1
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and Cell Specific HMGB1 Secretion and Subepithelial Infiltrate Formation in Adenovirus Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631509. [PMID: 39829903 PMCID: PMC11741304 DOI: 10.1101/2025.01.07.631509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
|
2
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Park A, Lee C, Lee JY. Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis. J Microbiol 2024; 62:393-407. [PMID: 38451451 DOI: 10.1007/s12275-024-00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/08/2024]
Abstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
4
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
5
|
Liu X, Lai J, Su J, Zhang K, Li J, Li C, Ning Z, Wang C, Zhu B, Li Y, Zhao M. Selenadiazole Inhibited Adenovirus-Induced Apoptosis through the Oxidative-Damage-Mediated Bcl-2/Stat 3/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1474. [PMID: 37895944 PMCID: PMC10610542 DOI: 10.3390/ph16101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Human adenovirus type 7 (HAdV7) infection causes severe pneumonia, yet there are still no breakthroughs in treatment options for adenovirus, and the road to antiviral drug development faces major challenges. We attempted to find new drugs and we stumbled upon one: selenadiazole. Selenadiazole has been shown to have significant anti-tumor effects due to its unique chemical structure and drug activity. However, its effectiveness against viruses has not been evaluated yet. In our study, selenadiazole also showed superior antiviral activity. In vitro experiments, selenadiazole was able to inhibit adenovirus-mediated mitochondrial-oxidative-damage-related apoptosis, and in in vivo experiments, selenadiazole was able to inhibit apoptosis by modulating the apoptotic signaling pathway Bcl-2/Stat3/NF-κB, etc., and was able to largely attenuate adenovirus-infection-induced pneumonia and lung injury in mice. This study aims to describe a new antiviral treatment option from the perspective of anti-adenovirus-mediated oxidative stress and its associated apoptosis and to provide theoretical guidance for the treatment of clinical adenovirus infection to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| |
Collapse
|
6
|
Windheim M, Reubold TF, Aichane K, Gaestel M, Burgert HG. Enforced Dimerization of CD45 by the Adenovirus E3/49K Protein Inhibits T Cell Receptor Signaling. J Virol 2023; 97:e0189822. [PMID: 37125921 PMCID: PMC10231199 DOI: 10.1128/jvi.01898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.
Collapse
Affiliation(s)
- Mark Windheim
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas F. Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khadija Aichane
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Muto T, Imaizumi S, Kamoi K. Viral Conjunctivitis. Viruses 2023; 15:v15030676. [PMID: 36992385 PMCID: PMC10057170 DOI: 10.3390/v15030676] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Viruses account for 80% of all cases of acute conjunctivitis and adenovirus; enterovirus and herpes virus are the common causative agents. In general, viral conjunctivitis spreads easily. Therefore, to control the spread, it is crucial to quickly diagnose illnesses, strictly implement hand washing laws, and sanitize surfaces. Swelling of the lid margin and ciliary injection are subjective symptoms, and eye discharge is frequently serofibrinous. Preauricular lymph node swelling can occasionally occur. Approximately 80% of cases of viral conjunctivitis are caused by adenoviruses. Adenoviral conjunctivitis may become a big global concern and may cause a pandemic. Diagnosis of herpes simplex viral conjunctivitis is crucial for using corticosteroid eye solution as a treatment for adenovirus conjunctivitis. Although specific treatments are not always accessible, early diagnosis of viral conjunctivitis may help to alleviate short-term symptoms and avoid long-term consequences.
Collapse
Affiliation(s)
- Tetsuaya Muto
- Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, Koshigaya 343-8555, Japan
- Imaizumi Eye Hospital, Koriyama 963-8877, Japan
- Correspondence:
| | | | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Tokyo Medical Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
8
|
Nakamichi K, Akileswaran L, Meirick T, Lee MD, Chodosh J, Rajaiya J, Stroman D, Wolf-Yadlin A, Jackson Q, Holtz WB, Lee AY, Lee CS, Van Gelder RN. Machine Learning Prediction of Adenovirus D8 Conjunctivitis Complications from Viral Whole-Genome Sequence. OPHTHALMOLOGY SCIENCE 2022; 2:100166. [PMID: 36531578 PMCID: PMC9754964 DOI: 10.1016/j.xops.2022.100166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Objective To obtain complete DNA sequences of adenoviral (AdV) D8 genome from patients with conjunctivitis and determine the relation of sequence variation to clinical outcomes. Design This study is a post hoc analysis of banked conjunctival swab samples from the BAYnovation Study, a previously conducted, randomized controlled clinical trial for AdV conjunctivitis. Participants Ninety-six patients with AdV D8-positive conjunctivitis who received placebo treatment in the BAYnovation Study were included in the study. Methods DNA from conjunctival swabs was purified and subjected to whole-genome viral DNA sequencing. Adenovirus D8 variants were identified and correlated with clinical outcomes, including 2 machine learning methods. Main Outcome Measures Viral DNA sequence and development of subepithelial infiltrates (SEIs) were the main outcome measures. Results From initial sequencing of 80 AdV D8-positive samples, full adenoviral genome reconstructions were obtained for 71. A total of 630 single-nucleotide variants were identified, including 156 missense mutations. Sequence clustering revealed 3 previously unappreciated viral clades within the AdV D8 type. The likelihood of SEI development differed significantly between clades, ranging from 83% for Clade 1 to 46% for Clade 3. Genome-wide analysis of viral single-nucleotide polymorphisms failed to identify single-gene determinants of outcome. Two machine learning models were independently trained to predict clinical outcome using polymorphic sequences. Both machine learning models correctly predicted development of SEI outcomes in a newly sequenced validation set of 16 cases (P = 1.5 × 10-5). Prediction was dependent on ensemble groups of polymorphisms across multiple genes. Conclusions Adenovirus D8 has ≥ 3 prevalent molecular substrains, which differ in propensity to result in SEIs. Development of SEIs can be accurately predicted from knowledge of full viral sequence. These results suggest that development of SEIs in AdV D8 conjunctivitis is largely attributable to pathologic viral sequence variants within the D8 type and establishes machine learning paradigms as a powerful technique for understanding viral pathogenicity.
Collapse
Affiliation(s)
- Kenji Nakamichi
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington
| | - Lakshmi Akileswaran
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington
| | - Thomas Meirick
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
| | - Michele D. Lee
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Aaron Y. Lee
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington
| | - Cecilia S. Lee
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
9
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Götting J, Baier C, Panagiota V, Maecker-Kolhoff B, Dhingra A, Heim A. High genetic stability of co-circulating human adenovirus type 31 lineages over 59 years. Virus Evol 2022; 8:veac067. [PMID: 36533152 PMCID: PMC9748976 DOI: 10.1093/ve/veac067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/22/2024] Open
Abstract
Type 31 of human adenovirus species A (HAdV-A31) is a significant pathogen primarily associated with diarrhoea in children but also with life-threatening disseminated disease in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Nosocomial outbreaks of HAdV-A31 have been frequently described. However, the evolution of HAdV-A31 has not been studied in detail. The evolution of other HAdV types is driven either by intertypic recombination, where different types exchange genome regions, or by immune escape selection of neutralisation determinants. Complete genomic HAdV-A31 sequences from sixty diagnostic specimens of the past 18 years (2003-21) were generated, including fourteen specimens of a presumed outbreak on two HSCT wards. Additionally, twenty-three complete genomes from GenBank were added to our phylogenetic analysis as well as in silico generated and previously published restriction fragment polymorphism (RFLP) data. Phylogenetic analysis of eighty-three genomes indicated that HAdV-A31 evolved slowly with six lineages co-circulating. The two major lineages were lineage 1, which included the prototype from 1962 and nine recent isolates, and lineage 2, which split into four sublineages and included most isolates from 2003 to 2021. The average nucleotide identity within lineages was high (99.8 per cent) and identity between lineages was 98.7 and 99.2 per cent. RFLP data allowed the construction of a lower-resolution phylogeny with two additional putative lineages. Surprisingly, regions of higher diversity separating lineages were found in gene regions coding for non-structural and minor capsid proteins. Intertypic recombinations were not observed, but the phylogeny of lineage 3 was compatible with an interlineage recombination event in the fibre gene. Applying the phylogenetic analysis to the presumed nosocomial outbreak excluded two suspected transmission events and separated it into two different, simultaneous outbreaks caused by different sublineages of lineage 2. However, due to the high nucleotide identity within HAdV-A31 lineages, the proof of infection chains remains debatable. This in-depth study on the molecular phylogeny of HAdV-A31 highlights the high genetic stability of co-circulating HAdV-A31 lineages over almost six decades. It also supports the epidemiological hypothesis that HAdV-A31 circulates as an etiological agent of a childhood disease infecting immunologically naive patients without strong positive selection of immune escape variants and recombinants.
Collapse
Affiliation(s)
- Jasper Götting
- Institute of Virology, Hannover Medical
School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Claas Baier
- Institute for Medical Microbiology and Hospital
Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover
30625, Germany
| | - Victoria Panagiota
- Department of Hematology, Hemostaseology,
Oncology and Stem Cell Transplantation, Hannover Medical School,
Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Britta Maecker-Kolhoff
- Department of Paediatric Haematology and
Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625,
Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical
School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical
School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
11
|
Huang PQ, Du H, Chen HB, Li Y, Chen HW, Lei XL, Zhang MR, Lu XX. Invasive pulmonary fungal infections in children with severe human adenovirus type 7 pneumonia: A retrospective study. Pediatr Neonatol 2022; 63:388-393. [PMID: 35474019 DOI: 10.1016/j.pedneo.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/31/2020] [Accepted: 03/25/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND There has been a rapid increase in the number of human adenovirus type 7 (HAdV-7) and invasive pulmonary fungal infections (IPFIs) co-infection. METHODS In this study, we included patients with confirmed HAdV-7 infection during the period from 2018 to 2019 to explore clinical characteristics of severe HAdV-7 pneumonia combined with IPFIs. RESULTS Among the 143 patients, 35 cases were co-infected with IPFIs. Others were assigned to the control group (n Z 108). Patients wereprone to be complicated with respiratory failure, heart failure and hemophagocytic syndromein IPFIs group. Thirty-one species of fungi were detected in the IPFIs group, among whichAspergillus was the most common species. Compared to control group, patients had lowerlevels of WBC, CD3þ T lymphocyte counts and CD19þ B lymphocyte counts in IPFIs group. CONCLUSION Aspergillus is the most common species in IPFIs combined with severe HAdV-7 pneumonia. For children with severe HAdV-7 pneumonia who are younger, have a long course of disease, and have been admitted to the ICU, we should predict the occurrence of IPFIs when there is multi-system dysfunction and the reduction of CD3+ T lymphocyte counts and CD19+ B lymphocyte counts in course of their disease.
Collapse
Affiliation(s)
- P Q Huang
- Department of Electrocardiogram, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - H Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - H B Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - Y Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - H W Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - X L Lei
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - M R Zhang
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China
| | - X X Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430014, China.
| |
Collapse
|
12
|
Ismail AM, Saha A, Lee JS, Painter DF, Chen Y, Singh G, Condezo GN, Chodosh J, San Martín C, Rajaiya J. RANBP2 and USP9x regulate nuclear import of adenovirus minor coat protein IIIa. PLoS Pathog 2022; 18:e1010588. [PMID: 35709296 PMCID: PMC9242475 DOI: 10.1371/journal.ppat.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/29/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics. The compact genomes of viruses must code for proteins with multiple functions, including those that assist with cell entry, replication, and escape from the host immune defenses. Viruses succeed in every stage of this process by hijacking critical cellular proteins for their propagation. Hence, identifying virus-host protein interactions may permit identifying therapeutic applications that restrict viral processes. Human adenovirus structural proteins link together to produce infectious virions. Protein IIIa is required to assemble fully packaged virions, but its interactions with host factors are unknown. Here, we identify novel host protein interactions of pIIIa with cellular RANBP2 and USP9x. We demonstrate that by interacting with cellular RANBP2, viral pIIIa gains entry to the nucleus for subsequent virion assembly and replication. Reduced RANBP2 expression inhibited pIIIa entry into the nucleus, minimized viral replication and viral protein expression, and led to accumulation of defective assembly products in the infected cells. As a defense against viral infection, USP9x reduces the interaction between pIIIa and RANBP2, resulting in decreased viral propagation. We also show that the identified pIIIa-host interactions are crucial in two disparate HAdV types with diverse disease implications.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amrita Saha
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji S. Lee
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Painter
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gurdeep Singh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - James Chodosh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - Jaya Rajaiya
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zheng N, Wang Y, Rong H, Wang K, Huang X. Human Adenovirus Associated Hepatic Injury. Front Public Health 2022; 10:878161. [PMID: 35570934 PMCID: PMC9095934 DOI: 10.3389/fpubh.2022.878161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Human adenovirus (HAdV) is a common virus, but the infections it causes are relatively uncommon. At the same time, the methods for the detection of HAdV are varied, among which viral culture is still the gold standard. HAdV infection is usually self-limited but can also cause clinically symptomatic in lots of organs and tissues, of which human adenovirus pneumonia is the most common. In contrast, human adenovirus hepatitis is rarely reported. However, HAdV hepatitis has a high fatality rate once it occurs, especially in immunocompromised patients. Although human adenovirus hepatitis has some pathological and imaging features, its clinical symptoms are not typical. Therefore, HAdV hepatitis is not easy to be found in the clinic. There are kinds of treatments to treat this disease, but few are absolutely effective. In view of the above reasons, HAdV hepatitis is a disease that is difficult to be found in time. We reviewed and summarized the previously reported cases, hoping to bring some relatively common characteristics to clinicians, so as to facilitate early detection, early diagnosis, and early treatment of patients.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hechen Rong
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Huang
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Feng G, Zhang D, Peng C, Wu M, Xiao P, Li N. Study on the Anti-Adenovirus Mechanism of Sargassum fusiforme. Front Cell Infect Microbiol 2022; 12:860559. [PMID: 35321314 PMCID: PMC8936137 DOI: 10.3389/fcimb.2022.860559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human adenovirus (HAdV) has a worldwide distribution and remains a major pathogen that leads to infections of the respiratory tract. No specific treatments or vaccines are yet available for HAdV infection. Sargassum fusiforme, an edible seaweed, has attracted a lot of attention for its various bioactivities. S. fusiforme has been reported to exhibit antiviral activity. However, research studies about its anti-HAdV activity are few. In this research, we found that S. fusiforme had low cytotoxicity and possessed anti-human adenovirus type 7 (HAdV7) activity in vitro, and the most effective ingredient was alginate. The time of addition assay demonstrated inhibitory effects that were observed in all life stages of the virus. In addition, we observed that the antiviral activity of alginate against HAdV7 infection might be closely related to the endoplasmic reticulum stress (ERS) pathway. Taken together, these results suggest that S. fusiforme extracts have potential application in the prevention and treatment of HAdV infection.
Collapse
Affiliation(s)
- Guanrong Feng
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Duo Zhang
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Chengcheng Peng
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Nan Li
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|
15
|
Van Gelder RN, Akileswaran L, Nakamichi K, Stroman D. Molecular and Clinical Characterization of Human Adenovirus E4-Associated Conjunctivitis. Am J Ophthalmol 2022; 233:227-242. [PMID: 34740631 DOI: 10.1016/j.ajo.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the characteristics of conjunctivitis associated with human adenovirus E4 (AdV E4). METHODS Samples and outcomes from 500 patients with conjunctivitis were obtained from the NVC-422 randomized controlled clinical trial comparing auriclosene to placebo. Molecular typing identified 36 cases associated with AdV E4. Signs and symptoms at presentation and at the day 18 endpoint were compared with the larger cohort of 262 subjects with conjunctivitis caused by due to AdV D8. Full viral genomes of 22 AdV E4 isolates were reconstructed. RESULTS AdV E4 was the most frequently identified adenoviral type in conjunctivitis cases from the United States. Signs and symptoms at presentation were comparable to those associated with AdV D8. Viral load at presentation was comparable between groups but resolution was more rapid in the AdV E4 group. Clinical signs were fully resolved by day 18 in 26 of 36 (72%) patients with AdV E4. Subepithelial infiltrates developed in 12 of 36 (33%) patients with AdV E4 compared with 98 of 215 (45%) patients with AdV D8 (P = .0001). One hundred twenty-four polymorphisms were observed among 22 whole viral genome sequences, which clustered into 3 clades. Patients in each clade developed subepithelial infiltrates. Neither single nucleotide polymorphism analysis nor machine learning approaches identified specific sequence features predictive of presenting signs or outcome. CONCLUSIONS AdV E4 conjunctivitis may be indistinguishable at presentation from AdV D8-associated disease. Resolution of viral load for AdV E4 appears more rapid than for AdV D8, and the risk for subepithelial infiltrates appears lower. Multiple substrains of AdV E4 are in circulation but all appeared equivalently pathogenic for conjunctivitis. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
16
|
Lynch JP, Kajon AE. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin Respir Crit Care Med 2021; 42:800-821. [PMID: 34918322 DOI: 10.1055/s-0041-1733802] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The vast majority of cases are self-limited. However, the clinical spectrum is broad and fatalities may occur. Dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 100 genotypes and 52 serotypes of AdV have been identified and classified into seven species designated HAdV-A through -G. Different types display different tissue tropisms that correlate with clinical manifestations of infection. The predominant types circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been done. Cidofovir has been the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States but currently are not available to civilians.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| |
Collapse
|
17
|
Rajaiya J, Saha A, Zhou X, Chodosh J. Human Adenovirus Species D Interactions with Corneal Stromal Cells. Viruses 2021; 13:2505. [PMID: 34960773 PMCID: PMC8709199 DOI: 10.3390/v13122505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Notable among the many communicable agents known to infect the human cornea is the human adenovirus, with less than ten adenoviruses having corneal tropism out of more than 100 known types. The syndrome of epidemic keratoconjunctivitis (EKC), caused principally by human adenovirus, presents acutely with epithelial keratitis, and later with stromal keratitis that can be chronic and recurrent. In this review, we discuss the current state of knowledge regarding the molecular biology of adenovirus infection of corneal stromal cells, among which the fibroblast-like keratocyte is the most predominant, in order to elucidate basic pathophysiologic mechanisms of stromal keratitis in the human patient with EKC.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| | | | | | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (A.S.); (X.Z.)
| |
Collapse
|
18
|
Kleinehr J, Wilden JJ, Boergeling Y, Ludwig S, Hrincius ER. Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets. Viruses 2021; 13:2068. [PMID: 34696497 PMCID: PMC8540840 DOI: 10.3390/v13102068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
- Cells in Motion Interfaculty Centre (CiMIC), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (J.K.); (J.J.W.); (Y.B.); (S.L.)
| |
Collapse
|
19
|
Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, Lei T, Xu B. Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Front Microbiol 2021; 12:707290. [PMID: 34367111 PMCID: PMC8334181 DOI: 10.3389/fmicb.2021.707290] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has moved to the forefront of modern oncologic treatment in the past few decades. Various forms of immunotherapy currently are emerging, including oncolytic viruses. In this therapy, viruses are engineered to selectively propagate in tumor cells and reduce toxicity for non-neoplastic tissues. Adenovirus is one of the most frequently employed oncolytic viruses because of its capacity in tumor cell lysis and immune response stimulation. Upregulation of immunostimulatory signals induced by oncolytic adenoviruses (OAds) might significantly remove local immune suppression and amplify antitumor immune responses. Existing genetic engineering technology allows us to design OAds with increasingly better tumor tropism, selectivity, and antitumor efficacy. Several promising strategies to modify the genome of OAds have been applied: capsid modifications, small deletions in the pivotal viral genes, insertion of tumor-specific promoters, and addition of immunostimulatory transgenes. OAds armed with tumor-associated antigen (TAA) transgenes as cancer vaccines provide additional therapeutic strategies to trigger tumor-specific immunity. Furthermore, the combination of OAds and immune checkpoint inhibitors (ICIs) increases clinical benefit as evidence shown in completed and ongoing clinical trials, especially in the combination of OAds with antiprogrammed death 1/programed death ligand 1 (PD-1/PD-L1) therapy. Despite remarkable antitumor potency, oncolytic adenovirus immunotherapy is confronted with tough challenges such as antiviral immune response and obstruction of tumor microenvironment (TME). In this review, we focus on genomic modification strategies of oncolytic adenoviruses and applications of OAds in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
21
|
Adenovirus - a blueprint for gene delivery. Curr Opin Virol 2021; 48:49-56. [PMID: 33892224 DOI: 10.1016/j.coviro.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
A central quest in gene therapy and vaccination is to achieve effective and long-lasting gene expression at minimal dosage. Adenovirus vectors are widely used therapeutics and safely deliver genes into many cell types. Adenoviruses evolved to use elaborate trafficking and particle deconstruction processes, and efficient gene expression and progeny formation. Here, we discuss recent insights into how human adenoviruses deliver their double-stranded DNA genome into cell nuclei, and effect lytic cell killing, non-lytic persistent infection or vector gene expression. The mechanisms underlying adenovirus entry, uncoating, nuclear transport and gene expression provide a blueprint for the emerging field of synthetic virology, where artificial virus-like particles are evolved to deliver therapeutic payload into human cells without viral proteins and genomes.
Collapse
|
22
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
23
|
Sharif N, Parvez AK, Haque A, Talukder AA, Ushijima H, Dey SK. Molecular and epidemiological trends of human bocavirus and adenovirus in children with acute gastroenteritis in Bangladesh during 2015 to 2019. J Med Virol 2020; 92:3194-3201. [PMID: 32237149 DOI: 10.1002/jmv.25812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
Virus associated diarrhea remains one of the leading causes of children morbidity and mortality in Bangladesh. Human bocavirus (HBoV) has been reported as a potential pathogen of children's diarrhea worldwide. However, due to its frequent association with other gastroenteric pathogens, its role as diarrhea causative agent remains to be defined. This study focuses to detect the incidence of HBoV and adenovirus (AdV) and to determine the molecular and epidemiological characteristics of HBoV and AdV. Between January 2015 to January 2019, 290 fecal specimens were collected from diarrheal children in Bangladesh. All fecal specimens were tested for HBoV and AdV by conventional polymerase chain reaction and sequencing methods. HBoV was detected in 7.24% (21 of 290) of the stool samples, as a sole virus in 71.42% (15 of 21) of the positive samples. AdV was detected in 4.82% (14 of 290) of the samples. The most common clinical symptoms of HBoV infected patients were diarrhea (100%) and vomiting (57%). All of the isolates of HBoV were from HBoV1 and AdV were from AdV41, AdV5, AdV7, and AdV8. To the best of our knowledge, this is the first epidemiological and molecular analysis report of HBoV from clinical specimens in Bangladesh. In the future, more studies are needed to clarify the role of HBoV as diarrheal pathogens.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Aynul Haque
- Department of Physiology, Pabna Medical College, Pabna, Bangladesh
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University, Tokyo, Japan
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
24
|
Aydin M, Naumova EA, Paulsen F, Zhang W, Gopon F, Theis C, Lutz S, Ehrke-Schulz E, Arnold WH, Wirth S, Ehrhardt A. House Dust Mite Exposure Causes Increased Susceptibility of Nasal Epithelial Cells to Adenovirus Infection. Viruses 2020; 12:v12101151. [PMID: 33050625 PMCID: PMC7600414 DOI: 10.3390/v12101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (AdV) infections in the respiratory tract may cause asthma exacerbation and allergic predisposition, and the house dust mite (HDM) may aggravate virus-induced asthma exacerbations. However, the underlying mechanisms of whether and how AdV affects asthmatic patients remains unclear. To address this question, we investigated nasal epithelial cells (NAEPCs) derived from a pediatric exacerbation study cohort for experimental analyses. We analyzed twenty-one different green-fluorescent protein- and luciferase-tagged AdV types in submerged 2D and organotypic 3D cell culture models. Transduction experiments revealed robust transduction of AdV type 5 (AdV5) in NAEPCs, which was associated with an increased uptake of AdV5 in the presence of HDM. In healthy and asthmatic NAEPCs exposed to HDM before infection, we observed a time- and dose-dependent increase of AdV5 uptake associated with upregulation of entry receptors for AdV5. Furthermore, electron microscopic and histologic analyses of 3D cell cultures revealed an impairment of the respiratory cilia after HDM exposition. This ex vivo pilot study shows the impact of AdV infection and HDM exposition in a primary cell culture model for asthma.
Collapse
Affiliation(s)
- Malik Aydin
- Children’s Hospital, Center for Clinical and Translational Research (CCTR), Helios University Medical Center Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (M.A.); (S.W.)
- Laboratory of Clinical Molecular Genetics & Epigenetics, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (E.A.N.); (W.H.A.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Department of Topographic Anatomy and Operative Surgery, Sechenov University, 119146 Moscow, Russia
| | - Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
| | - Felix Gopon
- Clinics for Anesthesiology, Helios University Medical Center Wuppertal, Center for Clinical and Translational Research (CCTR), Witten/Herdecke University, 42283 Wuppertal, Germany; (F.G.); (C.T.)
| | - Christian Theis
- Clinics for Anesthesiology, Helios University Medical Center Wuppertal, Center for Clinical and Translational Research (CCTR), Witten/Herdecke University, 42283 Wuppertal, Germany; (F.G.); (C.T.)
| | - Sören Lutz
- Children’s Hospital, Helios Hospital Niederberg, Teaching Hospital of University Hospital Essen, 42549 Velbert, German;
| | - Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
| | - Wolfgang H. Arnold
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany; (E.A.N.); (W.H.A.)
| | - Stefan Wirth
- Children’s Hospital, Center for Clinical and Translational Research (CCTR), Helios University Medical Center Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (M.A.); (S.W.)
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (W.Z.); (E.E.-S.)
- Correspondence:
| |
Collapse
|
25
|
Georgi F, Andriasyan V, Witte R, Murer L, Hemmi S, Yu L, Grove M, Meili N, Kuttler F, Yakimovich A, Turcatti G, Greber UF. The FDA-Approved Drug Nelfinavir Inhibits Lytic Cell-Free but Not Cell-Associated Nonlytic Transmission of Human Adenovirus. Antimicrob Agents Chemother 2020; 64:e01002-20. [PMID: 32601166 PMCID: PMC7449217 DOI: 10.1128/aac.01002-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. Human AdV (HAdV) species B and C, such as HAdV-C2, -C5, and -B14, cause respiratory disease and constitute a health threat for immunocompromised individuals. HAdV-Cs are well known for lysing cells owing to the E3 CR1-β-encoded adenovirus death protein (ADP). We previously reported a high-throughput image-based screening framework and identified an inhibitor of HAdV-C2 multiround infection, nelfinavir mesylate. Nelfinavir is the active ingredient of Viracept, an FDA-approved inhibitor of human immunodeficiency virus (HIV) aspartyl protease that is used to treat AIDS. It is not effective against single-round HAdV infections. Here, we show that nelfinavir inhibits lytic cell-free transmission of HAdV, indicated by the suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur upon convection-based transmission of cell-free viral particles from an infected cell to neighboring uninfected cells. HAdV lacking ADP was insensitive to nelfinavir but gave rise to comet-shaped foci, indicating that ADP enhances but is not required for cell lysis. This was supported by the notion that HAdV-B14 and -B14p1 lacking ADP were highly sensitive to nelfinavir, although HAdV-A31, -B3, -B7, -B11, -B16, -B21, -D8, -D30, and -D37 were less sensitive. Conspicuously, nelfinavir uncovered slow-growing round HAdV-C2 foci, independent of neutralizing antibodies in the medium, indicative of nonlytic cell-to-cell transmission. Our study demonstrates the repurposing potential of nelfinavir with postexposure efficacy against different HAdVs and describes an alternative nonlytic cell-to-cell transmission mode of HAdV.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lisa Yu
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Artificial Intelligence for Life Sciences CIC, London, United Kingdom
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Georgi F, Kuttler F, Murer L, Andriasyan V, Witte R, Yakimovich A, Turcatti G, Greber UF. A high-content image-based drug screen of clinical compounds against cell transmission of adenovirus. Sci Data 2020; 7:265. [PMID: 32788590 PMCID: PMC7423605 DOI: 10.1038/s41597-020-00604-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human adenoviruses (HAdVs) are fatal to immuno-suppressed individuals, but no effective anti-HAdV therapy is available. Here, we present a novel image-based high-throughput screening (HTS) platform, which scores the full viral replication cycle from virus entry to dissemination of progeny and second-round infections. We analysed 1,280 small molecular weight compounds of the Prestwick Chemical Library (PCL) for interference with HAdV-C2 infection in a quadruplicate, blinded format, and performed robust image analyses and hit filtering. We present the entire set of the screening data including all images, image analyses and data processing pipelines. The data are made available at the Image Data Resource (IDR, idr0081). Our screen identified Nelfinavir mesylate as an inhibitor of HAdV-C2 multi-round plaque formation, but not single round infection. Nelfinavir has been FDA-approved for anti-retroviral therapy in humans. Our results underscore the power of image-based full cycle infection assays in identifying viral inhibitors with clinical potential.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich (UZH), Winterthurerstrasse, 190, 8057, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, Lausanne, 1015, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zurich (UZH), Winterthurerstrasse, 190, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich (UZH), Winterthurerstrasse, 190, 8057, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich (UZH), Winterthurerstrasse, 190, 8057, Zurich, Switzerland
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, WC1E 6BT, United Kingdom
- Artificial Intelligence for Life Sciences CIC, 40 Gowers walk, London, E1 8BH, United Kingdom
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, Lausanne, 1015, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich (UZH), Winterthurerstrasse, 190, 8057, Zurich, Switzerland.
| |
Collapse
|
27
|
Georgi F, Greber UF. The Adenovirus Death Protein - a small membrane protein controls cell lysis and disease. FEBS Lett 2020; 594:1861-1878. [PMID: 32472693 DOI: 10.1002/1873-3468.13848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Human adenoviruses (HAdVs) cause widespread acute and persistent infections. Infections are usually mild and controlled by humoral and cell-based immunity. Reactivation of persistently infected immune cells can lead to a life-threatening disease in immunocompromised individuals, especially children and transplant recipients. To date, no effective therapy or vaccine against HAdV disease is available to the public. HAdV-C2 and C5 are the best-studied of more than 100 HAdV types. They persist in infected cells and release their progeny by host cell lysis to neighbouring cells and fluids, a process facilitated by the adenovirus death protein (ADP). ADP consists of about 100 amino acids and harbours a single membrane-spanning domain. It undergoes post-translational processing in endoplasmic reticulum and Golgi compartments, before localizing to the inner nuclear membrane. Here, we discuss the current knowledge on how ADP induces membrane rupture. Membrane rupture is essential for both progression of disease and efficacy of therapeutic viruses in clinical applications, in particular oncolytic therapy.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Abstract
Both well-known and emerging viruses increasingly affect humans and cause disease, sometimes with devastating impact on society. The viruses present in the biosphere are the top predators in the life chain, virtually without enemies, except perhaps the immune system, and harsh environmental physicochemical conditions restricting their dissemination. We know a lot about viruses, but do we know enough? This series of reviews is dedicated to adenoviruses (AdVs), a family of nonenveloped DNA viruses occurring in vertebrates, including humans. AdVs have been the focus of intense research for more than 67 years. Besides causing disease, they have immensely contributed to the advance of life sciences and medicine over the past decades. Recently, AdVs have been widely used as vehicles in gene therapy and vaccination. They continue to provide fundamental insights into virus-host interactions in cells, tissues and organisms, as well as systems and metabolic networks. This special issue of FEBS Letters presents a unique collection of 23 state-of-the-art review articles by leading adenovirologists. In this prelude, I present the chapters, which provide a solid basis for further exploring the rich heritage in adenovirus molecular cell biology, structural biology, genetics, immunology, gene therapy and epidemiology. I conclude with an essential discussion of six blind spots in adenovirology.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
30
|
Tahmasebi R, da Costa AC, Tardy K, J. Tinker R, de Padua Milagres FA, Brustulin R, Rodrigues Teles MDA, Togisaki das Chagas R, de Deus Alves Soares CV, Sakurada Aranha Watanabe A, Salete Alencar C, Villanova F, Deng X, Delwart E, Luchs A, Leal É, Cerdeira Sabino E. Genomic Analyses of Potential Novel Recombinant Human Adenovirus C in Brazil. Viruses 2020; 12:v12050508. [PMID: 32375411 PMCID: PMC7290489 DOI: 10.3390/v12050508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Human Adenovirus species C (HAdV-C) is the most common etiologic agent of respiratory disease. In the present study, we characterized the nearly full-length genome of one potential new HAdV-C recombinant strain constituted by Penton and Fiber proteins belonging to type 89 and a chimeric Hexon protein of types 1 and 89. By using viral metagenomics techniques, we screened out, in the states of Tocantins and Pará, Northern and North regions of Brazil, from 2010 to 2016, 251 fecal samples of children between 0.5 to 2.5 years old. These children were presenting acute diarrhea not associated with common pathogens (i.e., rotavirus, norovirus). We identified two HAdV-C strains in two distinct patients. Phylogenetic analysis performed using all complete genomes available at GenBank database indicated that one strain (HAdV-C BR-245) belonged to type 1. The phylogenetic analysis also indicated that the second strain (HAdV-C BR-211) was located at the base of the clade formed by the newly HAdV-C strains type 89. Recombination analysis revealed that strain HAdV-C BR-211 is a chimera in which the variable regions of Hexon gene combined HAdV-C1 and HAdV-C89 sequences. Therefore, HAdV-C BR-211 strain possesses a genomic backbone of type HAdV-C89 and a unique insertion of HAdV-C1 in the Hexon sequence. Recombination may play an important driving force in HAdV-C diversity and evolution. Studies employing complete genomic sequencing on circulating HAdV-C strains in Brazil are needed to understand the clinical significance of the presented data.
Collapse
Affiliation(s)
- Roozbeh Tahmasebi
- Polytechnic School of University of Sao Paulo, Sao Paulo 01246-903, Brazil;
- Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil;
- Correspondence: (R.T.); (A.C.d.C.); (É.L.)
| | - Antonio Charlys da Costa
- Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil;
- Correspondence: (R.T.); (A.C.d.C.); (É.L.)
| | - Kaelan Tardy
- Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil;
| | - Rory J. Tinker
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Flavio Augusto de Padua Milagres
- LIM/46, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (F.A.d.P.M.); (R.B.)
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil; (M.d.A.R.T.); (R.T.d.C.); (C.V.d.D.A.S.)
- Institute of Biological Sciences, Federal University of Tocantins, Tocantins 77001-090, Brazil
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil
| | - Rafael Brustulin
- LIM/46, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (F.A.d.P.M.); (R.B.)
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil; (M.d.A.R.T.); (R.T.d.C.); (C.V.d.D.A.S.)
- Institute of Biological Sciences, Federal University of Tocantins, Tocantins 77001-090, Brazil
| | - Maria da Aparecida Rodrigues Teles
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil; (M.d.A.R.T.); (R.T.d.C.); (C.V.d.D.A.S.)
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil
| | - Rogério Togisaki das Chagas
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil; (M.d.A.R.T.); (R.T.d.C.); (C.V.d.D.A.S.)
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil
| | - Cassia Vitória de Deus Alves Soares
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil; (M.d.A.R.T.); (R.T.d.C.); (C.V.d.D.A.S.)
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil
| | | | - Cecilia Salete Alencar
- Central Laboratory Division-DLC-HCSP, Clinical Laboratory and LIM 03-Department of Pathology, Clinical Hospital, University of Sao Paulo Medical School, Sao Paulo 01246-000, Brazil;
| | - Fabiola Villanova
- Institute of Biological Sciences, Federal University of Para, Para 66075-000, Brazil;
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118-4417, USA; (X.D.); (E.D.)
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118-4417, USA; (X.D.); (E.D.)
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adriana Luchs
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-000, Brazil;
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Para, Para 66075-000, Brazil;
- Correspondence: (R.T.); (A.C.d.C.); (É.L.)
| | - Ester Cerdeira Sabino
- Polytechnic School of University of Sao Paulo, Sao Paulo 01246-903, Brazil;
- Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil;
- LIM/46, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil; (F.A.d.P.M.); (R.B.)
| |
Collapse
|