1
|
Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP, Stine AM, Kolandaivelu A, Herzka DA, Ratnayaka K, Lederman RJ. Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 2023; 25:48. [PMID: 37574552 PMCID: PMC10424337 DOI: 10.1186/s12968-023-00956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.
Collapse
Affiliation(s)
- Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Suite 4B01, Washington, DC, 20011, USA.
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - D Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Laurie P Grant
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Annette M Stine
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Aravindan Kolandaivelu
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Johns Hopkins Hospital, Baltimore, MD, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Kanishka Ratnayaka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
| |
Collapse
|
2
|
Kilbride BF, Narsinh KH, Jordan CD, Mueller K, Moore T, Martin AJ, Wilson MW, Hetts SW. MRI-guided endovascular intervention: current methods and future potential. Expert Rev Med Devices 2022; 19:763-778. [PMID: 36373162 PMCID: PMC9869980 DOI: 10.1080/17434440.2022.2141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges. AREAS COVERED In this review, the benefits and limitations of MRI-guided endovascular interventions are addressed, systems and devices for guiding such interventions are summarized, and clinical applications are discussed. EXPERT OPINION MRI-guided endovascular interventions are still relatively new to the interventional radiology field, since significant technical hurdles remain to justify significant costs and demonstrate safety, design, and robustness. Clinical applications of MRI-guided interventions are promising but their full potential may not be realized until proper tools designed to function in the MRI environment are available. Translational research and further preclinical studies are needed before MRI-guided interventions will be practical in a clinical interventional setting.
Collapse
Affiliation(s)
- Bridget F. Kilbride
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kazim H. Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Teri Moore
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Alastair J. Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Mark W. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Steven W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Dominguez-Viqueira W, Karimi H, Lam WW, Cunningham CH. A controllable susceptibility marker for passive device tracking. Magn Reson Med 2013; 72:269-75. [PMID: 23921910 DOI: 10.1002/mrm.24899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/06/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE To design and demonstrate a new susceptibility-based tracking device with an artifact that can be mechanically turned on and off, thus permitting tracking and imaging at the device tip with limited artifact. METHODS The magnetic susceptibilities of readily obtainable grades of titanium and graphite were measured. Using numerical optimization, layer thicknesses for three concentric cylinders were found where the field from the graphite layer maximally cancelled the fields from titanium layers. The tracking elements were fabricated for an outer diameter of 3 mm and attached to a catheter to show feasibility of detection in phantoms and in vivo. RESULTS The device was successfully integrated into a 9F catheter, and its use with conventional guidewires under fluoroscopy was demonstrated by guiding the catheter through the bifurcation into the carotid artery. MR images including the catheter tip were acquired with the device in both the "on" and "off" positions. CONCLUSION A new passive tracking device with a susceptibility effect that can be enabled and disabled by sliding one of the components was designed, fabricated, and demonstrated in phantoms and in vivo. The device may also be integrated into many different interventional MR devices such as needles, ultrasound transducers for prostate biopsy, or any catheter-based devices.
Collapse
|
4
|
Gudino N, Heilman JA, Derakhshan JJ, Sunshine JL, Duerk JL, Griswold MA. Control of intravascular catheters using an array of active steering coils. Med Phys 2011; 38:4215-24. [PMID: 21859023 PMCID: PMC6961950 DOI: 10.1118/1.3600693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/26/2011] [Accepted: 05/26/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To extend the concept of deflecting the tip of a catheter with the magnetic force created in an MRI system through the use of an array of independently controllable steering coils located in the catheter tip, and to present methods for visualization of the catheter and/or surrounding areas while the catheter is deflected. METHODS An array of steering coils made of 42-gauge wire was built over a 2.5 Fr (0.83 mm) fiber braided microcatheter. Two of the coils were 70 turn axial coils separated by 1 cm, and the third was a 15-turn square side coil that was 2 x 4 mm2. Each coil was driven independently by a pulse width modulation (PWM) current source controlled by a microprocessor that received commands from a MATLAB routine that dynamically set current amplitude and direction for each coil. The catheter was immersed in a water phantom containing 1% Gd-DTPA that was placed at the isocenter of a 1.5 T MRI scanner. Deflections of the catheter tip were measured from image-based data obtained with a real-time radio frequency (RF) spoiled gradient echo sequence (GRE). The small local magnetic fields generated by the steering coils were exploited to generate a hyperintense signal at the catheter tip by using a modified GRE sequence that did not include slice-select rewinding gradients. Imaging and excitation modes were implemented by synchronizing the excitation of the steering coil array with the scanner by ensuring that no current was driven through the coils during the data acquisition window; this allowed visualization of the surrounding tissue while not affecting the desired catheter position. RESULTS Deflections as large as 2.5 cm were measured when exciting the steering coils sequentially with a 100 mA maximum current per coil. When exciting a single axial coil, the deflection was half this value with 30% higher current. A hyperintense catheter tip useful for catheter tracking was obtained by imaging with the modified GRE sequence. Clear visualization of the areas surrounding the catheter was obtained by using the excitation and imaging mode even with a repetition time (TR) as small as 10 ms. CONCLUSIONS A new system for catheter steering is presented that allows large deflections through the use of an integrated array of steering coils. Additionally, two imaging techniques for tracking the catheter tip and visualization of surrounding areas, without interference from the active catheter, were shown. Together the demonstrated steerable catheter, control system and the imaging techniques will ultimately contribute to the development of a steerable system for interventional MRI procedures.
Collapse
Affiliation(s)
- N Gudino
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
5
|
Krug J, Will K, Rose G. Simulation and experimental validation of resonant electric markers used for medical device tracking in magnetic resonance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1878-81. [PMID: 21096422 DOI: 10.1109/iembs.2010.5627137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI), which was traditionally used for patient diagnosis, has gained in importance in minimally invasive interventions in the recent past. Hence, there is an increasing demand for medical devices compatible with the MR environment. One of the challenges is to visualize the medical devices, e.g. catheters, within the MR image. Several methods exist to cope with this task.
Collapse
Affiliation(s)
- Johannes Krug
- Chair for Healthcare Telematics and Medical Engineering, University of Magdeburg, 39106, Germany.
| | | | | |
Collapse
|
6
|
Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 2008; 10:62. [PMID: 19114017 PMCID: PMC2637847 DOI: 10.1186/1532-429x-10-62] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/29/2008] [Indexed: 12/30/2022] Open
Abstract
The often touted advantages of MR guidance remain largely unrealized for cardiovascular interventional procedures in patients. Many procedures have been simulated in animal models. We argue these opportunities for clinical interventional MR will be met in the near future. This paper reviews technical and clinical considerations and offers advice on how to implement a clinical-grade interventional cardiovascular MR (iCMR) laboratory. We caution that this reflects our personal view of the "state of the art."
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cardiology Division, Children's National Medical Center, Washington, DC, USA
| | - Anthony Z Faranesh
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Guttman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Fandrey S, Weiss S, Muller J. Development of an active intravascular MR device with an optical transmission system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2008; 27:1723-1727. [PMID: 19033088 DOI: 10.1109/tmi.2008.925079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic resonance imaging (MRI) is a safe and reliable medical imaging method providing good soft tissue contrast while avoiding harmful ionizing radiation. It is highly desirable to use the MRI technology for interventional procedures. However, due to resonance effects that can result in tissue heating, long conducting cables must be avoided. Motivated by the need for more radio-frequency (RF) safety, we developed an optical transmission system for active intravascular MRI devices. An optical transmitter sends the MR signal via an optical fiber. A miniature optical modulator was designed to be integrated into a catheter tip. Furthermore, power is supplied optically to the transmitter. This system can target new medical applications, due to safe catheter tracking and safe intravascular imaging.
Collapse
Affiliation(s)
- Stephan Fandrey
- Hamburg University of Technology, Institute of MicroSystems Technology, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
8
|
Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 2008; 27:326-38. [PMID: 18219686 DOI: 10.1002/jmri.21271] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities that make it an attractive imaging tool for diagnostic and therapeutic procedures. This tremendous potential of MRI has provided the rationale for increased attention toward MR-guided endovascular interventions. MR guidance has been used recently to navigate endovascular catheters and deliver stents, vena cava filters, embolization materials, and septum closure devices. However, its potential goes beyond just copying existing procedures toward the development of new minimally invasive techniques that cannot be performed with conventional guiding techniques. Because of technical limitations and safety issues associated with some of the currently available devices, a limited number of clinical studies have been performed so far. The overall success for this developing field requires considerable interdisciplinary research within both the interventional and the MR community. Only through a combined effort can this complex technology find its way into clinical practice. This review discusses the hardware and software improvements that have helped to advance endovascular interventions under MR imaging guidance from a pure research tool to become a clinical reality. In addition, technical and safety issues specific to endovascular MR image guidance will be described and practical applications will be shown that take advantage of the benefits of MR for endovascular interventions.
Collapse
Affiliation(s)
- Michael Bock
- Deutsches Krebsforschungszentrum, Department of Medical Physics in Radiology (E020), Heidelberg, Germany
| | | |
Collapse
|
9
|
Strick DS, Nunnally RL, Smith JC, Clark W, Mills DJ, Cohen MS, Judy JW. Towards a microcoil for intracranial and intraductal MR microscopy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:2047-50. [PMID: 19163097 PMCID: PMC3196548 DOI: 10.1109/iembs.2008.4649594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Implantable RF-coils have enabled sub-mm resolution magnetic resonance images (MRI) of deep structures. Scaling down the size of RF coils has similarly provided a gain in signal-to-noise ratio in nuclear-magnetic-resonance spectroscopy. By combining both approaches we designed, fabricated, and imaged with an implantable microcoil catheter. While typical implantable catheters use a transverse magnetization, the axial magnetization of the microcoil provides improved sensitivity and allows visualization of the tissue beyond the distal end of the catheter. The microcoil catheter was designed with a diameter of 1 mm for future integration with intracranial devices, and for intraductal use in breast oncology. We modified the NMR-microcoil design to allow implantation of the RF coil, by winding the microcoil on medical-grade silicone tubing and incorporating leads on the catheter to connect circuit components. In order to achieve proper turn spacing, we coated copper wire with 25 microm of biocompatible polymer (Parylene C). Tuning and matching circuitry insured that the impedance of the RF coil was approximately 50 ohm at the operating frequency for 3-T proton MR applications. A duplexer was used to enable use of the microcoil catheter as a transceiver. Experimental verification of the coil design was achieved through ex vivo imaging of neural tissue. As expected, the microcoil catheter provided microscale images with 20-microm in-plane-resolution and 170-microm-thick slices. While 3-T MRI typically provides 1 to 30 voxels per-cubic-millimeter, in this paper we report that the MRI microcoil can provide hundreds, and even thousands of voxels in the same volume.
Collapse
Affiliation(s)
- Debra S Strick
- Biomedical Engineering Interdepartmental program, University of California, LA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Raman VK, Lederman RJ. Advances in interventional cardiovascular MRI. CURRENT CARDIOVASCULAR RISK REPORTS 2007. [DOI: 10.1007/s12170-007-0050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Abstract
Because of its superior soft tissue imaging, MRI has become a valuable diagnostic tool in cardiovascular disease. These strengths make MRI attractive to guide therapeutic catheter-based procedures, both conventional and novel. We review how to configure an interventional MRI suite, how MRI catheter devices differ from conventional radiographic catheters, and finally developments in preclinical and investigational clinical applications.
Collapse
Affiliation(s)
- Venkatesh K Raman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA.
| |
Collapse
|
13
|
Seppenwoolde JH, Bartels LW, van der Weide R, Nijsen JFW, van het Schip AD, Bakker CJG. Fully MR-guided hepatic artery catheterization for selective drug delivery: A feasibility study in pigs. J Magn Reson Imaging 2006; 23:123-9. [PMID: 16374883 DOI: 10.1002/jmri.20479] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of hepatic catheterization for selective delivery of therapeutic agents using a clinical MRI scanner for real-time image guidance. MATERIALS AND METHODS Experiments were performed in three domestic pigs (70-80 kg) using a clinical 1.5-T MR scanner. After abdominal three-dimensional contrast-enhanced MR angiography (3D-CE-MRA) was performed, endovascular devices with susceptibility markers were tracked with passive tracking techniques. Catheters were maneuvered into the primary and secondary hepatic arteries. Selective catheterization was verified using selective time-resolved CE angiography. Paramagnetic microspheres were administered to a different region for each liver. The resulting biodistributions were investigated using MR images. RESULTS Successful selective hepatic catheterization was repeatedly demonstrated using passive tracking techniques. 3D-CE-MRA significantly aided the interventional procedure by showing the vascular anatomy, and maximum-intensity projections (MIPs) were used as roadmaps during the interventions. In all cases, microspheres were successfully delivered to the selected regions. The catheters were visualized at a maximum frame rate of five frames per second, allowing a good depiction of the devices and a reliable catheterization of the hepatic arteries. CONCLUSION Fully MR-guided real-time navigation of endovascular devices permits complex procedures such as selective intra-arterial delivery of therapeutic agents to parts of the liver.
Collapse
Affiliation(s)
- Jan-Henry Seppenwoolde
- Image Sciences Institute, Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Blanco RT, Ojala R, Kariniemi J, Perälä J, Niinimäki J, Tervonen O. Interventional and intraoperative MRI at low field scanner--a review. Eur J Radiol 2006; 56:130-42. [PMID: 15908156 DOI: 10.1016/j.ejrad.2005.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 03/05/2005] [Accepted: 03/08/2005] [Indexed: 02/07/2023]
Abstract
Magnetic resonance imaging (MRI) is a cutting edge imaging modality in detecting diseases and pathologic tissue. The superior soft tissue contrast in MRI allows better definition of the pathology. MRI is increasingly used for guiding, monitoring and controlling percutaneous procedures and surgery. The rapid development of interventional techniques in radiology has led to integration of imaging with computers, new therapy devices and operating room like conditions. This has projected as faster and more accurate imaging and hence more demanding procedures have been applied to the repertoire of the interventional radiologist. In combining features of various other imaging modalities and adding some more into them, interventional MRI (IMRI) has potential to take further the interventional radiology techniques, minimally invasive therapies and surgery. The term "Interventional MRI" consists in short all those procedures, which are performed under MRI guidance. These procedures can be either percutaneous or open surgical of nature. One of the limiting factors in implementing MRI as guidance modality for interventional procedures has been the fact, that most widely used magnet design, a cylindrical magnet, is not ideal for guiding procedures as it does not allow direct access to the patient. Open, low field scanners usually operating around 0.2 T, offer this feature. Clumsy hardware, bad patient access, slow image update frequency and strong magnetic fields have been other limiting factors for interventional MRI. However, the advantages of MRI as an imaging modality have been so obvious that considerable development has taken place in the 20-year history of MRI. The image quality has become better, ever faster software, new innovative sequences, better MRI hardware and increased computing power have accelerated imaging speed and image quality to a totally new level. Perhaps the most important feature in the recent development has been the introduction of open configuration low field MRI devices in the early 1990s; this enabled direct patient access and utilization of the MRI as an interventional device. This article reviews the current status of interventional and intraoperative MRI with special emphasis in low field surrounding.
Collapse
Affiliation(s)
- Roberto T Blanco
- Department of Radiology, Oulu University Hospital, P.O. Box 90029, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Sequeiros RB, Ojala R, Kariniemi J, Perälä J, Niinimäki J, Reinikainen H, Tervonen O. MR-guided interventional procedures: a review. Acta Radiol 2005; 46:576-86. [PMID: 16334839 DOI: 10.1080/02841850510021742] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Magnetic resonance imaging (MRI) has emerged as a potential guidance tool for a variety of procedures. Diagnostic and therapeutic procedures using either open surgical or percutaneous access are performed. They span from simple lesion targeting and biopsy to complex applications requiring multiple tasks performed simultaneously or in rapid succession. These tasks include instrument guidance and therapy monitoring as well as procedural follow-up. The interventional use of MRI (IMRI) is increasing steadily. This article reviews the prerequisites, systems, and clinical interventional procedures of IMRI.
Collapse
|
16
|
Abstract
Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function.
Collapse
Affiliation(s)
- Cengizhan Ozturk
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
MR guidance has been used recently to navigate endovascular catheters and deliver stents in large (aorta and pulmonary) and small (coronary, renal, and femoral) arteries, place ASD closure devices, deliver pulmonary valve stents, guide cardiac RF ablations, and perform intramyocardial injections. However, MR visualization of a stent lumen is still a problem and requires more attention. Because of technical limitations and safety concerns associated with the prototype devices used, limited numbers of clinical studies have been performed. Considerable development is necessary to overcome the challenges and take advantage of the benefits that MR has to offer for endovascular interventions. In this article we review the current state of the art and address the topic partly by referring to our own experiments and presenting our recent illustrations.
Collapse
Affiliation(s)
- Christine B Henk
- Department of Radiology, University of California-San Francisco, San Francisco, California 94143-0628, USA
| | | | | |
Collapse
|
18
|
Schalla S, Saeed M, Higgins CB, Martin A, Weber O, Moore P. Magnetic Resonance–Guided Cardiac Catheterization in a Swine Model of Atrial Septal Defect. Circulation 2003; 108:1865-70. [PMID: 14517162 DOI: 10.1161/01.cir.0000089368.15818.ac] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Radiation exposure during cardiac catheterization, limited image planes, and poor soft tissue definition are disadvantages of x-ray fluoroscopy that could be overcome with the use of MRI. This study evaluates the feasibility of real-time MRI (MR fluoroscopy) to guide left and right heart catheterization.
Methods and Results—
Anesthetized pigs (n=7) with defects of the atrial septum were catheterized using venous and arterial access. A prototype active tracking catheter was used to obtain blood pressures and samples from cardiac chambers and great vessels using antegrade, transseptal, and retrograde approaches. MR fluoroscopy was used for catheter steering. Velocity-encoded cine MRI was used to measure pulmonary and aortic blood flow to calculate vascular resistances. Image planes used during catheter manipulation used rapid sequencing to planes directed by the operator to include the tip of the catheter and the chamber to be entered. All areas of interest were effectively entered, and samples were obtained. In the presence of an acute atrial septal defect, a Q
p
/Q
s
ratio of 1.3±0.2 was measured, and no significant differences in pressure between inferior vena cava, right atrium, and left atrium were found. Pulmonary and aortic flow were 4.9±0.6 and 3.7±0.4 L/min, and pulmonary and systemic vascular resistance were 312±134 and 2006±336 dyne · s · cm
−5
.
Conclusions—
Left and right heart catheterization using MR guidance is feasible. The combination of hemodynamic catheterization data with anatomic and functional MRI may significantly improve the evaluation of patients with congenital heart disease while avoiding radiation exposure.
Collapse
Affiliation(s)
- Simon Schalla
- Department of Radiology, University of California San Francisco, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.
Collapse
Affiliation(s)
- L W Bartels
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room E.01.335, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
20
|
Eggers H, Weiss S, Boernert P, Boesiger P. Image-based tracking of optically detunable parallel resonant circuits. Magn Reson Med 2003; 49:1163-74. [PMID: 12768595 DOI: 10.1002/mrm.10459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this work strategies for the robust localization of parallel resonant circuits are investigated. These strategies are based on the subtraction of two images, which ideally differ in signal intensity at the positions of the devices only. To modulate their signal amplification, and thereby generate the local variations, the parallel resonant circuits are alternately detuned and retuned during the acquisition. The integration of photodiodes into the devices permits their fast optical switching. Radial and spiral imaging sequences are modified to provide the data for the two images in addition to those for a conventional image in the same acquisition time. The strategies were evaluated by phantom experiments with stationary and moving catheter-borne devices. In particular, rapid detuning and retuning during the sampling of single profiles is shown to lead to a robust localization. Moreover, this strategy eliminates most of the drawbacks usually associated with image-based tracking, such as low temporal resolution. Image-based tracking may thus become a competitive (if not superior) alternative to projection-based tracking of parallel resonant circuits.
Collapse
Affiliation(s)
- Holger Eggers
- Philips Research, Sector Technical Systems, Hamburg, Germany.
| | | | | | | |
Collapse
|
21
|
Buecker A, Adam GB, Neuerburg JM, Kinzel S, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Guenther RW. Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. J Magn Reson Imaging 2002; 16:201-8. [PMID: 12203769 DOI: 10.1002/jmri.10148] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To examine the feasibility of simultaneous MR real-time active tip tracking and near real-time depiction of the vascular anatomy for percutaneous angioplasty of iliac arteries under MR guidance. MATERIALS AND METHODS Nine surgically created stenoses of external iliac arteries in pigs were dilated with MR-compatible balloon catheters (Cordis, Roden, The Netherlands). These catheters were equipped with a microcoil for active tracking of the catheter tip with an in-plane update rate of 10 positions per second. The procedures were performed on an interventional 1.5 T Gyroscan ACS-NT scanner (Philips, Best, The Netherlands). Real-time calculation of images acquired by radial k-space filling was performed on a specially designed backprojector exploiting the sliding window reconstruction technique (Philips Research Laboratories, Hamburg, Germany). The image update rate was 20 frames per second using a radial gradient-echo technique (TR = 12 msec, TE = 3.3 msec, 300 radials). MR angiography and X-ray digital subtraction angiography on the X-ray system positioned in-line next to the interventional MR system served as control for the angioplasty results. RESULTS Real-time guidance and positioning of the balloon catheters was possible. The actual position of the catheter tip was indicated in the MR images without any time delay for the reconstruction of the anatomical MR images, which were updated with a rate of 20 frames per second. This yielded a combination of a roadmap and fluoroscopy image, in which the catheter position and the anatomical background image both were continuously updated in real time. Six out of nine stenoses were successfully dilated. The effects of the angioplasty could be visualized by the real-time MR technique, as was proven by X-ray digital subtraction angiography. CONCLUSION Active tip tracking simultaneous with MRI of the vascular anatomy-both in real time-is possible with the applied technique, enabling MR-guided percutaneous dilatation (PTA) of iliac arteries.
Collapse
Affiliation(s)
- Arno Buecker
- Clinic of Diagnostic Radiology, University of Technology Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Spuentrup E, Ruebben A, Schaeffter T, Manning WJ, Günther RW, Buecker A. Magnetic resonance--guided coronary artery stent placement in a swine model. Circulation 2002; 105:874-9. [PMID: 11854130 DOI: 10.1161/hc0702.104165] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance (MR)--guided coronary artery stent placement is a challenging vascular intervention because of the small size of the coronary arteries combined with incessant motion during the respiratory and cardiac cycles. These obstacles necessitate higher temporal and higher spatial resolution real-time MR imaging techniques when compared with interventional peripheral MR angiography. METHODS AND RESULTS A new, ultrafast, real-time MR imaging technique that combines steady-state free precession (SSFP) for high signal-to-noise ratio and radial k-space sampling (rSSFP) for motion artifact suppression was implemented on a 1.5-T clinical whole-body interventional MR scanner. The sliding window reconstruction technique yielded a frame rate of 15/s allowing for data acquisition during free breathing and without cardiac triggering. Eleven balloon-expandable stainless steel coronary stents were placed in both coronary arteries of 7 pigs (40 to 70 kg body weight) using a nitinol guidewire and passive device visualization. Position of the coronary stents was controlled by a navigator-gated free-breathing ECG-triggered three-dimensional SSFP coronary MRA sequence and confirmed visually on the ex vivo heart. The presented real-time MR imaging sequence reliably allowed for high-quality coronary MR fluoroscopy without motion artifacts in all pigs. Ten of 11 coronary stents were correctly placed under MR guidance. One stent dislodged proximally from the left main coronary artery because of too-small balloon size. Stent dislocation was correctly predicted during real-time MR imaging. CONCLUSION The presented approach allows for real-time MR-guided coronary artery stent placement in a swine model.
Collapse
Affiliation(s)
- Elmar Spuentrup
- Department of Diagnostic Radiology, University Hospital, Aachen University of Technology, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|