemetrexed with a schedule that simulates in vivo pharmacokinetics, there was markedly less cell killing with higher extracellular folate levels. Data are provided to indicate that 5-formyltetrahydrofolate is an acceptable surrogate for 5-methyltetrahydrofolate, the major blood folate, for this type of in vitro study. These observations and other reports suggest that, in view of the rise in serum folate and fall in serum homocysteine that has accompanied folic acid supplementation of food in the U.S., the addition of folic acid to regimens with pemetrexed should be limited to the lowest recommended level that provides optimal protection from pemetrexed toxicity.
Collapse
Affiliation(s)
- Shrikanta Chattopadhyay
- Department of Medicine, The Albert Einstein College of Medicine Cancer Center, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cho RC, Cole PD, Sohn KJ, Gaisano G, Croxford R, Kamen BA, Kim YI. Effects of folate and folylpolyglutamyl synthase modulation on chemosensitivity of breast cancer cells. Mol Cancer Ther 2008; 6:2909-20. [PMID: 18025275 DOI: 10.1158/1535-7163.mct-07-0449] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Folylpolyglutamyl synthase (FPGS) converts intracellular folates and antifolates to polyglutamates. Polyglutamylated folates and antifolates are retained in cells longer and are better substrates than their monoglutamate counterparts for enzymes involved in one-carbon transfer. FPGS modulation affects the chemosensitivity of cancer cells to antifolates, such as methotrexate, and 5-fluorouracil (5FU) by altering polyglutamylation of antifolates and specific target intracellular folate cofactors. However, this effect may be counterbalanced by FPGS modulation-induced changes in polyglutamylation of other intracellular folate cofactors and total intracellular folate pools. We generated an in vitro model of FPGS overexpression and inhibition in breast cancer cells by stably transfecting human MDA-MB-435 breast cancer cells with the sense FPGS cDNA or FPGS-targeted small interfering RNA, respectively, and investigated the effects of FPGS modulation on chemosensitivity to 5FU and methotrexate. FPGS modulation-induced changes in polyglutamylation of both antifolates and folate cofactors and in intracellular folate pools affected chemosensitivity of breast cancer cells to pemetrexed and trimetrexate whose cytotoxic effects do or do not depend on polyglutamylation, respectively, in a predictable manner. However, the effects of FPGS modulation on the chemosensitivity of breast cancer cells to 5FU and methotrexate seem to be highly complex and depend not only on polyglutamylation of a specific target intracellular folate cofactor or methotrexate, respectively, but also on total intracellular folate pools and polyglutamylation of other intracellular folate cofactors. Whether or not FPGS modulation may be an important clinical determinant of chemosensitivity of breast cancer cells to 5FU and methotrexate-based chemotherapy needs further exploration.
Collapse
Affiliation(s)
- Robert C Cho
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Chen H, Gu Y, Hu Y. Comparison of two polymeric carrier formulations for controlled release of hydrophilic and hydrophobic drugs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:651-8. [PMID: 17619980 DOI: 10.1007/s10856-007-3019-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/27/2007] [Indexed: 05/16/2023]
Abstract
Two temperature sensitive drug carriers, poly (N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) and poly (N-isopropylacrylamide-vinyl pyrrolidone-acrylic acid) (PNIPA-VP-AA), were successfully synthesized through free radical mechanism. The diameters of PNIPA-co-AA and PNIPA-VP-AA particles can be regulated to be less than 100 nm, which were related to surfactant sodiumdodecyl sulfate and initiator ferrous ammonium sulfate, respectively. The lower critical solution temperature (LCST) of them can be manipulated to be higher than 40 degrees C, which was correlated to amount of acrylic acid (AA) that was copolymerized with NIPA. Hydrophilic anti-tumor drugs, 5-fluorouracil (5-Fu) and hydrophobic drug thalidomide were entrapped into PNIPA-co-AA and PNIPA-VP-AA, respectively. For different interaction mechanism between drug and carrier, 5-Fu was prone to be entrapped in PNIPA-co-AA with loading efficiency larger than 10% (w/w), while thalidomide was entrapped in PNIPA-VP-AA up to 80% (w/w). Fluorescein, an angiography agent, was used to evaluate the drug loading mechanism between PNIPA-VP-AA and poor water-soluble drug. In vitro drug release behavior from these two drug carriers were significantly different and showed temperature dependent, which demonstrated that PNIPA-co-AA and PNIPA-VP-AA are promising candidates for different controlled drug delivery system.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P. R. China
| | | | | |
Collapse
|
27
|
Matsubara J, Nishina T, Yamada Y, Moriwaki T, Shimoda T, Kajiwara T, Nakajima TE, Kato K, Hamaguchi T, Shimada Y, Okayama Y, Oka T, Shirao K. Impacts of excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase, and epidermal growth factor receptor on the outcomes of patients with advanced gastric cancer. Br J Cancer 2008; 98:832-9. [PMID: 18231104 PMCID: PMC2259181 DOI: 10.1038/sj.bjc.6604211] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Using laser-captured microdissection and a real-time RT-PCR assay, we quantitatively evaluated mRNA levels of the following biomarkers in paraffin-embedded gastric cancer (GC) specimens obtained by surgical resection or biopsy: excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase (DPD), methylenetetrahydrofolate reductase (MTHFR), epidermal growth factor receptor (EGFR), and five other biomarkers related to anticancer drug sensitivity. The study group comprised 140 patients who received first-line chemotherapy for advanced GC. All cancer specimens were obtained before chemotherapy. In patients who received first-line S-1 monotherapy (69 patients), low MTHFR expression correlated with a higher response rate (low: 44.9% vs high: 6.3%; P=0.006). In patients given first-line cisplatin-based regimens (combined with S-1 or irinotecan) (43 patients), low ERCC1 correlated with a higher response rate (low: 55.6% vs high: 18.8%; P=0.008). Multivariate survival analysis of all patients demonstrated that high ERCC1 (hazard ratio (HR): 2.38 (95% CI: 1.55-3.67)), high DPD (HR: 2.04 (1.37-3.02)), low EGFR (HR: 0.34 (0.20-0.56)), and an elevated serum alkaline phosphatase level (HR: 1.00 (1.001-1.002)) were significant predictors of poor survival. Our results suggest that these biomarkers are useful predictors of clinical outcomes in patients with advanced GC.
Collapse
Affiliation(s)
- J Matsubara
- Gastrointestinal Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Tokyo 1040045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ifergan I, Assaraf YG. Chapter 4 Molecular Mechanisms of Adaptation to Folate Deficiency. FOLIC ACID AND FOLATES 2008; 79:99-143. [DOI: 10.1016/s0083-6729(08)00404-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 2007; 6:404-17. [PMID: 17308042 DOI: 10.1158/1535-7163.mct-06-0343] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pemetrexed is a new-generation antifolate, approved for the treatment of mesothelioma and non-small cell lung cancer, currently being evaluated for the treatment of a variety of other solid tumors. This review traces the history of antifolates that led to the development of pemetrexed and describes the unique properties of this agent that distinguish it from other antifolates. These include (a) its very rapid conversion to active polyglutamate derivatives in cells that build to high levels and are retained for long intervals to achieve prolonged and potent inhibition of its major target enzyme thymidylate synthase, (b) its high affinity for three folate transporters, and (c) its marked sensitivity to the level of physiologic folates in cells. The latter results in the unique and paradoxical finding that when transport mediated by the major folate transporter (the reduced folate carrier) is impaired, pemetrexed activity is preserved. This is due to concurrent contraction of competing cellular physiologic folates and utilization of a novel second transport carrier for which pemetrexed has high affinity, recently identified as the proton-coupled folate transporter (PCFT). Laboratory studies are reviewed that raise the possibility of new approaches to the use of folic acid supplementation in clinical regimens with pemetrexed.
Collapse
Affiliation(s)
- Shrikanta Chattopadhyay
- Departments of Medicine and Molecular Pharmacology, The Albert Einstein College of Medicine Cancer Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
30
|
Hayashi I, Sohn KJ, Stempak JM, Croxford R, Kim YI. Folate deficiency induces cell-specific changes in the steady-state transcript levels of genes involved in folate metabolism and 1-carbon transfer reactions in human colonic epithelial cells. J Nutr 2007; 137:607-13. [PMID: 17311948 DOI: 10.1093/jn/137.3.607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular folate homeostasis is essential for the 1-carbon transfer reactions necessary for DNA synthesis and biological methylation reactions in colonic epithelial cells. Perturbed 1-carbon transfer reactions resulting from folate depletion predispose normal colonic epithelial cells to neoplastic transformation while inhibiting the growth of colon cancer cells. Using an in vitro model of folate deficiency, we determined the effects of folate deficiency on the steady-state transcript levels of genes involved in intracellular folate metabolism and 1-carbon transfer reactions in HCT116 and Caco2 human colon adenocarcinoma cells. In HCT116 cells, folate depletion was associated with changes in transcript levels of genes favoring increased folate uptake and intracellular folate retention, the provision of metabolically more effective substrates for folate-dependent enzymes, and reduced folate hydrolysis and efflux. In HCT116 cells, folate depletion was associated with changes in transcript levels of genes favoring the preferential shuttling of the flux of 1-carbon units to the methionine cycle over the nucleotide synthesis pathway. In Caco2 cells, some adaptive responses in response to folate depletion were not as apparent as in HCT116 cells, and in some cases, the direction of change was counterintuitive. In Caco2 cells, the metabolic priority in response to folate depletion was to shuttle the available folate pools to the nucleotide biosynthesis pathway at the expense of biological methylation reactions. In both HCT116 and Caco2 cells, folate depletion was associated with the conservation of the existing pattern and extent of DNA methylation.
Collapse
Affiliation(s)
- Inki Hayashi
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
31
|
Takeda R, Kamano T, Sakamoto K, Sugano M, Hosoda S, Watanabe T, Maeda T, Kojima Y. Methylenetetrahydrofolate reductase C677T is not associated with expression of pyrimidine metabolic enzyme genes in colorectal cancer. J Int Med Res 2006; 34:307-15. [PMID: 16866026 DOI: 10.1177/147323000603400311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism may influence the chemosensitivity of colorectal cancers to fluorouracil (5-FU) by increasing intracellular 5,10-methylenetetrahydrofolate. The effect of this polymorphism on the expression of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyl transferase (OPRT) and thymidine phosphorylase (TP) in colorectal cancer was investigated. The MTHFR C677T polymorphism was analysed and TS, DPD, OPRT and TP mRNA expression was measured in tumour and adjacent normal mucosal tissue. In all patients, the genotypes of the tumour and normal tissues were identical. No differences were found in the expression of TS, DPD or TP mRNA by genotype in either tumour or normal tissue. Although the OPRT mRNA level in tumour tissue was not associated with the genotype, normal mucosa with the TT genotype showed a significantly higher OPRT mRNA level than mucosa with other genotypes. The MTHFR C667T polymorphism is not associated with intratumoural expression of TS, DPD, OPRT or TP.
Collapse
Affiliation(s)
- R Takeda
- Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Whiteside MA, Piyathilake CJ, Bushell TM, Johanning GL. Intrinsic Cisplatin Resistance in Lung and Ovarian Cancer Cells Propagating in Medium Acutely Depleted of Folate. Nutr Cancer 2006; 54:274-84. [PMID: 16898872 DOI: 10.1207/s15327914nc5402_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Many tumors develop intrinsic and/or acquired resistance to cisplatin. The purpose of the present study was to examine the influence of acute extracellular folate depletion prior to cisplatin treatment on the development of intrinsic cisplatin resistance. Lung and ovarian cancer cells were propagated in medium acutely depleted of folate and subsequently treated with cisplatin. The IC50 level for cisplatin, cell viability, cell proliferation, and global DNA methylation were determined. Gene expression profiling was performed using the Atlas Cancer 1.2 Array. Acute extracellular folate depletion resulted in the development of intrinsic cisplatin resistance. Cells propagating in medium acutely depleted of folate had a survival advantage compared to control cells when exposed to cisplatin, and thymidine supplementation did not reverse the intrinsic cisplatin resistance. cDNA microarray analysis revealed some novel genes associated with the development of intrinsic cisplatin resistance. Our report is the first to demonstrate that acute extracellular folate depletion results in intrinsic cisplatin resistance. If these results are confirmed by in vivo human studies, it would suggest that the folate status of the recipient of cisplatin might have an impact on response to that chemotherapeutic agent.
Collapse
Affiliation(s)
- Martin A Whiteside
- National Cancer Institute, Division of Cancer Prevention, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Navarro-Martínez MD, Navarro-Perán E, Cabezas-Herrera J, Ruiz-Gómez J, García-Cánovas F, Rodríguez-López JN. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2005; 49:2914-20. [PMID: 15980368 PMCID: PMC1168674 DOI: 10.1128/aac.49.7.2914-2920.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catechin epigallocatechin gallate, one of the main constituents of green tea, showed strong antibiotic activity against 18 isolates of Stenotrophomonas maltophilia (MIC range, 4 to 256 microg/ml). In elucidating its mechanism of action, we have shown that epigallocatechin gallate is an efficient inhibitor of S. maltophilia dihydrofolate reductase, a strategic enzyme that is considered an attractive target for the development of antibacterial agents. The inhibition of S. maltophilia dihydrofolate reductase by this tea compound was studied and compared with the mechanism of a nonclassical antifolate compound, trimethoprim. Investigation of dihydrofolate reductase was undertaken with both a trimethoprim-susceptible S. maltophilia isolate and an isolate with a high level of resistance. The enzymes were purified using ammonium sulfate precipitation, gel filtration, and methotrexate affinity chromatography. The two isolates showed similar levels of dihydrofolate reductase expression and similar substrate kinetics. However, the dihydrofolate reductase from the trimethoprim-resistant isolate demonstrated decreased susceptibility to inhibition by trimethoprim and epigallocatechin gallate. As with other antifolates, the action of epigallocatechin gallate was synergistic with that of sulfamethoxazole, a drug that blocks folic acid metabolism in bacteria, and the inhibition of bacterial growth was attenuated by including leucovorin in the growth medium. We conclude that the mechanism of action of epigallocatechin gallate on S. maltophilia is related to its antifolate activity.
Collapse
Affiliation(s)
- María Dolores Navarro-Martínez
- Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Temmink OH, Hoogeland MFM, Fukushima M, Peters GJ. Low folate conditions may enhance the interaction of trifluorothymidine with antifolates in colon cancer cells. Cancer Chemother Pharmacol 2005; 57:171-9. [PMID: 16010590 DOI: 10.1007/s00280-005-0033-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 04/16/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Trifluorothymidine (TFT) is a fluoropyrimidine that is part of the novel combination metabolite TAS-102, in which TFT is combined with a potent thymidine phosphorylase inhibitor (TPI). TAS-102 is currently tested as an orally chemotherapeutic agent in different schedules in a phase I study. In its monophosphate form, TFT can inhibit thymidylate synthase (TS) activity after binding to the TS-nucleotide binding site leading to dTTP depletion, and in its triphosphate form TFT is incorporated into DNA, eventually leading to DNA damage. In this in vitro study, we investigated whether TFT could potentiate cytotoxicity of the antifolate-based TS inhibitors AG337 (Nolatrexed), ZD1694 (Raltitrexed) and GW1843; and whether increased TS inhibition or DNA damage would be related to this result. METHODS The drug combinations were studied in colon cancer cell lines either grown at low or high folate conditions. Multiple drug effect analysis was performed after measuring growth inhibition when the drugs were combined (MTT Assay) and expressed as Combination Index (CI), where CI<0.9 indicates synergism, CI=0.9-1.1 indicates additivity and CI>1.1 indicates antagonism. Drug target analysis was performed using the TS in situ inhibition assay and the FADU DNA-damage assay. Cells were exposed to either the drugs alone or in combination to determine the effect on TS activity and DNA damage induction, respectively. RESULTS Three experimental procedures were used to test the interaction of the drugs: either one of the drugs was kept at a constant concentration (IC25) or two drugs were added in a 1:1 IC50-based molar ratio. The combinations of TFT with one of the antifolates in which one of the drugs was kept at a constant concentration were synergistic for all antifolates in WiDr/F cells, which grow in low folate medium (CI=0.6-0.8), but only additive to antagonistic for the cell lines growing in high folate medium: TFT-AG337: CI=0.9-2.3; TFT-ZD1694: CI=0.9-1.3; TFT-GW1843: CI=0.8-1.7. The procedure in which the two drugs were added in a 1:1 IC50-based molar ratio showed antagonism for all three combinations in all cell lines (CI>2.7). TS inhibition (14.3%) and DNA damage (8%) were more pronounced than expected (P<0.05) when TFT was combined with GW1843 in WiDr/F cells, in contrast to AG337 and ZD1694, which showed inhibiting effects as expected (additive). CONCLUSIONS The combination of TFT with the antifolates AG337, ZD1694 and GW1843 is mainly additive when the drugs are given simultaneously and this is mediated by an additive TS inhibition and DNA damage. The drug interaction may partly be dependent on the folate homeostasis since WiDr/F cells growing at low folate conditions show pronounced synergism in growth inhibition, two-sided TS inhibition and DNA damage, especially when TFT is combined with the tight-binding TS inhibitor GW1843.
Collapse
Affiliation(s)
- Olaf H Temmink
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Folates and antifolates in the treatment of cancer; role of folic acid supplementation on efficacy of folate and non-folate drugs. Trends Food Sci Technol 2005. [DOI: 10.1016/j.tifs.2005.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Navarro-Perán E, Cabezas-Herrera J, García-Cánovas F, Durrant MC, Thorneley RNF, Rodríguez-López JN. The Antifolate Activity of Tea Catechins. Cancer Res 2005; 65:2059-64. [PMID: 15781612 DOI: 10.1158/0008-5472.can-04-3469] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A naturally occurring gallated polyphenol isolated from green tea leaves, (-)-epigallocatechin gallate (EGCG), has been shown to be an inhibitor of dihydrofolate reductase (DHFR) activity in vitro at concentrations found in the serum and tissues of green tea drinkers (0.1-1.0 micromol/L). These data provide the first evidence that the prophylactic effect of green tea drinking on certain forms of cancer, suggested by epidemiologic studies, is due to the inhibition of DHFR by EGCG and could also explain why tea extracts have been traditionally used in "alternative medicine" as anticarcinogenic/antibiotic agents or in the treatment of conditions such as psoriasis. EGCG exhibited kinetics characteristic of a slow, tight-binding inhibitor of 7,8-dihydrofolate reduction with bovine liver DHFR (K(I) = 0.109 micromol/L), but of a classic, reversible, competitive inhibitor with chicken liver DHFR (K(I) = 10.3 micromol/L). Structural modeling showed that EGCG can bind to human DHFR at the same site and in a similar orientation to that observed for some structurally characterized DHFR inhibitor complexes. The responses of lymphoma cells to EGCG and known antifolates were similar, that is, a dose-dependent inhibition of cell growth (IC50 = 20 micromol/L for EGCG), G0-G1 phase arrest of the cell cycle, and induction of apoptosis. Folate depletion increased the sensitivity of these cell lines to antifolates and EGCG. These effects were attenuated by growing the cells in a medium containing hypoxanthine-thymidine, consistent with DHFR being the site of action for EGCG.
Collapse
Affiliation(s)
- Enma Navarro-Perán
- Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular A, Facultad de Biología, Universidad de Murcia, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Schultz RM. Preclinical development of Alimta (Pemetrexed, LY231514), a multitargeted antifolate. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 63:275-300. [PMID: 16265884 DOI: 10.1007/3-7643-7414-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Richard M Schultz
- Division of Cancer Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
39
|
Abstract
The effect of micronutrient supplementation on the effectiveness of cancer chemotherapeutic agents is reviewed, and the efficacy of antioxidants, folic acid, and other vitamins and minerals is discussed. Although some micronutrients show promise in enhancing the cytotoxicity of anticancer agents in vitro, caution should be exercised in recommending micronutrient supplementation for cancer patients receiving chemotherapeutic drugs. To date, few well-controlled clinical trials have been conducted to evaluate the efficacy of micronutrients in promoting the sensitivity of tumors to chemotherapeutic agents.
Collapse
Affiliation(s)
- Martin A Whiteside
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
40
|
El-Fadili A, Richard D, Kündig C, Ouellette M. Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. Biochem Pharmacol 2003; 66:999-1008. [PMID: 12963486 DOI: 10.1016/s0006-2952(03)00417-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Folates are polyglutamylated in most organisms, and in cancer cells the polyglutamylation of folates and of the antifolate methotrexate (MTX) is an important determinant of MTX susceptibility. The folylpolyglutamate synthetase (FPGS) responsible for polyglutamylation of folates was recently characterized in the parasite Leishmania. We show here that MTX is polyglutamylated in Leishmania tarentolae and that triglutamates are the predominant form. The glutamate chain length of MTX increases significantly in Leishmania cells transfected with the FPGS gene and decreases in cells with one FPGS allele disrupted. Modulation in the expression of the FPGS gene also has a profound effect on MTX susceptibility and this effect was found to be dependent on the folate concentration of the medium. In the folate-rich medium SDM-79, overexpression of FPGS will confer MTX resistance while in M-199 medium, which has much less folates, FPGS transfectants are more sensitive to MTX. Cells with one allele of FPGS disrupted are more resistant to MTX in low folate medium. The modulation of FPGS expression affects both the short-term and long-term accumulation of folate and MTX, showing a marked decrease in accumulation in the FPGS haploid mutant. This differential accumulation was mediated by decreased influx of the drug into the cell. Finally, the analysis of MTX-resistant Leishmania mutants indicated that the presence of shorter glutamate chains on MTX is correlated with MTX resistance.
Collapse
Affiliation(s)
- Amal El-Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
41
|
Wright JE, Yurasek GK, Chen YN, Rosowsky A. Further studies on the interaction of nonpolyglutamatable aminopterin analogs with dihydrofolate reductase and the reduced folate carrier as determinants of in vitro antitumor activity. Biochem Pharmacol 2003; 65:1427-33. [PMID: 12732354 DOI: 10.1016/s0006-2952(03)00102-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thirteen structural analogs of the potent nonpolyglutamatable dihydrofolate reductase inhibitor N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523) with modifications in the side chain, the para-aminobenzoyl moiety, or the 9,10-bridge were evaluated for the ability to inhibit human recombinant dihydrofolate reductase (DHFR), to utilize the reduced folate carrier (RFC) for influx, and to inhibit the growth of CCRF-CEM human leukemia cells in culture. In spectrophotometric assays of the kinetics of the reduction of dihydrofolate by DHFR in the presence of NADPH, these compounds had K(i) values ranging from 0.2 to 1.3pM, and thus were not greatly different in potency from the parent drug PT523. By comparison, the K(i) values of aminopterin (AMT), methotrexate (MTX), and 10-ethyl-10-deazaaminopterin (EDX) were 3.7, 4.8, and 11pM. In assays of competitive inhibition of [3H]MTX influx into CCRF-CEM cells, the K(i) values ranged from 0.21 to 7.3 micro M, as compared with 0.71, 5.4, and 1.1 micro M for PT523, AMT, and EDX. The K(t) for MTX was also re-analyzed and found to be 4.7 micro M, in better agreement with the literature than our previously reported value of 7.1 micro M. The IC(50) values of these compounds as inhibitors of the growth of CCRF-CEM cells after 72hr of drug exposure ranged from 0.53 to 55nM, and were qualitatively consistent with the other results.
Collapse
Affiliation(s)
- Joel E Wright
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Hooijberg JH, Peters GJ, Assaraf YG, Kathmann I, Priest DG, Bunni MA, Veerman AJP, Scheffer GL, Kaspers GJL, Jansen G. The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochem Pharmacol 2003; 65:765-71. [PMID: 12628490 DOI: 10.1016/s0006-2952(02)01615-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previously, we reported that the multidrug resistance proteins MRP1, MRP2 and MRP3 confer resistance to therapeutic antifolates by mediating their cellular extrusion. We now determined whether MRPs also play a role in controlling cellular homeostasis of natural folates. In MRP1, MRP2 and MRP3-transfected 2008 human ovarian carcinoma cells total cellular folate content was 32-38% lower than in 2008 cells (105+/-14pmolfolate/mgprotein) when grown in medium containing 2.3 microM folic acid (FA). Under these conditions cellular growth rates were not compromised. However, when cells were challenged under folate-depleted conditions with a short exposure (4 hr) to FA or leucovorin, MRP1 and MRP3 overexpressing cells were impaired in their growth. In contrast to wild-type cells, MRP1 transfected cells retained only 60% of the maximum growth when exposed to 500 nM leucovorin or 500 microM FA. For 2008/MRP1 and 2008/MRP3 cells FA growth stimulation capacity was dramatically decreased when, during a 4 hr exposure, metabolism into rapidly polyglutamatable and retainable dihydrofolate was blocked by the dihydrofolate reductase inhibitor trimetrexate. To retain growth under such conditions MRP1 overexpressing cells required much higher concentrations of FA (EC(50) > 500 microM) compared to 2008 cells (EC(50): 12 microM). These results suggest that down- and up-regulation of MRP1 (and MRP3) expression can influence cellular folate homeostasis, in particular when cellular retention by polyglutamylation of folates is attenuated.
Collapse
Affiliation(s)
- Jan Hendrik Hooijberg
- Department of Pediatric Hematology/Oncology, VU University Medical Center (VUMC), De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Tucker JM, Davis C, Kitchens ME, Bunni MA, Priest DG, Spencer HT, Berger FG. Response to 5-fluorouracil chemotherapy is modified by dietary folic acid deficiency in Apc(Min/+) mice. Cancer Lett 2002; 187:153-62. [PMID: 12359363 DOI: 10.1016/s0304-3835(02)00402-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
5-Fluorouracil (5-FU) has been the foundation of advanced colorectal cancer treatment for over 40 years. The Apc(Min/+) mouse, which is genetically predisposed to intestinal neoplasia, was used to examine the effects of 5-FU in this system and the impact of dietary folic acid on those effects. 5-FU treatment resulted in a 60-80% reduction in tumor number. Clinically relevant toxicities, including myelosuppression and mucositis, are a part of this response. Tumor numbers rebounded completely following termination of 5-FU therapy, indicating that the drug inhibits tumor growth but does not eradicate them. In mice that were fed with a defined diet containing no folic acid (0 ppm), 5-FU not only induced regression of pre-existing tumors, but also inhibited tumor recovery following drug withdrawal. Our data indicate that a dietary folic acid deficiency, in promoting tumor regression and inhibiting tumor recovery, may enhance the therapeutic effects of 5-FU.
Collapse
Affiliation(s)
- Jody M Tucker
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208-0001, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhu WY, Bunni M, Priest DG, DiCapua JL, Dressler JM, Chen Z, Melera PW. Severe folate restriction results in depletion of and alteration in the composition of the intracellular folate pool, moderate sensitization to methotrexate and trimetrexate, upregulation of endogenous DHFR activity, and overexpression of metallothionein II and folate receptor alpha that, upon folate repletion, confer drug resistance to CHL cells. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2002; 2:264-77. [PMID: 12416030 DOI: 10.1046/j.1359-4117.2002.01049.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DC-3F/FA3 cells (FA3) were derived from antifolate-sensitive CHL cells by selection for growth in folate-free media containing 15 pM [6S]-5CHOFH4. These cells undergo a 30-fold decrease in intracellular folates, overexpress folate receptor alpha (FR alpha) and metallothionein II, and display increased sensitivity to the dihydrofolate reductase (DHFR) targeted anti-folates methotrexate (MTX) and trimetrexate (TMTX), which can be attributed primarily to the folate pool status. Upon folate repletion by growth in 15 nM [6S]-5CHOFH4, they display a 5- and 10-fold increase in resistance to both drugs, respectively, even though folate pools are restored by only 43%. Enforced overexpression of FR alpha in transfectants cultured in nanomolar folate did not confer resistance to MTX but did support a modest 2-fold increase in resistance to TMTX. Enforced overexpression of MTII had a similar effect, but when both were overexpressed together no increase in resistance beyond that conferred by each one separately was noted, suggesting that both confer resistance to TMTX through a common downstream mechanism. Analysis of three independent low folate selected clones, FA3, FA7, and FA14, showed that each had a 5- to 6-fold increase in DHFR activity accompanied by a similar increase in DHFR protein level. However, no differences were detected in the DHFR gene copy number or in the steady-state amount of DHFR mRNA, suggesting that a posttranscriptional mechanism was responsible for the increase in DHFR expression.
Collapse
Affiliation(s)
- Wei-Yong Zhu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
van der Wilt CL, Smid K, Peters GJ. Effects of antifolates on the binding of 5-fluoro-2'-deoxyuridine monophosphate to thymidylate synthase. Biochem Pharmacol 2002; 64:669-75. [PMID: 12167486 DOI: 10.1016/s0006-2952(02)01219-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Folate based inhibitors of thymidylate synthase (TS) might facilitate binding of 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) to TS similar to the natural reduced folate 5,10-methylenetetrahydrofolate (CH(2)-H(4)-folate). We studied the lipophilic, non-polyglutamatable antifolates Nolatrexed (NTX) and AG331 and antifolates, that can have a polyglutamate side chain like the natural folate CH(2)-H(4)-folate; GW1843U89, Raltitrexed (RTX) and Multi-targetted antifolate (MTA) and pentaglutamates (RTX-Glu(5) and MTA-Glu(5)). The capacity of these compounds to facilitate the binding of [(3)H]FdUMP to Lactobacillus casei TS and an ammoniumsulphate precipitate of human TS was investigated. Only NTX, RTX-Glu(5) and MTA-Glu(5) facilitated FdUMP binding to L. casei TS and their dissociation constant K(d) (0.2-0.7 microM) was low compared to CH(2)-H(4)-folate (2.0 microM). The small lipophilic molecule NTX was favorable to the larger AG331. Polyglutamylation, as indicated by the difference in effect of RTX vs. RTX-Glu(5) and MTA vs. MTA-Glu(5), seems to be important for a classical antifolate to facilitate binding of FdUMP to bacterial TS. Effects of antifolates on FdUMP binding to human TS were different. At a low concentration (0.05 microM) NTX, RTX-Glu(5) and MTA-Glu(5) facilitated 3-5 times higher binding of [(3)H]FdUMP to TS than CH(2)-H(4)-folate. At higher concentrations (0.3-5 microM) of NTX, RTX-Glu(5) and MTA-Glu(5) the FdUMP binding decreased. The complex remained stable in the absence of (anti)folate for at least 24hr. The K(d) values of the antifolates for human TS varied from 19 to 387 nM, while the K(d) of CH(2)-H(4)-folate for human TS was 351 nM. The Hill coefficients, which indicated the type of cooperativity of the antifolates in the binding of FdUMP to TS were positive (0.58-0.99) at low concentrations (<0.3 microM) and negative (-0.35 to -0.81) at concentrations >0.3 microM except for GW1843U89, which only showed negative cooperativity (-1.70). It was shown with [(14)C]NTX that when the binding of FdUMP decreased at high NTX concentrations, the binding of NTX to TS still increased. This also held for the natural substrate dUMP. The negative cooperativity of the antifolates was clearly concentration dependent. The difference between human and L. casei TS in the FdUMP binding assays with antifolates can possibly be explained by interaction of the two subunits of human TS, which was absent in L. casei TS. The binding of antifolates to one of the two subunits induced a conformational change of the other subunit. This change no longer allowed the binding of FdUMP or dUMP at the active site. In conclusion this study showed that antifolates enhanced the binding of FdUMP to TS, especially at low antifolate concentrations, that are also clinically achievable, e.g. in human plasma.
Collapse
Affiliation(s)
- Clasina L van der Wilt
- Department of Medical Oncology, VU University, Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | |
Collapse
|
47
|
Peters GJ, Backus HHJ, Freemantle S, van Triest B, Codacci-Pisanelli G, van der Wilt CL, Smid K, Lunec J, Calvert AH, Marsh S, McLeod HL, Bloemena E, Meijer S, Jansen G, van Groeningen CJ, Pinedo HM. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:194-205. [PMID: 12084461 DOI: 10.1016/s0925-4439(02)00082-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymidylate synthase (TS) is a key enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) from 2'-deoxyuridine-5'-monophosphate (dUMP), for which 5,10-methylene-tetrahydrofolate (CH(2)-THF) is the methyl donor. TS is an important target for chemotherapy; it is inhibited by folate and nucleotide analogs, such as by 5-fluoro-dUMP (FdUMP), the active metabolite of 5-fluorouracil (5FU). FdUMP forms a relatively stable ternary complex with TS and CH(2)THF, which is further stabilized by leucovorin (LV). 5FU treatment can induce TS expression, which might bypass dTMP depletion. An improved efficacy of 5FU might be achieved by increasing and prolonging TS inhibition, a prevention of dissociation of the ternary complex, and prevention of TS induction. In a panel of 17 colon cancer cells, including several variants with acquired resistance to 5FU, sensitivity was related to TS levels, but exclusion of the resistant variants abolished this relation. For antifolates, polyglutamylation was more important than the intrinsic TS level. Cells with low p53 levels were more sensitive to 5FU and the antifolate raltitrexed (RTX) than cells with high, mutated p53. Free TS protein down-regulates its own translation, but its transcription is regulated by E2F, a cell cycle checkpoint regulator. Together, this results in low TS levels in stationary phase cells. Although cells with a low TS might theoretically be more sensitive to 5FU, the low proliferation rate prevents induction of DNA damage and 5FU toxicity. TS levels were not related to polymorphisms of the TS promoter. Treatment with 5FU or RTX rapidly induced TS levels two- to five-fold. In animal models, 5FU treatment resulted in TS inhibition followed by a two- to three-fold TS induction. Both LV and a high dose of 5FU not only enhanced TS inhibition, but also prevented TS induction and increased the antitumor effect. In patients, TS levels as determined by enzyme activity assays, immunohistochemistry and mRNA expression, were related to a response to 5FU. 5FU treatment initially decreased TS levels, but this was followed by an induction, as seen with an increased ratio of TS protein over TS-mRNA. The clear retrospective relation between TS levels and response now forms the basis for a prospective study, in which TS levels are measured before treatment in order to determine the treatment protocol.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Drug Resistance, Neoplasm/physiology
- Enzyme Induction/drug effects
- Fluorouracil/metabolism
- Fluorouracil/pharmacology
- Folic Acid Antagonists/pharmacology
- Humans
- In Vitro Techniques
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/genetics
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Thymidylate Synthase/antagonists & inhibitors
- Thymidylate Synthase/biosynthesis
- Thymidylate Synthase/genetics
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- G J Peters
- Department of Medical Oncology, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|