1
|
Chu KH, Chiang BL. A Novel Subset of Regulatory T Cells Induced by B Cells Alleviate the Severity of Immunological Diseases. Clin Rev Allergy Immunol 2024:10.1007/s12016-024-09009-y. [PMID: 39465485 DOI: 10.1007/s12016-024-09009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Regulatory T (Treg) cells are crucial for maintaining immune tolerance by suppressing response to self-antigens and harmless antigens to prevent autoimmune diseases and uncontrolled immune responses. Therefore, using Treg cells is considered a therapeutic strategy treating inflammatory diseases. Based on their origin, Treg cells are classified into thymus-derived, peripherally induced, and in vitro induced Treg cells. Our group discovered a novel Treg cell subset, namely, Treg-of-B (Treg/B) cells, generated by culturing CD4+CD25- T cells with B cells, including Peyer's patch B cells, splenic B cells and peritoneal B1a cells, for 3 days. Treg/B cells express CD44, OX40 (CD134), cytotoxic T-lymphocyte-associated antigen-4 (CD152), glucocorticoid-induced tumor necrosis factor receptor family-related protein (CD357), interleukin-10 receptor, lymphocyte activation gene-3 (CD223), inducible co-stimulator (CD278), programmed-death 1 (CD279), tumor necrosis factor receptor II, and high levels of IL-10, but not forkhead box protein P3, similar to type 1 Treg (Tr1) cells. However, unlike Tr1 cells, Treg/B cells do not express CD103, CD226, and latency-associated peptide. Treg/B cells have been applied for the treatment of some murine models of inflammatory diseases, including allergic asthma, inflammatory bowel disease, collagen-induced arthritis, gout, psoriasis and primary biliary cholangitis. This review summarizes the current knowledge of Treg/B cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genomes and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Allergy Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Stepkowski S, Bekbolsynov D, Oenick J, Brar S, Mierzejewska B, Rees MA, Ekwenna O. The Major Role of T Regulatory Cells in the Efficiency of Vaccination in General and Immunocompromised Populations: A Review. Vaccines (Basel) 2024; 12:992. [PMID: 39340024 PMCID: PMC11436018 DOI: 10.3390/vaccines12090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Since their conception with the smallpox vaccine, vaccines used worldwide have mitigated multiple pandemics, including the recent COVID-19 outbreak. Insightful studies have uncovered the complexities of different functional networks of CD4 T cells (T helper 1 (Th1); Th2, Th17) and CD8 T cells (T cytotoxic; Tc), as well as B cell (BIgM, BIgG, BIgA and BIgE) subsets, during the response to vaccination. Both T and B cell subsets form central, peripheral, and tissue-resident subsets during vaccination. It has also become apparent that each vaccination forms a network of T regulatory subsets, namely CD4+ CD25+ Foxp3+ T regulatory (Treg) cells and interleukin-10 (IL-10)-producing CD4+ Foxp3- T regulatory 1 (Tr1), as well as many others, which shape the quality/quantity of vaccine-specific IgM, IgG, and IgA antibody production. These components are especially critical for immunocompromised patients, such as older individuals and allograft recipients, as their vaccination may be ineffective or less effective. This review focuses on considering how the pre- and post-vaccination Treg/Tr1 levels influence the vaccination efficacy. Experimental and clinical work has revealed that Treg/Tr1 involvement evokes different immune mechanisms in diminishing vaccine-induced cellular/humoral responses. Alternative steps may be considered to improve the vaccination response, such as increasing the dose, changing the delivery route, and/or repeated booster doses of vaccines. Vaccination may be combined with anti-CD25 (IL-2Rα chain) or anti-programmed cell death protein 1 (PD-1) monoclonal antibodies (mAb) to decrease the Tregs and boost the T/B cell immune response. All of these data and strategies for immunizations are presented and discussed, aiming to improve the efficacy of vaccination in humans and especially in immunocompromised and older individuals, as well as organ transplant patients.
Collapse
Affiliation(s)
- Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Dulat Bekbolsynov
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Jared Oenick
- Neurological Surgery, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Surina Brar
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Beata Mierzejewska
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (D.B.); (B.M.)
| | - Michael A. Rees
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| | - Obi Ekwenna
- Department of Urology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (M.A.R.); (O.E.)
| |
Collapse
|
3
|
Lee BH, Bang YJ, Lim SH, Kang SJ, Kim SH, Kim-Schulze S, Park CG, Kim HJ, Kim TG. High-dimensional profiling of regulatory T cells in psoriasis reveals an impaired skin-trafficking property. EBioMedicine 2024; 100:104985. [PMID: 38306895 PMCID: PMC10847473 DOI: 10.1016/j.ebiom.2024.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored. METHODS We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls. We further validated the findings with an in-vitro chemokine-mediated Treg migration assay, immunofluorescent imaging of normal and psoriatic lesional skin and analysed public single-cell RNA-sequencing datasets to expand upon our findings into the local tissue microenvironments. FINDINGS We discovered an overall decrease in CLAhi Tregs and specifically, CLAhiCCR5+ Tregs in psoriasis. Functional markers CD39 and FoxP3 were elevated in psoriatic Tregs. However, CCR7 expression was significantly increased while CCR4 and CLA expression was reduced in psoriatic Tregs and CLAhi Tregs, which was associated with disease severity. Moreover, psoriatic Tregs revealed increased migratory capacity towards CCR7's ligands, CCL19/CCL21. Interrogation of public single-cell RNA sequencing data confirmed reduced expression of skin-trafficking markers in lesional-skin Tregs compared to non-lesioned skin, further substantiated by immunofluorescent staining. INTERPRETATION Psoriatic circulating Tregs showed an impaired skin-trafficking phenotype thus leading to insufficient suppression of ongoing inflammation in the lesional skin, expanding upon our current understanding of the impairment of Treg-mediated immunosuppression in psoriasis. FUNDING This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and Information and Communications Technology (2020R1C1C1014513, 2021R1A4A5032185, 2020R1F1A1073692); and the new faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0033).
Collapse
Affiliation(s)
- Brian Hyohyoung Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoon Ji Bang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seong-Jun Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, South Korea; Transplantation Research Institute, Seoul National University Medical Research Center, Seoul, South Korea; Seoul National University Hospital, Seoul, South Korea.
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, South Korea; Seoul National University Hospital, Seoul, South Korea; Genome Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
6
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
8
|
ANGPTL3 deficiency associates with the expansion of regulatory T cells with reduced lipid content. Atherosclerosis 2022; 362:38-46. [PMID: 36253169 DOI: 10.1016/j.atherosclerosis.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Angiopoietin-like 3 (ANGPTL3) regulates lipid and glucose metabolism. Loss-of-function mutations in its gene, leading to ANGPTL3 deficiency, cause in humans the familial combined hypolipidemia type 2 (FHBL2) phenotype, characterized by very low concentrations of circulating lipoproteins and reduced risk of atherosclerotic cardiovascular disease. Whether this condition is accompanied by immune dysfunctions is unknown. Regulatory T cells (Tregs) are CD4 T lymphocytes endowed with immune suppressive and atheroprotective functions and sensitive to metabolic signals. By investigating FHBL2, we explored the hypothesis that Tregs expand in response to extreme hypolipidemia, through a modulation of the Treg-intrinsic lipid metabolism. METHODS Treg frequency, phenotype, and intracellular lipid content were assessed ex vivo from FHBL2 subjects and age- and sex-matched controls, through multiparameter flow cytometry. The response of CD4 T cells from healthy controls to marked hypolipidemia was tested in vitro in low-lipid culture conditions. RESULTS The ex vivo analysis revealed that FHBL2 subjects showed higher percentages of Tregs with a phenotype undistinguishable from controls and with a lower lipid content, which directly correlated with the concentrations of circulating lipoproteins. In vitro, lipid restriction induced the upregulation of genes of the mevalonate pathway, including those involved in isoprenoid biosynthesis, and concurrently increased the expression of the Treg markers FOXP3 and Helios. The latter event was found to be prenylation-dependent, and likely related to increased IL-2 production and signaling. CONCLUSIONS Our study demonstrates that FHBL2 is characterized by high Treg frequencies, a feature which may concur to the reduced atherosclerotic risk in this condition. Mechanistically, hypolipidemia may directly favor Treg expansion, through the induction of the mevalonate pathway and the prenylation of key signaling proteins.
Collapse
|
9
|
Toria N, Kikodze N, Janikashvili N, Pantsulaia I, Mizandari M, Chikovani T, Habib N. A case of improved quality of life in a patient with inoperable pancreatic cancer after repeated RFA. Radiol Case Rep 2022; 17:3607-3610. [PMID: 35923339 PMCID: PMC9340145 DOI: 10.1016/j.radcr.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Radiofrequency ablation (RFA) has widespread popularity due to its immune-modulation effects in many cancers. Optimal settings to apply RFA in pancreatic cancer, in which the advanced stage of the tumor at the diagnosis makes various therapeutic approaches fail, are still demanding. We report the case of a patient with unresectable pancreatic cancer in which 3 repetitive RFA has been applied over a period of 3 months. Results revealed an improvement in the patient's clinical condition associated with the reduced incidence of CD4+CD45RO+ T lymphocytes and declined TGF-β level in serum. The good quality of life and disease-free survival were maintained for the next months. Booster application of RFA procedure might be a promising option to improve the quality of life in pancreatic cancer patients.
Collapse
Affiliation(s)
- Nino Toria
- Department of Immunology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0186, Georgia
| | - Nino Kikodze
- Department of Immunology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0186, Georgia
- V. Bakhutashvili Institute of Medical Biotechnology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Nona Janikashvili
- Department of Immunology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0186, Georgia
- Corresponding author.
| | - Ia Pantsulaia
- Department of Immunology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0186, Georgia
- V. Bakhutashvili Institute of Medical Biotechnology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Malkhaz Mizandari
- Department of Interventional Radiology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Tinatin Chikovani
- Department of Immunology, Tbilisi State Medical University, 33 Vazha-Pshavela Ave, Tbilisi, 0186, Georgia
| | - Nagy Habib
- Department of Surgery and Cancer, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
10
|
Cunha LL, Valsecchi VADS, Ward LS. Investigating population-level immunosenescence: From bench to bedside. Front Immunol 2022; 13:949928. [PMID: 36059504 PMCID: PMC9428264 DOI: 10.3389/fimmu.2022.949928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response is remodeled with aging in a process called immunosenescence. Some immunologists conceive immunosenescence as an adaptation of immunity to the aged immune-environment rather than a merely collapsed reactivity of immune cells against microbes and tumor cells. Others believe on an uninterrupted activation of the innate immune system with aging, leading to a low grade, sterile and chronic proinflammatory state called inflammaging. For instance, it is possible that chronic infection by cytomegalovirus leads to persistent production of viral load. This phenomenon offers periodic stimuli to the immune system that ultimately contribute to the remodeling of the immune response. If investigating immunosenescence at the cellular level is already a difficult task, considering the population level is much more complex. However, by studying immunosenescence at the population level, we can extract valuable results with viable applications. While studies with animal models allow scientists to deepen their understanding of the mechanisms of immunosenescence, studying large populations can bring practical innovations to medicine and the health system. Many researchers and funders have dedicated themselves to producing methods for the evaluation of immunosenescence on a large scale, aiming to elucidate new mechanisms by which diseases are established in the elderly. The description of how the immune response is remodeled with aging emerges as a new tool to identify the subset of subjects in which unhealthy aging is a matter of time, to help better individualize clinical management and select patients who may benefit. of early interventions. This review focuses on functional assays as valuable methods for measuring the remodeling of the immune response with aging and discuss their clinical impact. We also recall fundamental concepts for understanding the aging process of the immune response. In addition, we highlight future prospects for immunosenescence research.
Collapse
Affiliation(s)
- Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Discipline of Internal Medicine and Laboratory Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Lucas Leite Cunha,
| | - Victor Alexandre dos Santos Valsecchi
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Discipline of Internal Medicine and Laboratory Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
11
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Lundberg AK, Chung RWS, Zeijlon L, Fernström G, Jonasson L. Oxidative stress response in regulatory and conventional T cells: a comparison between patients with chronic coronary syndrome and healthy subjects. J Transl Med 2021; 19:241. [PMID: 34082767 PMCID: PMC8173731 DOI: 10.1186/s12967-021-02906-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Inflammation and oxidative stress form a vicious circle in atherosclerosis. Oxidative stress can have detrimental effects on T cells. A unique subset of CD4+ T cells, known as regulatory T (Treg) cells, has been associated with atheroprotective effects. Reduced numbers of Treg cells is a consistent finding in patients with chronic coronary syndrome (CCS). However, it is unclear to what extent these cells are sensitive to oxidative stress. In this pilot study, we tested the hypothesis that oxidative stress might be a potential contributor to the Treg cell deficit in CCS patients. Methods Thirty patients with CCS and 24 healthy controls were included. Treg (CD4+CD25+CD127−) and conventional T (CD4+CD25−, Tconv) cells were isolated and treated with increasing doses of H2O2. Intracellular ROS levels and cell death were measured after 2 and 18 h, respectively. The expression of antioxidant genes was measured in freshly isolated Treg and Tconv cells. Also, total antioxidant capacity (TAC) was measured in fresh peripheral blood mononuclear cells, and oxidized (ox) LDL/LDL ratios were determined in plasma. Results At all doses of H2O2, Treg cells accumulated more ROS and exhibited higher rates of death than their Tconv counterparts, p < 0.0001. Treg cells also expressed higher levels of antioxidant genes, including thioredoxin and thioredoxin reductase-1 (p < 0.0001), though without any differences between CCS patients and controls. Tconv cells from CCS patients were, on the other hand, more sensitive to oxidative stress ex vivo and expressed more thioredoxin reductase-1 than Tconv cells from controls, p < 0.05. Also, TAC levels were lower in patients, 0.97 vs 1.53 UAE/100 µg, p = 0.001, while oxLDL/LDL ratios were higher, 29 vs 22, p = 0.006. Conclusion Treg cells isolated from either CCS patients or healthy controls were all highly sensitive to oxidative stress ex vivo. There were signs of oxidant-antioxidant imbalance in CCS patients and we thus assume that oxidative stress may play a role in the reduction of Treg cells in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02906-2.
Collapse
Affiliation(s)
- Anna K Lundberg
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Rosanna W S Chung
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Louise Zeijlon
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Gustav Fernström
- Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Lena Jonasson
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden. .,Department of Cardiology, Linköping University Hospital, 581 85, Linköping, Sweden.
| |
Collapse
|
14
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
15
|
Okada D, Nakamura N, Setoh K, Kawaguchi T, Higasa K, Tabara Y, Matsuda F, Yamada R. Genome-wide association study of individual differences of human lymphocyte profiles using large-scale cytometry data. J Hum Genet 2021; 66:557-567. [PMID: 33230199 PMCID: PMC8144016 DOI: 10.1038/s10038-020-00874-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Human immune systems are very complex, and the basis for individual differences in immune phenotypes is largely unclear. One reason is that the phenotype of the immune system is so complex that it is very difficult to describe its features and quantify differences between samples. To identify the genetic factors that cause individual differences in whole lymphocyte profiles and their changes after vaccination without having to rely on biological assumptions, we performed a genome-wide association study (GWAS), using cytometry data. Here, we applied computational analysis to the cytometry data of 301 people before receiving an influenza vaccine, and 1, 7, and 90 days after the vaccination to extract the feature statistics of the lymphocyte profiles in a nonparametric and data-driven manner. We analyzed two types of cytometry data: measurements of six markers for B cell classification and seven markers for T cell classification. The coordinate values calculated by this method can be treated as feature statistics of the lymphocyte profile. Next, we examined the genetic basis of individual differences in human immune phenotypes with a GWAS for the feature statistics, and we newly identified seven significant and 36 suggestive single-nucleotide polymorphisms associated with the individual differences in lymphocyte profiles and their change after vaccination. This study provides a new workflow for performing combined analyses of cytometry data and other types of genomics data.
Collapse
Affiliation(s)
- Daigo Okada
- Department of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotoshi Nakamura
- Department of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Setoh
- Department of Human Disease Genomics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Department of Human Disease Genomics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Higasa
- Department of Human Disease Genomics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yasuharu Tabara
- Department of Human Disease Genomics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Department of Human Disease Genomics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Yamada
- Department of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021; 184:14-24. [PMID: 32628773 DOI: 10.1111/bjd.19380] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease with a strong genetic component that can be triggered by environmental factors. Disease pathogenesis is mainly driven by type 1 and type 17 cytokine-producing cells which, in healthy individuals, are modulated by regulatory T cells (Tregs). Tregs play a fundamental role in immune homeostasis and contribute to the prevention of autoimmune disease by suppressing immune responses. In psoriasis, Tregs are impaired in their suppressive function leading to an altered T-helper 17/Treg balance. Although Treg dysfunction in patients with psoriasis is associated with disease exacerbation, it is unknown how they are functionally regulated. In this review, we discuss recent insights into Tregs in the setting of psoriasis with an emphasis on the effect of current treatments on Tregs and how already available therapeutics that modulate Treg frequency or functionality could be exploited for treatment of psoriasis.
Collapse
Affiliation(s)
- L Nussbaum
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Y L Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Oras A, Quirant‐Sanchez B, Popadic D, Thunberg S, Winqvist O, Heck S, Cwikowski M, Riemann D, Seliger B, Martinez Caceres E, Uibo R, Giese T. Comprehensive flow cytometric reference intervals of leukocyte subsets from six study centers across Europe. Clin Exp Immunol 2020; 202:363-378. [PMID: 32654132 PMCID: PMC7670136 DOI: 10.1111/cei.13491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
A group of European FOCIS Centers of Excellence adapted panels of the Human Immunophenotyping Consortium (HIPC) for whole blood analysis. Using four core panels [T/regulatory T cell/B/natural killer (T/Treg /B/NK) and myeloid cells] the main leukocyte populations were analyzed in a clinical-diagnostic setting in a harmonized manner across different platforms. As a first step, the consortium presents here the absolute and relative frequencies of the leukocyte subpopulations in the peripheral blood of more than 300 healthy volunteers across six different European centers.
Collapse
Affiliation(s)
- A. Oras
- Department of ImmunologyInstitute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - B. Quirant‐Sanchez
- Immunology DivisionLCMNGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autonoma BarcelonaBarcelonaSpain
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
| | - D. Popadic
- Institute of Microbiology and ImmunologySchool of MedicineUniversity of BelgradeBelgradeSerbia
| | - S. Thunberg
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Unit of Immunology and AllergyKarolinska University HospitalStockholmSweden
| | - O. Winqvist
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Unit of Immunology and AllergyKarolinska University HospitalStockholmSweden
| | - S. Heck
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- NIHR GSTT/KCL Comprehensive Biomedical Research CentreGuy’s & St Thomas’ NHS Foundation TrustLondonUK
| | - M. Cwikowski
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Institute of Medical ImmunologyMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - D. Riemann
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Institute of Medical ImmunologyMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - B. Seliger
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Institute of Medical ImmunologyMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - E. Martinez Caceres
- Immunology DivisionLCMNGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autonoma BarcelonaBarcelonaSpain
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
| | - R. Uibo
- Department of ImmunologyInstitute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia
| | - T. Giese
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence
- Institute of ImmunologyHeidelberg University HospitalGerman Center for Infection Research (DZIF)Partner siteHeidelbergGermany
| |
Collapse
|
18
|
Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front Immunol 2020; 11:1748. [PMID: 32849623 PMCID: PMC7427491 DOI: 10.3389/fimmu.2020.01748] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Elderly individuals are the most susceptible to an aggressive form of coronavirus disease (COVID-19), caused by SARS-CoV-2. The remodeling of immune response that is observed among the elderly could explain, at least in part, the age gradient in lethality of COVID-19. In this review, we will discuss the phenomenon of immunosenescence, which entails changes that occur in both innate and adaptive immunity with aging. Furthermore, we will discuss inflamm-aging, a low-grade inflammatory state triggered by continuous antigenic stimulation, which may ultimately increase all-cause mortality. In general, the elderly are less capable of responding to neo-antigens, because of lower naïve T cell frequency. Furthermore, they have an expansion of memory T cells with a shrinkage of the T cell diversity repertoire. When infected by SARS-CoV-2, young people present with a milder disease as they frequently clear the virus through an efficient adaptive immune response. Indeed, antibody-secreting cells and follicular helper T cells are thought to be effectively activated in young patients that present a favorable prognosis. In contrast, the elderly are more prone to an uncontrolled activation of innate immune response that leads to cytokine release syndrome and tissue damage. The failure to trigger an effective adaptive immune response in combination with a higher pro-inflammatory tonus may explain why the elderly do not appropriately control viral replication and the potential clinical consequences triggered by a cytokine storm, endothelial injury, and disseminated organ injury. Enhancing the efficacy of the adaptive immune response may be an important issue both for infection resolution as well as for the appropriate generation of immunity upon vaccination, while inhibiting inflamm-aging will likely emerge as a potential complementary therapeutic approach in the management of patients with severe COVID-19.
Collapse
Affiliation(s)
- Lucas Leite Cunha
- Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Sandro Felix Perazzio
- Division of Rheumatology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Jamil Azzi
- Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Vidal Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Ziegler LS, Gerner MC, Schmidt RLJ, Trapin D, Steinberger P, Pickl WF, Sillaber C, Egger G, Schwarzinger I, Schmetterer KG. Attenuation of canonical NF-κB signaling maintains function and stability of human Treg. FEBS J 2020; 288:640-662. [PMID: 32386462 PMCID: PMC7891634 DOI: 10.1111/febs.15361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
Nuclear factor ‘κ‐light‐chain‐enhancer’ of activated B cells (NF‐κB) signaling is a signaling pathway used by most immune cells to promote immunostimulatory functions. Recent studies have indicated that regulatory T cells (Treg) differentially integrate TCR‐derived signals, thereby maintaining their suppressive features. However, the role of NF‐κB signaling in the activation of human peripheral blood (PB) Treg has not been fully elucidated so far. We show that the activity of the master transcription factor forkhead box protein 3 (FOXP3) attenuates p65 phosphorylation and nuclear translocation of the NF‐κB proteins p50, p65, and c‐Rel following activation in human Treg. Using pharmacological and genetic inhibition of canonical NF‐κB signaling in FOXP3‐transgenic T cells and PB Treg from healthy donors as well as Treg from a patient with a primary NFKB1 haploinsufficiency, we validate that Treg activation and suppressive capacity is independent of NF‐κB signaling. Additionally, repression of residual NF‐κB signaling in Treg further enhances interleukin‐10 (IL‐10) production. Blockade of NF‐κB signaling can be exploited for the generation of in vitro induced Treg (iTreg) with enhanced suppressive capacity and functional stability. In this respect, dual blockade of mammalian target of rapamycin (mTOR) and NF‐κB signaling was accompanied by enhanced expression of the transcription factors FOXP1 and FOXP3 and demethylation of the Treg‐specific demethylated region compared to iTreg generated under mTOR blockade alone. Thus, we provide first insights into the role of NF‐κB signaling in human Treg. These findings could lead to strategies for the selective manipulation of Treg and the generation of improved iTreg for cellular therapy.
Collapse
Affiliation(s)
- Liesa S Ziegler
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marlene C Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf L J Schmidt
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Liu Y, Jarjour W, Olsen N, Zheng SG. Traitor or warrior-Treg cells sneaking into the lesions of psoriatic arthritis. Clin Immunol 2020; 215:108425. [PMID: 32305454 DOI: 10.1016/j.clim.2020.108425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
Regulatory T (Treg) cells have been recognized to maintain immune tolerance, which contributes to prevention of autoimmune diseases. However, recent evidence has demonstrated different characteristics of these cells between those that are in circulation compared to those in various local tissues. In addition, the ability of Treg cells to have plasticity in certain disease settings and in inflammatory lesions has been increasingly recognized. Herein we summarize updated knowledge of Treg biology and discuss the current understanding of tissue-resident Treg cells in psoriatic arthritis (PsA), attempting to provide new insights into precise role of Treg cells in the immune response and as a possible therapeutic intervention in patients with PsA.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510620, China
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University College of Medicine, Wexner Medical Center, Columbus 43210, USA
| | - Nancy Olsen
- Department of Medicine, The Penn State Hershey College of Medicine, Hershey 17031, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine, Wexner Medical Center, Columbus 43210, USA.
| |
Collapse
|
21
|
Irekeola AA, E. A. R. ENS, Mat Lazim N, Mohamud R, Yean CY, Shueb RH. Technical Considerations in Ex Vivo Human Regulatory T Cell Migration and Suppression Assays. Cells 2020; 9:cells9020487. [PMID: 32093265 PMCID: PMC7072784 DOI: 10.3390/cells9020487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance through their ability to suppress immune responses. For over two decades, Tregs have been the subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been exploited, especially in the areas of cancer, autoimmunity and vaccine development, and many assay protocols have since been developed. However, variations in assay conditions in different studies, as well as covert experimental factors, pose a great challenge to the reproducibility of results. Here, we focus on human Tregs derived from clinical samples and highlighted caveats that should be heeded when conducting Tregs suppression and migration assays. We particularly delineated how factors such as sample processing, choice of reagents and equipment, optimization and other experimental conditions could introduce bias into the assay, and we subsequently proffer recommendations to enhance reliability and reproducibility of results. It is hoped that prioritizing these factors will reduce the tendencies of generating false and misleading results, and thus, help improve our understanding and interpretation of Tregs functional studies.
Collapse
Affiliation(s)
- Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.I.); (E.N.S.E.A.R.); (C.Y.Y.)
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.I.); (E.N.S.E.A.R.); (C.Y.Y.)
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.I.); (E.N.S.E.A.R.); (C.Y.Y.)
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (A.A.I.); (E.N.S.E.A.R.); (C.Y.Y.)
- Correspondence:
| |
Collapse
|
22
|
Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol 2020; 38:541-566. [PMID: 32017635 DOI: 10.1146/annurev-immunol-042718-041717] [Citation(s) in RCA: 578] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.
Collapse
Affiliation(s)
- Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; .,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - James B Wing
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Atsushi Tanaka
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kenji Ichiyama
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
23
|
Whangbo JS, Antin JH, Koreth J. The role of regulatory T cells in graft-versus-host disease management. Expert Rev Hematol 2020; 13:141-154. [PMID: 31874061 DOI: 10.1080/17474086.2020.1709436] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Despite improvements in human leukocyte antigen (HLA) matching algorithms and supportive care, graft-versus-host disease (GVHD) remains the leading cause of non-relapse morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HSCT). Acute GVHD, typically occurring in the first 100 days post-HSCT, is mediated by mature effector T cells from the donor (graft) that become activated after encountering alloantigens in the recipient (host). Chronic GVHD, characterized by aberrant immune responses to both autoantigens and alloantigens, occurs later and arises from a failure to develop tolerance after HSCT. CD4+ CD25+ CD127- FOXP3+ regulatory T cells (Tregs) function to suppress auto- and alloreactive immune responses and are key mediators of immune tolerance.Areas covered: In this review, authors discuss the biologic and therapeutic roles of Tregs in acute and chronic GVHD, including in vivo and ex vivo strategies for Treg expansion and adoptive Treg cellular therapy.Expert opinion: Although they comprise only a small subset of circulating CD4 + T cells, Tregs play an important role in establishing and maintaining immune tolerance following allogeneic HSCT. The development of GVHD has been associated with reduced Treg frequency or numbers. Consequently, the immunosuppressive properties of Tregs are being harnessed in clinical trials for GVHD prevention and treatment.
Collapse
Affiliation(s)
- Jennifer S Whangbo
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Joseph H Antin
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Koreth
- Harvard Medical School, Boston, MA, USA.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
24
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
25
|
Lai NL, Zhang SX, Wang J, Zhang JQ, Wang CH, Gao C, Li XF. The Proportion of Regulatory T Cells in Patients with Ankylosing Spondylitis: A Meta-Analysis. J Immunol Res 2019; 2019:1058738. [PMID: 31772947 PMCID: PMC6854227 DOI: 10.1155/2019/1058738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Accumulating evidence indicates that regulatory T cells (Tregs) may be involved in the pathogenesis of ankylosing spondylitis (AS). As different markers have been used to identify Tregs, some studies on the proportions of Tregs in AS patients have generated considerable controversy. To clarify the status of Tregs in such patients, we determine the proportion changes of peripheral Tregs during development of the disease, with different cellular markers. METHODS We systematically searched Embase, PubMed, Cochrane, Web of Knowledge, FDA.gov, and Clinical Trials.gov for the studies reporting the proportion of Tregs in AS patients. Using the PRISMA guidelines, we performed a random-effects meta-analysis of the frequencies of peripheral Tregs defined in different ways. Inconsistency was evaluated using the I-squared index (I 2), and publication bias was assessed by examining funnel plot asymmetry using the Begger and Egger tests. RESULTS A total 29 studies involving 1732 participants were included in the meta-analysis. Their conclusions of using the diversity of Tregs surface markers were inconsistent with each other. No significant difference in the proportions of Tregs was evident regardless of the definitions used [-0.709, (-1.455, 0.037, p = 0.063), I 2 = 97.3%]. Six studies used "single CD25-positive" cells as Tregs, which revealed a significant increase in AS patients compared with healthy blood donors [0.736, (0.138, 1.334), p = 0.016, I 2 = 80.7%]. Notably, the proportions of "CD4+CD25+FOXP3+," "CD4+CD25highCD127low/-," or "CD4+CD25+CD127low" T cells were lower in AS patients [-2.856, (-4.645, -1.066), p = 0.002; -1.812, (-2.648, -0.977), p < 0.001; -1.12, (-1.605, -0.635), p < 0.001]. Tregs defined as "CD25high," "CD25bright," "CD25bright/highCD127low/-," "CD4+FOXP3+," "CD4+CD25highFOXP3+," and "CD4+CD25+CD127-" did not differ in proportion between AS patients and healthy blood donors. CONCLUSIONS The levels of Tregs varied based on the cellular identification markers used. The proportions of CD4+CD25+FOXP3+Tregs, CD4+CD25highCD127low/-, or CD4+CD25+CD127low in blood of AS patients were significantly decreased as compared with those in healthy blood donors, and our findings lend support to the idea that the Treg status of AS patients is important. And we recommend the above as the best definition of Tregs when evaluating the status of such patients.
Collapse
Affiliation(s)
- Na-Lin Lai
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Jia-Qian Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Cai-Hong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| |
Collapse
|
26
|
Pai AV, West CA, de Souza AMA, Kadam PS, Pollner EJ, West DA, Li J, Ji H, Wu X, Zhu MJ, Baylis C, Sandberg K. Renal T cell infiltration occurs despite attenuation of development of hypertension with hydralazine in Envigo's female Dahl rat maintained on a low-Na + diet. Am J Physiol Renal Physiol 2019; 317:F572-F583. [PMID: 31241996 PMCID: PMC6766632 DOI: 10.1152/ajprenal.00512.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Many studies have suggested that renal T cell infiltration contributes to the pathogenesis of salt-sensitive hypertension. To investigate this mechanism further, we determined T cell profiles in the kidney and lymphoid tissues as a function of blood pressure in the female Envigo Dahl salt-sensitive (SS) rat maintained on low-Na+ (LS) diet. Mean arterial pressure and heart rate were measured by telemetry in SS rats from 1 mo old (juvenile) to 4 mo old. Normotensive salt-resistant (SR) rats were included as controls. Frequencies of T helper (CD4+) cells were greater in the kidney, lymph nodes, and spleen in 4-mo-old hypertensive SS rats compared with normotensive SR animals and SS juvenile rats, suggesting that renal T cell infiltration contributes to hypertension in the SS rat on a LS diet. At 1.5 mo, half of the SS rats were treated with vehicle (Veh), and the rest received hydralazine (HDZ; 25 mg·kg-1·day-1) for 11 wk. HDZ impeded the development of hypertension compared with Veh-treated control rats [mean arterial pressure: 157 ± 4 mmHg in the Veh-treated group (n = 6) vs. 133 ± 3 mmHg in the HDZ-treated group (n = 7), P < 0.001] without impacting T helper cell frequencies in the tissues, suggesting that HDZ can overcome mechanisms of hypertension driven by renal T cell infiltration under the LS diet. Renal frequencies of CD4+CD25+ and CD4+CD25+FoxP3+ regulatory T cells were significantly higher in 4-mo-old hypertensive rats compared with normotensive SR rats and SS juvenile rats, suggesting that these T cell subpopulations play a compensatory role in the development of hypertension. Greater understanding of these T cell populations could lead to new therapeutic targets for treating inflammatory diseases associated with hypertension.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | | | - Parnika S Kadam
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Emma J Pollner
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - David A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Jia Li
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Michelle J Zhu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kathryn Sandberg
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
- Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
27
|
High Thymic Output of Effector CD4 + Cells May Lead to a Treg : T Effector Imbalance in the Periphery in NOD Mice. J Immunol Res 2019; 2019:8785263. [PMID: 31281853 PMCID: PMC6594269 DOI: 10.1155/2019/8785263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in controlling autoreactive T cells, and quantitative and/or qualitative deficiencies in Tregs are associated with autoimmune diseases, including type 1 diabetes (T1D), in both humans and mice. Both the incidence of T1D and percentages of peripheral Tregs in NOD mice vary considerably between animal facilities. In our animal facility, the incidence of T1D in NOD mice is high at 90-100% and the percentages of peripheral CD4+Foxp3+ cells in ~9-10-week-old female NOD mice are decreased compared to control (B6) mice shortly before high glucose is first detected (~12 weeks). These data suggest that there is an imbalance between Tregs and potentially pathogenic effector T cells at this age that could have significant impact on disease progression to overt diabetes. The goal of the current study was to investigate mechanisms that play a role in peripheral Treg : T effector cell balance in NOD mice, including differences in persistence/survival, peripheral homeostatic proliferation, and thymic production and output of CD4+ T cells. We found no differences in persistence/survival or homeostatic proliferation of either Tregs or effector T cells between NOD and B6 mice. Furthermore, although the percentages and absolute numbers of CD4+Foxp3+ cells in thymus were not decreased in NOD compared to B6 mice, the percentage of CD4+ recent thymic emigrants (RTE) that were Foxp3+ was significantly lower in 9-week-old NOD mice. Interestingly, the thymic output of CD4+Foxp3+ cells was not lower in NOD mice, whereas the thymic output of CD4+Foxp3− cells was significantly higher in NOD mice at that age compared to B6 mice. These data suggest that the higher thymic output of CD4+Foxp3− T cells contributes, at least in part, to the lower percentages of peripheral CD4+Foxp3+ Tregs in NOD mice and an imbalance between Tregs and T effector cells that may contribute to the development of full-blown diabetes.
Collapse
|
28
|
Yi L, Weifan Y, Huan Y. Chimeric antigen receptor-engineered regulatory T lymphocytes: promise for immunotherapy of autoimmune disease. Cytotherapy 2019; 21:925-934. [PMID: 31105041 DOI: 10.1016/j.jcyt.2019.04.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/01/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Regulatory T lymphocytes (Tregs) exist as natural ideal immunosuppressors in the immune system. Autologous or allogeneic Treg transfusion therapy has been carried out in animal models and humans as a new strategy for treating autoimmune disease. Recent studies have shown that Tregs can be engineered with chimeric antigen receptors to be antigen-specific, which are more effective than polyclonal Tregs with fewer target limitations and a lack of major histocompatibility complex restriction. This review describes the potential for applying chimeric antigen receptor-engineered regulatory T cells in autoimmune diseases.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Weifan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. The role of FOXP3 + regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol 2019; 197:24-35. [PMID: 30830965 DOI: 10.1111/cei.13288] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
CD4+ regulatory T cells (Treg ) expressing the forkhead box protein 3 (FOXP3) transcription factor (Tregs ) are instrumental for the prevention of autoimmune diseases. There is increasing evidence that the human T regulatory population is highly heterogeneous in phenotype and function. Numerous studies conducted in human autoimmune diseases have shown that Treg cells are impaired either in their suppressive function, in number, or both. However, the contribution of the FOXP3+ Treg subpopulations to the development of autoimmunity has not been delineated in detail. Rare genetic disorders that involve deficits in Treg function can be studied to develop a global idea of the impact of partial or complete deficiency in a specific molecular mechanism involved in Treg function. In patients with reduced Treg numbers (but no functional deficiency), the expansion of autologous Treg cells could be a suitable therapeutic approach: either infusion of in-vitro autologous expanded cells, infusion of interleukin (IL)-2/anti-IL-2 complex, or both. Treg biology-based therapies may not be suitable in patients with deficits of Treg function, unless their deficit can be corrected in vivo/in vitro. Finally, it is critical to consider the appropriate stage of autoimmune diseases at which administration of Treg cellular therapy can be most effective. We discuss conflicting data regarding whether Treg cells are more effectual at preventing the initiation of autoimmunity, ameliorating disease progression or curing autoimmunity itself.
Collapse
Affiliation(s)
- A Mohr
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France
| | - M Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France
| | | | - G Gorochov
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France.,Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris, France (Cimi-Paris), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - M Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France.,Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris, France (Cimi-Paris), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
30
|
Zahran AM, Nafady-Hego H, Mansor SG, Abbas WA, Abdel-Malek MO, Mekky MA, Hetta HF. Increased frequency and FOXP3 expression of human CD8 +CD25 High+ T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma. Hum Immunol 2019; 80:510-516. [PMID: 30904437 DOI: 10.1016/j.humimm.2019.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The mechanism of action of CD8+CD25High+FOXP3+ T cells in hepatocellular carcinoma (HCC) has not been fully understood. Herein, the role of CD8+CD25High+FOXP3+ T cells in HCC was compared with that of CD4+CD25High+FOXP3+ regulatory T cells (conventional Tregs). Thirty-five patients with HCC and twenty age and sex-matched healthy adults (controls) were enrolled. The percentage of CD8+CD25High+FOXP3+ T cells and conventional Tregs in peripheral blood was measured by flow cytometry. Our results revealed that the percentage of peripheral CD8+CD25High+FOXP3+ T cells in HCC patients was significantly higher than controls (P = 0.005). The conventional Tregs showed the same trend with a higher level in HCC than controls (P < 0.0001). FOXP3 expression of CD8+CD25High+ T cells is higher than that of CD8+CD25low+ and CD8+CD25Negative T cells. The percentage of CD8+CD25High+FOXP3+ T cells positively correlated with that of conventional Tregs in HCC patients but not in controls. The higher alpha-fetoprotein positively correlated with the higher CD8+CD25High+FOXP3+ T cells and conventional Tregs (R2 = 0.481, P < 0.0001 and R2 = 0.249, P = 0.001, respectively). The frequency of both CD8+CD25High+FOXP3+ T cells and conventional Tregs was significantly increased in HCC with multiple lesions compared with those with one or two lesions. In conclusion: CD8+CD25High+FOXP3+ T cells similar to conventional Tregs might be used as biomarkers of HCC progression. Therapy targeting the peripherally expanded CD8+CD25High+FOXP3+ T cells may provide a novel perspective for HCC treatment.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt.
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Wael A Abbas
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Egypt
| | - Mohamed O Abdel-Malek
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Helal F Hetta
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt; Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Zhou P, Xu J, Dai M, Shi Y, Wu G, Fang Y, Yan X. The immunosuppressive effects of CD4 + CD25 + regulatory T cells on dendritic cells in patients with chronic hepatitis B. J Viral Hepat 2018; 25:733-741. [PMID: 29345851 DOI: 10.1111/jvh.12863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
The characteristics and functions of CD4+ CD25+ regulatory T cells (Tregs) have been well defined in murine and human systems. However, the interaction or crosstalk between CD4+ CD25+ Tregs and dendritic cells (DCs) remains controversial. In this study, the effects of chronic hepatitis B (CHB) CD4+ CD25+ Tregs on the maturation and function of monocyte-derived DCs were examined. The results showed that CD4+ CD25+ render the DCs inefficient as antigen-presenting cells (APCs) despite prestimulation with CD40 ligand. This effect was marginally reverted by applying neutralizing antibodies (Abs) to IL-10 and TGF-β. There were an increased IL-10 and TGF-β secretion and reduced expression of costimulatory molecules in DC. Thus, in addition to a direct suppressor effect on CD4+ T cells, CD4+ CD25+ may modulate the immune response through DCs in CHB patients.
Collapse
Affiliation(s)
- P Zhou
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - J Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Shengli Oilfield Central Hospital, Dongying, China
| | - M Dai
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - G Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Fang
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - X Yan
- Department of Infectious Diseases, the First Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Falcão PL, Campos TPRD. The role of regulatory T cells, interleukin-10 and in vivo scintigraphy in autoimmune and idiopathic diseases - Therapeutic perspectives and prognosis. ACTA ACUST UNITED AC 2018; 63:1090-1099. [PMID: 29489986 DOI: 10.1590/1806-9282.63.12.1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated the expression of the CD25 marker on the surface of naturally occurring T cells (Tregs) of mice, which have a self-reactive cellular profile. Recently, expression of other markers that aid in the identification of these cells has been detected in lymphocyte subtypes of individuals suffering of autoimmune and idiopathic diseases, including: CD25, CTLA-4 (cytotoxic T-lymphocyte antigen 4), HLA-DR (human leukocyte antigen) and Interleukin 10 (IL-10), opening new perspectives for a better understanding of an association between such receptors present on the cell surface and the prognosis of autoimmune diseases. The role of these molecules has already been described in the literature for the modulation of the inflammatory response in infectious and parasitic diseases. Thus, the function, phenotype and frequency of expression of the a-chain receptor of IL-2 (CD25) and IL-10 in lymphocyte subtypes were investigated. Murine models have been used to demonstrate a possible correlation between the expression of the CD25 marker (on the surface of CD4 lymphocytes) and the control of self-tolerance mechanisms. These studies provided support for the presentation of a review of the role of cells expressing IL-2, IL-10, HLA-DR and CTLA-4 receptors in the monitoring of immunosuppression in diseases classified as autoimmune, providing perspectives for understanding peripheral regulation mechanisms and the pathophysiology of these diseases in humans. In addition, a therapeutic approach based on the manipulation of the phenotype of these cells and ways of scintigraphically monitoring the manifestations of these diseases by labeling their receptors is discussed as a perspective. In this paper, we have included the description of experiments in ex vivo regulation of IL-10 and synthesis of thio-sugars and poly-sugars to produce radiopharmaceuticals for monitoring inflammation. These experiments may yield benefits for the treatment and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Patrícia Lima Falcão
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcisio Passos Ribeiro de Campos
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
33
|
Miyara M, Chader D, Burlion A, Goldstein J, Sterlin D, Norol F, Trebeden-Nègre H, Claër L, Sakaguchi S, Marodon G, Amoura Z, Gorochov G. Combination of IL-2, rapamycin, DNA methyltransferase and histone deacetylase inhibitors for the expansion of human regulatory T cells. Oncotarget 2017; 8:104733-104744. [PMID: 29285209 PMCID: PMC5739596 DOI: 10.18632/oncotarget.10914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/20/2023] Open
Abstract
FOXP3+ regulatory T cell (Treg) based cellular therapies represent promising therapeutic options in autoimmunity, allergy, transplantation and prevention of Graft Versus Host (GVH) Disease. Among human FOXP3-expressing CD4+T cells, only the CD45RA+ naïve Treg (nTreg) subset is suitable for in vitro expansion. However, FoxP3 expression decays in cells using currently described culture protocols. Rapamycin alone was not able to prevent FOXP3 loss in nTregs cells, as only a half of them maintained FOXP3 expression after 14 days of culture. In contrast we report a novel combined drug regimen that can drastically stabilize FOXP3 expression in cultured Tregs. IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors act in synergy to allow expansion of human regulatory T cells with sustained high expression of FOXP3 and CD15s with potent suppressive capacities in vitro and control of murine xeno-GVH reactions. Of note, an additional subsequent infusion of expanded nTreg cells did not improve survival of mice. Combination of IL-2, rapamycin, histone deacetylase and DNA methyltransferase inhibitors is optimal for the expansion in vitro of pure effective nTreg maintaining high levels of FOXP3 for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Miyara
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Driss Chader
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Aude Burlion
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Jérémie Goldstein
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Delphine Sterlin
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | | | - Laetitia Claër
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Gilles Marodon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Zahir Amoura
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Internal Medicine, French Reference Center for Systemic Lupus Erythematosus and Antiphospholipid Syndrome, AP-HP Pitié Salpêtrière, Paris, France
- UPMC Paris Sorbonne, Paris, France
| | - Guy Gorochov
- Department of immunology, AP-HP Pitié Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- UPMC Paris Sorbonne, Paris, France
| |
Collapse
|
34
|
Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2017; 129:237-250. [PMID: 29175113 DOI: 10.1016/j.phrs.2017.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are substances used to enhance the efficacy of vaccines. They influence the magnitude and alter the quality of the adaptive immune response to vaccine antigens by amplifying or modulating different signals involved in the innate immune response. The majority of known adjuvants have been empirically identified. The limited immunogenicity of new vaccine antigens and the need for safer vaccines have increased the importance of identifying single, well-defined adjuvants with known cellular and molecular mechanisms for rational vaccine design. Depletion or functional inhibition of CD4+CD25+FoxP3+ regulatory T cells (Tregs) by molecular adjuvants has become an emergent approach in this field. Different successful results have been obtained for specific vaccines, but there are still unresolved issues such as the risk of autoimmune disease induction, the involvement of cells other than Tregs and optimization for different conditions. This work provides a comprehensive analysis of current approaches to inhibit Tregs with molecular adjuvants for vaccine improvement, highlights the progress being made, and describes ongoing challenges.
Collapse
|
35
|
Osabe M, Tajika T, Tohkin M. Allopurinol suppresses expression of the regulatory T-cell migration factors TARC/CCL17 and MDC/CCL22 in HaCaT keratinocytes via restriction of nuclear factor-κB activation. J Appl Toxicol 2017; 38:274-283. [PMID: 28949055 DOI: 10.1002/jat.3522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/15/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that sparse distribution of regulatory T cells (Tregs) in the skin might be involved in the onset of severe cutaneous adverse drug reactions such as Stevens-Johnson syndrome and toxic epidermal necrolysis. Treg migration toward epithelial cells is regulated by certain chemokines, including TARC/CCL17 and MDC/CCL22. In this study, we analyzed the effect of allopurinol (APN), a drug known to cause severe adverse reactions, on the expression of factors affecting Treg migration and the mechanisms involved. APN inhibited the tumor necrosis factor (TNF)-α- and interferon (IFN)-γ-associated expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells in a dose-dependent manner. Consistent with this, APN also suppressed TNF-α- and IFN-γ-induced production of TARC/CCL17 and MDC/CCL22 proteins and the migration of C-C chemokine receptor type 4-positive cells. Activity of the transcription factors NF-κB and STAT1, which are involved in TARC/CCL17 and MDC/CCL22 expression, was also investigated. APN inhibited activation of NF-κB, but not that of STAT1. Furthermore, it restricted p38 MAPK phosphorylation. These results suggest that APN inhibits TNF-α- and IFN-γ-induced TARC/CCL17 and MDC/CCL22 production through downregulation of p38 MAPK and NF-κB signaling, resulting in the sparse distribution of Tregs in the skin of patients with APN-associated Stevens-Johnson syndrome/toxic epidermal necrolysis.
Collapse
Affiliation(s)
- Makoto Osabe
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshiyuki Tajika
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiro Tohkin
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
36
|
Sarmiento Varon L, De Rosa J, Machicote A, Billordo LA, Baz P, Fernández PM, Kaimen Maciel I, Blanco A, Arana EI. Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy. Sci Rep 2017; 7:11077. [PMID: 28894116 PMCID: PMC5593840 DOI: 10.1038/s41598-017-09689-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
The comprehension of unconventional immune functions of tonsillar B cells, their role in tolerance induction and protective immune responses, is crucial to unveil the dynamic interactions of the upper aero digestive tract with polymicrobial commensal flora and pathogens, in health and disease. Here, we describe the kinetics of IL10 intracellular expression and compare it with that of cytokines known to be produced by tonsillar B cells. Additionally, we detected a relevant proportion of IL17-expressing tonsillar B cells, which has not previously been reported. We immunophenotyped tonsillar IL10-expressing B cells (B10) and observed IL10 production in activated B cells at every developmental stage. Finally, we identified a relationship between decreased B10 percentages, increased proportion of the germinal centre (GC) population and hypertrophied tonsils (HT). Our findings provide greater insight into the role of B10 in GC reactions and characterized their involvement in the pathogenesis of tonsillar dysfunction.
Collapse
Affiliation(s)
- Lindybeth Sarmiento Varon
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
| | - Javier De Rosa
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
| | - Andrés Machicote
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
| | - Luis Ariel Billordo
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
| | - Plácida Baz
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
| | - Pablo Mariano Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina
- Department of Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Isabel Kaimen Maciel
- Otolaryngology Service, Clinical Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Andrés Blanco
- Institute of Otolaringology Arauz, Buenos Aires, Argentina
| | - Eloísa I Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital, University of Buenos Aires, National Council for Scientific and Technological Research, Buenos Aires, Argentina.
- Department of Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
38
|
Dang TD, Allen KJ, J Martino D, Koplin JJ, Licciardi PV, Tang MLK. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure. Pediatr Allergy Immunol 2016; 27:35-43. [PMID: 26456457 DOI: 10.1111/pai.12498] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) are critical for development of oral tolerance, and studies suggest that dysfunction of Tregs may lead to food allergy. However, to date, no study has investigated Treg responses following in vivo exposure to peanut or egg allergens in humans. OBJECTIVES To examine changes in peripheral blood CD4(+) CD25(+) Foxp3(+) Treg populations (total, activated and naive) in food-allergic, food-sensitized but tolerant, and healthy (non-sensitized non-allergic) patients over time following in vivo allergen exposure. METHODS A subset of infants from the HealthNuts study with egg or peanut allergy (n = 37), egg or peanut sensitization (n = 35), or who were non-sensitized non-allergic (n = 15) were studied. All subjects underwent oral food challenge (OFC) to egg or peanut. PBMCs were obtained within 1 h of OFC (in vivo allergen exposure), and Treg populations enumerated ex vivo on day 0, and after 2 and 6 days rest in vitro. RESULTS Non-allergic infants showed stable total Treg frequencies over time; food-sensitized infants had a transient fall in Treg percentage with recovery to baseline by day 6 (6.87% day 0, 5.27% day 2, 6.5% day 6); and food-allergic infants showed persistent reduction in Treg (6.85% day 0, 5.4% day 2, 6.2% day 6) following in vivo allergen exposure. Furthermore, food-allergic infants had a significantly lower ratio of activated Treg:activated T cells (10.5 ± 0.77) at day 0 compared to food-sensitized (14.6 ± 1.24) and non-allergic subjects (16.2 ± 1.23). CONCLUSION Our data suggest that the state of allergen sensitization is associated with depletion of Treg following allergen exposure. Impaired capacity to regenerate the Treg pool following allergen exposure may be an important factor that determines clinical allergy vs. sensitization without allergic reaction.
Collapse
Affiliation(s)
- Thanh D Dang
- Murdoch Childrens Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Katrina J Allen
- Murdoch Childrens Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Parkville, Vic., Australia.,Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - David J Martino
- Murdoch Childrens Research Institute, Parkville, Vic., Australia
| | - Jennifer J Koplin
- Murdoch Childrens Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Paul V Licciardi
- Murdoch Childrens Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia
| | - Mimi L K Tang
- Murdoch Childrens Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Parkville, Vic., Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Parkville, Vic., Australia
| |
Collapse
|
39
|
Walter GJ, Fleskens V, Frederiksen KS, Rajasekhar M, Menon B, Gerwien JG, Evans HG, Taams LS. Phenotypic, Functional, and Gene Expression Profiling of Peripheral CD45RA+ and CD45RO+ CD4+CD25+CD127(low) Treg Cells in Patients With Chronic Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:103-16. [PMID: 26314565 PMCID: PMC4832388 DOI: 10.1002/art.39408] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 08/25/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Conflicting evidence exists regarding the suppressive capacity of Treg cells in the peripheral blood (PB) of patients with rheumatoid arthritis (RA). The aim of this study was to determine whether Treg cells are intrinsically defective in RA. METHODS Using a range of assays on PB samples from patients with chronic RA and healthy controls, CD3+CD4+CD25+CD127(low) Treg cells from the CD45RO+ or CD45RA+ T cell compartments were analyzed for phenotype, cytokine expression (ex vivo and after in vitro stimulation), suppression of Teff cell proliferation and cytokine production, suppression of monocyte-derived cytokine/chemokine production, and gene expression profiles. RESULTS No differences between RA patients and healthy controls were observed with regard to the frequency of Treg cells, ex vivo phenotype (CD4, CD25, CD127, CD39, or CD161), or proinflammatory cytokine profile (interleukin-17 [IL-17], interferon-γ [IFNγ], or tumor necrosis factor [TNF]). FoxP3 expression was slightly increased in Treg cells from RA patients. The ability of Treg cells to suppress the proliferation of T cells or the production of cytokines (IFNγ or TNF) upon coculture with autologous CD45RO+ Teff cells and monocytes was not significantly different between RA patients and healthy controls. In PB samples from some RA patients, CD45RO+ Treg cells showed an impaired ability to suppress the production of certain cytokines/chemokines (IL-1β, IL-1 receptor antagonist, IL-7, CCL3, or CCL4) by autologous lipopolysaccharide-activated monocytes. However, this was not observed in all patients, and other cytokines/chemokines (TNF, IL-6, IL-8, IL-12, IL-15, or CCL5) were generally suppressed. Finally, gene expression profiling of CD45RA+ or CD45RO+ Treg cells from the PB revealed no statistically significant differences between RA patients and healthy controls. CONCLUSION Our findings indicate that there is no global defect in either CD45RO+ or CD45RA+ Treg cells in the PB of patients with chronic RA.
Collapse
Affiliation(s)
| | | | | | | | - Bina Menon
- Guy's and St. Thomas’ NHS Foundation TrustLondonUK
| | | | | | | |
Collapse
|
40
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, Orr C, Mills KHG, Veale DJ, Fearon U, Fletcher JM. Polyfunctional, Pathogenic CD161+ Th17 Lineage Cells Are Resistant to Regulatory T Cell-Mediated Suppression in the Context of Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:528-40. [PMID: 26062995 DOI: 10.4049/jimmunol.1402990] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis (RA), regulatory T cells (Tregs) fail to constrain autoimmune inflammation; however, the reasons for this are unclear. We investigated T cell regulation in the RA joint. Tregs from RA synovial fluid suppressed autologous responder T cells; however, when compared with Tregs from healthy control peripheral blood, they were significantly less suppressive. Despite their reduced suppressive activity, Tregs in the RA joint were highly proliferative and expressed FOXP3, CD39, and CTLA-4, which are markers of functional Tregs. This suggested that the reduced suppression is due to resistance of RA synovial fluid responder T cells to Treg inhibition. CD161(+) Th17 lineage cells were significantly enriched in the RA joint; we therefore investigated their relative susceptibility to Treg-mediated suppression. Peripheral blood CD161(+) Th cells from healthy controls were significantly more resistant to Treg-mediated suppression, when compared with CD161(-) Th cells, and this was mediated through a STAT3-dependant mechanism. Furthermore, depletion of CD161(+) Th cells from the responder T cell population in RA synovial fluid restored Treg-mediated suppression. In addition, CD161(+) Th cells exhibited pathogenic features, including polyfunctional proinflammatory cytokine production, an ability to activate synovial fibroblasts, and to survive and persist in the inflamed and hypoxic joint. Because CD161(+) Th cells are known to be enriched at sites of autoinflammation, our finding that they are highly proinflammatory and resistant to Treg-mediated suppression suggests an important pathogenic role in RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Sharee A Basdeo
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Deborah Cluxton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mary Canavan
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jennifer McCormick
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Mary Connolly
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Carl Orr
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Douglas J Veale
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Ursula Fearon
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
42
|
Zhou J, Min Z, Zhang D, Wang W, Marincola F, Wang X. Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer. J Transl Med 2014; 12:304. [PMID: 25381811 PMCID: PMC4236438 DOI: 10.1186/s12967-014-0304-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) and B cells (Bregs) play an important role in the development of lung cancer. The present study aimed to investigate the phenotype of circulating Tregs and Bregs in patients with lung cancer and explore potential mechanism by which lung cancer cells act on the development of both. METHODS Patients with lung cancer (n = 268) and healthy donors (n = 65) were enrolled in the study. Frequencies of Tregs and Bregs were measured by flow cytometry with antibodies against CD4, CD25, CD127, CD45RA, CD19, CD24, CD27 and IL-10 before and after co-cultures. qRT-PCR was performed to evaluate the mRNA levels of RANTES, MIP-1α, TGF-β, IFN-γ and IL-4. RESULTS We found a lower frequency of Tregs and a higher frequency of Bregs in patients with lung cancer compared to healthy donors. Co-culture of lung cancer cells with peripheral blood mononuclear cells could polarize the lymphocyte phenotype in the similar pattern. Lipopolysaccharide (LPS)-stimulated lung cancer cells significantly modulated regulatory cell number and function in an in vitro model. CONCLUSION We provide initial evidence that frequencies of peripheral Tregs decreased or Bregs increased in patients with lung cancer, which may be modulated directly by lung cancer cells. It seems cancer cells per se plays a crucial role in the development of tumor immunity.
Collapse
Affiliation(s)
- Jiebai Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai, China.
| | - Zhihui Min
- Biomedical Research Center, Zhongshan Hospital, Shanghai, China.
- Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| | - Ding Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai, China.
| | - William Wang
- Department of Biomedical Sciences, UCL, London, UK.
| | | | - Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai, China.
- Biomedical Research Center, Zhongshan Hospital, Shanghai, China.
- Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
43
|
Nocentini G, Alunno A, Petrillo MG, Bistoni O, Bartoloni E, Caterbi S, Ronchetti S, Migliorati G, Riccardi C, Gerli R. Expansion of regulatory GITR+CD25 low/-CD4+ T cells in systemic lupus erythematosus patients. Arthritis Res Ther 2014; 16:444. [PMID: 25256257 PMCID: PMC4209023 DOI: 10.1186/s13075-014-0444-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 08/28/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction CD4+CD25low/-GITR+ T lymphocytes expressing forkhead box protein P3 (FoxP3) and showing regulatory activity have been recently described in healthy donors. The objective of the study was to evaluate the proportion of CD4+CD25low/-GITR+ T lymphocytes within CD4+ T cells and compare their phenotypic and functional profile with that of CD4+CD25highGITR− T lymphocytes in systemic lupus erythematosus (SLE) patients. Methods The percentage of CD4+CD25low/-GITR+ cells circulating in the peripheral blood (PB) of 32 patients with SLE and 25 healthy controls was evaluated with flow cytometry. CD4+CD25low/-GITR+ cells were isolated with magnetic separation, and their phenotype was compared with that of CD4+CD25highGITR− cells. Regulatory activity of both cell subsets was tested in autologous and heterologous co-cultures after purification through a negative sorting strategy. Results Results indicated that CD4+CD25low/-GITR+ cells are expanded in the PB of 50% of SLE patients. Expansion was observed only in patients with inactive disease. Phenotypic analysis demonstrated that CD4+CD25low/-GITR+ cells display regulatory T-cell (Treg) markers, including FoxP3, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), transforming growth factor-beta (TGF-β), and interleukin (IL)-10. In contrast, CD4+CD25highGITR− cells appear to be activated and express low levels of Treg markers. Functional experiments demonstrated that CD4+CD25low/-GITR+ cells exert a higher inhibitory activity against both autologous and heterologous cells as compared with CD4+CD25highGITR− cells. Suppression is independent of cell contact and is mediated by IL-10 and TGF-β. Conclusions Phenotypic and functional data demonstrate that in SLE patients, CD4+CD25low/-GITR+ cells are fully active Treg cells, possibly representing peripheral Treg (pTreg) that are expanded in patients with inactive disease. These data may suggest a key role of this T-cell subset in the modulation of the abnormal immune response in SLE. Strategies aimed at expanding this Treg subset for therapeutic purpose deserve to be investigated.
Collapse
|
44
|
Zhang L, Qian W, Chen Q, Yin L, Li B, Wang H. Imbalance in circulating T lymphocyte subsets contributes to Hu antibody-associated paraneoplastic neurological syndromes. Cell Immunol 2014; 290:245-50. [PMID: 25173445 DOI: 10.1016/j.cellimm.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Paraneoplastic neurological syndromes (PNS) are associated with small cell lung cancer (SCLC) and Hu antibodies, which are considered to have an immune-mediated etiology. As a pathogenic role for Hu antibodies (Hu-Ab) in PNS could not be demonstrated, the cellular immune response against the Hu proteins has been further investigated. To delve deeper into the hypothesized cell-mediated immune pathogenesis of these syndromes, imbalances within circulating T lymphocyte subsets were investigated to determine their significance in Hu antibody-associated PNS. The circulating T lymphocyte subsets were analyzed in untreated patients with SCLC, PNS and Hu-Ab (n=10), SCLC without PNS (n=10) and healthy controls (n=12) using flow cytometry. Patients with PNS and SCLC, had a variety of changes within their circulating T lymphocyte subsets, which included; lymphopenia of the CD3(+)and CD4(+) T cells, increased proportions of total activated T cells and activated CD4(+) T cells, and reduced numbers of CD4(+) and CD25(+) regulatory T cells (Treg). These results suggest that the excessive activation of T cells and dysfunction of Treg contribute to Hu antibody-associated PNS.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu A233004, China
| | - Weidong Qian
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu A233004, China
| | - Qiming Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu A233004, China.
| | - Liang Yin
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu A233004, China
| | - Baiqing Li
- Department of Immunology, and An Hui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu A233030, China
| | - Hongtao Wang
- Department of Immunology, and An Hui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu A233030, China
| |
Collapse
|
45
|
Attridge K, Walker LSK. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev 2014; 259:23-39. [PMID: 24712457 PMCID: PMC4237543 DOI: 10.1111/imr.12165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important.
Collapse
Affiliation(s)
- Kesley Attridge
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
46
|
Moradi B, Schnatzer P, Hagmann S, Rosshirt N, Gotterbarm T, Kretzer JP, Thomsen M, Lorenz HM, Zeifang F, Tretter T. CD4⁺CD25⁺/highCD127low/⁻ regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints--analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther 2014; 16:R97. [PMID: 24742142 PMCID: PMC4060198 DOI: 10.1186/ar4545] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/01/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION CD4⁺CD25⁺/highCD127low/⁻ regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients. METHODS Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation. RESULTS CD4⁺ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO⁺RA⁻), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA. CONCLUSIONS Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L⁻CD69⁺), whereas peripheral Tregs are resting central memory cells (CD62L⁺CD69⁻).
Collapse
Affiliation(s)
- Babak Moradi
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Philipp Schnatzer
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Sébastien Hagmann
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Nils Rosshirt
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Tobias Gotterbarm
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Jan Philippe Kretzer
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Marc Thomsen
- Klinikum Baden-Baden, Lilienmattstraße 5, 76530 Baden-Baden, Germany
| | - Hanns-Martin Lorenz
- University Clinic of Heidelberg, Department of Medicine V Div. of Rheumatology, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Felix Zeifang
- University Clinic of Heidelberg, Clinic for Orthopedics and Trauma Surgery, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany
| | - Theresa Tretter
- University Clinic of Heidelberg, Department of Medicine V Div. of Rheumatology, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A 2014; 103:170-84. [PMID: 24616366 DOI: 10.1002/jbm.a.35150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022]
Abstract
Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.
Collapse
Affiliation(s)
- Jaehyung Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia, 30332
| | | | | |
Collapse
|
48
|
Vezzoli P, Berti E, Marzano AV. Rationale and efficacy for the use of rituximab in paraneoplastic pemphigus. Expert Rev Clin Immunol 2014; 4:351-63. [DOI: 10.1586/1744666x.4.3.351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Xu G, Gong Y. Deregulation from CD4+ memory T cells to regulatory cells in patients with chronic renal failure: a pilot study. J Clin Lab Anal 2013; 27:423-6. [PMID: 24218122 DOI: 10.1002/jcla.21622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 03/28/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The aim of this study was to elucidate whether the CD4+ memory T (Tm) cells differentiation to regulatory T cells (Tregs) play a role in the immunological defects in patients with chronic kidney disease (CKD), and if the oxidized low-density lipoprotein (oxLDL) had affect on on CD4+ Tm cells and Tregs apoptosis in these subjects. METHODS CD4+ Tm cells and Tregs were detected by flow cytometry in each group of ten subjects. Apoptosis was measured by flow cytometry and confirmed by Western blotting. RESULTS The oxLDL concentration was significantly higher in CKD stage 4 (CKD4) patients than in controls, particularly in hemodialysis (HD) subjects (P < 0.001, respectively). In total, 100 μg/ml oxLDL significantly inhibited the CD4+ Tm cell proliferation. oxLDL-induced Tm generated Tregs apoptosis in controls and CKD4 patients, especially in HD patients (P < 0.001, respectively). CONCLUSION Dysregulation of CD4+ Tm cells converting into Tregs played a role in the immune defects of CKD patients, and oxLDL induced the apoptosis of Tm generating Tregs in these subjects. Larger size of sample should be investigated to confirm the findings in further studies.
Collapse
Affiliation(s)
- Gaosi Xu
- Department of Nephrology, Second Affiliated Hospital, Nanchang University, Jiangxi, P. R. China; Department of Immunology, Shangrao Branch of Jiangxi Medical College, Shangrao, P. R. China
| | | |
Collapse
|
50
|
Metenou S, Nutman TB. Regulatory T cell subsets in filarial infection and their function. Front Immunol 2013; 4:305. [PMID: 24137161 PMCID: PMC3786323 DOI: 10.3389/fimmu.2013.00305] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023] Open
Abstract
Filarial infections in humans are chronic infections that cause significant morbidity. The chronic nature of these infections with continuous antigen release is associated with a parasite-specific T cell hypo-responsiveness that may over time also affect the immune responses to bystander antigens. Previous studies have shown the filarial parasite antigen-specific T cells hypo-responsiveness is mediated by regulatory cytokines – IL-10 and TGF-β in particular. Recent studies have suggested that the modulated/regulated T cell responses associated with patent filarial infection may reflect an expansion of regulatory T cells (Tregs) that include both Tregs induced in peripheral circulation or pTregs and the thymus-derived Tregs or tTregs. Although much is known about the phenotype of these regulatory populations, the mechanisms underlying their expansion and their mode of action in filarial and other infections remain unclear. Nevertheless there are data to suggest that while many of these regulatory cells are activated in an antigen-specific manner the ensuing effectors of this activation are relatively non-specific and may affect a broad range of immune cells. This review will focus on the subsets and function of regulatory T cells in filarial infection.
Collapse
Affiliation(s)
- Simon Metenou
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health , Bethesda, MD , USA
| | | |
Collapse
|