1
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
2
|
Bhatt S, Dhar AK, Samanta MK, Suttee A. Effects of Current Psychotropic Drugs on Inflammation and Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:407-434. [PMID: 36949320 DOI: 10.1007/978-981-19-7376-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer's disease (AD), and Huntington's disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| | | | | | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Lui A, Kumar KK, Grant GA. Management of Severe Traumatic Brain Injury in Pediatric Patients. FRONTIERS IN TOXICOLOGY 2022; 4:910972. [PMID: 35812167 PMCID: PMC9263560 DOI: 10.3389/ftox.2022.910972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The optimal management of severe traumatic brain injury (TBI) in the pediatric population has not been well studied. There are a limited number of research articles studying the management of TBI in children. Given the prevalence of severe TBI in the pediatric population, it is crucial to develop a reference TBI management plan for this vulnerable population. In this review, we seek to delineate the differences between severe TBI management in adults and children. Additionally, we also discuss the known molecular pathogenesis of TBI. A better understanding of the pathophysiology of TBI will inform clinical management and development of therapeutics. Finally, we propose a clinical algorithm for the management and treatment of severe TBI in children using published data.
Collapse
Affiliation(s)
- Austin Lui
- Touro University College of Osteopathic Medicine, Vallejo, CA, United States
| | - Kevin K. Kumar
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
5
|
Bhowmick S, Malat A, Caruso D, Ponery N, D'Mello V, Finn C, Abdul-Muneer PM. Intercellular Adhesion Molecule-1-Induced Posttraumatic Brain Injury Neuropathology in the Prefrontal Cortex and Hippocampus Leads to Sensorimotor Function Deficits and Psychological Stress. eNeuro 2021; 8:ENEURO.0242-21.2021. [PMID: 34135004 PMCID: PMC8287878 DOI: 10.1523/eneuro.0242-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) promotes adhesion and transmigration of circulating leukocytes across the blood-brain barrier (BBB). Traumatic brain injury (TBI) causes transmigrated immunocompetent cells to release mediators [function-associated antigen (LFA)-1 and macrophage-1 antigen (Mac-1)] that stimulate glial and endothelial cells to express ICAM-1 and release cytokines, sustaining neuroinflammation and neurodegeneration. Although a strong correlation exists between TBI-mediated inflammation and impairment in functional outcome following brain trauma, the role of ICAM-1 in impairing functional outcome by inducing neuroinflammation and neurodegeneration after TBI remains inconclusive. The experimental TBI was induced in vivo by fluid percussion injury (FPI; 10 and 20 psi) in wild-type (WT) and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in brain endothelial cells. We manipulate ICAM-1 pharmacologically and genetically and conducted several biochemical analyses to gain insight into the mechanisms underlying ICAM-1-mediated neuroinflammation and performed rotarod, grid-walk, sucrose preference, and light-dark tests to assess functional outcome. TBI-induced ICAM-1-mediated neuroinflammation and cell death occur via LFA-1 or Mac-1 signaling pathways that rely on oxidative stress, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF) pathways. The deletion or blocking of ICAM-1 resulted in a better outcome in attenuating neuroinflammation and cell death as marked by the markers such as NF-kB, IL-1β, TNF-α, cleaved-caspase-3 (cl-caspase-3), Annexin V, and by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Trypan blue staining. ICAM-1 deletion in TBI improves sensorimotor, depression, and anxiety-like behavior with significant upregulation of norepinephrine (NE), dopamine (DA) D1 receptor (DAD1R), serotonin (5-HT)1AR, and neuropeptide Y (NPY). This study could establish the significance of ICAM-1 as a novel therapeutic target against the pathophysiology to establish functional recovery after TBI.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Anitha Malat
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Danielle Caruso
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Nizmi Ponery
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Veera D'Mello
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Christina Finn
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - P M Abdul-Muneer
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ 07110
| |
Collapse
|
6
|
Li C, Wang Y, Yan XL, Guo ZN, Yang Y. Pathological changes in neurovascular units: Lessons from cases of vascular dementia. CNS Neurosci Ther 2021; 27:17-25. [PMID: 33423390 PMCID: PMC7804924 DOI: 10.1111/cns.13572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VD) is the second leading cause of dementia after Alzheimer's disease (AD). The decrease of cerebral blood flow (CBF) to different degrees is one of the main causes of VD. Neurovascular unit (NVU) is a vessel‐centered concept, emphasizing all the cellular components play an integrated role in maintaining the normal physiological functions of the brain. More and more evidence shows that reduced CBF causes a series of changes in NVU, such as impaired neuronal function, abnormal activation of glial cells, and changes in vascular permeability, all of which collectively play a role in the pathogenesis of VD. In this paper, we review NVU changes as CBF decreases, focusing on each cellular component of NVU. We also highlight remote ischemic preconditioning as a promising approach for VD prevention and treatment from the NVU perspective of view.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
7
|
Xu XE, Li MZ, Yao ES, Gong S, Xie J, Gao W, Xie ZX, Li ZF, Bai XJ, Liu L, Liu XH. Morin exerts protective effects on encephalopathy and sepsis-associated cognitive functions in a murine sepsis model. Brain Res Bull 2020; 159:53-60. [DOI: 10.1016/j.brainresbull.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
|
8
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain Behav Immun 2019; 80:859-870. [PMID: 31145977 DOI: 10.1016/j.bbi.2019.05.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1β, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis.
Collapse
|
11
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
13
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
14
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18122600. [PMID: 29207487 PMCID: PMC5751203 DOI: 10.3390/ijms18122600] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Collapse
|
16
|
Woodcock TM, Frugier T, Nguyen TT, Semple BD, Bye N, Massara M, Savino B, Besio R, Sobacchi C, Locati M, Morganti-Kossmann MC. The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury. PLoS One 2017; 12:e0188305. [PMID: 29176798 PMCID: PMC5703564 DOI: 10.1371/journal.pone.0188305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022] Open
Abstract
The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Bone and Bones/pathology
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/mortality
- Brain Injuries, Traumatic/physiopathology
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Gene Deletion
- Humans
- Inflammation/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Mortality
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Recovery of Function
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Thomas M. Woodcock
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | - Tony Frugier
- Department of Pharmacology and Therapeutics School of Biomedical Sciences, The University of Melbourne, Melboune, Australia
| | - Tan Thanh Nguyen
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Australia
- Department of Surgery, Monash University, Melbourne, Australia
| | - Bridgette Deanne Semple
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Nicole Bye
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Matteo Massara
- Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Benedetta Savino
- Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cristina Sobacchi
- Humanitas Clinical and Research Center, Rozzano, Italy
- Istituto di Ricerca Genetica e Biomedica Milan Unit, National Research Council, Milan, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- * E-mail: (MCMK); (ML)
| | - Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, and Australian New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Barrow Neurological Institute, Department of Child Health, University of Arizona, Phoenix, AZ, United States of America
- * E-mail: (MCMK); (ML)
| |
Collapse
|
17
|
Wang HC, Wang BD, Chen MS, Chen H, Sun CF, Shen G, Zhang JM. Neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury. Exp Ther Med 2017; 15:1129-1135. [PMID: 29399112 DOI: 10.3892/etm.2017.5496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to assess the neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury (DAI). DAI rats were orally gavaged with berberine at a dose of 200 mg/kg of body weight for 4 weeks. Behavioral tests were used to analyze the neuroprotective effect of berberine against DAI-induced learning and memory deficits. In the present study, treatment with berberine significantly protected against DAI-induced inhibition of learning and memory in rats. Notably, berberine significantly suppressed the levels of tumor necrosis factor, interleukin-1β and monocyte chemoattractant protein-1, as well as reduced the protein expression levels of nuclear factor-κB, Bcl-2-associated X protein and cytochrome c in DAI rats. In addition, berberine significantly suppressed the protein expression of p38 mitogen-activated protein kinase, activating transcription factor 2 and vascular endothelial growth factor in DAI rats. These results suggested that berberine exhibited a neuroprotective effect against learning and memory deficits in severe DAI through the suppression of inflammation, angiogenesis and apoptosis in a rat model.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Bo-Ding Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
18
|
Acute administration of catalase targeted to ICAM-1 attenuates neuropathology in experimental traumatic brain injury. Sci Rep 2017. [PMID: 28630485 PMCID: PMC5476649 DOI: 10.1038/s41598-017-03309-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to one third of injury related deaths in the US. Treatment strategies for TBI are supportive, and the pathophysiology is not fully understood. Secondary mechanisms of injury in TBI, such as oxidative stress and inflammation, are points at which intervention may reduce neuropathology. Evidence suggests that reactive oxygen species (ROS) propagate blood-brain barrier (BBB) hyperpermeability and inflammation following TBI. We hypothesized that targeted detoxification of ROS may improve the pathological outcomes of TBI. Following TBI, endothelial activation results in a time dependent increase in vascular expression of ICAM-1. We conjugated catalase to anti-ICAM-1 antibodies and administered the conjugate to 8 wk old C57BL/6J mice 30 min after moderate controlled cortical impact injury. Results indicate that catalase targeted to ICAM-1 reduces markers of oxidative stress, preserves BBB permeability, and attenuates neuropathological indices more effectively than non-targeted catalase and anti-ICAM-1 antibody alone. Furthermore, the study of microglia by two-photon microscopy revealed that anti-ICAM-1/catalase prevents the transition of microglia to an activated phenotype. These findings demonstrate the use of a targeted antioxidant enzyme to interfere with oxidative stress mechanisms in TBI and provide a proof-of-concept approach to improve acute TBI management that may also be applicable to other neuroinflammatory conditions.
Collapse
|
19
|
Wolf S, Johnson S, Perwitasari O, Mahalingam S, Tripp RA. Targeting the pro-inflammatory factor CCL2 (MCP-1) with Bindarit for influenza A (H7N9) treatment. Clin Transl Immunology 2017; 6:e135. [PMID: 28435679 PMCID: PMC5382437 DOI: 10.1038/cti.2017.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses are important human and animal pathogens. Seasonal influenza viruses cause infections every year, and occasionally zoonotic viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. Three cases of laboratory confirmed human infection with avian influenza A (H7N9) virus were reported in 2013, and there have been several cases reported across South East Asia, and recently in North America. Most patients experience severe respiratory illness, with mortality rates approaching 40%. No vaccine is currently available and the use of antivirals is complicated due to the emergence of drug resistant strains. Thus, there is a need to identify new drugs for therapeutic intervention and disease control. In humans, following H7N9 infection, there is excessive expression of pro-inflammatory factors CCL2, IL-6, IL-8, IFNα, interferon-γ, IP-10, MIG and macrophage inflammatory protein-1β, which has been shown to contribute to fatal disease outcomes in mouse models of infection. In the current study, the potent inhibitor of CCL2 synthesis, Bindarit, was examined as a countermeasure for H7N9-induced inflammation in a mouse model. Bindarit treatment of mice did not have any substantial therapeutic efficacy in H7N9 infection. Consequently, the results suggest that Bindarit may be ill-advised in the treatment of influenza H7N9 infection.
Collapse
Affiliation(s)
- Stefan Wolf
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Scott Johnson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Olivia Perwitasari
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Dynamics of spinal microglia repopulation following an acute depletion. Sci Rep 2016; 6:22839. [PMID: 26961247 PMCID: PMC4785356 DOI: 10.1038/srep22839] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Our understanding on the function of microglia has been revolutionized in the recent 20 years. However, the process of maintaining microglia homeostasis has not been fully understood. In this study, we dissected the features of spinal microglia repopulation following an acute partial depletion. By injecting intrathecally Mac-1-saporin, a microglia selective immunotoxin, we ablated 50% microglia in the spinal cord of naive mice. Spinal microglia repopulated rapidly and local homeostasis was re-established within 14 days post-depletion. Mac-1-saporin treatment resulted in microglia cell proliferation and circulating monocyte infiltration. The latter is indeed part of an acute, transient inflammatory reaction that follows cell depletion, and was characterized by an increase in the expression of inflammatory molecules and by the breakdown of the blood spinal cord barrier. During this period, microglia formed cell clusters and exhibited a M1-like phenotype. MCP-1/CCR2 signaling was essential in promoting this depletion associated spinal inflammatory reaction. Interestingly, ruling out MCP-1-mediated secondary inflammation, including blocking recruitment of monocyte-derived microglia, did not affect depletion-triggered microglia repopulation. Our results also demonstrated that newly generated microglia kept their responsiveness to peripheral nerve injury and their contribution to injury-associated neuropathic pain was not significantly altered.
Collapse
|
21
|
Hellewell SC, Ziebell JM, Lifshitz J, Morganti-Kossmann MC. Impact Acceleration Model of Diffuse Traumatic Brain Injury. Methods Mol Biol 2016; 1462:253-266. [PMID: 27604723 DOI: 10.1007/978-1-4939-3816-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact acceleration (I/A) model of traumatic brain injury (TBI) was developed to reliably induce diffuse traumatic axonal injury in rats in the absence of skull fractures and parenchymal focal lesions. This model replicates a pathophysiology that is commonly observed in humans with diffuse axonal injury (DAI) caused by acceleration-deceleration forces. Such injuries are typical consequences of motor vehicle accidents and falls, which do not necessarily require a direct impact to the closed skull. There are several desirable characteristics of the I/A model, including the extensive axonal injury produced in the absence of a focal contusion, the suitability for secondary insult modeling, and the adaptability for mild/moderate injury through alteration of height and/or weight. Furthermore, the trauma device is inexpensive and readily manufactured in any laboratory, and the induction of injury is rapid (~45 min per animal from weighing to post-injury recovery) allowing multiple animal experiments per day. In this chapter, we describe in detail the methodology and materials required to produce the rat model of I/A in the laboratory. We also review current adaptations to the model to alter injury severity, discuss frequent complications and technical issues encountered using this model, and provide recommendations to ensure technically sound injury induction.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Canadian Military and Veterans' Clinical Rehabilitation Research Program, Faculty of Rehabilitation Medicine, University of Alberta, 3-48, Corbett Hall, Edmonton, AB, Canada, T6G 2G4.
| | - Jenna M Ziebell
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix VA Healthcare System, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - M Cristina Morganti-Kossmann
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
- Department of Epidemiology and Preventive Medicine, Monash University and Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Therapies negating neuroinflammation after brain trauma. Brain Res 2015; 1640:36-56. [PMID: 26740405 DOI: 10.1016/j.brainres.2015.12.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Long thought to be solely a deleterious factor, the neuroinflammatory response has recently been shown to be far more intricate, with both beneficial and detrimental consequences depending on the timing, magnitude and specific immune composition of the response post-injury. Despite extensive preclinical and clinical research into mechanisms of secondary injury after TBI, no effective neuroprotective therapy has been identified, with potential candidates repeatedly proving disappointing in the clinic. The neuroinflammatory response offers a promising avenue for therapeutic targeting, aiming to quell the deleterious consequences without influencing its function in providing a neurotrophic environment supportive of repair. The present review firstly describes the findings of recent clinical trials that aimed to modulate inflammation as a means of neuroprotection. Secondly, we discuss promising multifunctional and single-target anti-inflammatory candidates either currently in trial, or with ample experimental evidence supporting clinical application. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
23
|
Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 2015; 36:471-80. [PMID: 25979813 DOI: 10.1016/j.tips.2015.04.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) affects millions of people worldwide every year. The primary impact initiates the secretion of pro- and anti-inflammatory factors, subsequent recruitment of peripheral immune cells, and activation of brain-resident microglia and astrocytes. Chemokines are major mediators of peripheral blood cell recruitment to damaged tissue, including the TBI brain. Here we review the involvement of specific chemokine pathways in TBI pathology and attempts to modulate these pathways for therapeutic purposes. We focus on chemokine (C-C motif) ligand 2/chemokine (C-C motif) receptor 2 (CCL2/CCR2) and chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 (CXCL12/CXCR4). Recent microarray and multiplex expression profiling have also implicated CXCL10 and CCL5 in TBI pathology. Chemokine (C-X3-C motif) ligand 1/chemokine (C-X3-C motif) receptor 1 (CX3CL1/CX3CR1) signaling in the context of TBI is also discussed. Current literature suggests that modulating chemokine signaling, especially CCL2/CCR2, may be beneficial in TBI treatment.
Collapse
Affiliation(s)
- Stefka Gyoneva
- Neuro/Immuno Discovery Biology, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
24
|
Shein SL, Shellington DK, Exo JL, Jackson TC, Wisniewski SR, Jackson EK, Vagni VA, Bayır H, Clark RSB, Dixon CE, Janesko-Feldman KL, Kochanek PM. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 2015; 31:1386-95. [PMID: 24773520 DOI: 10.1089/neu.2013.2985] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.
Collapse
Affiliation(s)
- Steven L Shein
- 1 Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J Neurosci 2015; 35:748-60. [PMID: 25589768 DOI: 10.1523/jneurosci.2405-14.2015] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2(+) macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1(GFP/+)CCR2(RFP/+) reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2(+) macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2(+) macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2(+) macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2(+) subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI.
Collapse
|
26
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
27
|
Zhao H, Chen Y, Jin Y. The effect of therapeutic hypothermia after cardiopulmonary resuscitation on ICAM-1 and NSE levels in sudden cardiac arrest rabbits. Int J Neurosci 2014; 125:540-6. [PMID: 25111247 DOI: 10.3109/00207454.2014.951887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the effects of hypothermia and normothermia treatments for sudden cardiac arrest (SCA) on brain injury recovery in rabbit models. METHODS Cardiopulmonary resuscitation (CPR) was implemented on apnea-induced SCA rabbit models. Fifty survived rabbits were then randomly received hypothermia (n = 25, 32-34°C) or normothermia treatment (n = 25, 39-39.5°C) for 12 hours. The expected body temperatures were achieved within the first two hours, maintained for ten hours and then rewarmed. The physiological parameters, neurologic function, and the levels of adhesion molecule ICAM-1 and neuron-specific enolase (NSE) were monitored. RESULTS Hypothermia-treated rabbits had lower heart rate when achieving hypothermia (p < 0.0001) and higher SjvO2 after hypothermia maintenance (p = 0.038). The hypothermia group achieved better brain recovery performance according to the neurological deficit grading scale. ICAM-1 and NSE levels in both serum and CSF of the hypothermia group were lower than the normothemia group (all p < 0.0001) during hypothermia maintenance. CONCLUSION Hypothermia treatment after CPR provides better outcome than normothermia treatment in SCA rabbits. Hypothermia can reduce the ICAM-1 and NSE levels in both serum and cerebrospinal fluid (CSF). This study supports the clinical implementation of hypothermia treatment for SCA and reveals that ICAM-1 and NSE are involved in the recovery of brain function after resuscitation.
Collapse
Affiliation(s)
- Hui Zhao
- Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | | | | |
Collapse
|
28
|
Endothelial Activation and Chemoattractant Expression are Early Processes in Isolated Blast Brain Injury. Neuromolecular Med 2014; 16:606-19. [DOI: 10.1007/s12017-014-8313-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 01/03/2023]
|
29
|
Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 2014; 4:108-22. [PMID: 24683506 PMCID: PMC3967529 DOI: 10.1002/brb3.208] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND There is an expanding field of research investigating the benefits of medicines with multiple mechanisms of action across neurological disorders. N-acetylcysteine (NAC), widely known as an antidote to acetaminophen overdose, is now emerging as treatment of vascular and nonvascular neurological disorders. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. AIM AND DISCUSSION Most NAC studies up to date have been carried out in animal models of various neurological disorders with only a few studies completed in humans. In psychiatry, NAC has been tested in over 20 clinical trials as an adjunctive treatment; however, this topic is beyond the scope of this review. Herein, we discuss NAC molecular, intracellular, and systemic effects, focusing on its potential applications in neurodegenerative diseases including spinocerebellar ataxia, Parkinson's disease, tardive dyskinesia, myoclonus epilepsy of the Unverricht-Lundbor type as well as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. CONCLUSION Finally, we review the potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage.
Collapse
Affiliation(s)
| | - Mark R Harrigan
- Department of Surgery, Division of Neurosurgery, University of Alabama Birmingham, Alabama
| | - Andrei V Alexandrov
- Department of Neurology, Comprehensive Stroke Center, University of Alabama Birmingham, Alabama
| |
Collapse
|
30
|
Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10:106. [PMID: 23971414 PMCID: PMC3765323 DOI: 10.1186/1742-2094-10-106] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have shown beneficial effects of mesenchymal stem cell (MSC) transplantation in central nervous system (CNS) injuries, including traumatic brain injury (TBI). Potential repair mechanisms involve transdifferentiation to replace damaged neural cells and production of growth factors by MSCs. However, few studies have simultaneously focused on the effects of MSCs on immune cells and inflammation-associated cytokines in CNS injury, especially in an experimental TBI model. In this study, we investigated the anti-inflammatory and immunomodulatory properties of MSCs in TBI-induced neuroinflammation by systemic transplantation of MSCs into a rat TBI model. Methods/results MSCs were transplanted intravenously into rats 2 h after TBI. Modified neurologic severity score (mNSS) tests were performed to measure behavioral outcomes. The effect of MSC treatment on neuroinflammation was analyzed by immunohistochemical analysis of astrocytes, microglia/macrophages, neutrophils and T lymphocytes and by measuring cytokine levels [interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor-α, interferon-γ, RANTES, macrophage chemotactic protein-1, macrophage inflammatory protein 2 and transforming growth factor-β1] in brain homogenates. The immunosuppression-related factors TNF-α stimulated gene/protein 6 (TSG-6) and nuclear factor-κB (NF-κB) were examined by reverse transcription-polymerase chain reaction and Western blotting. Intravenous MSC transplantation after TBI was associated with a lower density of microglia/macrophages and peripheral infiltrating leukocytes at the injury site, reduced levels of proinflammatory cytokines and increased anti-inflammatory cytokines, possibly mediated by enhanced expression of TSG-6, which may suppress activation of the NF-κB signaling pathway. Conclusions The results of this study suggest that MSCs have the ability to modulate inflammation-associated immune cells and cytokines in TBI-induced cerebral inflammatory responses. This study thus offers a new insight into the mechanisms responsible for the immunomodulatory effect of MSC transplantation, with implications for functional neurological recovery after TBI.
Collapse
Affiliation(s)
- Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dashnaw ML, Petraglia AL, Bailes JE. An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg Focus 2013. [PMID: 23199428 DOI: 10.3171/2012.10.focus12284] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There has been a growing interest in the diagnosis and management of mild traumatic brain injury (TBI), or concussion. Repetitive concussion and subconcussion have been linked to a spectrum of neurological sequelae, including postconcussion syndrome, chronic traumatic encephalopathy, mild cognitive impairment, and dementia pugilistica. A more common risk than chronic traumatic encephalopathy is the season-ending or career-ending effects of concussion or its mismanagement. To effectively prevent and treat the sequelae of concussion, it will be important to understand the basic processes involved. Reviewed in this paper are the forces behind the primary phase of injury in mild TBI, as well as the immediate and delayed cellular events responsible for the secondary phase of injury leading to neuronal dysfunction and possible cell death. Advanced neuroimaging sequences have recently been developed that have the potential to increase the sensitivity of standard MRI to detect both structural and functional abnormalities associated with concussion, and have provided further insight into the potential underlying pathophysiology. Also discussed are the potential long-term effects of repetitive mild TBI, particularly chronic traumatic encephalopathy. Much of the data regarding this syndrome is limited to postmortem analyses, and at present there is no animal model of chronic traumatic encephalopathy described in the literature. As this arena of TBI research continues to evolve, it will be imperative to appropriately model concussive and even subconcussive injuries in an attempt to understand, prevent, and treat the associated chronic neurodegenerative sequelae.
Collapse
Affiliation(s)
- Matthew L Dashnaw
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
32
|
Lin Y, Wen L. Inflammatory response following diffuse axonal injury. Int J Med Sci 2013; 10:515-21. [PMID: 23532682 PMCID: PMC3607236 DOI: 10.7150/ijms.5423] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/06/2013] [Indexed: 12/12/2022] Open
Abstract
DAI is a leading cause of the patient's death or lasting vegetable state following severe TBI, and up to now the detailed mechanism of axonal injury after head trauma is still unclear. Inflammatory responses have been proved to be an important mechanism of neural injury after TBI. However, most of these studies are concerned with focal cerebral injury following head trauma. In contrast to focal injury, studies on the inflammatory reaction following DAI are only beginning. And in this article, we aimed to review such studies. From the studies reviewed, immune response cells would become reactive around the sites of axonal injury after DAI. Besides, the concentrations of several important inflammatory factors, such as IL-1 family, IL-6 and TNF-ɑ, increased after DAI as well, which implies the participation of inflammatory responses. It can be concluded that inflammatory responses probably participate in the neural injury in DAI, but at present the study of inflammatory responses following DAI is still limited and the clear effects of inflammatory response on axonal injury remain to be more explored.
Collapse
Affiliation(s)
- Yu Lin
- School of Medicine, Zhejiang University City College, China
| | | |
Collapse
|
33
|
Alwis DS, Yan EB, Morganti-Kossmann MC, Rajan R. Sensory cortex underpinnings of traumatic brain injury deficits. PLoS One 2012; 7:e52169. [PMID: 23284921 PMCID: PMC3528746 DOI: 10.1371/journal.pone.0052169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/14/2012] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex. Brain injury (n = 19) was induced using an impact acceleration method and sham controls received surgery only (n = 15). Animals were tested in a range of sensorimotor behaviour tasks prior to and up to 6 weeks post-injury when there were still significant sensorimotor behaviour deficits. At 8–10 weeks post-trauma, in terminal experiments, extracellular recordings were obtained from barrel cortex neurons in response to whisker motion, including motion that mimicked whisker motion observed in awake animals undertaking different tasks. In cortex, there were lamina-specific neuronal response alterations that appeared to reflect local circuit changes. Hyper-excitation was found only in supragranular layers involved in intra-areal processing and long-range integration, and only for stimulation with complex, naturalistic whisker motion patterns and not for stimulation with simple trapezoidal whisker motion. Thus TBI induces long-term directional changes in integrative sensory cortical layers that depend on the complexity of the incoming sensory information. The nature of these changes allow predictions as to what types of sensory processes may be affected in TBI and contribute to post-trauma sensorimotor deficits.
Collapse
Affiliation(s)
- Dasuni S. Alwis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- National Trauma Research Institute, Alfred Hospital, Prahran, Victoria, Australia
| | - Edwin B. Yan
- National Trauma Research Institute, Alfred Hospital, Prahran, Victoria, Australia
| | | | - Ramesh Rajan
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV. Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 2012; 3:111. [PMID: 22811676 PMCID: PMC3397312 DOI: 10.3389/fneur.2012.00111] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/22/2012] [Indexed: 01/29/2023] Open
Abstract
Mild traumatic brain injury (mTBI) represents a significant challenge for the civilian and military health care systems due to its high prevalence and overall complexity. Our earlier works showed evidence of neuroinflammation, a late onset of neurobehavioral changes, and lasting memory impairment in a rat model of mild blast-induced TBI (mbTBI). The aim of our present study was to determine whether acute treatment with the non-steroidal anti-inflammatory drug minocycline (Minocin®) can mitigate the neurobehavioral abnormalities associated with mbTBI, Furthermore, we aimed to assess the effects of the treatment on select inflammatory, vascular, neuronal, and glial markers in sera and in brain regions associated with anxiety and memory (amygdala, prefrontal cortex, ventral, and dorsal hippocampus) following the termination (51 days post-injury) of the experiment. Four hours after a single exposure to mild blast overpressure or sham conditions, we treated animals with a daily dose of minocycline (50 mg/kg) or physiological saline (vehicle) for four consecutive days. At 8 and 45 days post-injury, we tested animals for locomotion, anxiety, and spatial memory. Injured animals exhibited significantly impaired memory and increased anxiety especially at the later testing time point. Conversely, injured and minocycline treated rats’ performance was practically identical to control (sham) animals in the open field, elevated plus maze, and Barnes maze. Protein analyses of sera and brain regions showed significantly elevated levels of all of the measured biomarkers (except VEGF) in injured and untreated rats. Importantly, minocycline treatment normalized serum and tissue levels of the majority of the selected inflammatory, vascular, neuronal, and glial markers. In summary, acute minocycline treatment appears to prevent the development of neurobehavioral abnormalities likely through mitigating the molecular pathologies of the injury in an experimental model of mbTBI.
Collapse
Affiliation(s)
- Erzsebet Kovesdi
- U.S. Department of Veterans Affairs, Veterans Affairs Central Office Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9:171. [PMID: 22788993 PMCID: PMC3488971 DOI: 10.1186/1742-2094-9-171] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease. Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the three NVU sources of CCL2 most commonly reported in neuroinflammation--astrocytes, microglia and brain microvascular endothelial cells (BMEC)--as well as modify the clinical course of neuroinflammatory disease. METHODS The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of experimental autoimmune encephalomyelitis (EAE) in mice was also explored. RESULTS Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease reversal. CONCLUSION Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways. Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.
Collapse
|
36
|
Guilty molecules, guilty minds? The conflicting roles of the innate immune response to traumatic brain injury. Mediators Inflamm 2012; 2012:356494. [PMID: 22701273 PMCID: PMC3373171 DOI: 10.1155/2012/356494] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/26/2012] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex disease in the most complex organ of the body, whose victims endure lifelong debilitating physical, emotional, and psychosocial consequences. Despite advances in clinical care, there is no effective neuroprotective therapy for TBI, with almost every compound showing promise experimentally having disappointing results in the clinic. The complex and highly interrelated innate immune responses govern both the beneficial and deleterious molecular consequences of TBI and are present as an attractive therapeutic target. This paper discusses the positive, negative, and often conflicting roles of the innate immune response to TBI in both an experimental and clinical settings and highlights recent advances in the search for therapeutic candidates for the treatment of TBI.
Collapse
|
37
|
Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD. The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 2012; 5:6. [PMID: 22291617 PMCID: PMC3265961 DOI: 10.3389/fnmol.2012.00006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.
Collapse
Affiliation(s)
- Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011; 164:1207-29. [PMID: 21175576 PMCID: PMC3229758 DOI: 10.1111/j.1476-5381.2010.01163.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, 'silver bullet' therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
39
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
40
|
Bye N, Carron S, Han X, Agyapomaa D, Ng SY, Yan E, Rosenfeld JV, Morganti-Kossmann MC. Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res 2011; 89:986-1000. [PMID: 21488090 DOI: 10.1002/jnr.22635] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/17/2010] [Accepted: 01/27/2011] [Indexed: 12/13/2022]
Abstract
Although increased neurogenesis has been described in rodent models of focal traumatic brain injury (TBI), the neurogenic response occurring after diffuse TBI uncomplicated by focal injury has not been examined to date, despite the pervasiveness of this distinct type of brain injury in the TBI patient population. Here we characterize multiple stages of neurogenesis following a traumatic axonal injury (TAI) model of diffuse TBI as well as the proliferative response of glial cells. TAI was induced in adult rats using an impact-acceleration model, and 5-bromo-2'-deoxyuridine (BrdU) was administered on days 1-4 posttrauma or sham operation to label mitotic cells. Using immunohistochemistry for BrdU combined with phenotype-specific markers, we found that proliferation was increased following TAI in the subventricular zone of the lateral ventricles and in the hippocampal subgranular zone, although the ultimate production of new dentate granule neurons at 8 weeks was not significantly enhanced. Also, abundant proliferating and reactive astrocytes, microglia, and polydendrocytes were detected throughout the brain following TAI, indicating that a robust glial response occurs in this model, although very few new cells in the nonneurogenic brain regions became mature neurons. We conclude that diffuse brain injury stimulates early stages of a neurogenic response similar to that described for models of focal TBI.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010; 30:769-82. [PMID: 20029451 PMCID: PMC2949175 DOI: 10.1038/jcbfm.2009.262] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral inflammation involves molecular cascades contributing to progressive damage after traumatic brain injury (TBI). The chemokine CC ligand-2 (CCL2) (formerly monocyte chemoattractant protein-1, MCP-1) is implicated in macrophage recruitment into damaged parenchyma after TBI. This study analyzed the presence of CCL2 in human TBI, and further investigated the role of CCL2 in physiological and cellular mechanisms of secondary brain damage after TBI. Sustained elevation of CCL2 was detected in the cerebrospinal fluid (CSF) of severe TBI patients for 10 days after trauma, and in cortical homogenates of C57Bl/6 mice, peaking at 4 to 12 h after closed head injury (CHI). Neurological outcome, lesion volume, macrophage/microglia infiltration, astrogliosis, and the cerebral cytokine network were thus examined in CCL2-deficient (-/-) mice subjected to CHI. We found that CCL2-/- mice showed altered production of multiple cytokines acutely (2 to 24 h); however, this did not affect lesion size or cell death within the first week after CHI. In contrast, by 2 and 4 weeks, a delayed reduction in lesion volume, macrophage accumulation, and astrogliosis were observed in the injured cortex and ipsilateral thalamus of CCL2-/- mice, corresponding to improved functional recovery as compared with wild-type mice after CHI. Our findings confirm the significant role of CCL2 in mediating post-traumatic secondary brain damage.
Collapse
|
42
|
Abstract
Chemokines and their receptors have crucial roles in the trafficking of leukocytes, and are of particular interest in the context of the unique immune responses elicited in the central nervous system (CNS). The chemokine system CC ligand 2 (CCL2) with its receptor CC receptor 2 (CCR2), as well as the receptor CXCR2 and its multiple ligands CXCL1, CXCL2 and CXCL8, have been implicated in a wide range of neuropathologies, including trauma, ischemic injury and multiple sclerosis. This review aims to overview the current understanding of chemokines as mediators of leukocyte migration into the CNS under neuroinflammatory conditions. We will specifically focus on the involvement of two chemokine networks, namely CCL2/CCR2 and CXCL8/CXCR2, in promoting macrophage and neutrophil infiltration, respectively, into the lesioned parenchyma after focal traumatic brain injury. The constitutive brain expression of these chemokines and their receptors, including their recently identified roles in the modulation of neuroprotection, neurogenesis, and neurotransmission, will be discussed. In conclusion, the value of evidence obtained from the use of Ccl2- and Cxcr2-deficient mice will be reported, in the context of potential therapeutics inhibiting chemokine activity which are currently in clinical trial for various inflammatory diseases.
Collapse
|
43
|
Serum IL-8 and MCP-1 concentration do not identify patients with enlarging contusions after traumatic brain injury. ACTA ACUST UNITED AC 2009; 66:1591-7; discussion 1598. [PMID: 19509619 DOI: 10.1097/ta.0b013e31819a0344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cerebral contusions contain numerous leukocytes, and a temporal relationship exists among cerebral chemokine expression, leukocyte recruitment, and contusion enlargement. This would suggest a role for chemokines in contusion development. However, it has not been established if serum concentrations of chemokines such as interleukin-8 (IL-8) or monocyte chemoattractant protein-1 (MCP-1) change with contusion enlargement. METHODS Eighteen adult patients with severe contusional traumatic brain injury, on computerized tomography, were identified. Patients with diffuse injuries or extradural and subdural hematomas associated with mass effect were not included in the study. Daily serum samples were taken for the measurement of IL-8 and MCP-1 concentrations for up to 11 days postinjury. RESULTS In the patients who died while in intensive care, IL-8 and MCP-1 were significantly greater than in those patients discharged (18 [0-202] vs. 0 [0-156] pg/mL and 498 [339-1,063] vs. 368 [86-11,289] pg/mL for IL-8 and MCP-1, respectively). No difference was seen in serum chemokine levels in patients who deteriorated with contusion enlargement compared with those that did not. The IL-8 and MCP-1 concentrations did not change significantly over time either in the group as a whole or in the subgroup of patients who deteriorated. CONCLUSIONS These inflammatory mediators may be predictive of a poor outcome in patients with traumatic brain injury in which contusions are the predominant abnormality. However, they do not distinguish those patients who will deteriorate because of contusion enlargement.
Collapse
|
44
|
Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. ACTA ACUST UNITED AC 2008; 60:125-34. [PMID: 19146875 DOI: 10.1016/j.brainresrev.2008.12.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 11/15/2022]
Abstract
The development of new therapeutic approaches to the treatment of painful neuropathies requires a better understanding of the mechanisms that underlie the development of these chronic pain syndromes. It is now well established that astrocytic and microglial cells modulate the neuronal mechanisms of chronic pain in spinal cord and possibly in the brain. In animal models of neuropathic pain following peripheral nerve injury, several changes occur at the level of the first pain synapse between the central terminals of sensory neurons and second order neurons. These neuronal mechanisms can be modulated by pro-nociceptive mediators released by non neuronal cells such as microglia and astrocytes which become activated in the spinal cord following PNS injury. However, the signals that mediate the spread of nociceptive signaling from neurons to glial cells in the dorsal horn remain to be established. Herein we provide evidence for two emerging signaling pathways between injured sensory neurons and spinal microglia: chemotactic cytokine ligand 2 (CCL2)/CCR2 and cathepsin S/CX3CL1 (fractalkine)/CX3CR1. We discuss the plasticity of these two chemokine systems at the level of the dorsal root ganglia and spinal cord demonstrating that modulation of chemokines using selective antagonists decrease nociceptive behavior in rodent chronic pain models. Since up-regulation of chemokines and their receptors may be a mechanism that directly and/or indirectly contributes to the development and maintenance of chronic pain, these molecular molecules may represent novel targets for therapeutic intervention in sustained pain states.
Collapse
Affiliation(s)
- Catherine Abbadie
- Department of Immunology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008; 2008:716458. [PMID: 18483565 PMCID: PMC2375967 DOI: 10.1155/2008/716458] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/28/2008] [Indexed: 12/17/2022] Open
Abstract
Although N-acetylcysteine (NAC) has been shown to be neuroprotective for traumatic brain injury (TBI), the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-kappaB) and inflammatory proteins such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and intercellular adhesion molecule-1 (ICAM-1) after TBI. As a result, we found that NF-kappaB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-kappaB, IL-1beta, TNF-alpha, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.
Collapse
|
46
|
Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T. Modulation of immune response by head injury. Injury 2007; 38:1392-400. [PMID: 18048036 DOI: 10.1016/j.injury.2007.10.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 02/02/2023]
Abstract
Despite the fact that traumatic brain injury (TBI) is a silently growing epidemic, we are yet to understand its multifaceted pathogenesis, where various cellular pathways are initiated in response to both the primary mechanical insult and secondary physiologically mediated injury. Although the brain has traditionally been considered an immunologically privileged site, evidence to the contrary exists in studies of central nervous system (CNS) pathology, in particular TBI. Transmigration of leukocytes following blood brain barrier (BBB) disruption results in activation of resident cells of the CNS, such as microglia and astrocytes, to possess immunological function. Both infiltrating peripheral immune cells and activated resident cells subsequently engage in the intrathecal production of cytokines, important indicators of the presence of neuroinflammation. Cytokines can either promote this neurotoxicity, by encouraging excitotoxicity and propagating the inflammatory response, or attenuate the damage through neuroprotective and neurotrophic mechanisms, including the induction of cell growth factors. Certain cytokines perform both functions, for example, interleukin-6 (IL-6). This review article discusses the notion that the inflammatory response to TBI is no longer a peripherally mediated phenomenon, and that the CNS significantly influences the immunological sequence of events in the aftermath of injury.
Collapse
|
47
|
Briassoulis G, Papassotiriou I, Mavrikiou M, Lazaropoulou C, Margeli A. Longitudinal course and clinical significance of TGF-beta1, sL- and sE-Selectins and sICAM-1 levels during severe acute stress in children. Clin Biochem 2007; 40:299-304. [PMID: 17291476 DOI: 10.1016/j.clinbiochem.2006.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/03/2006] [Accepted: 11/14/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To elucidate the potential role of circulating levels of transforming growth factor-beta1 (TGF-beta1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble L- and sE-Selectins (sL- and sE-Selectins) in children with sepsis, traumatic brain injury (TBI) or acute respiratory distress syndrome (ARDS). DESIGN AND METHODS Levels of TGF-beta1, sICAM-1, L- and sE-Selectins were determined using solid-phase sandwich enzyme-linked immunosorbent assay in plasma of 10 patients with sepsis, 10 patients with TBI, 10 patients with ARDS, compared to 10 ventilated controls with chronic illness but not in acute stress, on days 1, 3, 5, 7 and 10. RESULTS The highest values of sICAM-1 were observed in patients with TBI (p<0.001) and those of sE-Selectin in patients with sepsis (p=0.0001). Patients in the control group did not show an elevation of sE-Selectin and sICAM-1 levels longitudinally. Increased levels of measured molecules (TGF-beta1, p<0.02, sE-Selectin, p<0.02, sL-Selectin, p=0.06, sICAM-1, p<0.03) were demonstrated among survivors in the sepsis and ARDS groups of patients and were positively correlated with length of stay (p<0.04) and mechanical ventilation (p<0.001). CONCLUSIONS A sustained increase of adhesion molecules occurs during acute stress in children which may contribute to morbidity in patients with sepsis (sE-Selectin) or traumatic brain injury (sICAM-1). Suppression of the expected response of sE-Selectins, s-ICAM-1 and TGF-beta1 is associated with poor outcome.
Collapse
Affiliation(s)
- George Briassoulis
- Paediatric Intensive Care Unit, University Hospital of Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
48
|
Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res 2006; 222:115-24. [PMID: 17081714 DOI: 10.1016/j.heares.2006.09.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/31/2006] [Accepted: 09/24/2006] [Indexed: 01/11/2023]
Abstract
Acoustic trauma induces cochlear inflammation. We hypothesized that chemokines are involved in the recruitment of leukocytes as part of a wound healing response. The cochleas of NIH-Swiss mice, exposed to octave-band noise (8-16 kHz, at 118 dB) for 2h, were examined after the termination of exposure. Leukocytes were identified immunohistochemically with antibodies to CD45 and F4/80. Gene array analysis followed by RT-PCR was performed on cochlear tissue to identify up-regulation of chemokine and adhesion molecule mRNA. The expression of the adhesion molecule ICAM-1 was also investigated immunohistochemically. Few CD45- or F4/80-positive leukocytes were observed in the non-exposed cochlea. Following acoustic trauma however, the number of CD45-positive cells was dramatically increased especially after 2 and 4 days, after which time the numbers decreased. F4/80-positive cells also increased in number over the course of a week. Gene array analysis indicated increased expression of monocyte chemoattractant protein 5 (MCP-5), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein-1beta (MIP-1beta) and ICAM-1. RT-PCR, performed using primers for the individual mRNA sequences, confirmed the increased expression of MCP-1, MCP-5, MIP-1beta, and ICAM-1 relative to non-exposed mice. In the normal cochlea, ICAM-1 immunohistochemical expression was observed in venules, spiral ligament fibrocytes and in endosteal cells of the scala tympani. Expression increased to include more of the spiral ligament and endosteal cells after acoustic trauma. A cochlear inflammatory response is initiated in response to acoustic trauma and involves the recruitment of circulating leukocytes to the inner ear.
Collapse
Affiliation(s)
- Stephen V Tornabene
- Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0666, USA
| | | | | | | | | |
Collapse
|
49
|
Otto VI, Damoc E, Cueni LN, Schürpf T, Frei R, Ali S, Callewaert N, Moise A, Leary JA, Folkers G, Przybylski M. N-glycan structures and N-glycosylation sites of mouse soluble intercellular adhesion molecule-1 revealed by MALDI-TOF and FTICR mass spectrometry. Glycobiology 2006; 16:1033-44. [PMID: 16877748 DOI: 10.1093/glycob/cwl032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a heavily N-glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and approximately 4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2-inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylated.
Collapse
Affiliation(s)
- Vivianne I Otto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang J, De Koninck Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 2006; 97:772-83. [PMID: 16524371 DOI: 10.1111/j.1471-4159.2006.03746.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripheral nerve injury can induce spinal microglial/astrocyte activation. Substances released by activated glial cells excite spinal nociceptive neurons. Pharmacological disruption of glial activation or antagonism of substances released by activated glia prevent or reverse pain hypersensitivity. It is not known, however, what causes spinal cord glia to shift from a resting to an activated state. In an attempt to understand the potential role of monocyte chemoattractant protein-1 (MCP-1) in triggering spinal glial activation and its contribution to the development of neuropathic pain, we investigated the effect of peripheral nerve injury on MCP-1 expression in dorsal root ganglia (DRG) and the spinal cord, and established its temporal relationship with activation of spinal microglia and astrocytes. We observed that MCP-1 was induced by chronic constriction of the sciatic nerve in DRG sensory neurons, spinal cord motor neurons and in the superficial dorsal horn, ipsilateral to the injury. Neuronal MCP-1 induction was followed by surrounding microglial activation. After peaking at day 7 after injury, MCP-1 levels began to decline rapidly and had returned to baseline by day 150. In contrast, microglial activation peaked by day 14 and declined afterwards to reach a lower, yet significantly raised level beyond day 22 and remained increased until the end of the test period. Astrocyte activation became detectable later, progressed more slowly and also remained increased until the end of the test period, in parallel with a decreased nociceptive threshold. Our results suggest that neuronal MCP-1 may serve as a trigger for spinal microglial activation, which participates in the initiation of neuropathic pain. Delayed, sustained astrocyte activation may participate with microglia in the persistent phase of pain hypersensitivity.
Collapse
Affiliation(s)
- Ji Zhang
- Unité de Neurobiologie cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, Québec, Canada.
| | | |
Collapse
|