1
|
Yan LS, Zhang SF, Luo G, Cheng BCY, Zhang C, Wang YW, Qiu XY, Zhou XH, Wang QG, Song XL, Pan SY, Zhang Y. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022; 131:155200. [PMID: 35405150 DOI: 10.1016/j.metabol.2022.155200] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Schisandrin B (Sch B), which inhibits hepatic steatosis caused by non-alcoholic fatty liver disease (NAFLD), is one of the most active dibenzocyclooctadienes isolated from Schisandra chinensis (Turcz.) Baill with various pharmacological activities. In this study, the role of Sch B-induced autophagy in lipid-lowering activities of Sch B was examined and the underlying mechanisms were elucidated. METHODS Free fatty acid (FFA)-stimulated HepG2 cells and mouse primary hepatocytes (MPHs) and high-fat diet (HFD)-fed mice were used as NAFLD models. The role of Sch B-induced autophagy in lipid-lowering effects of Sch B was assessed using ATG5/TFEB-deficient cells and 3-methyladenine (3-MA)-treated hepatocytes and mice. RESULTS Sch B simultaneously active autophagy through AMPK/mTOR pathway and decreased the number of lipid droplets in FFA-treated HepG2 cells and MPHs. Additionally, siATG5/siTFEB transfection or 3-MA treatment mitigated Sch B-induced autophagy and activation of fatty acid oxidation (FAO) and ketogenesis in FFA-treated HepG2 cells and MPHs. Sch B markedly decreased hepatic lipid content and activated the autophagy through AMPK/mTOR pathway in HFD-fed mice. However, the activities of Sch B were suppressed upon 3-MA treatment. Sch B upregulated the expression of key enzymes involved in FAO and ketogenesis, which was mitigated upon 3-MA treatment. Moreover, changes in hepatic lipid components and amino acids may be related to the Sch B-induced autophagy pathway. CONCLUSION These results suggested that Sch B inhibited hepatic steatosis and promoted FAO by activation of autophagy through AMPK/mTOR pathway. Our study provides novel insights into the hepatic lipophagic activity of Sch B and its potential application in the management of NAFLD.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Hong Zhou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Si-Yuan Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
4
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
5
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Almohawes ZN. Protective Effect of Melatonin on Gentamicin Induced Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jpt.2017.129.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB. Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 2017; 18:ijms18040673. [PMID: 28333073 PMCID: PMC5412268 DOI: 10.3390/ijms18040673] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
9
|
Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-20. [DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
|
10
|
Yan JY, Ai G, Zhang XJ, Xu HJ, Huang ZM. Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:202-213. [PMID: 26133062 DOI: 10.1016/j.jep.2015.06.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/23/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The decoction of the flowers of Abelmoschus manihot (L.) Medic was traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China for hundreds of years. Phytochemical studies have indicated that total flavonoids extracted from flowers of A. manihot (L.) Medic (TFA) were the major constituents of the flowers. Our previous studies have investigated the hepatoprotective effects of the TFA against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. This study aimed to investigate the protective effects and mechanisms of TFA on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in rats. MATERIAL AND METHODS The hepatoprotective activities of TFA (125, 250 and 500mg/kg) were investigated on ANIT-induced cholestatic liver injury in rats. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were used as indices of hepatic cell damage and measured. Meanwhile, the serum levels of alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA) were used as indices of biliary cell damage and cholestasis and evaluated. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione transferase (GST), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were measured in the liver homogenates. The bile flow in 4h was estimated and the histopathology of the liver tissue was evaluated. Furthermore, the expression of transporters, bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and Na(+)-taurocholate cotransporting polypeptide (NTCP) were studied by western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-PCR) to elucidate the protective mechanisms of TFA against ANIT-induced cholestasis. RESULTS The oral administration of TFA to ANIT-treated rats could reduce the increases in serum levels of ALT, AST, LDH, ALP, GGT, TBIL, DBIL and TBA. Decreased bile flow by ANIT was restored with TFA treatment. Concurrent administration of TFA reduced the severity of polymorphonuclear neutrophil infiltration and other histological damages, which were consistent with the serological tests. Hepatic MDA and GSH contents in liver tissue were reduced, while SOD and GST activities, which had been suppressed by ANIT, were elevated in the groups pretreated with TFA. With TFA intervention, levels of TNF-α and NO in liver were decreased. Additionally, TFA was found to increase the expression of liver BSEP, MRP2, and NTCP in both protein and mRNA levels in ANIT-induced liver injury with cholestasis. CONCLUSION TFA exerted protective effects against ANIT-induced liver injury. The possible mechanisms could be related to anti-oxidative damage, anti-inflammation and regulating the expression of hepatic transporters. It layed the foundation for the further research on the mechanisms of cholestasis as well as the therapeutic effects of A. manihot (L.) Medic for the treatment of jaundice.
Collapse
Affiliation(s)
- Jia-Yin Yan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guo Ai
- Institute of Aviation Medicine of Air Force, Beijing 100142, China; Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Xiao-Jian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hai-Jiang Xu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng-Ming Huang
- Department of Pharmacy, 302 Hospital of PLA, Beijing 100039, China
| |
Collapse
|
11
|
Chen KL, Bi KS, Han F, Zhu HY, Zhang XS, Mao XJ, Yin R. Evaluation of the protective effect of Zhi-Zi-da-Huang decoction on acute liver injury with cholestasis induced by α-naphthylisothiocyanate in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:402-409. [PMID: 26163196 DOI: 10.1016/j.jep.2015.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Da-Huang decoction (ZZDHD), a classic traditional Chinese medicine (TCM) formula composed of four herbal medicines, has been widely used to treat various hepatobiliary disorders for a long time in China. However, the pharmacological effect of ZZDHD on liver injury with cholestasis is unrevealed. AIM OF THE STUDY To investigate the hepatoprotective effect of ZZDHD against α-naphthylisothiocyanate (ANIT)-induced liver injury with cholestasis in rats. MATERIALS AND METHODS The rats were intragastrically (i.g.) given ZZDHD at doses of 1, 2 and 4 g/kg (crude drug/body weight) once a day for seven days and treated with ANIT (75 mg/kg via i.g.) to cause liver injury at 12h after the fifth administration. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GTP), total bilirubin (TBIL), direct bilirubin (DBIL) and total bile acid (TBA), as well as bile flow were measured at 48 h after ANIT treatment to evaluate the protective effect of ZZDHD. Moreover, the possible protective mechanisms were elucidated by assays of liver enzyme activities and component contents including malondialdehyde (MDA), myeloperoxidase (MPO), lipid peroxide (LPO), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). The biochemical observations were supplemented by histopathological examination. Ultra fast liquid chromatography-mass spectrometry (UFLC-MS) was used for the phytochemical analysis of ZZDHD. RESULTS The high dose (4 g/kg) and middle dose (2g/kg) of ZZDHD exhibited significant and dose-dependent protective effect on ANIT-induced liver injury with cholestasis by reversing the changes in bile flow, the serum and hepatic enzymes, and histopathology of the liver tissue. Meanwhile, it was found that the low dose (1g/kg) of ZZDHD did not improve the biochemical indexes except serum TBIL, DBIL and TBA, which showed little protective effect. Phytochemical analysis revealed the presence of sixteen compounds in ZZDHD. CONCLUSIONS This study indicates that ZZDHD exerted a hepatoprotective effect on ANIT-induced liver injury with cholestasis in rats, and the mechanism of this activity is possibly related to its antioxidant properties.
Collapse
Affiliation(s)
- Ke-Lin Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kai-Shun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - He-Yun Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Jilin Medical College, Jilin 132013, China
| | - Xiao-Shu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Juan Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ran Yin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Černyšiov V, Mauricas M, Girkontaite I. Melatonin inhibits granulocyte adhesion to ICAM via MT3/QR2 and MT2 receptors. Int Immunol 2015; 27:599-608. [PMID: 26031343 DOI: 10.1093/intimm/dxv035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Neutrophils are cells of the innate immune system that first respond and arrive to the site of infection. Melatonin modulates acute inflammatory responses by interfering with leukocyte recruitment. It is known that melatonin modulates granulocyte migration though the endothelial layer thereby acting on the endothelial cell. Here we investigated whether melatonin could modulate granulocyte infiltration by acting directly on granulocytes. Granulocyte infiltration into the peritoneal cavity was investigated in mice kept at normal light/dark conditions and mice kept under constant lighting. To induce migration of neutrophils from the blood into the injury site via the endothelial layer, a bacterial product N-formyl-l-methionyl- l-leucyl- l-phenylalanine (fMLP) was injected into the peritoneal cavity. We found that the number of infiltrated granulocytes during the dark time was lower than that during the light time. It did not depend on circadian time. Moreover, the expression of an adhesion molecule, CD18, on granulocytes, was also lower during the dark time as compared with the light time. We have found that melatonin inhibited fMLP-induced CD18 up-regulation. Importantly, melatonin also inhibited the integrin-mediated granulocyte adhesion to intercellular adhesion molecule-coated plates. This study additionally showed that melatonin receptors MT2 and MT3/quinone reductase 2 (QR2) are expressed on granulocytes. Interestingly, melatonin increases the expression of its MT3/QR2 receptor. The fMLP-mediated CD18 up-regulation was inhibited by melatonin via MT2 receptor and the integrin-mediated granulocyte adhesion was inhibited by melatonin via MT3/QR2 and MT2 receptors. In conclusion, we show that melatonin suppresses granulocyte migration via endothelium by acting directly on granulocytes.
Collapse
Affiliation(s)
- Vitalij Černyšiov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08409 Vilnius, Lithuania
| | - Mykolas Mauricas
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08409 Vilnius, Lithuania
| | - Irute Girkontaite
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08409 Vilnius, Lithuania
| |
Collapse
|
13
|
Cho YA, Noh K, Jue SS, Lee SY, Kim EC. Melatonin promotes hepatic differentiation of human dental pulp stem cells: clinical implications for the prevention of liver fibrosis. J Pineal Res 2015; 58:127-35. [PMID: 25431168 DOI: 10.1111/jpi.12198] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
Melatonin's effect on hepatic differentiation of stem cells remains unclear. The aim of this study was to investigate the action of melatonin on hepatic differentiation as well as its related signaling pathways of human dental pulp stem cells (hDPSCs) and to examine the therapeutic effects of a combination of melatonin and hDPSC transplantation on carbon tetrachloride (CCl4 )-induced liver fibrosis in mice. In vitro hepatic differentiation was assessed by periodic acid-Schiff (PAS) staining and mRNA expression for hepatocyte markers. Liver fibrosis model was established by injecting 0.5 mL/kg CCl4 followed by treatment with melatonin (5 mg/kg, twice a week) and hDPSCs. In vivo therapeutic effects were evaluated by histopathology and by means of liver function tests including measurement of alanine transaminase (ALT), aspartate transaminase (AST), and ammonia levels. Melatonin promoted hepatic differentiation based on mRNA expression of differentiation markers and PAS-stained glycogen-laden cells. In addition, melatonin increased bone morphogenic protein (BMP)-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. Furthermore, melatonin activated p38, extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) in hDPSCs. Melatonin-induced hepatic differentiation was attenuated by inhibitors of BMP, p38, ERK, and NF-κB. Compared to treatment of CCl4 -injured mice with either melatonin or hDPSC transplantation alone, the combination of melatonin and hDPSC significantly suppressed liver fibrosis and restored ALT, AST, and ammonia levels. For the first time, this study demonstrates that melatonin promotes hepatic differentiation of hDPSCs by modulating the BMP, p38, ERK, and NF-κB pathway. Combined treatment of grafted hDPSCs and melatonin could be a viable approach for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Young-Ah Cho
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
14
|
Olea E, Agapito MT, Gallego-Martin T, Rocher A, Gomez-Niño A, Obeso A, Gonzalez C, Yubero S. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure. J Appl Physiol (1985) 2014; 117:706-19. [DOI: 10.1152/japplphysiol.00454.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity.
Collapse
Affiliation(s)
- Elena Olea
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Maria Teresa Agapito
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Teresa Gallego-Martin
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Asuncion Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Angela Gomez-Niño
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Ana Obeso
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Constancio Gonzalez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Sara Yubero
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| |
Collapse
|
15
|
Slominski AT, Kleszczyński K, Semak I, Janjetovic Z, Zmijewski MA, Kim TK, Slominski RM, Reiter RJ, Fischer TW. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci 2014; 15:17705-32. [PMID: 25272227 PMCID: PMC4227185 DOI: 10.3390/ijms151017705] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Konrad Kleszczyński
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Igor Semak
- Department of Biochemistry, Belarusian State University, Minsk 220030, Belarus.
| | - Zorica Janjetovic
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Michał A Zmijewski
- Department of Histology, Medical University of Gdańsk, Gdańsk 80-211, Poland.
| | - Tae-Kang Kim
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Radomir M Slominski
- Department of Pathology and Laboratory Medicine, Cancer Research Building, University of Tennessee HSC, 930 Madison Avenue, Memphis, TN 38163, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Tobias W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
16
|
Ding L, Zhang B, Zhan C, Yang L, Wang Z. Danning tablets attenuates α-naphthylisothiocyanate-induced cholestasis by modulating the expression of transporters and metabolic enzymes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:249. [PMID: 25033983 PMCID: PMC4223591 DOI: 10.1186/1472-6882-14-249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023]
Abstract
Background The Danning tablets (DNts) is commonly prescribed in China as a cholagogic formula. Our previous studies showed that DNts exerted the protective effect on α-naphthylisothiocyanate (ANIT)-induced liver injury with cholestasis in a dose-dependent mannar. However, the detailed molecular mechanisms of DNts against ANIT-induced cholestasis are still not fully explored. Methods Danning tablet (3 g/kg body weight/day) was administered orally to experimental rats for seven days before they were treated with ANIT (60 mg/kg daily via gastrogavage) which caused cholestasis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (T-Bil), direct bilirubin (D-Bil) and total bile acid (TBA) were measured to evaluate the protective effect of Danning tablet at 12, 24 and 48h after ANIT treatment. Meanwhile, total bilirubin or total bile acid in the bile, urine and liver were also measured at 48h after ANIT treatment. Furthermore, the hepatic or renal mRNA and protein levels of metabolic enzymes and transports were investigated to elucidate the protective mechanisms of Danning tablet against ANIT-induced cholestasis. Results In this study, we found that DNts significantly attenuated translocation of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane into an intracellular and up-regulated the hepatic mRNA and protein expressions of metabolic enzymes including cytochrome P450 2b1(Cyp2b1) and uridine diphosphate-5¢- glucuronosyltransferase (Ugt1a1)) and transporters including bile salt export pump (Bsep) and multidrug resistance protein 2 (Mdr2)) as well as renal organic solute transporter beta (Ostβ), accompanied by further increase in urinary and biliary excretion of bile acid and bilirubin. Conclusions DNts might promote bile acid and bilirubin elimination by regulating the expressions of hepatic and renal transporters as well as hepatic metabolic enzymes.
Collapse
|
17
|
Tian C, Zhang T, Wang L, Shan Q, Jiang L. The hepatoprotective effect and chemical constituents of total iridoids and xanthones extracted from Swertia mussotii Franch. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:259-266. [PMID: 24746481 DOI: 10.1016/j.jep.2014.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Total iridoids and xanthones (TIXS) were extracted from Swertia mussotii Franch, one of the most important eight Tibetan medicines in China, which was recorded in the book of Jingzhu Bencao and used for clinical treatment of cholestatic hepatitis for many years. Our aim was to study the hepatoprotective effect and chemical constituents of the TIXS. MATERIALS AND METHODS Crude extracts were prepared using 90% ethanol, and individual fractions were collected following HPD-300 macroporous resin column chromatography. HPLC/MS was applied to qualitatively and quantitatively analyze the TIXS. Then, the alpha-naphthylisot hiocyanate-induced liver damage model was used to assess the hepatoprotective effect of the TIXS. RESULTS A total of 12 compounds were identified by the fingerprint chromatography of the TIXS, and swertiamarin and swertianolin were shown to be its two main components. Oral administration of the TIXS at a dose of 35, 70 or 140 mg kg(-1), swertiamarin at a dose of 20 mg kg(-1) or swertianolin at a dose of 20 mg kg(-1), for 7 days in mice significantly reduced the alpha-naphthylisot hiocyanate-induced levels of alanine aminotransferase, aspartate aminotransferase and the total and direct bilirubins, and increased the bile flow (P<0.01). CONCLUSION These findings suggest that the TIXS exhibits significant hepatoprotective effect in the liver damage model induced by alpha-naphthylisot hiocyanate. Its active constituents include swertiamarin and swertianolin.
Collapse
Affiliation(s)
- Chengwang Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Tiejun Zhang
- Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin 300193, China
| | - Lili Wang
- Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin 300193, China
| | - Qi Shan
- Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin 300193, China
| | - Linghuo Jiang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR. Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res 2014; 56:427-38. [PMID: 24650045 PMCID: PMC4279949 DOI: 10.1111/jpi.12134] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Sepsis is a massive inflammatory response mediated by infection, characterized by oxidative stress, release of cytokines, and mitochondrial dysfunction. Melatonin accumulates in mitochondria, and both it and its metabolites have potent antioxidant and anti-inflammatory activities and may be useful in sepsis. We undertook a phase I dose escalation study in healthy volunteers to assess the tolerability and pharmacokinetics of 20, 30, 50, and 100 mg oral doses of melatonin. In addition, we developed an ex vivo whole blood model under conditions mimicking sepsis to determine the bioactivity of melatonin and the major metabolite 6-hydroxymelatonin at relevant concentrations. For the phase I trial, oral melatonin was given to five subjects in each dose cohort (n = 20). Blood and urine were collected for measurement of melatonin and 6-hydroxymelatonin, and symptoms and physiological measures were assessed. Validated sleep scales were completed. No adverse effects after oral melatonin, other than mild transient drowsiness with no effects on sleeping patterns, were seen, and no symptoms were reported. Melatonin was rapidly cleared at all doses with a median [range] elimination half-life of 51.7 [29.5-63.2] min across all doses. There was considerable variability in maximum melatonin levels within each dose cohort, but 6-hydoxymelatonin sulfate levels were less variable and remained stable for several hours. For the ex vivo study, blood from 20 volunteers was treated with lipopolysaccharide and peptidoglycan plus a range of concentrations of melatonin/6-hydroxymelatonin. Both melatonin and 6-hydroxymelatonin had beneficial effects on sepsis-induced mitochondrial dysfunction, oxidative stress, and cytokine responses at concentrations similar to those achieved in vivo.
Collapse
Affiliation(s)
- Helen F Galley
- Division of Applied Health, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK; Intensive Care Unit, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
19
|
García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal-Pérez M. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 2014; 56:225-37. [PMID: 24571249 DOI: 10.1111/jpi.12128] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/14/2022]
Abstract
Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease.
Collapse
Affiliation(s)
- Joaquín J García
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quintero M, Gonzalez-Martin MDC, Vega-Agapito V, Gonzalez C, Obeso A, Farré R, Agapito T, Yubero S. The effects of intermittent hypoxia on redox status, NF-κB activation, and plasma lipid levels are dependent on the lowest oxygen saturation. Free Radic Biol Med 2013; 65:1143-1154. [PMID: 24002010 DOI: 10.1016/j.freeradbiomed.2013.08.180] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is described as repetitive obstructions of the upper airways during sleep, causing concomitant episodes of systemic hypoxia and associated cardiovascular and metabolic pathologies. The mechanisms generating these pathologies are controversial. Because recurrent hypoxia is the element of inadequate respiration that leads to the pathology, experimental models of OSAS consist in the exposure of the animals to intermittent hypoxia (IH) by cycling O2 percentages in their habitats. A proposed mechanism linking the IH of OSAS to pathologies is the increased production of reactive oxygen species (ROS). However, it has been argued that many patients seem to lack oxidative stress and that, to augment ROS in IH animals, intense hypoxia, seldom encountered in patients, has to be applied. To solve the controversy, we have exposed rats to two intensities of IH (cycles of 10 or 5% O2, 40s, and then 21% O2, 80s; 8h/day, 15 days). We then measured reduced and oxidized glutathione and lipid peroxide levels, aconitase and fumarase activities, and ROS-disposal enzyme activity in liver, brain, and lung. Liver levels of nuclear NF-κB-p65 and plasma C-reactive protein (CRP), as well as lipid levels, were also assessed. Lowest hemoglobin saturations were 91.7 ± 0.8 and 73.5 ± 1.4%. IH caused tissue-specific oxidative stress related to hypoxic intensity. Nuclear NF-κB-p65 and lipid content in the liver and CRP in the plasma all increased with IH intensity, as did both plasma triglycerides and cholesterol. We conclude that IH, even of moderate intensity, causes oxidative stress probably related to the pathologies encountered in OSAS patients.
Collapse
Affiliation(s)
- Miguel Quintero
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - María Del Carmen Gonzalez-Martin
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Victoria Vega-Agapito
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Constancio Gonzalez
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Ana Obeso
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Farré
- CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain
| | - Teresa Agapito
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Sara Yubero
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 2013; 55:103-20. [PMID: 23889107 DOI: 10.1111/jpi.12075] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. In recent years, a considerable amount of experimental evidence has accumulated showing a relationship between the nervous, endocrine, and immune systems. The molecular basis of the communication between these systems is the use of a common chemical language. In this framework, currently melatonin is considered one of the members of the neuroendocrine-immunological network. A number of in vivo and in vitro studies have documented that melatonin plays a fundamental role in neuroimmunomodulation. Based on the information published, it is clear that the majority of the present data in the literature relate to lymphocytes; thus, they have been rather thoroughly investigated, and several reviews have been published related to the mechanisms of action and the effects of melatonin on lymphocytes. However, few studies concerning the effects of melatonin on cells belonging to the innate immunity have been reported. Innate immunity provides the early line of defense against microbes and consists of both cellular and biochemical mechanisms. In this review, we have focused on the role of melatonin in the innate immunity. More specifically, we summarize the effects and action mechanisms of melatonin in the different cells that belong to or participate in the innate immunity, such as monocytes-macrophages, dendritic cells, neutrophils, eosinophils, basophils, mast cells, and natural killer cells.
Collapse
Affiliation(s)
- Juan R Calvo
- Department Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Seville, Spain.
| | | | | |
Collapse
|
22
|
Golbar HM, Izawa T, Ichikawa C, Tanaka M, Juniantito V, Sawamoto O, Kuwamura M, Yamate J. Slowly progressive cholangiofibrosis induced in rats by α-naphthylisothiocyanate (ANIT), with particular references to characteristics of macrophages and myofibroblasts. ACTA ACUST UNITED AC 2013; 65:825-35. [DOI: 10.1016/j.etp.2012.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/06/2012] [Indexed: 01/07/2023]
|
23
|
Zhao Y, Zhou G, Wang J, Jia L, Zhang P, Li R, Shan L, Liu B, Song X, Liu S, Xiao X. Paeoniflorin protects against ANIT-induced cholestasis by ameliorating oxidative stress in rats. Food Chem Toxicol 2013; 58:242-8. [DOI: 10.1016/j.fct.2013.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/06/2013] [Accepted: 04/15/2013] [Indexed: 12/14/2022]
|
24
|
Ding LL, Zhang BF, Dou W, Yang L, Zhan CS, Wang ZT. Protective effect of Danning tablet on acute livery injury with cholestasis induced by α-naphthylisothiocyanate in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:222-229. [PMID: 22274634 DOI: 10.1016/j.jep.2011.12.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/14/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danning tablet, as a composite prescription of traditional Chinese medicine, has been used clinically to relieve liver and gallbladder diseases in China. However, the mechanisms involved are still unclear. AIM OF THE STUDY The present investigation was designed to assess the effects and possible mechanisms of Danning tablet on α-naphthylisothiocyanate (ANIT)-induced liver injury with cholestasis. MATERIALS AND METHODS Danning tablet (3, 1.5 or 0.75g/kg body weight/day) was intragastrically (i.g.) given to experimental rats for seven days before they were treated with ANIT (60mg/kg daily via i.g.) which caused liver injury. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GTP), total bilirubin (T-Bil), direct bilirubin (D-Bil), total bile acid (TBA) and bile flow were measured to evaluate the protective effect of Danning tablet at 48h after ANIT treatment. Furthermore, protective mechanisms of Danning tablet against ANIT-induced liver injury were elucidated by assays of liver enzyme activities and component contents including myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase (CAT) and glutathione S-transferase (GST), as well as liver lipid peroxide (LPO) and glutathione (GSH). The biochemical observations were supplemented by histopathological examination. Phytochemical analysis of Danning tablet was performed by UPLC-MASS. RESULTS Obtained results demonstrated that high dose (3g/kg) of Danning tablet significantly prevented ANIT-induced changes in bile flow (P<0.01), and serum levels of ALT, AST, ALP, γ-GTP, T-Bil, D-Bil (P<0.01) and TBA (P<0.05). In addition, ANIT-induced increases in hepatic MPO, GST activities and GSH, LPO contents were significantly (P<0.01) reduced, while SOD, Gpx, CAT activities in the liver tissue which were suppressed by ANIT were significantly (P<0.01) elevated in the groups pretreated with Danning tablet at the dose of 3g/kg B.W. Histopathology of the liver tissue showed that pathological injuries were relieved after Danning tablet (3g/kg) pretreatment. The results also showed that medium dose (1.5g/kg) of Danning tablet exhibited partially protective effect on ANIT-induced liver injury with cholestasis by reversing part of biochemical parameters and histopathological changes. Low dose (0.75g/kg) of Danning tablet did not show any protective effect on ANIT-induced liver injury with cholestasis. Phytochemical analyses revealed the presence of anthraquinones, flavonoids and stilbene in the Danning tablet. CONCLUSION These findings indicate that Danning tablet exerts a dose-dependently protective effect on ANIT-induced liver injury with cholestasis in rats, and the possible mechanism of this activity is likely due to its attenuation of oxidative stress in the liver tissue and neutrophil infiltration.
Collapse
Affiliation(s)
- Li-Li Ding
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 201009, China
| | | | | | | | | | | |
Collapse
|
25
|
García J, Piñol-Ripoll G, Martínez-Ballarín E, Fuentes-Broto L, Miana-Mena F, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuña-Castroviejo D. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging 2011; 32:2045-54. [DOI: 10.1016/j.neurobiolaging.2009.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/28/2022]
|
26
|
Ochoa JJ, Díaz-Castro J, Kajarabille N, García C, Guisado IM, De Teresa C, Guisado R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J Pineal Res 2011; 51:373-80. [PMID: 21615492 DOI: 10.1111/j.1600-079x.2011.00899.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strenuous exercise induces inflammatory reactions together with high production of free radicals and subsequent muscle damage. This study was designed to investigate for the first time and simultaneously whether over-expression of inflammatory mediators, oxidative stress, and alterations in biochemical parameters induced by acute exercise could be prevented by melatonin. This indoleamine is a potent, endogenously produced free radical scavenger and a broad-spectrum antioxidant; consequently, it might have positive effects on the recovery following an exercise session. The participants were classified into two groups: melatonin-treated men (MG) and placebo-treated individuals (controls group, CG). The physical test consisted in a constant run that combined several degrees of high effort (mountain run and ultra-endurance). The total distance of the run was 50 km with almost 2800 m of ramp in permanent climbing and very changeable climatic conditions. Exercise was associated with a significant increase in TNF-α, IL-6, IL-1ra (in blood), and also an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) and isoprostane levels (in urine), and indicated the degree of oxidative stress and inflammation induced. Oral supplementation of melatonin during high-intensity exercise proved efficient in reducing the degree of oxidative stress (lower levels of lipid peroxidation, with a significant increase in antioxidative enzyme activities); this would lead to the maintenance of the cellular integrity and reduce secondary tissue damage. Data obtained also indicate that melatonin has potent protective effects, by preventing over-expression of pro-inflammatory mediators and inhibiting the effects of several pro-inflammatory cytokines. In summary, melatonin supplementation before strenuous exercise reduced muscle damage through modulation of oxidative stress and inflammation signaling associated with this physical challenge.
Collapse
Affiliation(s)
- Julio J Ochoa
- Department of Physiology, University of Granada, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Golbar HM, Izawa T, Yano R, Ichikawa C, Sawamoto O, Kuwamura M, LaMarre J, Yamate J. Immunohistochemical Characterization of Macrophages and Myofibroblasts in α-Naphthylisothiocyanate (ANIT)–Induced Bile Duct Injury and Subsequent Fibrogenesis in Rats. Toxicol Pathol 2011; 39:795-808. [DOI: 10.1177/0192623311413790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To investigate pathogenesis of post–bile duct (BD) injury fibrosis, interlobular BD epithelial injury was induced in male F344 rats by a single IP injection of α-naphthylisothiocyanate (75 mg/kg body weight) and rats were observed for 12 days. On days 1 to 2, cholangiocytes were injured and desquamated. On days 3 to 5, the affected BD began to regenerate, showing positive staining for CK19 and vimentin. On days 5 to 9, fibrotic areas gradually developed around regenerating BD in Glisson’s sheath. These consisted of cells positive for vimentin, desmin, and α-SMA; vimentin- and desmin-positive cells were increased in early stage (days 1–3), whereas α-SMA-positive cells appeared in mid (days 4–7) and late stages (days 8–12), although there were cells coexpressing these cytoskeletons. On day 12, BD regeneration almost completed, with reduced fibrosis. Macrophages positive for ED2 (CD163) increased transiently in early stage, whereas those reacting to ED1 (CD68), OX6 (MHC II), and SRA-E5 (CD204) showed a consistent increase throughout the experiment. Interestingly, OX6-positive cells were limited to Glisson’s sheath, whereas SRA-E5-positive cells were seen exclusively along sinusoids of hepatic lobules. MCP-1 mRNA increased significantly in early stage. This study shows that macrophages exhibiting different immunophenotypes and distributions participate in post-BD injury fibrosis associated with myofibroblasts expressing various mesenchymal cytoskeletons.
Collapse
Affiliation(s)
- Hossain M. Golbar
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Takeshi Izawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ryo Yano
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Chisa Ichikawa
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Osamu Sawamoto
- Safety Evaluation, Preclinical Assessment, Otsuka Pharmaceutical Factory, Tokushima, Japan
| | - Mitsuru Kuwamura
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
28
|
Aydin M, Oktar S, Ozkan OV, Alçin E, Oztürk OH, Nacar A. Letrozole induces hepatotoxicity without causing oxidative stress: the protective effect of melatonin. Gynecol Endocrinol 2011; 27:209-15. [PMID: 20528203 DOI: 10.3109/09513590.2010.488769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM The aim of this study was to determine the effects of letrozole (LTZ), an aromatase inhibitor (AI), and melatonin (MLT) on hepatic function and oxidative stress in female rats. MATERIAL AND METHODS A total of 32 female rats were divided equally into four groups (n = 8). Control group received saline (0.5 ml/day, oral gavage). LTZ was administered to rats by daily oral gavage at 1 mg/kg dose. LTZ + MLT group was given LTZ (1 mg/kg, oral gavage) plus MLT (0.5 mg/kg/day, s.c.). MLT group was given MLT (0.5 mg/kg/day) by s.c. injection. The activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) levels were measured in liver tissue. Total antioxidant capacity (TAC), total oxidant status (TOS), ALT, AST, GGT, ALP, LDH, bilirubin, BUN, creatinine, total cholesterol (TC), high-density lipoprotein (HDL) and triglyceride (TG) were assayed in serum samples. RESULTS The oxidative stress parameters did not differ between groups. LTZ administration increased hepatic function parameters such as AST, LDH, ALP, bilirubin and MLT improved the disturbances of hepatic function. LTZ caused minimal histological changes in liver tissue and MLT treatment reversed those dejenerations. DISCUSSION LTZ may cause hepatotoxicity without inducing oxidative stress and MLT restores hepatic activity.
Collapse
Affiliation(s)
- Mehmet Aydin
- Medical Faculty of Mustafa Kemal University, Department of Physiology, Hatay, Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
30
|
Aranda M, Albendea CD, Lostalé F, López-Pingarrón L, Fuentes-Broto L, Martínez-Ballarín E, Reiter RJ, Pérez-Castejón MC, García JJ. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and pinoline. J Pineal Res 2010; 49:78-85. [PMID: 20524971 DOI: 10.1111/j.1600-079x.2010.00769.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protective in vivo effects of melatonin or pinoline on carbon tetrachloride (CCl(4))-induced oxidative damage were investigated in liver of rats and compared to rats injected only with CCl(4) (5 mL/kg body weight). Hepatic cell membrane fluidity, monitored using fluorescence spectroscopy, exhibited a significant decrease in animals exposed to CCl(4) compared to control rats. Increases in lipid and protein oxidation, as assessed by concentrations of malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA), and protein carbonylation, respectively, were also seen in hepatic homogenates of animals exposed to CCl(4). The administration of melatonin (10 mg/kg body weight) or pinoline injected 30 min before and 1 hr after CCl(4), fully prevented membrane rigidity and protein oxidation. However, treatment with melatonin was more effective in terms of reducing lipid peroxidation than pinoline, as the increases in MDA+4-HDA levels because of CCl(4) were reduced by 93.4% and 34.4% for melatonin or pinoline, respectively. Livers from CCl(4)-injected rats showed several histopathological alterations; above all, there were signs of necrosis and ballooning degeneration. The concurrent administration of melatonin or pinoline reduced the severity of these morphological changes. On the basis of the biochemical and histopathological findings, we conclude that both melatonin and pinoline were highly effective in protecting the liver against oxidative damage and membrane rigidity because of CCl(4). Therefore, these indoles may be useful as cotreatments for patients with hepatic intoxication induced by CCl(4).
Collapse
Affiliation(s)
- M Aranda
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Int J Mol Sci 2010; 11:312-28. [PMID: 20162018 PMCID: PMC2821006 DOI: 10.3390/ijms11010312] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 12/15/2022] Open
Abstract
Since biological membranes are composed of lipids and proteins we tested the in vitro antioxidant properties of several indoleamines from the tryptophan metabolic pathway in the pineal gland against oxidative damage to lipids and proteins of synaptosomes isolated from the rat brain. Free radicals were generated by incubation with 0.1 mM FeCl3, and 0.1 mM ascorbic acid. Levels of malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA), and carbonyl content in the proteins were measured as indices of oxidative damage to lipids and proteins, respectively. Pinoline was the most powerful antioxidant evaluated, with melatonin, N-acetylserotonin, 5-hydroxytryptophan, 5-methoxytryptamine, 5-methoxytryptophol, and tryptoline also acting as antioxidants.
Collapse
|
32
|
Effects of Tryptophan and 5-Hydroxytryptophan on the Hepatic Cell Membrane Rigidity Due to Oxidative Stress. J Membr Biol 2009; 231:93-9. [DOI: 10.1007/s00232-009-9208-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/21/2009] [Indexed: 01/08/2023]
|
33
|
Hu S, Yin S, Jiang X, Huang D, Shen G. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol 2009; 616:287-92. [PMID: 19576882 DOI: 10.1016/j.ejphar.2009.06.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 12/16/2022]
Abstract
Melatonin is reported to exhibit a wide variety of biological effects, including antioxidant and anti-inflammatory. Previous studies show that melatonin has a protective role in different types of liver injury and fibrosis. But its role in the pathogenesis of alcoholic liver injury remains obscure. The present investigation was designed to determine the effects of melatonin on alcohol-induced hepatic injury in mice. The degree of alcoholic liver injury was evaluated by measuring serum markers and pathological examination. Treatment with melatonin significantly attenuated the increased level of serum aminotransferase, reduced the severe extent of hepatic cell damage, steatosis and the immigration of inflammatory cells, but had no effects on hepatic expression of lipogenic genes. Furthermore, melatonin decreased serum and tissue inflammatory cytokines levels, tissue lipid peroxidation, neutrophil infiltration and inhibited the apoptosis of hepatocytes. Kupffer cells isolated from ethanol-fed mice produced high amounts of reactive oxygen species and tumor necrosis factor alpha, whereas Kupffer cells from melatonin treatment mice produced less reactive oxygen species and tumor necrosis factor alpha compared with model alcohol-feeding mice. These findings suggest that melatonin may represent a novel, protective strategy against alcoholic liver injury by attenuating oxidative stress, inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Shilian Hu
- Department of Geriatrics, Anhui Evidence-based Medicine Center, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.
| | | | | | | | | |
Collapse
|
34
|
Gesing A, Karbownik-Lewinska M. Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats. Cell Biochem Funct 2008; 26:314-9. [PMID: 17868196 DOI: 10.1002/cbf.1438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Reactive oxygen species are considered to participate in the main mechanism of aflatoxin toxicity. Melatonin (Mel) is a hormone which has antioxidative activities. N-acetylserotonin (NAc-5HT) is an immediate precursor of Mel. Melatonin is documented to be completely safe in humans and animals. The aim of our study was to examine the potential protective effects of Mel or NAc-5HT against lipid peroxidation (LPO), caused by AFB1 in male Wistar rats. Mel and NAc-5HT were intraperitoneally (i.p.) injected for 3 weeks in late afternoon (16:00-18:00) injections (20 mg kg(-1) BW/daily). AFB1 (50 microg kg(-1) BW/daily) was administered i.p. 6 h prior to indoleamine injections. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), as an index of LPO, were measured in liver, brain, lung, testis and kidney homogenates. The level of LPO in tissue homogenates was expressed as the amount of MDA + 4-HDA (nmol) per milligram of protein. AFB1 increased LPO in the liver, lung, brain and testis, but not the kidney. The increase of LPO caused by AFB1 injections was completely prevented by either Mel or NAc-5HT in all the tissues examined. Melatonin can be considered as a protective pharmacological agent in intoxication with AFB1 and the protective effect of NAc-5HT against aflatoxin-induced LPO broadens the knowledge about its antioxidative properties.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Chair of Endocrinology and Metabolic Diseases, Medical University of Łódź, Poland.
| | | |
Collapse
|
35
|
Wang H, Xu DX, Lv JW, Ning H, Wei W. Melatonin attenuates lipopolysaccharide (LPS)-induced apoptotic liver damage in d-galactosamine-sensitized mice. Toxicology 2007; 237:49-57. [PMID: 17602819 DOI: 10.1016/j.tox.2007.04.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 04/23/2007] [Accepted: 04/30/2007] [Indexed: 11/19/2022]
Abstract
D-Galactosamine (GalN) depletes UTP primarily in liver, resulting in decreased RNA synthesis in hepatocytes. When given together with a sublethal dose of lipopolysaccharide (LPS), GalN highly sensitizes animals to produce apoptotic liver injury with severe hepatic congestion, resulting in rapid death. Melatonin is a cytokine modulator, antioxidant and anti-apoptotic agent. In the present study, we investigated the effect of melatonin on LPS-induced apoptotic liver damage in GalN-sensitized mice. Female CD-1 mice were intraperitoneally (i.p.) injected with melatonin (5.0mg/kg) 30min before GalN/LPS (700mg10microg/kg, i.p.), another two doses of melatonin (2.5mg/kg, i.p.) being administered 1 and 2h after GalN/LPS. Results showed that serum alanine aminotransferase (ALT) activities were markedly increased 8h after GalN/LPS treatment, massive hemorrhage being observed in histological sections of liver from GalN/LPS-treated mice. Melatonin significantly attenuated GalN/LPS-induced elevation of serum ALT. In parallel, melatonin distinctly improved GalN/LPS-induced congestion. Additional experiment showed that melatonin significantly attenuated GalN/LPS-induced hepatic apoptosis, measured by inhibition of caspase-3 activities and attenuation of DNA laddering. Furthermore, melatonin markedly increased hepatic Se-dependent glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) activities and attenuated hepatic glutathione (GSH) depletion in GalN/LPS-treated mice. Increases in serum tumor necrosis factor alpha (TNF-alpha), which were observed in GalN/LPS-treated mice, were significantly reduced by melatonin. However, melatonin had no effect on LPS-evoked nitric oxide production in GalN-sensitized mice. Taken together, these results indicate that melatonin protected against LPS-induced liver damage in GalN-sensitized mice through its strong ROS-scavenging, antiinflammatory and antiapoptotic effects.
Collapse
Affiliation(s)
- Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, PR China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, PR China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China.
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, PR China
| | - Huan Ning
- Department of Toxicology, Anhui Medical University, Hefei 230032, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
36
|
Ohta Y, Kongo-Nishimura M, Imai Y, Kitagawa A. Melatonin attenuates disruption of serum cholesterol status in rats with a single alpha-naphthylisothiocyanate treatment. J Pineal Res 2007; 42:159-65. [PMID: 17286748 DOI: 10.1111/j.1600-079x.2006.00397.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study was performed to examine whether melatonin attenuates disruption of serum cholesterol status in rats treated once with alpha-naphthylisothiocyanate (ANIT). In the serum of rats treated with ANIT (75 mg/kg, i.p.), increases in total cholesterol, free cholesterol (F-Chol), low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and total bile acid concentrations and a decrease in the ratio of esterified cholesterol concentration to F-Chol concentration occurred 24 hr, but not 12 hr, after the treatment. In the liver of ANIT-treated rats, a decrease in cholesterol concentration and an increase in total bile acid concentration occurred 24 hr, after 12 hr, after the treatment. When melatonin (10 or 100 mg/kg, p.o.) was administered to ANIT-treated rats at 12 hr after the treatment, all these changes found in the serum and liver at 24 hr after the treatment were significantly attenuated at the higher dose. Melatonin (100 mg/kg) administered to ANIT-untreated rats in the same manner increased the serum F-Chol and high-density lipoprotein cholesterol concentrations significantly. These results indicate that orally administered melatonin attenuates the disruption of serum cholesterol status in rats treated once with ANIT possibly by maintaining cholesterol metabolism and transport in the serum and liver.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
37
|
Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42:28-42. [PMID: 17198536 DOI: 10.1111/j.1600-079x.2006.00407.x] [Citation(s) in RCA: 1122] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin's interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans. Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
38
|
Ohta Y, Kongo-Nishimura M, Imai Y, Matsura T, Kitagawa A, Yamada K. α-Tocopherol protects against α-naphthylisothiocyanate-induced hepatotoxicity in rats less effectively than melatonin. Chem Biol Interact 2006; 161:115-24. [PMID: 16626673 DOI: 10.1016/j.cbi.2006.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 12/22/2022]
Abstract
The protective effect of alpha-tocopherol (alpha-Toc), which exerts antioxidant and anti-inflammatory actions, against alpha-naphthylisothiocyanate (ANIT)-induced hepatotoxicity in rats was compared with that of melatonin because orally administered melatonin is known to protect against ANIT-induced hepatotoxicity in rats through its antioxidant and anti-inflammatory actions. Rats intoxicated once with ANIT (75 mg/kg, intraperitoneal (i.p.)) showed liver cell damage and biliary cell damage with cholestasis at 24 h, but not 12 h, after intoxication. ANIT-intoxicated rats received alpha-Toc (100 or 250 mg/kg) or melatonin (100 mg/kg) orally at 12 h after intoxication. The alpha-Toc administration protected against liver cell damage in ANIT-intoxicated rats, while the melatonin administration protected against both liver cell damage and biliary cell damage with cholestasis. ANIT-intoxicated rats had increased hepatic lipid peroxide concentration and myeloperoxidase activity at 12 and 24 h after intoxication. ANIT-intoxicated rats also had increased serum alpha-Toc and non-esterified fatty acid (NEFA) concentrations at 12 and 24 h after intoxication and increased serum triglyceride and total cholesterol concentrations at 24h. The administration of alpha-Toc to ANIT-intoxicated rats increased the hepatic alpha-Toc concentration with further increase in the serum alpha-Toc concentration and attenuated the increased hepatic lipid peroxide concentration and myeloperoxidase activity and serum NEFA concentration at 24 h after intoxication. The melatonin administration did not affect the hepatic alpha-Toc concentration but attenuated the increased hepatic lipid peroxide concentration and myeloperoxidase activity and serum alpha-Toc, NEFA, triglyceride, and total cholesterol concentrations at 24 h after ANIT intoxication. These results indicate that orally administered alpha-Toc protects against ANIT-induced hepatotoxicity in rats possibly through its antioxidant and anti-inflammatory actions less effectively than orally administered melatonin.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Marquez E, Sánchez-Fidalgo S, Calvo JR, la de Lastra CA, Motilva V. Acutely administered melatonin is beneficial while chronic melatonin treatment aggravates the evolution of TNBS-induced colitis. J Pineal Res 2006; 40:48-55. [PMID: 16313498 DOI: 10.1111/j.1600-079x.2005.00275.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the effects of melatonin on the inflammatory response and hydroxyproline production in an experimental acute and chronic model of trinitrobenzene sulfonic (TNBS) acid-induced colitis in Wistar rats. In the acute model, melatonin (0.5, 1, and 2 mg/kg, i.p.) was applied 48, 24, and 1 hr prior to the induction of colitis and 24 and 48 hr after; the severity of colitis was less evident in melatonin-treated animals with significant response in the group treated with 2 mg/kg. All doses investigated significantly reduced the myeloperoxidase activity (MPO). In the chronic studies, melatonin (1 and 2 mg/kg, i.p.) was administered daily 24 hr before hapten instillation and for 7 or 21 days after TNBS; melatonin (2 mg/kg) worsened colitis evolution in the 21-day study with a significant increase in MPO activity and tumor necrosis factor-alpha production with respect to TNBS group. Histological slides were in concordance with macroscopic data where areas of extensive necrosis and edema, fibrosis, and absence of regenerated epithelium were observed. Moreover, the hydroxyproline determination, used as indicator of collagen production and fibrosis, also showed a marker increase. The results obtained in this experimental model showed that short-term administration is protective while in the long term it negatively influences evolution of inflammatory colitis; therefore, the immunostimulatory effect of melatonin in some situations when given chronically, such as during inflammatory bowel disease, might lead to negative consequences.
Collapse
Affiliation(s)
- Esther Marquez
- Department of Pharmacology, School of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
40
|
Wang H, Wei W, Wang NP, Gui SY, Wu L, Sun WY, Xu SY. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci 2005; 77:1902-15. [PMID: 15925388 DOI: 10.1016/j.lfs.2005.04.013] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 04/15/2005] [Indexed: 11/30/2022]
Abstract
Melatonin is reported to exhibit a wide variety of biological effects, including antioxidant and anti-inflammatory. Evidence shows the important role of oxidative stress in the etiopathogenesis of hepatic fibrosis. The aim of this study was to investigate the protective effects of administration of melatonin in rats with carbon tetrachloride-induced fibrosis for 6 weeks. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examinations. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) levels were evaluated in tissue homogenates by spectrophotometry. The nuclear factor-kappaB (NF-kappaB) in liver tissue was examined by immunohistochemistry. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) concentrations in Kupffer cells (KCs) culture supernatants were measured with ELISA. The rats injected subcutaneously with CCl4 for 6 weeks resulted in hepatic fibrotic changes increased hydroxyproline and MDA levels, and decreased GSH-px and SOD levels, whereas melatonin reversed these effects. Furthermore, melatonin inhibited the expression of NF-kappaB in liver tissue and decreasing production of proinflammatory cytokines such as TNF-alpha and IL-1beta from KCs in fibrotic rats. These present results suggest that melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress and proinflammatory cytokines production.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang H, Wei W, Zhang SY, Shen YX, Yue L, Wang NP, Xu SY. Melatonin-selenium nanoparticles inhibit oxidative stress and protect against hepatic injury induced by Bacillus Calmette-Guérin/lipopolysaccharide in mice. J Pineal Res 2005; 39:156-63. [PMID: 16098093 DOI: 10.1111/j.1600-079x.2005.00231.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Melatonin-selenium nanoparticles (MT-Se), a novel complex, were synthesized by preparing selenium nanoparticles in melatonin medium. The present investigation was designed to determine the protective effects of MT-Se against Bacillus Calmette-Guérin (BCG)/lipopolysaccharide (LPS)-induced hepatic injury in mice. In BCG/LPS-induced hepatic injury model, MT-Se administered (i.g.) at doses of 5, 10, or 20 mg/kg to BCG/LPS-treated mice for 10 days, significantly reduced the increase in plasma aminotransferase, reduced the severe extent of hepatic cell damage and the immigration of inflammatory cells. The MT-Se particles also attenuated the increase in the content of thiobarbituric acid-reactive substances and enhanced the decrease in reduced activities of superoxide dismutase and glutathione peroxidase (GPx). However, treatment with MT-Se suppressed the increase in nitric oxide levels both in plasma and liver tissue. Furthermore, supplementation with MT-Se at the dose of 10 mg/kg (composed of 9.9 mg/kg melatonin and 0.1 mg/kg selenium) had great capability to protect against hepatocellular damage than a similar dose of melatonin (10 mg/kg) or selenium (0.1 mg/kg) alone. This effect may relate to its higher antioxidant efficacy in decreasing lipid peroxidation and increasing GPx activity. These results suggest that the mode of MT-Se hepatic protective action is, at least in part, related to its antioxidant properties.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang H, Wei W, Zhang SY, Shen YX, Wang NP, Yue L, Xu SY. Melatonin-selenium nanoparticles protects liver against immunological injury induced by bacillus Calmette-Guerin and lipopolysaccharide. Acta Pharmacol Sin 2005; 26:745-52. [PMID: 15916742 DOI: 10.1111/j.1745-7254.2005.00745.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM Melatonin-selenium nanoparticle (MT-Se), a novel complex, was synthesized by preparing selenium nanoparticles in a melatonin medium. The present investigation was designed to determine the protective effects of MT-Se against immunological liver injury in mice induced by bacillus Calmette-Guerin (BCG)/lipopolysaccharide (LPS). METHODS The model of immunological liver injury in mice was prepared. The levels of alanine aminotransferase, aspartate amino-transferase, nitric oxide (NO) in serum, malondialdehyde content, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activities in a liver homogenate were assayed by spectrophotometry. The content of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) were determined by ELISA. The splenocyte proliferation was assayed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) dye reduction. Meanwhile, a hepatic pathological examination was observed. RESULTS In the BCG/LPS-induced hepatic injury model, MT-Se administered at doses of 5, 10, or 20 mg/kg to the BCG/LPS-treated mice for 10 d significantly reduced the increase in serum aminotransferase, reduced the severe extent of hepatic cell damage and the immigration of inflammatory cells. It also attenuated the increase in the content of thiobarbituric acid-reactive substances and enhanced the decrease in activities of SOD and GSH-px. In contrast, the treatment with MT-Se suppressed the increase in NO level in both the serum and liver tissue. Furthermore, MT-Se significantly lowered an increase in TNF-alpha and IL-1beta levels in the liver and inhibited the production of TNF- alpha and IL-1beta by peritoneal macrophages. A downregulation effect of MT-Se on splenocyte proliferation was also observed. CONCLUSION MT-Se showed a hepatic protective action on immunological liver injury in mice.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Aguiar LM, Macedo DS, de Freitas RM, de Albuquerque Oliveira A, Vasconcelos SMM, de Sousa FCF, de Barros Viana GS. Protective effects of N-acetylserotonin against 6-hydroxydopamine-induced neurotoxicity. Life Sci 2005; 76:2193-202. [PMID: 15733934 DOI: 10.1016/j.lfs.2004.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/25/2004] [Indexed: 10/25/2022]
Abstract
The present work studied in vivo neuroprotective effects of n-acetylserotonin (NAS), the immediate precursor of melatonin, on the dopaminergic system, in rats lesioned with the unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). Two weeks after the lesion, the dopamine receptor agonist, apomorphine, produced rotational asymmetry, and the NAS treatment significantly reduced the motor deficit following the apomorphine challenge. The apomorphine-induced rotational behavior was blocked by 84, 86 and 53% after NAS, at doses of 2, 5 and 10 mg/kg, i.p., respectively. The injection of 6-OHDA significantly decreased DA, DOPAC and HVA levels in the rat striatum. In contrast, the NAS (2, 5 and 10 mg/kg, i.p., daily for 7 days) treatment partially reversed the decreases caused by 6-OHDA, and the neurotransmitter levels were brought to approximately 50% of that observed in the contralateral sides. NAS was more efficient at the smaller doses. NAS (5 mg/kg) produced an up-regulation of D1 (37%) and D2 (37%) receptors associated with a decrease in Kd values.
Collapse
|
44
|
Abstract
In order to examine the effect of exogenous melatonin on selected biochemical variables of the blood in ruminants, dairy cows were given the pineal gland hormone in the dose of 0.1 mg/kg body weight. One and four hours after melatonin administration blood samples were collected from the cows in the control and the treated group in order to determine the levels of glucose, insulin, total cholesterol, triglycerides, free fatty acids, as well as the activities of alanine and aspartate aminotransferase. The pineal gland hormone caused a significant increase in the levels of total cholesterol and triglycerides, slight increases in glucose and insulin levels, and a significant decrease in the concentration of free fatty acids. Melatonin did not exert an effect on the activity of liver enzymes.
Collapse
Affiliation(s)
- Katarzyna Darul
- Department of Animal Nutrition and Feed Management, August Cieszkowski Agricultural University, ul Wołyńska 33, 60-637 Poznań, Poland
| | | |
Collapse
|
45
|
Gavazza MB, Català A. Protective effect of N-acetyl-serotonin on the nonenzymatic lipid peroxidation in rat testicular microsomes and mitochondria. J Pineal Res 2004; 37:153-60. [PMID: 15357659 DOI: 10.1111/j.1600-079x.2004.00150.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-acetyl-serotonin, the immediate precursor of melatonin in the tryptophan metabolic pathway in the pineal gland, has been reported to be an antioxidant. The aim of this study was to test the in vitro protective effect of N-acetyl-serotonin on the ascorbate-Fe(++) induced lipid peroxidation of polyunsaturated fatty acids (PUFAs) located in testis microsomes and mitochondria. We assayed increasing concentrations (0-10 mM) of N-acetyl-serotonin in testis microsomes and (0-1 mM) of N-acetyl-serotonin in testis mitochondria. Control experiments were performed by incubating microsomal and mitochondrial membranes with N-acetyl-serotonin in the absence of lipid peroxidation-inducing drugs. Special attention was paid to the changes produced on the highly PUFAs C20:4 n6 and C22:5 n6. The light emission (chemiluminescence) used as a marker of lipid peroxidation was similar in both organelles when the control and peroxidized groups were compared. N-acetyl-serotonin reduced lipid peroxidation in testicular microsomes or mitochondria for both C20:4 n6 and C22:5 n6. Both long chain PUFAs were protected when N-acetyl-serotonin was incorporated either into microsomes or mitochondria. The N-acetyl-serotonin concentration required to inhibit by approximately 70% lipid peroxidation process was 10 mM in microsomes and between 0.50 and 1 mM in mitochondria. IC 50 values calculated from the inhibition curve of N-acetyl-serotonin on the chemiluminescence rates were higher in microsomes (4.50 mM) than in mitochondria (0.25 mM). In these experimental conditions, N-acetyl-serotonin was about 18 times more potent in testicular mitochondria in inhibiting the oxidative processes than it was in testicular microsomes. These results suggest that the protective role of N-acetyl-serotonin in preserving the long PUFAs may be related to its ability to reduce lipid peroxidation.
Collapse
Affiliation(s)
- Mariana B Gavazza
- Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, B1900 AVW La Plata, Argentina
| | | |
Collapse
|
46
|
Karbownik M, Lewiński A. Melatonin reduces fenton reaction-induced lipid peroxidation in porcine thyroid tissue. J Cell Biochem 2003; 90:806-11. [PMID: 14587035 DOI: 10.1002/jcb.10689] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Free radicals and reactive oxygen species (ROS) participate in physiological and pathological processes in the thyroid gland. Bivalent iron cation (ferrous, Fe(2+)), which initiates the Fenton reaction (Fe(2+) + H2O2 --> Fe(3+) + *OH + OH(-)) is frequently used to experimentally induce oxidative damage, including that caused by lipid peroxidation. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of carcinogenesis. In turn, melatonin is a well-known antioxidant and free radical scavenger. The aim of the study was to estimate the effect of melatonin on basal and iron-induced lipid peroxidation in homogenates of the porcine thyroid gland. In order to determine the effect of melatonin on the auto-oxidation of lipids, thyroid homogenates were incubated in the presence of that indoleamine in concentrations of 0.0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.25, 0.5, 1.0, 2.5, or 5.0 mM. To study melatonin effects on iron-induced lipid peroxidation, the homogenates were incubated in the presence of FeSO(4) (40 microM) plus H2O2 (0.5 mM), and, additionally, in the presence of melatonin in the same concentrations as above. The degree of lipid peroxidation was expressed as the concentration of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. Melatonin, in a concentration-dependent manner, decreased lipid peroxidation induced by Fenton reaction, without affecting the basal MDA + 4-HDA levels. In conclusion, melatonin protects against iron + H2O2-induced peroxidation of lipids in the porcine thyroid. Thus, the indoleamine would be expected to prevent pathological processes related to oxidative damage in the thyroid, cancer initiation included.
Collapse
Affiliation(s)
- Małgorzata Karbownik
- Department of Endocrinology and Isotope Therapy, Medical University of Łódź, Polish Mother's Memorial Hospital-Research Institute, Łódź, Poland
| | | |
Collapse
|
47
|
Ohta Y, Kongo M, Kishikawa T. Preventive effect of melatonin on the progression of alpha-naphthylisothiocyanate-induced acute liver injury in rats. J Pineal Res 2003; 34:185-93. [PMID: 12614478 DOI: 10.1034/j.1600-079x.2003.00027.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The preventive effect of melatonin on the progression of alpha-naphthylisothiocyanate (ANIT)-induced acute liver injury with cholestasis was examined in rats treated once with the hepatotoxin [75 mg/kg body weight (BW), i.p.]. In rats treated with ANIT alone, liver injury with cholestasis occurred 24 hr after treatment and progressed at 48 hr, judging from the serum levels of hepatobiliary marker enzymes and components. Melatonin (10 or 100 mg/kg BW) was orally administered to the ANIT-treated rats, 24 hr after the hepatotoxin treatment at which time hepatic injury had already developed. The administered indoleamine prevented the progression of liver cell damage rather than biliary cell damage more effectively at the higher dose than at the lower dose. In rats treated with ANIT alone, the serum and hepatic concentrations of thiobarbituric acid reactive substances, an index of lipid peroxidation, and the hepatic activity of myeloperoxidase, an index of tissue neutrophil infiltration, increased 24 hr after treatment and further increased at 48 hr. In the liver of rats treated with ANIT alone, Cu,Zn-superoxide dismutase activity decreased 24 hr after treatment and was further reduced at 48 hr, although there was no change in Mn-superoxide dismutase activity. Catalase and Se-glutathione peroxidase activities also decreased at 48 hr, while reduced glutathione concentrations remained increased at 24 and 48 hr. The melatonin administered to the ANIT-treated rats attenuated the increases in serum and hepatic concentrations of thiobarbituric acid reactive substances and the decreases in hepatic activities of Cu,Zn-superoxide dismutase, catalase, and Se-glutathione peroxidase found at 48 hr after the hepatotoxin treatment more effectively at the higher dose than at the lower dose; on the other hand, melatonin treatment had no effect on the increases in hepatic myeloperoxidase activity and reduced glutathione concentration found at 48 h. These results indicate that orally administered melatonin at pharmacological doses prevents the progression of ANIT-induced acute liver injury, mainly liver cell damage, in rats, and suggest that the administered melatonin exerts these preventive effects through its direct and indirect antioxidant actions.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Japan.
| | | | | |
Collapse
|
48
|
Oliveira PJ, Rolo AP, Seiça R, Santos MS, Palmeira CM, Moreno AJM. Cardiac Mitochondrial Calcium Loading Capacity Is Severely Affected after Chronic Cholestasis in Wistar Rats. J Investig Med 2003. [DOI: 10.2310/6650.2003.34205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Ohta Y, Kongo M, Kishikawa T. Melatonin exerts a therapeutic effect on cholestatic liver injury in rats with bile duct ligation. J Pineal Res 2003; 34:119-26. [PMID: 12562503 DOI: 10.1034/j.1600-079x.2003.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We examined whether melatonin exerts a therapeutic effect on cholestatic liver injury in rats treated with bile duct ligation (BDL). Cholestatic liver injury was induced in male Wistar rats aged 4 wk by ligating the bile duct. Cholestatic liver injury developed 5 days after BDL and continued to 13 days, judging from the levels of serum hepatobiliary injury markers. The serum concentration of thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation, and the hepatic level of TBARS and the activity of hepatic myeloperoxidase, an index of tissue neutrophil infiltration, increased 5 days after BDL, and these increases were enhanced at 13 days. A similar increase in the serum total cholesterol concentration occurred 5 and 13 days after BDL, while the hepatic cholesterol concentration tended to increase at 13 days. When melatonin [10 or 100 mg/kg body weight (BW)] was orally administered to BDL-treated rats everyday for 8 days, starting 5 days after BDL, the indoleamine attenuated cholestatic liver injury observed at 13 days after BDL was more effective at the higher dose than at the lower dose. The administered melatonin (10 or 100 mg/kg BW) reduced the increases in serum and hepatic TBARS concentrations and hepatic myeloperoxidase activity observed at 13 days after BDL and the higher dose of indoleamine was more effective than the lower dose. Neither dose of melatonin affected the increased serum total cholesterol concentration or the hepatic cholesterol concentration observed at 13 days after BDL. These results indicate that orally administered melatonin at pharmacological doses exerts a therapeutic effect on cholestatic liver injury in rats with BDL possibly through its antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Yoshiji Ohta
- Department of Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | |
Collapse
|
50
|
Oliveira PJ, Rolo AP, Seiça R, Santos MS, Palmeira CM, Moreno AJM. Cardiac Mitochondrial Calcium Loading Capacity is Severely Affected after Chronic Cholestasis in Wistar Rats. J Investig Med 2003. [DOI: 10.1177/108155890305100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Cardiovascular changes correlated with some forms of hepatic disease are being reported in the literature. Objectives: The aim of this work was to characterize cardiac mitochondrial bioenergetics and calcium buffering capacity in Wistar rats injected with six weekly doses of α-naphthylisothio-cyanate (ANIT), a compound known to induce cholestasis in animal models. Methods Isolated heart mitochondria were obtained from both injected and control animals and bioenergetic parameters were measured, as well as the capacity to buffer externally added calcium and the mitochondrial content of reduced protein thiol groups. Blood biochemistry analyses were obtained at the initial and end points of treatment. The in vitro ANIT effect on isolated heart mitochondria was also studied. Results and Discussion Our results showed that the respiratory control ratio was the only parameter affected in injected animals ( p < .05, n = 5). Nevertheless, heart mitochondria from injected animals showed an inability to accumulate added calcium owing to an increased susceptibility to the calcium-dependent mitochondrial permeability transition ( p < .0001, n = 5). The effects were still present 1 week after ending ANIT administration, when serum markers for liver injury and hyperbilirubinemia were already abated (although in the presence of bile duct proliferation). To our knowledge, this is the first time that cardiac mitochondrial calcium homeostasis and mitochondrial respiratory ratio are seen affected during ANIT-induced cholestasis, prevailing even in the absence of hepatic damage serum markers.
Collapse
Affiliation(s)
- Paulo J. Oliveira
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Anabela P. Rolo
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Maria S. Santos
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Carlos M. Palmeira
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - António J. M. Moreno
- Dep. Zoologici, Faculdade de Ciências e Tecnologia, Faculdade de Medicina Centro de Neurociências de Coimbra de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|