1
|
Kurnikowski A, Werzowa J, Hödlmoser S, Krenn S, Paschen C, Mussnig S, Tura A, Harreiter J, Krebs M, Song PX, Eller K, Pascual J, Budde K, Hecking M, Schwaiger E. Continuous Insulin Therapy to Prevent Post-Transplant Diabetes Mellitus: A Randomized Controlled Trial. Kidney Med 2024; 6:100860. [PMID: 39157193 PMCID: PMC11326904 DOI: 10.1016/j.xkme.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Rationale & Objectives Hyperglycemia is frequently observed early after transplantation and associated with development of post-transplant diabetes mellitus (PTDM). Here, we assessed continuous subcutaneous insulin infusion (CSII) targeting afternoon hyperglycemia. Study Design Open-label randomized parallel 3-arm design. Settings & Participants In total, 85 kidney transplant recipients without previous diabetes diagnosis were randomized to postoperative CSII therapy, basal insulin, or control. Interventions Insulin was to be initiated at afternoon capillary blood glucose level of ≥140 mg/dL (7.8 mmol/L; CSII and basal insulin) or fasting plasma glucose level of ≥200 mg/dL (11.1 mmol/L; control). Outcomes Hemoglobin A1c (HbA1c) levels at 3 months post-transplant (primary endpoint). PTDM assessed using oral glucose tolerance test at 12 and 24 months. Results CSII therapy lasted until median day 18 and maximum day 88. The median HbA1c value at month 3 was 5.6% (38 mmol/mol) in the CSII group versus 5.7% (39 mmol/mol) in the control group (P = 0.70) and 5.4% (36 mmol/mol) in the basal insulin group (P = 0.02). At months 12 and 24, the odds for PTDM were similar compared with the control group (odds ratios [95% confidence intervals], 0.80 [0.18-3.49] and 0.71 [0.15-3.16], respectively) and the basal insulin group (0.96 [0.18-5.68] and 1.51 [0.24-12.84], respectively). Mild hypoglycemia events occurred in the CSII and the basal insulin groups. Limitations This study is limited by outdated insulin pump technology, frequent discontinuations of CSII, a complex protocol, and concerns regarding reliability of HbA1c measurements. Conclusions CSII therapy was not superior at reducing HbA1c levels at month 3 or PTDM prevalence at months 12 and 24 compared with the control or basal insulin group.
Collapse
Affiliation(s)
- Amelie Kurnikowski
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Johannes Werzowa
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Vienna, Austria
- First Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sebastian Hödlmoser
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Krenn
- Center for Health & Bioresources, Medical Signal Analysis, Austrian Institute of Technology GmbH, Vienna, Austria
| | - Christopher Paschen
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sebastian Mussnig
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| | - Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Medicine, Landesklinikum Scheibbs, Scheibbs, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter X.K. Song
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julio Pascual
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Klemens Budde
- Medizinische Klinik m. S. Nephrologie, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Manfred Hecking
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Kuratorium for Dialysis and Kidney Transplantation (KfH) e.V., Germany
| | - Elisabeth Schwaiger
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I: Cardiology and Nephrology, Hospital of the Brothers of St. John of God, Eisenstadt, Austria
| |
Collapse
|
2
|
Topical Glucocorticoid Use and the Risk of Posttransplant Diabetes. Case Rep Endocrinol 2023; 2023:3648178. [PMID: 36718481 PMCID: PMC9884167 DOI: 10.1155/2023/3648178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Systemically administered glucocorticoids constitute an essential part of the immunosuppressive regimen for transplant recipients, yet their known risks of causing hyperglycemia or posttransplant diabetes require close monitoring and minimisation of use, when possible, to prevent detrimental effects on patient morbidity and graft survival. Topical glucocorticoids, on the other hand, are rarely considered to affect glucose metabolism and therefore seldomly monitored, despite their wide and in some cases, long-term use. We report a case of a renal transplant recipient presenting with acute hyperosmolar hyperglycemia after treatment with topical glucocorticoids and present a mini review of the literature.
Collapse
|
3
|
Nandula SA, Boddepalli CS, Gutlapalli SD, Lavu VK, Abdelwahab Mohamed Abdelwahab R, Huang R, Potla S, Bhalla S, AlQabandi Y, Balani P. New-Onset Diabetes Mellitus in Post-renal Transplant Patients on Tacrolimus and Mycophenolate: A Systematic Review. Cureus 2022; 14:e31482. [PMID: 36532903 PMCID: PMC9750229 DOI: 10.7759/cureus.31482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
A frequent complication in kidney transplantation is post-transplant diabetes mellitus (PTDM). The primary goal of this study is to review the risk factors and preventive methods and compare the different available anti-diabetic medications for the management of PTDM. We searched databases like Pubmed and Google Scholar for related articles using specific terms and phrases. Following a thorough investigation, we applied the inclusion and exclusion criteria and completed a quality assessment. Modifiable risk factors have a significant role in the development of PTDM. The combinations of immunosuppressive treatment tacrolimus (TAC), cyclosporine A (CYC), and everolimus (EVL), steroids increase the incidence of PTDM significantly. Insulin is the most effective treatment for PTDM in the early transplant period; however, oral anti-diabetic medications look promising. Further clinical trials are required to determine the optimum treatment method for reducing the occurrence of PTDM and treating the existing condition with novel anti-hyperglycemic medications.
Collapse
Affiliation(s)
| | - Chinmayi Sree Boddepalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vamsi Krishna Lavu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Ruimin Huang
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shanthi Potla
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sushen Bhalla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Yousif AlQabandi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prachi Balani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Jaszczuk S, Natarajan S, Papalois V. Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review. J Clin Med 2022; 11:3435. [PMID: 35743505 PMCID: PMC9225521 DOI: 10.3390/jcm11123435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Enhanced recovery after surgery (ERAS) protocols are designed to reduce medical complications, the length of hospital stays (LoS), and healthcare costs. ERAS is considered safe and effective for kidney transplant (KTx) surgery. KTx recipients are often frail with multiple comorbidities. As these patients follow an extensive diagnostic pathway preoperatively, the ERAS protocol can ideally be implemented at this stage. Small singular changes in a long perioperative pathway can result in significant positive outcomes. We have investigated the current evidence for an ERAS pathway related to anaesthetic considerations in renal transplant surgery for adult recipients.
Collapse
Affiliation(s)
| | - Shweta Natarajan
- Department of Anaesthesia, Imperial College, London W12 0HS, UK;
| | | |
Collapse
|
5
|
Bashier AM, Kumar D, Alalawi FJ, Al Nour H, Al Hadari AK, Bin Hussain AA. Post-Transplant Diabetes: Prevalence, Risk, and Management Challenges. DUBAI DIABETES AND ENDOCRINOLOGY JOURNAL 2022. [DOI: 10.1159/000522092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prevalence of diabetes and diabetic nephropathy is increasing, especially in middle eastern countries. Many patients reach end-stage renal disease and either start dialysis or consider preemptive transplantation. Even a higher number of patients develop post-transplant diabetes, which imposes an even higher risk on graft survival and outcomes post-transplantation. Recently, in the UAE, a renal transplant service has been initiated. Because the population is considered at high risk for post-transplant diabetes, we wrote this review article to discuss the prevalence, risk factors, diagnostic criteria, and management, including lifestyle interventions, manipulation of immunosuppressant agents, and suggested algorithms for the use of oral hypoglycemic agents used in the management of post-transplantation diabetes mellitus. We also discussed the specific indications for each of the oral hypoglycemic agents.
Collapse
|
6
|
Phillips J, Chen JHC, Ooi E, Prunster J, Lim WH. Global Epidemiology, Health Outcomes, and Treatment Options for Patients With Type 2 Diabetes and Kidney Failure. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:731574. [PMID: 36994340 PMCID: PMC10012134 DOI: 10.3389/fcdhc.2021.731574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
The burden of type 2 diabetes and related complications has steadily increased over the last few decades and is one of the foremost global public health threats in the 21st century. Diabetes is one of the leading causes of chronic kidney disease and kidney failure and is an important contributor to the cardiovascular morbidity and mortality in this population. In addition, up to one in three patients who have received kidney transplants develop post-transplant diabetes, but the management of this common complication continues to pose a significant challenge for clinicians. In this review, we will describe the global prevalence and temporal trend of kidney failure attributed to diabetes mellitus in both developing and developed countries. We will examine the survival differences between treated kidney failure patients with and without type 2 diabetes, focusing on the survival differences in those on maintenance dialysis or have received kidney transplants. With the increased availability of novel hypoglycemic agents, we will address the potential impacts of these novel agents in patients with diabetes and kidney failure and in those who have developed post-transplant diabetes.
Collapse
Affiliation(s)
- Jessica Phillips
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- *Correspondence: Jessica Phillips,
| | - Jenny H. C. Chen
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- Depatment of Nephrology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Esther Ooi
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Janelle Prunster
- Department of Renal Medicine, Cairns Hospital, Cairns, QLD, Australia
| | - Wai H. Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Schwarzenbach M, Bernhard FE, Czerlau C, Sidler D. Chances and risks of sodium-glucose cotransporter 2 inhibitors in solid organ transplantation: A review of literatures. World J Transplant 2021; 11:254-262. [PMID: 34316450 PMCID: PMC8290999 DOI: 10.5500/wjt.v11.i7.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Solid organ transplantation offers life-saving treatment for patients with end-organ dysfunction. Patient survival and quality of life have improved over the past few decades as a result of pharmacological development, expansion of the donor pool, technological advances and standardization of practices related to transplantation. Still, transplantation is associated with cardiovascular complications, of which post-transplant diabetes mellitus (PTDM) is one of the most important. PTDM increases mortality, which is best documented in patients who have received kidney and heart transplants. PTDM results from traditional risk factors seen in patients with type 2 diabetes mellitus, but also from specific post-transplant risk factors such as metabolic side effects of immunosuppressive drugs, post-transplant viral infections and hypomagnesemia. Oral hypoglycaemic agents are the first choice for the treatment of type 2 diabetes mellitus in non-transplanted patients. However, the evidence on the safety and efficacy of oral hypoglycaemic agents in transplant recipients is limited. The favourable risk/benefit ratio, which is suggested by large-scale and long-term studies on new glucose-lowering drug classes such as glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, makes studies warranted to assess the potential role of these agents in the management of PTDM.
Collapse
Affiliation(s)
- Marlene Schwarzenbach
- Department of Nephrology and Hypertension, University Hospital Insel Bern, Bern 3010, Switzerland
| | - Flavia Elena Bernhard
- Department of Nephrology and Hypertension, University Hospital Insel Bern, Bern 3010, Switzerland
| | - Cecilia Czerlau
- Department of Nephrology and Hypertension, University Hospital Insel Bern, Bern 3010, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, University Hospital Insel Bern, Bern 3010, Switzerland
| |
Collapse
|
8
|
Hartl L, Elias J, Prager G, Reiberger T, Unger LW. Individualized treatment options for patients with non-cirrhotic and cirrhotic liver disease. World J Gastroenterol 2021; 27:2281-2298. [PMID: 34040322 PMCID: PMC8130039 DOI: 10.3748/wjg.v27.i19.2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The obesity pandemic has led to a significant increase in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). While dyslipidemia, type 2 diabetes mellitus and cardiovascular diseases guide treatment in patients without signs of liver fibrosis, liver related morbidity and mortality becomes relevant for MAFLD's progressive form, non-alcoholic steatohepatitis (NASH), and upon development of liver fibrosis. Statins should be prescribed in patients without significant fibrosis despite concomitant liver diseases but are underutilized in the real-world setting. Bariatric surgery, especially Y-Roux bypass, has been proven to be superior to conservative and/or medical treatment for weight loss and resolution of obesity-associated diseases, but comes at a low but existent risk of surgical complications, reoperations and very rarely, paradoxical progression of NASH. Once end-stage liver disease develops, obese patients benefit from liver transplantation (LT), but may be at increased risk of perioperative infectious complications. After LT, metabolic comorbidities are commonly observed, irrespective of the underlying liver disease, but MAFLD/NASH patients are at even higher risk of disease recurrence. Few studies with low patient numbers evaluated if, and when, bariatric surgery may be an option to avoid disease recurrence but more high-quality studies are needed to establish clear recommendations. In this review, we summarize the most recent literature on treatment options for MAFLD and NASH and highlight important considerations to tailor therapy to individual patient's needs in light of their risk profile.
Collapse
Affiliation(s)
- Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria
- Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna A-1090, Austria
| | - Joshua Elias
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Gerhard Prager
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria
- Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna A-1090, Austria
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
9
|
Seneviratne A, Cave L, Hyde G, Moestrup SK, Carling D, Mason JC, Haskard DO, Boyle JJ. Metformin directly suppresses atherosclerosis in normoglycaemic mice via haematopoietic adenosine monophosphate-activated protein kinase. Cardiovasc Res 2021; 117:1295-1308. [PMID: 32667970 PMCID: PMC8064441 DOI: 10.1093/cvr/cvaa171] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/03/2018] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
AIMS Atherosclerotic vascular disease has an inflammatory pathogenesis. Heme from intraplaque haemorrhage may drive a protective and pro-resolving macrophage M2-like phenotype, Mhem, via AMPK and activating transcription factor 1 (ATF1). The antidiabetic drug metformin may also activate AMPK-dependent signalling. Hypothesis: Metformin systematically induces atheroprotective genes in macrophages via AMPK and ATF1, thereby suppresses atherogenesis. METHODS AND RESULTS Normoglycaemic Ldlr-/- hyperlipidaemic mice were treated with oral metformin, which profoundly suppressed atherosclerotic lesion development (P < 5 × 10-11). Bone marrow transplantation from AMPK-deficient mice demonstrated that metformin-related atheroprotection required haematopoietic AMPK [analysis of variance (ANOVA), P < 0.03]. Metformin at a clinically relevant concentration (10 μM) evoked AMPK-dependent and ATF1-dependent increases in Hmox1, Nr1h2 (Lxrb), Abca1, Apoe, Igf1, and Pdgf, increases in several M2-markers and decreases in Nos2, in murine bone marrow macrophages. Similar effects were seen in human blood-derived macrophages, in which metformin-induced protective genes and M2-like genes, suppressible by si-ATF1-mediated knockdown. Microarray analysis comparing metformin with heme in human macrophages indicated that the transcriptomic effects of metformin were related to those of heme, but not identical. Metformin-induced lesional macrophage expression of p-AMPK, p-ATF1, and downstream M2-like protective effects. CONCLUSION Metformin activates a conserved AMPK-ATF1-M2-like pathway in mouse and human macrophages, and results in highly suppressed atherogenesis in hyperlipidaemic mice via haematopoietic AMPK.
Collapse
Affiliation(s)
| | - Luke Cave
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gareth Hyde
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Justin C Mason
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Dorian O Haskard
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
10
|
Chewcharat A, Prasitlumkum N, Thongprayoon C, Bathini T, Medaura J, Vallabhajosyula S, Cheungpasitporn W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med Sci (Basel) 2020; 8:E47. [PMID: 33213078 PMCID: PMC7712903 DOI: 10.3390/medsci8040047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients. METHODS We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model. RESULTS Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = -0.56% [95%CI: -0.97, -0.16]; p = 0.007) and body weight (WMD = -2.16 kg [95%CI: -3.08, -1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment. CONCLUSION Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tuscon, AZ 85721, USA;
| | - Juan Medaura
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Department of Medicine, Division of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Wisit Cheungpasitporn
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
11
|
Baines CR, Cooper PD, O'Rourke GA, Miller C. Evaluation of the Abbot FreeStyle Optium Neo H blood glucose meter in the hyperbaric oxygen environment. Diving Hyperb Med 2020; 50:144-151. [PMID: 32557416 DOI: 10.28920/dhm50.2.144-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/06/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION This study investigated the effects of hyperbaric oxygen treatment (HBOT) on the accuracy and reliability of point-of-care fingertip capillary blood glucose values in euglycaemic non-diabetic participants compared against venous serum blood glucose samples processed in an accredited pathology laboratory. METHOD Ten non-diabetic hyperbaric staff members (age 35-55 years) underwent a standard 243 kPa HBOT exposure for 95 minutes. Blood glucose levels were measured via (i) finger-prick capillary test using the FreeStyle Optium™ Neo H glucometer and (ii) venous serum test using the Cobas 6000 laboratory analyser. Samples were taken at (T1) 0 minutes (pre-HBOT), (T2) 25 minutes, and (T3) 55 minutes into HBOT. RESULTS All participants were euglycaemic at T1 (BGL 3.8-5.4 mmol·L⁻¹). The highest venous serum value was 5.90 mmol·L⁻¹ at T3 and the highest capillary value was 6.30 mmol·L⁻¹ at T1. Post hoc tests showed a statistically significant difference between the mean capillary result pre-dive (T1) and readings at T2 (P = 0.001) and T3 (P < 0.001) while differences between T2 and T3 capillary results were not statistically significant, illustrating the effect of HBOT on capillary beds. Differences in venous values across the time points were not significant. CONCLUSION Venous serum glucose samples processed in an accredited laboratory may be more consistently accurate, but capillary point-of-care testing avoids delays in sample processing and provides glucose data that are of clinical relevance. The FreeStyle Optium™ Neo H glucometer is safe to use and provides a reliable measurement of blood glucose in the HBOT environment.
Collapse
Affiliation(s)
- Carol R Baines
- Department of Diving and Hyperbaric Medicine, Royal Hobart Hospital, Hobart, Tasmania, Australia.,Corresponding author: Carol R Baines, Department of Diving and Hyperbaric Medicine, Royal Hobart Hospital, Liverpool Street, Hobart, Tasmania, Australia 7000,
| | - P David Cooper
- Department of Diving and Hyperbaric Medicine, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Geraldine A O'Rourke
- Office of the Chief Nurse and Midwife, Health Professional Policy and Advisory Services, Department of Health, Tasmania, Australia
| | - Charne Miller
- Alfred Health Clinical School, La Trobe University, Prahran, Victoria, Australia
| |
Collapse
|
12
|
Lo C, Toyama T, Oshima M, Jun M, Chin KL, Hawley CM, Zoungas S. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev 2020; 8:CD009966. [PMID: 32803882 PMCID: PMC8477618 DOI: 10.1002/14651858.cd009966.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Kidney transplantation is the preferred management for patients with end-stage kidney disease (ESKD). However, it is often complicated by worsening or new-onset diabetes. The safety and efficacy of glucose-lowering agents after kidney transplantation is largely unknown. This is an update of a review first published in 2017. OBJECTIVES To evaluate the efficacy and safety of glucose-lowering agents for treating pre-existing and new onset diabetes in people who have undergone kidney transplantation. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 16 January 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs), quasi-RCTs and cross-over studies examining head-to-head comparisons of active regimens of glucose-lowering therapy or active regimen compared with placebo/standard care in patients who have received a kidney transplant and have diabetes were eligible for inclusion. DATA COLLECTION AND ANALYSIS Four authors independently assessed study eligibility and quality and performed data extraction. Continuous outcomes were expressed as post-treatment mean differences (MD) or standardised mean difference (SMD). Adverse events were expressed as post-treatment absolute risk differences (RD). Dichotomous clinical outcomes were presented as risk ratios (RR) with 95% confidence intervals (CI). MAIN RESULTS Ten studies (21 records, 603 randomised participants) were included - three additional studies (five records) since our last review. Four studies compared more intensive versus less intensive insulin therapy; two studies compared dipeptidyl peptidase-4 (DPP-4) inhibitors to placebo; one study compared DPP-4 inhibitors to insulin glargine; one study compared sodium glucose co-transporter 2 (SGLT2) inhibitors to placebo; and two studies compared glitazones and insulin to insulin therapy alone. The majority of studies had an unclear to a high risk of bias. There were no studies examining the effects of biguanides, glinides, GLP-1 agonists, or sulphonylureas. Compared to less intensive insulin therapy, it is unclear if more intensive insulin therapy has an effect on transplant or graft survival (4 studies, 301 participants: RR 1.12, 95% CI 0.32 to 3.94; I2 = 49%; very low certainty evidence), delayed graft function (2 studies, 153 participants: RR 0.63, 0.42 to 0.93; I2 = 0%; very low certainty evidence), HbA1c (1 study, 16 participants; very low certainty evidence), fasting blood glucose (1 study, 24 participants; very low certainty evidence), kidney function markers (1 study, 26 participants; very low certainty evidence), death (any cause) (3 studies, 208 participants" RR 0.68, 0.29 to 1.58; I2 = 0%; very low certainty evidence), hypoglycaemia (4 studies, 301 participants; very low certainty evidence) and medication discontinuation due to adverse effects (1 study, 60 participants; very low certainty evidence). Compared to placebo, it is unclear whether DPP-4 inhibitors have an effect on hypoglycaemia and medication discontinuation (2 studies, 51 participants; very low certainty evidence). However, DPP-4 inhibitors may reduce HbA1c and fasting blood glucose but not kidney function markers (1 study, 32 participants; low certainty evidence). Compared to insulin glargine, it is unclear if DPP-4 inhibitors have an effect on HbA1c, fasting blood glucose, hypoglycaemia or discontinuation due to adverse events (1 study, 45 participants; very low certainty evidence). Compared to placebo, SGLT2 inhibitors probably do not affect kidney graft survival (1 study, 44 participants; moderate certainty evidence), but may reduce HbA1c without affecting fasting blood glucose and eGFR long-term (1 study, 44 participants, low certainty evidence). SGLT2 inhibitors probably do not increase hypoglycaemia, and probably have little or no effect on medication discontinuation due to adverse events. However, all participants discontinuing SGLT2 inhibitors had urinary tract infections (1 study, 44 participants, moderate certainty evidence). Compared to insulin therapy alone, it is unclear if glitazones added to insulin have an effect on HbA1c or kidney function markers (1 study, 62 participants; very low certainty evidence). However, glitazones may make little or no difference to fasting blood glucose (2 studies, 120 participants; low certainty evidence), and medication discontinuation due to adverse events (1 study, 62 participants; low certainty evidence). No studies of DPP-4 inhibitors, or glitazones reported effects on transplant or graft survival, delayed graft function or death (any cause). AUTHORS' CONCLUSIONS The efficacy and safety of glucose-lowering agents in the treatment of pre-existing and new-onset diabetes in kidney transplant recipients is questionable. Evidence from existing studies examining the effect of intensive insulin therapy, DPP-4 inhibitors, SGLT inhibitors and glitazones is mostly of low to very low certainty. Appropriately blinded, larger, and higher quality RCTs are needed to evaluate and compare the safety and efficacy of contemporary glucose-lowering agents in the kidney transplant population.
Collapse
Affiliation(s)
- Clement Lo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Australia
| | - Tadashi Toyama
- The George Institute for Global Health, UNSW, Sydney, Australia
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, Kanazawa, Japan
| | - Megumi Oshima
- The George Institute for Global Health, UNSW, Sydney, Australia
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center (iCREK), Kanazawa University Hospital, Kanazawa, Japan
| | - Min Jun
- The George Institute for Global Health, UNSW, Sydney, Australia
| | - Ken L Chin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Australia
- Australasian Kidney Trials Network, Diamantina Institute, The University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Sophia Zoungas
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The George Institute for Global Health, UNSW, Sydney, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Australia
| |
Collapse
|
13
|
Aleksic S, Eisenberg R, Tsomos E, Zahedpour Anaraki S, Japp E, Upadhyay L, Mowrey WB, Akalin E, Zonszein J. Glycemic management and clinical outcomes in underserved minority kidney transplant recipients with type 2 and posttransplantation diabetes: A single-center retrospective study. Diabetes Res Clin Pract 2020; 165:108221. [PMID: 32442553 PMCID: PMC7415727 DOI: 10.1016/j.diabres.2020.108221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 01/20/2023]
Abstract
AIMS Little is known about glycemic management, particularly with novel cardio-nephroprotecive agents, in underserved minority kidney transplant recipients with pre-transplant type 2 (T2DM) and posttransplantation diabetes mellitus (PTDM). We assessed glycemic management and outcomes in this high-risk population. METHODS We reviewed records of patients who received kidney transplants between June 2012 and December 2014 at a single center. Hemoglobin A1c (HbA1c) and prescribed glucose-lowering medications were examined, and mortality was compared between T2DM, PTDM, and no diabetes (NoDM) patients. RESULTS We followed 302 patient records (41.1% Hispanic, 41.1% non-Hispanic black) for a median (IQR) of 45.5 (37.0, 53.0) months post-transplant. Pre-transplant T2DM was present in 152 (50.3%), while 58 (19.2%) developed PTDM and 92 (30.4%) remained NoDM. At 1-year post-transplant, the average HbA1c was 8.1 ± 1.8% in T2DM and 6.6 ± 1.3% in PTDM. No glucose-lowering agents were prescribed in 3.4% of T2DM and 44.8% of PTDM. When treated, both received mostly insulin and metformin. Diabetes, HbA1c and insulin therapy were not independently associated with risk of mortality. CONCLUSIONS Glycemic management was suboptimal and relied on older medications. Further studies are needed to assess longer-term outcomes of more rigorous glycemic management, and the value of novel cardio-nephroprotective agents in kidney transplant recipients.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Ruth Eisenberg
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Effie Tsomos
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai Medical Center, New York, NY, United States
| | - Sara Zahedpour Anaraki
- Department of Medicine, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emily Japp
- Department of Medicine, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laxmi Upadhyay
- Department of Medicine, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wenzhu Bi Mowrey
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Enver Akalin
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joel Zonszein
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
14
|
Lo C, Toyama T, Wang Y, Lin J, Hirakawa Y, Jun M, Cass A, Hawley CM, Pilmore H, Badve SV, Perkovic V, Zoungas S. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane Database Syst Rev 2018; 9:CD011798. [PMID: 30246878 PMCID: PMC6513625 DOI: 10.1002/14651858.cd011798.pub2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is the commonest cause of chronic kidney disease (CKD). Both conditions commonly co-exist. Glucometabolic changes and concurrent dialysis in diabetes and CKD make glucose-lowering challenging, increasing the risk of hypoglycaemia. Glucose-lowering agents have been mainly studied in people with near-normal kidney function. It is important to characterise existing knowledge of glucose-lowering agents in CKD to guide treatment. OBJECTIVES To examine the efficacy and safety of insulin and other pharmacological interventions for lowering glucose levels in people with diabetes and CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 12 February 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTs looking at head-to-head comparisons of active regimens of glucose-lowering therapy or active regimen compared with placebo/standard care in people with diabetes and CKD (estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2) were eligible. DATA COLLECTION AND ANALYSIS Four authors independently assessed study eligibility, risk of bias, and quality of data and performed data extraction. Continuous outcomes were expressed as post-treatment mean differences (MD). Adverse events were expressed as post-treatment absolute risk differences (RD). Dichotomous clinical outcomes were presented as risk ratios (RR) with 95% confidence intervals (CI). MAIN RESULTS Forty-four studies (128 records, 13,036 participants) were included. Nine studies compared sodium glucose co-transporter-2 (SGLT2) inhibitors to placebo; 13 studies compared dipeptidyl peptidase-4 (DPP-4) inhibitors to placebo; 2 studies compared glucagon-like peptide-1 (GLP-1) agonists to placebo; 8 studies compared glitazones to no glitazone treatment; 1 study compared glinide to no glinide treatment; and 4 studies compared different types, doses or modes of administration of insulin. In addition, 2 studies compared sitagliptin to glipizide; and 1 study compared each of sitagliptin to insulin, glitazars to pioglitazone, vildagliptin to sitagliptin, linagliptin to voglibose, and albiglutide to sitagliptin. Most studies had a high risk of bias due to funding and attrition bias, and an unclear risk of detection bias.Compared to placebo, SGLT2 inhibitors probably reduce HbA1c (7 studies, 1092 participants: MD -0.29%, -0.38 to -0.19 (-3.2 mmol/mol, -4.2 to -2.2); I2 = 0%), fasting blood glucose (FBG) (5 studies, 855 participants: MD -0.48 mmol/L, -0.78 to -0.19; I2 = 0%), systolic blood pressure (BP) (7 studies, 1198 participants: MD -4.68 mmHg, -6.69 to -2.68; I2 = 40%), diastolic BP (6 studies, 1142 participants: MD -1.72 mmHg, -2.77 to -0.66; I2 = 0%), heart failure (3 studies, 2519 participants: RR 0.59, 0.41 to 0.87; I2 = 0%), and hyperkalaemia (4 studies, 2788 participants: RR 0.58, 0.42 to 0.81; I2 = 0%); but probably increase genital infections (7 studies, 3086 participants: RR 2.50, 1.52 to 4.11; I2 = 0%), and creatinine (4 studies, 848 participants: MD 3.82 μmol/L, 1.45 to 6.19; I2 = 16%) (all effects of moderate certainty evidence). SGLT2 inhibitors may reduce weight (5 studies, 1029 participants: MD -1.41 kg, -1.8 to -1.02; I2 = 28%) and albuminuria (MD -8.14 mg/mmol creatinine, -14.51 to -1.77; I2 = 11%; low certainty evidence). SGLT2 inhibitors may have little or no effect on the risk of cardiovascular death, hypoglycaemia, acute kidney injury (AKI), and urinary tract infection (low certainty evidence). It is uncertain whether SGLT2 inhibitors have any effect on death, end-stage kidney disease (ESKD), hypovolaemia, fractures, diabetic ketoacidosis, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, DPP-4 inhibitors may reduce HbA1c (7 studies, 867 participants: MD -0.62%, -0.85 to -0.39 (-6.8 mmol/mol, -9.3 to -4.3); I2 = 59%) but may have little or no effect on FBG (low certainty evidence). DPP-4 inhibitors probably have little or no effect on cardiovascular death (2 studies, 5897 participants: RR 0.93, 0.77 to 1.11; I2 = 0%) and weight (2 studies, 210 participants: MD 0.16 kg, -0.58 to 0.90; I2 = 29%; moderate certainty evidence). Compared to placebo, DPP-4 inhibitors may have little or no effect on heart failure, upper respiratory tract infections, and liver impairment (low certainty evidence). Compared to placebo, it is uncertain whether DPP-4 inhibitors have any effect on eGFR, hypoglycaemia, pancreatitis, pancreatic cancer, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, GLP-1 agonists probably reduce HbA1c (7 studies, 867 participants: MD -0.53%, -1.01 to -0.06 (-5.8 mmol/mol, -11.0 to -0.7); I2 = 41%; moderate certainty evidence) and may reduce weight (low certainty evidence). GLP-1 agonists may have little or no effect on eGFR, hypoglycaemia, or discontinuation due to adverse effects (low certainty evidence). It is uncertain whether GLP-1 agonists reduce FBG, increase gastrointestinal symptoms, or affect the risk of pancreatitis (very low certainty evidence).Compared to placebo, it is uncertain whether glitazones have any effect on HbA1c, FBG, death, weight, and risk of hypoglycaemia (very low certainty evidence).Compared to glipizide, sitagliptin probably reduces hypoglycaemia (2 studies, 551 participants: RR 0.40, 0.23 to 0.69; I2 = 0%; moderate certainty evidence). Compared to glipizide, sitagliptin may have had little or no effect on HbA1c, FBG, weight, and eGFR (low certainty evidence). Compared to glipizide, it is uncertain if sitagliptin has any effect on death or discontinuation due to adverse effects (very low certainty).For types, dosages or modes of administration of insulin and other head-to-head comparisons only individual studies were available so no conclusions could be made. AUTHORS' CONCLUSIONS Evidence concerning the efficacy and safety of glucose-lowering agents in diabetes and CKD is limited. SGLT2 inhibitors and GLP-1 agonists are probably efficacious for glucose-lowering and DPP-4 inhibitors may be efficacious for glucose-lowering. Additionally, SGLT2 inhibitors probably reduce BP, heart failure, and hyperkalaemia but increase genital infections, and slightly increase creatinine. The safety profile for GLP-1 agonists is uncertain. No further conclusions could be made for the other classes of glucose-lowering agents including insulin. More high quality studies are required to help guide therapeutic choice for glucose-lowering in diabetes and CKD.
Collapse
Affiliation(s)
- Clement Lo
- Monash UniversityMonash Centre for Health Research and Implementation, School of Public Health and Preventive MedicineClaytonVICAustralia
- Monash HealthDiabetes and Vascular Medicine UnitClaytonVICAustralia
- Monash UniversityDivision of Metabolism, Ageing and Genomics, School of Public Health and Preventive MedicinePrahanVICAustralia
| | - Tadashi Toyama
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
- Kanazawa University HospitalDivision of NephrologyKanazawaJapan
| | - Ying Wang
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Jin Lin
- Beijing Friendship Hospital, Capital Medical UniversityDepartment of Critical Care Medicine95 Yong‐An Road, Xuan Wu DistrictBeijingChina100050
| | - Yoichiro Hirakawa
- The George Institute for Global Health, UNSW SydneyProfessorial UnitNewtownNSWAustralia
| | - Min Jun
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Alan Cass
- Menzies School of Health ResearchPO Box 41096CasuarinaNTAustralia0811
| | - Carmel M Hawley
- Princess Alexandra HospitalDepartment of NephrologyIpswich RoadWoolloongabbaQLDAustralia4102
| | - Helen Pilmore
- Auckland HospitalDepartment of Renal MedicinePark RoadGraftonAucklandNew Zealand
- University of AucklandDepartment of MedicineGraftonNew Zealand
| | - Sunil V Badve
- St George HospitalDepartment of Renal MedicineKogarahNSWAustralia
| | - Vlado Perkovic
- The George Institute for Global Health, UNSW SydneyRenal and Metabolic DivisionNewtownNSWAustralia2050
| | - Sophia Zoungas
- Monash HealthDiabetes and Vascular Medicine UnitClaytonVICAustralia
- Monash UniversityDivision of Metabolism, Ageing and Genomics, School of Public Health and Preventive MedicinePrahanVICAustralia
- The George Institute for Global Health, UNSW SydneyProfessorial UnitNewtownNSWAustralia
| | | |
Collapse
|
15
|
Conte C, Secchi A. Post-transplantation diabetes in kidney transplant recipients: an update on management and prevention. Acta Diabetol 2018; 55:763-779. [PMID: 29619563 DOI: 10.1007/s00592-018-1137-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Post-transplantation diabetes mellitus (PTDM) may severely impact both short- and long-term outcomes of kidney transplant recipients in terms of graft and patient survival. However, PTDM often goes undiagnosed is underestimated or poorly managed. A diagnosis of PTDM should be delayed until the patient is on stable maintenance doses of immunosuppressive drugs, with stable kidney graft function and in the absence of acute infections. Risk factors for PTDM should be assessed during the pre-transplant evaluation period, in order to reduce the likelihood of developing diabetes. The oral glucose tolerance test is considered as the gold standard for diagnosing PTDM, whereas HbA1c is not reliable during the first months after transplantation. Glycaemic targets should be individualised, and comorbidities such as dyslipidaemia and hypertension should be treated with drugs that have the least possible impact on glucose metabolism, at doses that do not interact with immunosuppressants. While insulin is the preferred agent for treating inpatient hyperglycaemia in the immediate post-transplantation period, little evidence is available to guide therapeutic choices in the management of PTDM. Metformin and incretins may offer some advantage over other glucose-lowering agents, particularly with respect to risk of hypoglycaemia and weight gain. Tailoring immunosuppressive regimens may be of help, although maintenance of good kidney function should be prioritised over prevention/treatment of PTDM. The aim of this narrative review is to provide an overview of the available evidence on management and prevention of PTDM, with a focus on the available therapeutic options.
Collapse
Affiliation(s)
- Caterina Conte
- I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Antonio Secchi
- I.R.C.C.S. Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| |
Collapse
|
16
|
Diabetes Mellitus Following Renal Transplantation: Clinical and Pharmacological Considerations for the Elderly Patient. Drugs Aging 2017; 34:589-601. [PMID: 28718072 DOI: 10.1007/s40266-017-0478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Post-transplant diabetes mellitus occurs in 30-50% of cases during the first year post-renal transplantation. It is associated with increased morbidity, mortality and healthcare costs. Risk factors include age and specific immunosuppression regimens. At the same time, renal transplantation is increasingly indicated in elderly (aged >65 years) patients as this proportion of older patients in the prevalent dialysis population has increased. The immune system and β cells undergo senescence and this impacts on the risk for developing post-transplant diabetes and our ability to prevent such development. It may, however, be possible to identify patients at risk of developing post-transplant diabetes, enabling treatment protocols that prevent or reduce the impact of post-transplant diabetes. Much work remains to be completed in this area and is facilitated by the growing base of knowledge regarding the pathophysiology of post-transplant diabetes. Should post-transplant diabetes develop, there are a range of treatment options available. There is increasing interest in using newer agents, although their safety and efficacy in transplant recipients remains to be conclusively established.
Collapse
|
17
|
Hou S, Zhang T, Li Y, Guo F, Jin X. Glycyrrhizic Acid Prevents Diabetic Nephropathy by Activating AMPK/SIRT1/PGC-1 α Signaling in db/db Mice. J Diabetes Res 2017; 2017:2865912. [PMID: 29238727 PMCID: PMC5697128 DOI: 10.1155/2017/2865912] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Glycyrrhizic acid (GA) is an effective inhibitor of reactive oxygen species (ROS) production. We investigated the role of GA in the progression of renal injury in DN. Albumin (Alb)/creatinine (crea) levels were significantly lower, and renal histopathology was attenuated in the diabetic db/db mice that were treated with GA (15 mg/kg via intraperitoneal injection) once per day for eight weeks. These changes were associated with significantly lower levels of α-smooth muscle actin (α-SMA) and transforming growth factor β1 (TGF-β1) expression. Additionally, diabetic db/db mice displayed more terminal deoxynucleotidyl transferase-mediated nick-end labeling- (TUNEL-) positive nuclei and diabetes-induced ROS production in the kidneys, and these effects were attenuated by the treatment with GA, which activated adenosine monophosphate-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling in the kidneys. In summary, in diabetic db/db mice, the effect of GA on DN involved, in part, the inhibition of ROS and the activation of AMPK/SIRT1/PGC-1α signaling in the kidneys. GA, therefore, shows therapeutic potential for preventing and treating DN.
Collapse
Affiliation(s)
- Shaozhang Hou
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Zhang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Li
- Department of Nursing, Ningxia Medical University, Yinchuan 750004, China
| | - Fengying Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiu Jin
- Affiliated Hospital of Jining Medical College, Jining 272000, China
| |
Collapse
|