1
|
Hu Z, Xu W, Wang H, Li M, Wang J, Sun C, Yang X. CARM1-induced lncRNA NEAT1 synchronously activates MYCN and GalNAcT-I to accelerate the progression of neuroblastoma. Gene 2025; 938:149164. [PMID: 39675397 DOI: 10.1016/j.gene.2024.149164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) play important roles in progression of neuroblastoma (NB). LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to affect the development of multiple tumors. However, the effect of NEAT1 on NB remain unclear. In this study, the new mechanisms whereby how NEAT1 influences tumor progression in NB was investigated. METHODS RT-qPCR, western blot, bioinformatics, cell growth, Transwell, and flow cytometric analyses were performed to determine how NEAT1 synchronously regulates the miR-873-5p/MYCN proto-oncogene(MYCN) and miR-873-5p/polypeptide N-acetylgalactosaminyltransferase 1(GalNAcT-I) axes to accelerate the progression of NB. NB-bearing animal models were established to evaluate the function of NEAT1 in NB. The relationships between transcription factor coactivatorassociated arginine methyltransferase 1 (CARM1) and NEAT1, NEAT1 and miR-873-5p, miR-873-5p and GalNacT-I or MYCN, were verified using luciferase reporter gene assay, respectively. RESULTS Our study revealed elevated levels of NEAT1 expression in NB cells and tissues which was associated with an advanced pathological stage and poor prognostic outcomes. According to in vitro gain- and loss- of function experiments, NEAT1 enhances progression of NB. NEAT1 silencing was found to inhibit NB proliferation in vivo. Mechanistically, to achieve upstream regulation, epigenetic downregulation of NEAT1 was achieved via the inhibition of CARM1. NEAT1 was found to positively regulate MYCN and GalNAcT-I levels as a competitive sponge of miR-873-5p. CONCLUSION Activity of the lncRNA NEAT1 can be triggered via CARM1, which synchronously promotes NB development via the miR-873-5p/MYCN and miR-873-5p/GalNAcT-I axes. These findings shed light on the novel molecular mechanisms underlying NB progression.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weili Xu
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Huiming Wang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chi Sun
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaofeng Yang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Milcamps R, Michiels T. Involvement of paraspeckle components in viral infections. Nucleus 2024; 15:2350178. [PMID: 38717150 PMCID: PMC11086011 DOI: 10.1080/19491034.2024.2350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.
Collapse
Affiliation(s)
- Romane Milcamps
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
4
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
5
|
Islam S, Islam MM, Akhand MRN, Park BY, Akanda MR. Recent advancements in cGAS-STING activation, tumor immune evasion, and therapeutic implications. Med Oncol 2024; 41:291. [PMID: 39419913 DOI: 10.1007/s12032-024-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The cGAS-STING signaling pathway is indeed a pivotal component of the immune system and serve as a crucial link between innate and adaptive immune responses. STING is involved in the cellular response to pathogen invasion and DNA damage, and which has important consequences for host defense mechanisms and cancer regulation. Ongoing research aiming to modulate the cGAS-STING pathway for improved clinical outcomes in cancer and autoimmune diseases is underway. Indeed, the interaction between the cGAS-STING pathway and immune evasion mechanisms is a complex and critical aspect of cancer biology. Pathogens and various host factors can exploit this pathway to reduce the effectiveness of cancer therapies, particularly immunotherapies. Thus, immunotherapies or combination therapies may assist in overcoming the immune suppression and improving clinical outcomes. This review explores recent advancements in understanding the cGAS-STING signaling pathway, with particular emphasis on its activation mechanisms and role in tumor immune evasion. The dual role of the pathway in boosting immune responses while simultaneously enabling tumors to evade the immune system makes it a crucial target for innovative cancer treatment approaches.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 2 Given name: [Md Mazedul] Last name [Islam], Author 3 Given name: [Mst Rubaiat Nazneen] Last name [Akhand] and Author 5 Given name: [Md Rashedunnabi] Last name [Akanda]. Also, kindly confirm the details in the metadata are correct.AQ1: Here Author 4 given name: [Byung-Yong] Last name [Park] is missing. Metadata are correct.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Mazedul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Byung-Yong Park
- Institute of Animal Transplantation, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
6
|
Mamontova V, Trifault B, Gribling-Burrer AS, Bohn P, Boten L, Preckwinkel P, Gallant P, Solvie D, Ade CP, Papadopoulos D, Eilers M, Gutschner T, Smyth RP, Burger K. NEAT1 promotes genome stability via m 6A methylation-dependent regulation of CHD4. Genes Dev 2024; 38:915-930. [PMID: 39362776 PMCID: PMC11535147 DOI: 10.1101/gad.351913.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.
Collapse
Affiliation(s)
- Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Lea Boten
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Pit Preckwinkel
- Department of RNA Biology and Pathogenesis, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, 06120 Halle, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Dimitrios Papadopoulos
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Tony Gutschner
- Department of RNA Biology and Pathogenesis, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, 06120 Halle, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz-Center for Infection Research, 97808 Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum [MSNZ]) Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany;
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Lin NC, Hsia SM, Vu Nguyen TH, Wang TH, Sun KT, Chiu KC, Shih YH, Shieh TM. The association between the expression level of nuclear paraspeckle assembly transcript 1 and the survival rate of head and neck cancer patients after treatment. J Dent Sci 2024; 19:2074-2081. [PMID: 39347098 PMCID: PMC11437243 DOI: 10.1016/j.jds.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exhibits diverse and complicated functions in cancer progression. Despite reports suggesting both tumor-suppressive and oncogenic effects in various cancers, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study aimed to investigate the association between NEAT1 expression levels and survival outcomes in HNSCC patients. Materials and methods Paired tissue samples of tumor and non-cancerous matching tissues (NCMT) from 92 HNSCC patients were collected. NEAT1 expression was analyzed using RT-qPCR. Clinical characteristics, treatment received, and survival rates of the patients were assessed to determine the correlation with NEAT1 expression and explore its association with alcohol, betel quid, and cigarette use. Additionally, we examined the effect of arecoline on NEAT1 expression in normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). Results The study revealed a significant downregulation of NEAT1 expression in oral cancer tissues compared to NCMT. Meanwhile, arecoline increased NEAT1 expression in NHOK and NHOF cells. However, patients with downregulated NEAT1 expression exhibited higher overall survival rates, particularly in those who did not receive chemotherapy or radiotherapy. Conclusion NEAT1 expression levels are associated with survival outcomes in HNSCC patients, with upregulated expression indicating a worse prognosis, suggesting this lncRNA might contribute to cancer aggressiveness, especially in the absence of active treatment. These findings indicate NEAT1 may serve as a potential prognostic biomarker in HNSCC, but further research is required to elucidate its role in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nan-Chin Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Thanh-Hien Vu Nguyen
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, Shigeta K, Morimoto Y, Miyo M, Kufe DW. MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene 2024; 43:2199-2214. [PMID: 38802648 PMCID: PMC11226401 DOI: 10.1038/s41388-024-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
Collapse
Affiliation(s)
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Johany Penailillo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chi Ngai Chan
- Tissue Technologies Unit, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lin Q, Pan J, Wang H, Li Y, Zhuang Y, Cai Z, Lin G, Liu W, Xu G. Meta-analysis of the correlation between high expression of lncRNA NEAT1 in rectal cancer and pathological features and prognosis. J Med Biochem 2024; 43:503-511. [PMID: 39139172 PMCID: PMC11318845 DOI: 10.5937/jomb0-47889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 08/15/2024] Open
Abstract
Background To systematically evaluate the relationship between the expression level of long noncoding RNA NEAT1 and the clinical characteristics and prognostic value of rectal cancer patients. Methods PubMed, EMBASE, Cochrane library database and case-control studies on the correlation between abnormal expression of lncRNA NEAT1 and prognosis of rectal cancer patients published by the American clinical trials registry before May 1, 2023 were searched. The search time was from the establishment of the database to May 30, 2023. Results A total of 7 case-control studies were included, including 1063 cancer patients. The results of meta-analysis showed that the high expression of lncRNA NEAT1 was significantly correlated with the degree of differentiation [or=0.45, 95%CI=0.32-0.63, P<0.01], tumor size [or=0.59, 95%CI=0.42-0.82, P<0.01], and overall survival [HR=1.34, 95%CI=1.21-1.48, P<0.001]; However, it was not associated with gender [or=1.23, 95%CI= 0.88-1.72, P=0.23] and lymph node metastasis [or=0.87, 95%CI=0.45-1.66, P=0.67]. Conclusions The high expression of lncRNA NEAT1 may be a risk factor for poor prognosis in patients with malignant tumors, and lncRNA NEAT1 can be used as a potential biomarker to evaluate its prognosis.
Collapse
Affiliation(s)
- Qiyi Lin
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Jianpeng Pan
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Huaishuai Wang
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Yinlin Li
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Yixiang Zhuang
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Zhicong Cai
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Gaofeng Lin
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Weibo Liu
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| | - Guoxi Xu
- Jinjiang Municipal Hospital, Department of Gastrointestinal Surgery, Quanzhou, China
| |
Collapse
|
10
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
11
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
12
|
Zhang S, Kim EJ, Huang J, Liu P, Donahue K, Wang Q, Wang Y, Mcilwain S, Xie L, Chen X, Li L, Xu W. NEAT1 repression by MED12 creates chemosensitivity in p53 wild-type breast cancer cells. FEBS J 2024; 291:1909-1924. [PMID: 38380720 PMCID: PMC11068489 DOI: 10.1111/febs.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Present Address: Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean Mcilwain
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Jalali P, Samii A, Rezaee M, Shahmoradi A, Pashizeh F, Salehi Z. UBE2C: A pan-cancer diagnostic and prognostic biomarker revealed through bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2032. [PMID: 38577722 PMCID: PMC10995712 DOI: 10.1002/cnr2.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Amir Samii
- Department of Hematology and Blood TransfusionSchool of Allied Medical Sciences, Iran University of Medical SciencesTehranIran
| | - Malihe Rezaee
- Department of PharmacologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Arvin Shahmoradi
- Department of Laboratory MedicineFaculty of Paramedical, Kurdistan University of Medical SciencesSanandajIran
| | - Fatemeh Pashizeh
- Department of Clinical ImmunologyShahid Sadoughi University of Medical SciencesYazdIran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical SciencesTehranIran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Hazazi A, AlShehah AA, Khan FR, Hakami MA, Almarshadi F, Abalkhail A, Nassar SA, Almasoudi HH, Ali AA, Abu-Alghayth MH, Kukreti N, Binshaya AS. From diagnosis to therapy: The transformative role of lncRNAs in eye cancer management. Pathol Res Pract 2024; 254:155081. [PMID: 38211388 DOI: 10.1016/j.prp.2023.155081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The genomic era has brought about a transformative shift in our comprehension of cancer, unveiling the intricate molecular landscape underlying disease development. Eye cancers (ECs), encompassing diverse malignancies affecting ocular tissues, pose distinctive challenges in diagnosis and management. Long non-coding RNAs (lncRNAs), an emerging category of non-coding RNAs, are pivotal actors in the genomic intricacies of eye cancers. LncRNAs have garnered recognition for their multifaceted roles in gene expression regulation and influence on many cellular processes. Many studies support that the lncRNAs have a role in developing various cancers. Recent investigations have pinpointed specific lncRNAs associated with ECs, including retinoblastoma and uveal melanoma. These lncRNAs exert control over critical pathways governing tumor initiation, progression, and metastasis, endowing them with the ability to function as evaluation, predictive, and therapeutic indicators. The article aims to synthesize the existing information concerning the functions of lncRNAs in ECs, elucidating their regulatory mechanisms and clinical significance. By delving into the lncRNAs' expanding relevance in the modulation of oncogenic and tumor-suppressive networks, we gain a deeper understanding of the molecular complexities intrinsic to these diseases. In our exploration of the genomic intricacies of ECs, lncRNAs introduce a fresh perspective, providing an opportunity to function as clinical and therapeutic indicators, and they also have therapeutic benefits that show promise for advancing the treatment of ECs. This comprehensive review bridges the intricate relationship between lncRNAs and ECs within the context of the genomic era.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Fahad Almarshadi
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Qassim, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
15
|
Tang Z, Li X, Zheng Y, Liu J, Liu C, Li X. The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets. Front Cell Dev Biol 2024; 12:1341999. [PMID: 38357004 PMCID: PMC10864455 DOI: 10.3389/fcell.2024.1341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Xue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfeng Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
17
|
Darvish M. LncRNA FTH1P3: A New Biomarker for Cancer-Related Therapeutic Development. Curr Mol Med 2024; 24:576-584. [PMID: 37491858 DOI: 10.2174/1566524023666230724141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Cancer is a persistent and urgent health problem that affects the entire world. Not long ago, regulatory biomolecules referred to as long noncoding RNAs (lncRNAs) might have value for their innate abundance and stability. These single-stranded RNAs potentially interfere with several physiological and biochemical cellular processes involved in many human pathological situations, particularly cancer diseases. Ferritin heavy chain1 pseudogene 3 (FTH1P3), a lncRNA that is ubiquitously transcribed and belongs to the ferritin heavy chain (FHC) family, represents a novel class of lncRNAs primarily found in oral squamous cell carcinoma. Further research has shown that FTH1P3 is involved in other malignancies such as uveal melanoma, glioma, esophageal squamous cell carcinoma, non-small cell lung cancer, breast cancer, laryngeal squamous cell carcinoma, and cervical cancer. Accordingly, FTH1P3 significantly enhances cancer symptoms, including cell proliferation, invasion, metastasis, chemoresistance, and inhibition of apoptosis through many specific mechanisms. Notably, the clinical data significantly demonstrated the association of FTH1P3 overexpression with poor prognosis and poor overall survival within the examined samples. Here, we summarize all the research published to date (13 articles) on FTH1P3, focusing on the biological function underlying the regulatory mechanism and its possible clinical relevance.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
18
|
Zhang D, Zhang M, Zhang L, Wang W, Hua S, Zhou C, Sun X. Long non-coding RNAs and immune cells: Unveiling the role in viral infections. Biomed Pharmacother 2024; 170:115978. [PMID: 38056234 DOI: 10.1016/j.biopha.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengna Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liqin Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weijuan Wang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Stéphane Hua
- Laboratory of Cellular Immunology and Biotechnology, Molecular Engineering for Health Unit CEA Saclay, 91191 Gif-sur-Yvette cedex, France
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
19
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
20
|
Lin Q, Zhang C, Weng H, Lin Y, Lin Y, Ruan Z. The utility of long non-coding RNAs in chronic obstructive pulmonary disease: a comprehensive analysis. BMC Pulm Med 2023; 23:340. [PMID: 37697291 PMCID: PMC10496340 DOI: 10.1186/s12890-023-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is one of the main causes of morbidity and mortality in the world. However, there are some patients who are not diagnosed early and correctly through routine methods because of inconspicuous or serious symptoms. This study aims to assess the diagnostic role of long non-coding RNA (lncRNA) in COPD. METHODS We searched literature from electronic databases, after excluding non-COPD literature, the bibliometric analysis was performed, and VOSviewer software was used to represent the data analyzed. Literature evaluating the diagnostic test accuracy of lncRNA for COPD was eligible, and the QUADAS-2 checklist was used to evaluate the quality. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), and summary receiver operating characteristic curve (sROC) were used to analyze the overall diagnostic performance. Subgroup and meta-regression analyses were performed to explore the heterogeneity, and a funnel plot was assessed for publication bias. Also, lncRNAs related to COPD were identified and explored for their potential biological function. RESULTS An increased annual growth rate of literature on this subject from 2016 focused on COPD, humans, RNA, and lncRNA. The meta-analysis enrolled 17 literature indicated that the SEN, SPE, and DOR differentiating COPD patients from normal controls (NCs) were 0.86 (95% CI [0.80, 0.90]), 0.78 (95% CI [0.67, 0.86]), and 21.59 (95% CI [11.39, 40.91]), respectively. Meanwhile, lncRNAs had the ability to distinguish acute exacerbations of COPD (AECOPD) patients from COPD; the SEN, SPE, and DOR were 0.75 (95% CI [0.62, 0.85]), 0.81 (95% CI [0.71, 0.89]), and 13.02 (95% CI [7.76, 21.85]), respectively. The area under the sROC were calculated to be greater than 0.8 at least. Subgroup and meta-regression analysis showed that the types of specimens and dysregulated lncRNAs might affect the diagnostic accuracy. The funnel plot showed there was a certain publication bias. 41 lncRNAs related to COPD were identified and mainly located in the nucleus and cytoplasm, associated with proliferation, invasion, and prognosis. These lncRNA-binding proteins were involved in the spliceosome, Rap1 signaling pathway, MAPK signaling pathway, and so on. CONCLUSION LncRNA suggests potential diagnostic biomarkers and therapeutic targets for COPD patients.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China.
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yating Lin
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yucang Lin
- Department of Information, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhipeng Ruan
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| |
Collapse
|
21
|
Farzaneh M, Abouali Gale Dari M, Anbiyaiee A, Najafi S, Dayer D, Mousavi Salehi A, Keivan M, Ghafourian M, Uddin S, Azizidoost S. Emerging roles of the long non-coding RNA NEAT1 in gynecologic cancers. J Cell Commun Signal 2023; 17:531-547. [PMID: 37310654 PMCID: PMC10409959 DOI: 10.1007/s12079-023-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Gynecologic cancers are a worldwide problem among women. Recently, molecular targeted therapy opened up an avenue for cancer diagnosis and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules (> 200 nt) that are not translated into protein, and interact with DNA, RNA, and proteins. LncRNAs were found to play pivotal roles in cancer tumorigenesis and progression. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that mediates cell proliferation, migration, and EMT in gynecologic cancers by targeting several miRNAs/mRNA axes. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of breast, ovarian, cervical, and endometrial cancers. In this narrative review, we summarized various NEAT1-related signaling pathways that are critical in gynecologic cancers. Long non-coding RNA (lncRNA) by targeting various signaling pathways involved in its target genes can regulate the occurrence of gynecologic cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dian Dayer
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolah Mousavi Salehi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602 India
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Yan Q, Hu Q, Li G, Qi Q, Song Z, Shu J, Liang H, Liu H, Hao Z. NEAT1 Regulates Calcium Oxalate Crystal-Induced Renal Tubular Oxidative Injury via miR-130/IRF1. Antioxid Redox Signal 2023; 38:731-746. [PMID: 36242511 DOI: 10.1089/ars.2022.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Calcium oxalate (CaOx) crystal deposition induces damage to the renal tubular epithelium, increases epithelial adhesion, and contributes to CaOx nephrocalcinosis. The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is thought to be involved in this process. In this study, we aimed to investigate the mechanism by which NEAT1 regulates renal tubular epithelium in response to inflammatory and oxidative injury triggered by CaOx crystals. Results: As CaOx crystals were deposited in mouse kidney tissue, the expression of NEAT1 was significantly elevated and positively correlated with interferon regulatory factor 1 (IRF1), Toll-like receptor 4 (TLR4), and NF-κB. NEAT1 targets and inhibits miR-130a-3p as a competitor to endogenous RNA. miR-130 binds to and exerts inhibitory effects on the 3'-untranslated region of IRF1. After transfected with silence-NEAT1, IRF1, TLR4, and NF-κB were also variously inhibited, and oxidative damage in renal calcinosis was subsequently attenuated. When we simultaneously inhibited NEAT1 and miR-130, renal tubular injury was exacerbated. Innovation and Conclusion: We found that the lncRNA NEAT1 can enhance IRF1 signaling through targeted repression of miR-130a-3p and activate TLR4/NF-κB pathways to promote oxidative damage during CaOx crystal deposition. This provides an explanation for the tubular epithelial damage caused by CaOx crystals and offers new ideas and drug targets for the prevention and treatment of CaOx nephrocalcinosis.
Collapse
Affiliation(s)
- Qunsheng Yan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Qingqing Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Guoxiang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Qiao Qi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Ziyan Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Jie Shu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Hu Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China.,Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases; Hefei, China
| |
Collapse
|
23
|
Deng C, Wei C, Hou Y, Xiong M, Ni D, Huang Y, Wang M, Yang X, Chen K, Chen Z. Identification of Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs for Xp11 Translocation Renal Cell Carcinoma (RCC) Based on Whole-Transcriptome Sequencing. Genes (Basel) 2023; 14:genes14030723. [PMID: 36980995 PMCID: PMC10047933 DOI: 10.3390/genes14030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
We carried out whole transcriptome sequencing (WTS) on the tumor and the matching adjacent normal tissues from five patients having Xp11 translocation renal cell carcinoma (RCC). This was performed in terms of obtaining more understanding of the genomic panorama and molecular basis of this cancer. To examine gene-regulatory networks in XP11 translocation RCC, variance expression analysis was carried out, followed by functional enrichment analysis. Gene Expression Omnibus (GEO) of Xp11 translocation RCC data was used to validate the results. As per inclusion criteria, a total of 1886 differentially expressed mRNAs (DEmRNAs), 56 differentially expressed miRNAs (DEmiRNAs), 223 differentially expressed lncRNAs (DElncRNAs), and 1764 differentially expressed circRNAs (DEcircRNAs) were found. KEGG enrichment study of DEmiRNA, DElncRNA, and DEcircRNA target genes identified the function of protein processing in the endoplasmic reticulum, lysosome, and neutrophil-mediated immunity. Three subnetwork modules integrated from the PPI network also revealed the genes involved in protein processing in the endoplasmic reticulum, lysosome, and protein degradation processes, which may regulate the Xp11 translocation RCC process. The ceRNA complex network was created by Cytoscape, which included three upregulated circRNAs, five upregulated lncRNAs, 24 upregulated mRNAs, and two downregulated miRNAs (hsa-let-7d-5p and hsa-miR-433-3p). The genes as a prominent component of the complex ceRNA network may be key factors in the pathogenesis of Xp11 translocation RCC. Our findings clarified the genomic and transcriptional complexity of Xp11 translocation RCC while also pointing to possible new targets for Xp11 translocation RCC characterization.
Collapse
Affiliation(s)
- Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| |
Collapse
|
24
|
Vargas AC, Heyer EE, Cheah AL, Bonar F, Jones M, Maclean FM, Gill AJ, Blackburn J. Improving sarcoma classification by using RNA hybridisation capture sequencing in sarcomas of uncertain histogenesis of young individuals. Pathology 2023; 55:478-485. [PMID: 36906400 DOI: 10.1016/j.pathol.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023]
Abstract
Our aim was to utilise a 241-gene RNA hybridisation capture sequencing (CaptureSeq) gene panel to identify unexpected fusions in undifferentiated, unclassified or partly classified sarcomas of young individuals (<40 years). The purpose was to determine the utility and yield of a large, targeted fusion panel as a tool for classifying tumours that do not fit typical diagnostic entities at the time of the original diagnosis. RNA hybridisation capture sequencing was performed on 21 archival resection specimens. Successful sequencing was obtained in 12 of 21 samples (57%), two of which (16.6%) harboured translocations. A novel NEAT1::GLI1 fusion, not previously reported in the literature, presented in a young patient with a tumour in the retroperitoneum, which displayed low grade epithelioid cells. The second case, a localised lung metastasis in a young male, demonstrated a EWSR1::NFATC2 translocation. No targeted fusions were identified in the remaining 83.4% (n=10) of cases. Forty-three per cent of the samples failed sequencing as a result of RNA degradation. RNA-based sequencing is an important tool, which helps to redefine the classification of unclassified or partly classified sarcomas of young adults by identifying pathogenic gene fusions in up to 16.6% of the cases. Unfortunately, 43% of the samples underwent significant RNA degradation, falling below the sequencing threshold. As CaptureSeq is not yet available in routine pathology practice, increasing awareness of the yield, failure rate and possible aetiological factors for RNA degradation is fundamental to maximise laboratory procedures to improve RNA integrity, allowing the potential identification of significant gene alterations in solid tumours.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Erin E Heyer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Alison L Cheah
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona Bonar
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Martin Jones
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona M Maclean
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - James Blackburn
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Zhu SF, Yuan W, Du YL, Wang BL. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2023; 22:45-53. [PMID: 35934611 DOI: 10.1016/j.hbpd.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shan-Fei Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yong-Liang Du
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| |
Collapse
|
26
|
Qin J, Ke B, Liu T, Kong C, Li A, Fu H, Jin C. Aberrantly expressed long noncoding RNAs as potential prognostic biomarkers in newly diagnosed multiple myeloma: A systemic review and meta-analysis. Cancer Med 2023; 12:2199-2218. [PMID: 36057947 PMCID: PMC9939128 DOI: 10.1002/cam4.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Numerous studies have manifested long noncoding RNAs (lncRNAs) as biomarkers to determine the prognosis of multiple myeloma (MM) patients. Nevertheless, the prognostic role of lncRNAs in MM is still ambiguous. Herein, we performed a meta-analysis to evaluate the predictive value of aberrantly expressed lncRNAs in MM. METHODS A systemic literature search was performed in PubMed, EMBASE, Cochrane, and Web of Science databases until October 9, 2021, and the protocol was registered in the PROSPERO database (CRD42021284364). Our study extracted the hazard ratios (HRs) and 95% confidence intervals (CIs) of overall survival (OS), progression-free survival (PFS), or event-free survival (EFS). Begg's and Egger's tests were employed to correct publication bias. RESULT Twenty-six individual studies containing 3501 MM patients were enrolled in this study. The results showed that aberrant expression of lncRNAs was associated with poor OS and PFS of MM patients. The pooled HRs for univariate OS and PFS were 1.48 (95% CI = 1.17-1.88, p < 0.001) and 1.30 (95% CI = 1.18-1.43, p < 0.001), respectively, whereas the pooled HRs for multivariate OS and PFS were 1.50 (95% CI = 1.16-1.95, p < 0.001) and 1.59 (95% CI = 1.22-2.07, p < 0.001), respectively. Subgroup analysis suggested that MALAT1, TCF7, NEAT1, and PVT1 upregulation were associated with poor OS (p < 0.05), PVT1, and TCF7 upregulation were implicated with worse PFS (p < 0.05), while only TCF7 overexpression was correlated with reduced EFS (p < 0.05). Moreover, the contour-enhanced funnel plot demonstrated the reliability of our current conclusion, which was not affected by publication bias. CONCLUSION Aberrantly expressed particular lncRNAs are critical prognostic indicators in long-term survival as well as promising biomarkers in progression-free status. However, different cutoff values and dissimilar methods to assess lncRNA expression among studies may lead to heterogeneity.
Collapse
Affiliation(s)
- Jiading Qin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Bo Ke
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| | - Tingting Liu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chunfang Kong
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Anna Li
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Huan Fu
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
| | - Chenghao Jin
- Medical College of Nanchang UniversityNanchangJiangxi330006China
- Department of HematologyJiangxi Provincial People's HospitalNanchangJiangxi330006China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySoochowJiangsu215006China
| |
Collapse
|
27
|
Integrated Microarray-Based Data Analysis of miRNA Expression Profiles: Identification of Novel Biomarkers of Cisplatin-Resistance in Testicular Germ Cell Tumours. Int J Mol Sci 2023; 24:ijms24032495. [PMID: 36768818 PMCID: PMC9916636 DOI: 10.3390/ijms24032495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common solid malignancy among young men, and their incidence is still increasing. Despite good curability with cisplatin (CDDP)-based chemotherapy, about 10% of TGCTs are non-responsive and show a chemoresistant phenotype. To further increase TGCT curability, better prediction of risk of relapse and early detection of refractory cases is needed. Therefore, to diagnose this malignancy more precisely, stratify patients more accurately and improve decision-making on treatment modality, new biomarkers are still required. Numerous studies showed association of differential expressions of microRNAs (miRNAs) with cancer. Using microarray analysis followed by RT-qPCR validation, we identified specific miRNA expression patterns that discriminate chemoresistant phenotypes in TGCTs. Comparing CDDP-resistant vs. -sensitive TGCT cell lines, we identified miR-218-5p, miR-31-5p, miR-125b-5p, miR-27b-3p, miR-199a-5p, miR-214-3p, let-7a and miR-517a-3p as significantly up-regulated and miR-374b-5p, miR-378a-3p, miR-20b-5p and miR-30e-3p as significantly down-regulated. In patient tumour samples, we observed the highest median values of relative expression of miR-218-5p, miR-31-5p, miR-375-5p and miR-517a-3p, but also miR-20b-5p and miR-378a-3p, in metastatic tumour samples when compared with primary tumour or control samples. In TGCT patient plasma samples, we detected increased expression of miR-218-5p, miR-31-5p, miR-517a-3p and miR-375-5p when compared to healthy individuals. We propose that miR-218-5p, miR-31-5p, miR-375-5p, miR-517-3p, miR-20b-5p and miR-378a-3p represent a new panel of biomarkers for better prediction of chemoresistance and more aggressive phenotypes potentially underlying metastatic spread in non-seminomatous TGCTs. In addition, we provide predictions of the targets and functional and regulatory networks of selected miRNAs.
Collapse
|
28
|
Zhang Y, Zhang J, Wang F, Wang L. Hypoxia-Related lncRNA Prognostic Model of Ovarian Cancer Based on Big Data Analysis. JOURNAL OF ONCOLOGY 2023; 2023:6037121. [PMID: 37064863 PMCID: PMC10104744 DOI: 10.1155/2023/6037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 04/18/2023]
Abstract
Background Hypoxia is regarded as a key factor in promoting the occurrence and development of ovarian cancer. In ovarian cancer, hypoxia promotes cell proliferation, epithelial to mesenchymal transformation, invasion, and metastasis. Long non-coding RNAs (lncRNAs) are extensively involved in the regulation of many cellular mechanisms, i.e., gene expression, cell growth, and cell cycle. Materials and Methods In our study, a hypoxia-related lncRNA prediction model was established by applying LASSO-penalized Cox regression analysis in public databases. Patients with ovarian cancer were divided into two groups based on the median risk score. The survival rate was analyzed in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets, and the mechanisms were investigated. Results Through the prognostic analysis of DElncRNAs (differentially expressed long non-coding RNAs), a total of 5 lncRNAs were found to be closely associated with OS (overall survival) in ovarian cancer patients. It was evaluated through Kaplan-Meier analysis that low-risk patients can live longer than high-risk patients (TCGA: p = 1.302e - 04; ICGC: 1.501e - 03). The distribution of risk scores and OS status revealed that higher risk score will lead to lower OS. It was evaluated that low-risk group had higher immune score (p = 0.0064) and lower stromal score (p = 0.00023). Conclusion It was concluded that a hypoxia-related lncRNA model can be used to predict the prognosis of ovarian cancer. Our designed model is more accurate in terms of age, grade, and stage when predicting the overall survival of the patients of ovarian cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Fei Wang
- Department of Gynecology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Le Wang
- Department of Neurology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| |
Collapse
|
29
|
Amendolare A, Marzano F, Petruzzella V, Vacca RA, Guerrini L, Pesole G, Sbisà E, Tullo A. The Underestimated Role of the p53 Pathway in Renal Cancer. Cancers (Basel) 2022; 14:cancers14235733. [PMID: 36497215 PMCID: PMC9736171 DOI: 10.3390/cancers14235733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.
Collapse
Affiliation(s)
- Alessandra Amendolare
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council—CNR, 70126 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-0805929672
| |
Collapse
|
30
|
An H, Elvers KT, Gillespie JA, Jones K, Atack JR, Grubisha O, Shelkovnikova TA. A toolkit for the identification of NEAT1_2/paraspeckle modulators. Nucleic Acids Res 2022; 50:e119. [PMID: 36099417 PMCID: PMC9723620 DOI: 10.1093/nar/gkac771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Paraspeckles are ribonucleoprotein granules assembled by NEAT1_2 lncRNA, an isoform of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1). Dysregulation of NEAT1_2/paraspeckles has been linked to multiple human diseases making them an attractive drug target. However currently NEAT1_2/paraspeckle-focused translational research and drug discovery are hindered by a limited toolkit. To fill this gap, we developed and validated a set of tools for the identification of NEAT1_2 binders and modulators comprised of biochemical and cell-based assays. The NEAT1_2 triple helix stability element was utilized as the target in the biochemical assays, and the cellular assay ('ParaQuant') was based on high-content imaging of NEAT1_2 in fixed cells. As a proof of principle, these assays were used to screen a 1,200-compound FDA-approved drug library and a 170-compound kinase inhibitor library and to confirm the screening hits. The assays are simple to establish, use only commercially-available reagents and are scalable for higher throughput. In particular, ParaQuant is a cost-efficient assay suitable for any cells growing in adherent culture and amenable to multiplexing. Using ParaQuant, we identified dual PI3K/mTOR inhibitors as potent negative modulators of paraspeckles. The tools we describe herein should boost paraspeckle studies and help guide the search, validation and optimization of NEAT1_2/paraspeckle-targeted small molecules.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Kimberley Jones
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - John R Atack
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tatyana A Shelkovnikova
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
31
|
The role of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in immune diseases. Transpl Immunol 2022; 75:101716. [PMID: 36126903 DOI: 10.1016/j.trim.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
The long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) has been shown to be involved in the pathogenesis of several diseases. Herein, we discuss recent developments and insights into NEAT1 and its contribution to a variety of immune disorders. Our evaluations revealed that NEAT1's function in immune diseases seems to be focused on the modulation of paraspeckle expression and it is primarily associated with the nuclear retention of its mRNA. NEAT1 is also involved in the sequestration of paraspeckle proteins and in affecting the transcriptional expression of specific immune regulators. The expression of NEAT1 may be aberrantly upregulated in several immune pathologies, indicating that it could serve as a potential prognostic biomarker in these conditions. We summarized describing the expression changes and the role of NEAT1 in several immune diseases. We also described the mechanism of its regulation of the immune cell differentiation and function of NEAT1 in different disease.
Collapse
|
32
|
Molecular Interactions of the Long Noncoding RNA NEAT1 in Cancer. Cancers (Basel) 2022; 14:cancers14164009. [PMID: 36011001 PMCID: PMC9406559 DOI: 10.3390/cancers14164009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
As one of the best-studied long noncoding RNAs, nuclear paraspeckle assembly transcript 1 (NEAT1) plays a pivotal role in the progression of cancers. NEAT1, especially its isoform NEAT1-1, facilitates the growth and metastasis of various cancers, excluding acute promyelocytic leukemia. NEAT1 can be elevated via transcriptional activation or stability alteration in cancers changing the aggressive phenotype of cancer cells. NEAT1 can also be secreted from other cells and be delivered to cancer cells through exosomes. Hence, elucidating the molecular interaction of NEAT1 may shed light on the future treatment of cancer. Herein, we review the molecular function of NEAT1 in cancer progression, and explain how NEAT1 interacts with RNAs, proteins, and DNA promoter regions to upregulate tumorigenic factors.
Collapse
|
33
|
Klec C, Knutsen E, Schwarzenbacher D, Jonas K, Pasculli B, Heitzer E, Rinner B, Krajina K, Prinz F, Gottschalk B, Ulz P, Deutsch A, Prokesch A, Jahn SW, Lellahi SM, Perander M, Barbano R, Graier WF, Parrella P, Calin GA, Pichler M. ALYREF, a novel factor involved in breast carcinogenesis, acts through transcriptional and post-transcriptional mechanisms selectively regulating the short NEAT1 isoform. Cell Mol Life Sci 2022; 79:391. [PMID: 35776213 PMCID: PMC9249705 DOI: 10.1007/s00018-022-04402-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.
Collapse
Affiliation(s)
- Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsö, Norway
| | - Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz (MUG), Graz, Austria
| | - Beate Rinner
- Biomedical Research, Medical University of Graz (MUG), Graz, Austria
| | - Katarina Krajina
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism and Aging, Medical University of Graz (MUG), Graz, Austria
| | - Peter Ulz
- Institute of Human Genetics, Medical University of Graz (MUG), Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Stephan W Jahn
- Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - S Mohammad Lellahi
- Department of Medical Biology, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsö, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsö, Norway
| | - Raffaela Barbano
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotondo, FG, Italy
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism and Aging, Medical University of Graz (MUG), Graz, Austria
| | - Paola Parrella
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotondo, FG, Italy
| | - George Adrian Calin
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Augenbruggerplatz 15, 8010, Graz, Austria.
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria.
| |
Collapse
|
34
|
Karam RA, Amer MM, Zidan HE. Long Noncoding RNA NEAT1 Expression and Its Target miR-124 in Diabetic Ischemic Stroke Patients. Genet Test Mol Biomarkers 2022; 26:398-407. [PMID: 36027040 DOI: 10.1089/gtmb.2021.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Diabetes mellitus is a known risk factor for stroke and may be linked to poorer post-stroke outcomes. However, the underlying molecular mechanisms remain to be fully identified. In this study we assessed the association of the lncRNA Nuclear enriched abundant transcript 1 (NEAT1)'s expression and its target miRNA-124 with acute ischemic stroke (AIS) in type II diabetic patients (T2DM). Methods and Results: Diabetic patients with stroke, non-diabetics with stroke, diabetics without stroke, and controls were recruited. NEAT1 and miR-124 expression levels in plasma samples from the participants were investigated using real-time reverse transcription-polymerase chain reaction (RT-qPCR). C reactive protein (CRP) and tumor necrosis factor alpha (TNF-α) were measured using an enzyme linked immunosorbent assay (ELISA) technique. In the DM+AIS group, NEAT1 expression was considerably higher, compared with AIS group and with control group. In comparison to the AIS-only patients, DM patients and controls, miR-124 expression was considerably lower in the DM+AIS group. NEAT1 was shown to have good predictive value for AIS risk in diabetics, based on Receiver Operating Characteristic (ROC) curve analysis. In both the DM+AIS and the AIS group, NEAT1 levels was strongly linked with the National Institutes of Health Stroke Scale (NIHSS) score. Also, a significant positive correlation was observed between NEAT1 expression and the inflammatory markers CRP and TNF-α and significant negative association with miRNA-124 in patient groups. Conclusion: In diabetic patients, the lncRNA NEAT1 may influence the incidence, severity, inflammation, and prognosis of AIS. NEAT1 expression levels could be used as a diagnostic marker of stroke in diabetic patients.
Collapse
Affiliation(s)
- Rehab A Karam
- Biochemistry Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Mona M Amer
- Neurology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Castellani G, Buccarelli M, Lulli V, Ilari R, De Luca G, Pedini F, Boe A, Felli N, Biffoni M, Pilozzi E, Marziali G, Ricci-Vitiani L. MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 lncRNAs. Front Oncol 2022; 12:867886. [PMID: 35814429 PMCID: PMC9263271 DOI: 10.3389/fonc.2022.867886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
MiR-378a-3p plays a critical role in carcinogenesis acting as a tumor suppressor, promoting apoptosis and cell cycle arrest and reducing invasion and drug resistance in several human cancers, including colorectal cancer (CRC), where its expression is significantly associated with histological classification and prognosis. In this study, we investigated the biological and cellular processes affected by miR-378a-3p in the context of CRC carcinogenesis. In agreement with the literature, miR-378a-3p is downregulated in our cohort of CRC patients as well as, in 15 patient-derived colorectal cancer stem-like cell (CRC-SC) lines and 8 CRC cell lines, compared to normal mucosae. Restoration of miR-378a-3p restrains tumorigenic properties of CRC and CRC-SC lines, as well as, significantly reduces tumor growth in two CRC-SC xenograft mouse models. We reported that miR-378a-3p modulates the expression of the lncRNAs MALAT1 and NEAT1. Their expression is inversely correlated with that of miR-378a-3p in patient-derived CRC-SC lines. Silencing of miR-378a-3p targets, MALAT1 and NEAT1, significantly impairs tumorigenic properties of CRC-SCs, supporting the critical role of miR-378a-3p in CRC carcinogenesis as a tumor-suppressor factor by establishing a finely tuned crosstalk with lncRNAs MALAT1 and NEAT1.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Lucia Ricci-Vitiani,
| |
Collapse
|
36
|
Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ, Pichler M. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ 2022; 29:1094-1106. [PMID: 35422492 PMCID: PMC9177660 DOI: 10.1038/s41418-022-00998-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a recently defined form of regulated cell death, which is biochemically and morphologically distinct from traditional forms of programmed cell death such as apoptosis or necrosis. It is driven by iron, reactive oxygen species, and phospholipids that are oxidatively damaged, ultimately resulting in mitochondrial damage and breakdown of membrane integrity. Numerous cellular signaling pathways and molecules are involved in the regulation of ferroptosis, including enzymes that control the cellular redox status. Alterations in the ferroptosis-regulating network can contribute to the development of various diseases, including cancer. Evidence suggests that ferroptosis is commonly suppressed in cancer cells, allowing them to survive and progress. However, cancer cells which are resistant to common chemotherapeutic drugs seem to be highly susceptible to ferroptosis inducers, highlighting the great potential of pharmacologic modulation of ferroptosis for cancer treatment. Non-coding RNAs (ncRNAs) are considered master regulators of various cellular processes, particularly in cancer where they have been implicated in all hallmarks of cancer. Recent work also demonstrated their involvement in the molecular control of ferroptosis. Hence, ncRNA-based therapeutics represent an exciting alternative to modulate ferroptosis for cancer therapy. This review summarizes the ncRNAs implicated in the regulation of ferroptosis in cancer and highlights their underlying molecular mechanisms in the light of potential therapeutic applications.
Collapse
Affiliation(s)
- Amar Balihodzic
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036, Graz, Austria.,Research Unit "Non-Coding RNAs and Genome Editing in Cancer", Division of Oncology, Medical University of Graz, 8036, Graz, Austria
| | - Felix Prinz
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036, Graz, Austria.,Research Unit "Non-Coding RNAs and Genome Editing in Cancer", Division of Oncology, Medical University of Graz, 8036, Graz, Austria
| | - Michael A Dengler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036, Graz, Austria
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philipp J Jost
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036, Graz, Austria.,Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, 8036, Graz, Austria. .,Research Unit "Non-Coding RNAs and Genome Editing in Cancer", Division of Oncology, Medical University of Graz, 8036, Graz, Austria. .,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Compartment-Specific Proximity Ligation Expands the Toolbox to Assess the Interactome of the Long Non-Coding RNA NEAT1. Int J Mol Sci 2022; 23:ijms23084432. [PMID: 35457249 PMCID: PMC9027746 DOI: 10.3390/ijms23084432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (NEAT1) locus encodes two long non-coding (lnc)RNA isoforms that are upregulated in many tumours and dynamically expressed in response to stress. NEAT1 transcripts form ribonucleoprotein complexes with numerous RNA-binding proteins (RBPs) to assemble paraspeckles and modulate the localisation and activity of gene regulatory enzymes as well as a subset of messenger (m)RNA transcripts. The investigation of the dynamic composition of NEAT1-associated proteins and mRNAs is critical to understand the function of NEAT1. Interestingly, a growing number of biochemical and genetic tools to assess NEAT1 interactomes has been reported. Here, we discuss the Hybridisation Proximity (HyPro) labeling technique in the context of NEAT1. HyPro labeling is a recently developed method to detect spatially ordered interactions of RNA-containing nuclear compartments in cultured human cells. After introducing NEAT1 and paraspeckles, we describe the advantages of the HyPro technology in the context of other methods to study RNA interactomes, and review the key findings in mapping NEAT1-associated RNA transcripts and protein binding partners. We further discuss the limitations and potential improvements of HyPro labeling, and conclude by delineating its applicability in paraspeckles-related cancer research.
Collapse
|
38
|
Gong Y, Dong X, Xu J, Yang W. LncRNA NEAT1 knockdown ameliorates LPS-induced human kidney injury by mediating the miR-330-5p/FOXO3 axis. Int Urol Nephrol 2022; 54:2683-2694. [PMID: 35364751 DOI: 10.1007/s11255-022-03179-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sepsis is a systemic process with multiple inflammatory responses and organ injuries, particularly in the damage of the kidney. Recently, numerous studies suggest that long non-coding RNAs (lncRNAs) are involved in sepsis-related kidney injury. This study aimed to investigate the functional role and mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in sepsis-related kidney injury. METHODS Cell model of kidney injury was constructed in human kidney 2 (HK-2) cells with the treatment of lipopolysaccharide (LPS). The expression of NEAT1 was measured by quantitative real-time PCR (qRT-PCR). Cell viability was examined using CCK-8 assay. Flow cytometry was performed to detect cell apoptosis, and apoptosis-related proteins were quantified by western blot. The release of proinflammatory cytokines was assessed by ELISA. Oxidative stress was assessed by the levels of SOD and MDA using kits. The putative relationship between miR-330-5p and NEAT1 or FOXO3 was confirmed using dual-luciferase reporter assay, RIP assay and pull-down assay. RESULT The expression of NEAT1 was increased in LPS-treated HK-2 cells. LPS exposure promoted apoptotic rate, inflammatory responses and oxidative stress in HK-2 cells, which were largely ameliorated by NEAT1 knockdown. MiR-330-5p was verified as a target of NEAT1, and miR-330-5p inhibition reversed the effects of NEAT1 knockdown in LPS-treated HK-2 cells. Moreover, FOXO3 was a target of miR-330-5p, and miR-330-5p restoration-blocked cell apoptosis, inflammation and oxidative stress in LPS-treated HK-2 cells were recovered by FOXO3 overexpression. CONCLUSION NEAT1 downregulation meliorated LPS-induced HK-2 cell injuries partly by regulating the miR-330-5p/FOXO3 pathway.
Collapse
Affiliation(s)
- Yi Gong
- Department of Cardiology and Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Xiao Dong
- Department of Cardiology and Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jianjun Xu
- Department of Cardiology and Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wei Yang
- Department of Cardiology and Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
39
|
Wang JP, Li C, Ding WC, Peng G, Xiao GL, Chen R, Cheng Q. Research Progress on the Inflammatory Effects of Long Non-coding RNA in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:835012. [PMID: 35359568 PMCID: PMC8961287 DOI: 10.3389/fnmol.2022.835012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Globally, traumatic brain injury (TBI) is an acute clinical event and an important cause of death and long-term disability. However, the underlying mechanism of the pathophysiological has not been fully elucidated and the lack of effective treatment a huge burden to individuals, families, and society. Several studies have shown that long non-coding RNAs (lncRNAs) might play a crucial role in TBI; they are abundant in the central nervous system (CNS) and participate in a variety of pathophysiological processes, including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis, and neurogenesis. Some lncRNAs modulate multiple therapeutic targets after TBI, including inflammation, thus, these lncRNAs have tremendous therapeutic potential for TBI, as they are promising biomarkers for TBI diagnosis, treatment, and prognosis prediction. This review discusses the differential expression of different lncRNAs in brain tissue during TBI, which is likely related to the physiological and pathological processes involved in TBI. These findings may provide new targets for further scientific research on the molecular mechanisms of TBI and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jian-peng Wang
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-cong Ding
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ge-lei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Rui Chen,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Quan Cheng,
| |
Collapse
|
40
|
Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer 2022; 126:551-561. [PMID: 34671127 PMCID: PMC8854383 DOI: 10.1038/s41416-021-01588-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
NEAT1 is a highly abundant nuclear architectural long non-coding RNA. There are two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, of which the latter is an essential scaffold for the assembly of a class of nuclear ribonucleoprotein bodies called paraspeckles. Paraspeckle formation is elevated by a wide variety of cellular stressors and in certain developmental processes, either through transcriptional upregulation of the NEAT1 gene or through a switch from NEAT1_1 to NEAT1_2 isoform production. In such conditions, paraspeckles modulate cellular processes by sequestering proteins or RNA molecules. NEAT1 is abnormally expressed in many cancers and a growing body of evidence suggests that, in many cases, high NEAT1 levels are associated with therapy resistance and poor clinical outcome. Here we review the current knowledge of NEAT1 expression and functions in breast cancer, highlighting its established role in postnatal mammary gland development. We will discuss possible isoform-specific roles of NEAT1_1 and NEAT1_2 in different breast cancer subtypes, which critically needs to be considered when studying NEAT1 and breast cancer.
Collapse
|
41
|
Elevated LINC01232 is associated with poor prognosis and HBV infection in hepatocellular carcinoma patients and contributes to tumor progression in vitro. Clin Res Hepatol Gastroenterol 2022; 46:101813. [PMID: 34583064 DOI: 10.1016/j.clinre.2021.101813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) had high prevalence and poor prognosis, and hepatitis B virus (HBV) infection is a major risk factor. The aim of this study is to analyze the role of long intergenic noncoding RNA 01232 (LINC01232) in the prognosis and progression of HCC, and explore the relationship between LINC01232 and HBV infection. METHODS LINC01232 expression and its prognostic value were firstly analyzed using TCGA database. Quantitative real-time PCR was used to evaluate the expression of LINC01232 in HCC patients and cell lines. Kaplan-Meier curves were used to analyze the relationship between LINC01232 expression and HCC overall survival prognosis. Function-loss in vitro experiments were performed to demonstrate the role of LINC01232 in HCC progression. A luciferase reporter assay and Pearson correlation were used to confirm the relationship between LINC01232 and microRNA (miR)-708-5p in HCC. RESULTS The expression of LINC01232 was upregulated in HCC tissues and cell lines, and high LINC01232 was associated with worse overall survival in HCC. LINC01232 reduction inhibited HCC cells proliferation, migration and invasion. LINC01232 expression was significantly correlated with HBV infection and liver cirrhosis, and showed potential to distinguish HBV-infected HCC patients. miR-708-5p, as a HBV-related miRNA, was a potential target of LINC01232, and was negatively correlated with LINC01232 in HCC. CONCLUSION Our findings found that highly expressed LINC01232 may be a biomarker to indicate survival prognosis in HCC patients, especially in HBV-infected cases. In addition, LINC01232 plays as an oncogene in HCC progression, and its function may exert by sponging miR-708-5p.
Collapse
|
42
|
Dichev V, Mehterov N, Kazakova M, Karalilova R, Batalov A, Sarafian V. The lncRNAs/miR-30e/CHI3L1 Axis Is Dysregulated in Systemic Sclerosis. Biomedicines 2022; 10:496. [PMID: 35203705 PMCID: PMC8962397 DOI: 10.3390/biomedicines10020496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with completely undefined etiology and treatment difficulties. The expression of both protein coding and non-coding RNAs is dysregulated during disease development. We aimed to examine a possible regulatory axis implemented in the control of chitinase-3 like protein 1 (CHI3L1) or YKL-40, an inflammation-associated glycoprotein, shown to be elevated in SSc. A panel of seven miRNAs and three lncRNAs potentially involved in the control of CHI3L1 were selected on the basis of in silico analysis. TagMan assay was used to evaluate the expression levels of miRNAs and RT-qPCR for lncRNAs in white blood cells (WBCs) and plasma from SSc patients and healthy controls. Among the eight screened miRNAs, miR-30e-5p (p = 0.04) and miR-30a-5p (p = 0.01) were significantly downregulated in WBCs and plasma of SSc patients, respectively. On the contrary, the expression of the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (p = 0.044) and the Nuclear enriched abundant transcript 1 (NEAT1) (p = 0.008) in WBCs was upregulated compared to the controls. Increased levels of MALAT1 and NEAT1 could be associated with the downregulation of miR-30e-5p and miR-30a-5p expression in WBCs and plasma. We present novel data on the involvement of a possible regulatory axis lncRNAs/miR-30e/CHI3L1 in SSc and hypothesize that MALAT1 and NEAT1 could act as miR-30e-5p and miR-30a-5p decoys. This may be a reason for the increased serum levels of CHI3L1 in SSc patients.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Rositsa Karalilova
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Vasil Aprilov Blvd. 15A, 4001 Plovdiv, Bulgaria; (R.K.); (A.B.)
- Clinic of Rheumatology, University Hospital “Kaspela”, 64 Sofia Str., 4001 Plovdiv, Bulgaria
| | - Anastas Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Vasil Aprilov Blvd. 15A, 4001 Plovdiv, Bulgaria; (R.K.); (A.B.)
- Clinic of Rheumatology, University Hospital “Kaspela”, 64 Sofia Str., 4001 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| |
Collapse
|
43
|
Moustafa MAA, Nath D, Georrge JJ, Chakraborty S. Binding sites of miRNA on the overexpressed genes of oral cancer using 7mer-seed match. Mol Cell Biochem 2022; 477:1507-1526. [PMID: 35179676 DOI: 10.1007/s11010-022-04375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
The microRNAs having a length of ~ 19-22 nucleotides are the small, non-coding RNAs. The evolution of microRNAs in many disorders may hold the key to tackle complex challenges. Oral cancer belongs to the group of head and neck cancer. It occurs in the mouth region that appears as an ulcer. In this study, we collected information on the overexpressed genes of oral cancer. The coding sequences of the genes were derived from NCBI and the entire set of human microRNAs present in miRBASE 21 was retrieved. The human microRNAs that can target the overexpressed genes of oral cancer were determined with the aid of our in-house software. The interaction between microRNAs and the overexpressed genes was evaluated with 7mer-m8 model of microRNA targeting. The genes DKK1 and APLN paired with only one miRNA i.e., miR-447 and miR-6087, respectively. But the genes INHBA and MMP1 were found to be targeted by 2 miRNAs, while the genes FN1, FAP, TGFPI, COL4A1, COL4A2, and LOXL2 were found to be targeted by 16, 5, 9, 18, 29, and 11 miRNAs. Subsequently, several measures such as free energy, translation efficiency, and cosine similarity metric were used to estimate the binding process. It was found that the target region's stability was higher than the upstream and downstream zones. The overexpressed genes' GC contents were calculated, revealing that the codons in target miRNA region were overall GC rich as well as GC3 rich. Lastly, gene ontology was performed to better understand each gene's involvement in biological processes, molecular function, and cellular component. Our study showed the role of microRNAs in gene repression, which could possibly aid in the prognosis and diagnosis of oral cancer.
Collapse
Affiliation(s)
- Manal A A Moustafa
- Department of Bioinformatics, Christ College, Rajkot (Affiliated to Saurashtra University), Rajkot, Gujarat, India
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, Assam, 788150, India
| | - John J Georrge
- Department of Bioinformatics, Christ College, Rajkot (Affiliated to Saurashtra University), Rajkot, Gujarat, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788150, India.
| |
Collapse
|
44
|
Rostami M, kharajo RS, Parsa-kondelaji M, Ayatollahi H, Sheikhi M, Keramati MR. Altered expression of NEAT1 variants and P53, PTEN, and BCL2 genes in Patients with Acute Myeloid Leukemia. Leuk Res 2022; 115:106807. [DOI: 10.1016/j.leukres.2022.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
45
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
46
|
Tonge DP, Darling D, Farzaneh F, Williams GT. Whole-genome-scale identification of novel non-protein-coding RNAs controlling cell proliferation and survival through a functional forward genetics strategy. Sci Rep 2022; 12:182. [PMID: 34997014 PMCID: PMC8741825 DOI: 10.1038/s41598-021-03983-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Identification of cell fate-controlling lncRNAs is essential to our understanding of molecular cell biology. Here we present a human genome-scale forward-genetics approach for the identification of lncRNAs based on gene function. This approach can identify genes that play a causal role, and immediately distinguish them from those that are differentially expressed but do not affect cell function. Our genome-scale library plus next-generation-sequencing and bioinformatic approach, radically upscales the breadth and rate of functional ncRNA discovery. Human gDNA was digested to produce a lentiviral expression library containing inserts in both sense and anti-sense orientation. The library was used to transduce human Jurkat T-leukaemic cells. Cell populations were selected using continuous culture ± anti-FAS IgM, and sequencing used to identify sequences controlling cell proliferation. This strategy resulted in the identification of thousands of new sequences based solely on their function including many ncRNAs previously identified as being able to modulate cell survival or to act as key cancer regulators such as AC084816.1*, AC097103.2, AC087473.1, CASC15*, DLEU1*, ENTPD1-AS1*, HULC*, MIRLET7BHG*, PCAT-1, SChLAP1, and TP53TG1. Independent validation confirmed 4 out of 5 sequences that were identified by this strategy, conferred a striking resistance to anti-FAS IgM-induced apoptosis.
Collapse
Affiliation(s)
- D P Tonge
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, ST5 5BG, UK.
| | - D Darling
- Molecular Medicine Group, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Kings College London, London, UK
| | - F Farzaneh
- Molecular Medicine Group, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Kings College London, London, UK
| | - G T Williams
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
47
|
Pan Y, Wang T, Zhao Z, Wei W, Yang X, Wang X, Xin W. Novel Insights into the Emerging Role of Neat1 and Its Effects Downstream in the Regulation of Inflammation. J Inflamm Res 2022; 15:557-571. [PMID: 35115805 PMCID: PMC8802408 DOI: 10.2147/jir.s338162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China
| | - Zhiqiang Zhao
- Department of Neurosurgery, Heji Hospital affiliated Changzhi Medical College, Shanxi, People’s Republic of China
| | - Wei Wei
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China
- Xianbin Wang, Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, People’s Republic of China, Email
| | - Wenqiang Xin
- Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Correspondence: Wenqiang Xin, Department of Neurosurgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin, 300052, People’s Republic of China, Tel +86–18526201182, Fax +86–2260362062, Email
| |
Collapse
|
48
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
49
|
Taheri M, Barth DA, Kargl J, Rezaei O, Ghafouri-Fard S, Pichler M. Emerging Role of Non-Coding RNAs in Regulation of T-Lymphocyte Function. Front Immunol 2021; 12:756042. [PMID: 34804042 PMCID: PMC8599985 DOI: 10.3389/fimmu.2021.756042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
50
|
Liu T, Wang H, Fu Z, Wang Z, Wang J, Gan X, Wang A, Wang L. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1. Cancer Sci 2021; 113:446-458. [PMID: 34813676 PMCID: PMC8819342 DOI: 10.1111/cas.15212] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Growing evidence supports that N6‐methyladenosine (m6A) modification acts as a critical regulator involved in tumorigenesis at the mRNA level. However, the role of m6A modification at the noncoding RNA level remains largely unknown. We found that methyltransferase‐like 14 (METTL14) was significantly downregulated in renal cell carcinoma (RCC) tissues (n = 580). Gain‐of‐function and loss‐of‐function experiments revealed that METTL14 attenuated the proliferation and migration ability of RCC cells in vivo and in vitro. The methylated RNA immunoprecipitation experiments identified that METTL14 decreased the expression of long noncoding RNA nuclear enriched abundant transcript 1_1 (NEAT1_1) in an m6A‐dependent manner. Mechanistically, RNA pull‐down assay and RNA immunoprecipitation identified NEAT1_1 directly bound to m6A reader YTH N6‐methyladenosine RNA binding protein 2 (YTHDF2). Notably, YTHDF2 accelerated the degradation of NEAT1_1 by selectively recognizing METTL14‐mediated m6A marks on NEAT1_1. Multivariate analysis suggested that METTL14 downregulation was associated with malignant characteristics and predicted poor prognosis in RCC patients. In conclusion, our results uncover a newly identified METTL14‐YTHDF2‐NEAT1_1 signaling axis, which facilitates RCC growth and metastasis and provides fresh insight into RCC therapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Emergency, Affiliated Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhibin Fu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|