1
|
Saadaldeen M, Jeppsson A, Hellström P, Blennow K, Zetterberg H, Wikkelsø C, Tullberg M. Idiopathic normal pressure hydrocephalus: associations between CSF biomarkers, clinical symptoms, and outcome after shunt surgery. Fluids Barriers CNS 2025; 22:51. [PMID: 40389949 PMCID: PMC12087190 DOI: 10.1186/s12987-025-00661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The neurochemical alterations in cerebrospinal fluid (CSF) associated with the typical symptomatology in idiopathic normal pressure hydrocephalus (iNPH) and their association with outcome after shunt surgery are unsettled. AIM To explore associations between concentrations of CSF biomarkers reflecting amyloid- and tau pathology, neuronal degeneration as well as astrocytic activation and the characteristic symptomatology in iNPH and to examine whether these biomarkers can predict the postoperative outcome in all patients and in patients without evidence of Alzheimer's disease (AD) pathology. METHODS This explorative study included 81 patients diagnosed with iNPH at the Hydrocephalus research unit, Sahlgrenska. Symptoms were assessed using the iNPH-scale and standardized clinical tests measuring gait, balance, cognition and urinary incontinence before and median 8 months after shunt surgery. Pre-operative lumbar CSF concentrations of Aβ38, Aβ40, Aβ42, ratio Aβ42/Aβ40, sAPPα, sAPPβ, T-tau, P-tau, MCP-1, and NFL were analyzed. A low Aβ42/Aβ40 ratio defined patients with AD pathology. Correlation and regression analyses between biomarker concentrations and clinical symptoms at baseline as well as postoperative change in symptoms after surgery, were performed. RESULTS Higher NFL correlated with more pronounced impairment in all clinical tests, i.e. included measures of gait, balance, cognition and urinary incontinence (rp=0.25-0.46, p < 0.05). Higher T-tau and P-tau correlated with poorer performance in cognitive tests (rp=0.26-0.39, p < 0.05). No biomarker could differentiate between improved and unimproved patients in the whole sample or in AD-pathology negative patients. Low ratio Aβ42/Aβ40 lacked predictive value. A higher preoperative P-tau was weakly correlated with less pronounced overall clinical improvement (rp = -0.238, p = 0.036). CONCLUSIONS Axonal degeneration, as indicated by elevated NFL, is probably involved in the generation of the full iNPH tetrade of symptoms and tau pathology more specifically with iNPH cognitive impairment. No CSF biomarker could identify shunt responders. CSF evidence of Alzheimer pathology should not be used to exclude patients from shunt surgery.
Collapse
Affiliation(s)
- Majd Saadaldeen
- Hydrocephalus research unit, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Jeppsson
- Hydrocephalus research unit, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Hellström
- Hydrocephalus research unit, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Carsten Wikkelsø
- Hydrocephalus research unit, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Tullberg
- Hydrocephalus research unit, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Solders SK, Shen Q, Reas ET. Blood-brain barrier permeability varies by brain region and APOE4 status and correlates with brain microstructure among high-AD risk groups. Neuroimage Clin 2025; 46:103805. [PMID: 40409050 DOI: 10.1016/j.nicl.2025.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Although strong evidence exists for blood-brain barrier (BBB) disruption in Alzheimer's disease (AD), substantial uncertainty remains regarding its role. We address gaps and inconsistencies in the literature by examining regional variation in BBB permeability among cognitively normal older adults enriched for AD risk, the influence of genetic risk and its interactions with amyloid-β and sex, and the relationships between BBB breakdown and brain microstructure. Additionally, we compare two methods of quantifying BBB permeability. METHODS Dynamic contrast-enhanced magnetic resonance imaging and restriction spectrum imaging were performed on 48 cognitively normal older adults. We examined differences in whole-brain regional BBB permeability between APOE4 carriers and non-carriers, as well as associations with brain microstructure. Analyses tested interactions of APOE4 with sex and amyloid-β positivity, and were compared using continuous measurements of permeability (Ktrans) and an abnormal leakage index (ALI). RESULTS BBB permeability was variable, with highest values in cortical gray matter, including inferior frontal, temporal, and some sensory regions across the full sample. APOE4 carriers had elevated permeability throughout superior occipital, parietal, and frontal cortical regions compared to non-carriers. Results were unchanged after controlling for amyloid-β positivity or when using ALI instead of Ktrans. Higher permeability correlated with altered microstructural patterns, with the most robust relationships among APOE4 carriers, amyloid-β positive individuals, and women. DISCUSSION Individuals at greater genetic risk for AD demonstrate elevated cortical BBB permeability associated with microstructural abnormalities. These relationships were seen in a widespread spatial pattern that is dissimilar from the stereotypical spread of AD neuropathology.
Collapse
Affiliation(s)
| | - Qian Shen
- Department of Neurosciences, University of California, San Diego, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, USA.
| |
Collapse
|
3
|
Vrillon A, Ashton NJ, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Lilamand M, Karikari TK, Prevot V, Zetterberg H, Blennow K, Paquet C. Dissection of blood-brain barrier dysfunction through CSF PDGFRβ and amyloid, tau, neuroinflammation, and synaptic CSF biomarkers in neurodegenerative disorders. EBioMedicine 2025; 115:105694. [PMID: 40239464 PMCID: PMC12020895 DOI: 10.1016/j.ebiom.2025.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction is an early event in neurodegenerative disorders. Pericytes are key cells for BBB maintenance. Upon pericyte injury, the platelet-derived growth factor receptor-β (PDGFRβ) is released in the cerebrospinal fluid (CSF). The relation of CSF PDGFRβ with markers of amyloid pathology, neuroinflammation, and axonal and synaptic damage across dementia remains unclear. METHODS Retrospectively, we quantified CSF PDGFRβ and CSF core Alzheimer's disease (AD), astrocytic (GFAP), microglial (sTREM 2, YKL-40), axonal (NfL), and synaptic (GAP-43, neurogranin) biomarkers in 210 patients from the Cognitive Neurology Centre, Paris, France, including n = 23 neurological controls (NC), n = 84 patients with mild cognitive impairment (MCI) [AD, n = 41; non-AD, n = 43], and n = 103 patients with dementia (AD, n = 73; non-AD, n = 30). FINDINGS Comparing clinical stages, CSF PDGFRβ levels were increased at the MCI stage (Cohen's d = 0.55 [CI95% 0.066, 1.0], P = 0.025) compared with NC. Non-AD MCI displayed higher levels than controls (Cohen's d = 0.74 [CI95% 0.22, 1.3], P = 0.042). No association was observed with CSF Aβ42/Aβ40 ratio but with p-tau 181 (β = 0.102 [CI95% 0.027, 0.176], P = 0.0080) and t-tau levels (β = 0.133 [0.054, 0.213], P = 0.0010). CSF PDGFRβ levels were positively associated with CSF neuroinflammation and synaptic markers levels. Higher CSF PDGFRβ levels were associated with lower MMSE scores at MCI (β = -1.23 [CI95% -2.33, -0.260], P = 0.015) and dementia stages (β = -2.24 [CI95% -3.62, -0.85], P = 0.0020). CSF neuroinflammation biomarkers mediated the association of CSF PDGFRβ with neurodegeneration and synaptic integrity markers. INTERPRETATION CSF PDGFRβ, a candidate biomarker of BBB dysfunction, is increased in the early stages of neurodegenerative disorders, in association with neuroinflammation and axonal and synaptic damage. FUNDING Association des Anciens Internes des Hôpitaux de Paris, Edmond de Rothschild Program, Fondation Vaincre Alzheimer, Demensförbundet, Gamla Tjänarinnor, Anna-Lisa och Bror Björnssons Stiftelse.
Collapse
Affiliation(s)
- Agathe Vrillon
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; University of California San Francisco, San Francisco, CA, USA.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Banner Alzheimer's Institute and University of Arizona, Phoenix, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ 85351, USA; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Elodie Bouaziz-Amar
- INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Julien Dumurgier
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Matthieu Lilamand
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, DISTALZ, Lille, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Hong Kong Centre for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Special Administrative Region of China; Wisconsin Alzheimer's Disease Research Centre, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Centre, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Claire Paquet
- Cognitive Neurology Centre, Lariboisière Fernand Widal Hospital, Assistance Publique Hôpitaux de Paris, Université Paris Cité, Paris, France; INSERM U1144, Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| |
Collapse
|
4
|
Tsukie T, Kasuga K, Kikuchi M, Ishiguro T, Miyashita A, Onodera O, Iwatsubo T, Japanese Alzheimer's Disease Neuroimaging Initiative, Ikeuchi T. Clinical utility of CSF Aβ38 in Japanese research and clinical cohorts. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70125. [PMID: 40415873 PMCID: PMC12100496 DOI: 10.1002/dad2.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
INTRODUCTION Previous studies have reported that cerebrospinal fluid (CSF) amyloid beta (Aβ42/Aβ38) performs comparably to Aβ42/Aβ40 in predicting amyloid positron emission tomography (PET) positivity in White cohorts. However, this finding has not been validated in diverse populations. Moreover, the utility of CSF Aβ38 in diagnosing various neurological diseases has not been fully understood. METHODS We analyzed CSF Aβ38, Aβ40, Aβ42, phosphorylated tau181, and neurofilament light chain in Japanese research and clinical cohorts with Alzheimer's clinical syndrome (ACS) or non-ACS. RESULTS CSF Aβ42/Aβ38 predicted amyloid PET positivity comparably to Aβ42/Aβ40. The levels of CSF Aβ38 were significantly lower in patients with progressive supranuclear palsy (PSP) and idiopathic normal pressure hydrocephalus (iNPH) than in those with other diseases. DISCUSSION We validated the high diagnostic performance of CSF Aβ42/Aβ38 in Japanese patients with AD. CSF Aβ38 reduction may be a characteristic feature of PSP and iNPH. Highlights The diagnostic value of cerebrospinal fluid (CSF) amyloid beta (Aβ)38 was examined in Japanese research and clinical cohorts.CSF Aβ42/Aβ38 and Aβ42/Aβ40 showed comparable performance to detect brain Aβ deposition.CSF Aβ42/Aβ38 and Aβ42/Aβ40 discordant group showed a characteristic profile.CSF Aβ38 and Aβ40 were prominently decreased in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus.
Collapse
Affiliation(s)
- Tamao Tsukie
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Kensaku Kasuga
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Masataka Kikuchi
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Takanobu Ishiguro
- Department of NeurologyBrain Research InstituteNiigata UniversityNiigataJapan
| | - Akinori Miyashita
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Osamu Onodera
- Department of NeurologyBrain Research InstituteNiigata UniversityNiigataJapan
| | - Takeshi Iwatsubo
- Department of NeuropathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | | | - Takeshi Ikeuchi
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| |
Collapse
|
5
|
Leroy M, Aziz AL, Schraen S, Deramecourt V, Skrobala E, Lecerf S, Pasquier F, Huin V, Bertoux M, Lebouvier T. Comparing high and low amyloid producers in Alzheimer's disease: An in-depth analysis. Rev Neurol (Paris) 2025; 181:332-341. [PMID: 40057456 DOI: 10.1016/j.neurol.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/15/2024] [Accepted: 02/14/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The cerebrospinal fluid (CSF) Aβ42/40 ratio has proven to be a more reliable biomarker for amyloid pathology than CSF Aβ42 in Alzheimer's disease (AD), helping to correctly classify patients with positive tau biomarkers (T+) that would otherwise have remained outside of the AD continuum. It was shown that the Aβ42/40 ratio better captures a relative decrease of Aβ42 in patients with high CSF Aβ. However, whether patients with high-amyloid (HiA) AD, in whom A+ is defined by the Aβ42/40 ratio, exactly compare with their low-amyloid (LoA) counterparts, in whom A+ is defined by Aβ42 solely, deserves further analysis. METHODS We retrospectively included patients with A+T+ AD and evidence of cognitive and neurodegenerative changes (N+). LoA patients were operationally defined as patients with T+N+ and low CSF Aβ42, while HiA patients were defined as patients with T+N+ and normal CSF Aβ42 but abnormal Aβ42/40 ratio. Tau CSF biomarkers, neuropsychological profile, rates of cognitive decline, structural and metabolic imaging, ApoE genotype and brain neuropathology were compared between the HiA and LoA groups. RESULTS At the time of the lumbar puncture, LoA patients were significantly younger than the HiA patients (68.9±8.7years vs. 71.8±9.4; P=0.0015) and had a lower Mini-Mental Status Examination (MMSE) (18.7±6.4 vs. 20.7±6.2; P=0.0005). There was no difference in the neuropsychological profile nor in the annual rates of cognitive decline between the two groups with early AD. No differences were retrieved between groups on CSF Tau and P-Tau biomarkers, atrophy and brain metabolism, distribution of the APOE4 allele and APOE4/E4 genotype, and neuropathology. CONCLUSIONS Overall, our study supports the surrogate use of the Aβ42/40 ratio as an equivalent to Aβ42 to define AD. We showed that HiA CSF profiles were not associated with differences in cognition, brain structures and metabolism, APOE genotype tau CSF biomarkers or the rates of cognitive decline, but may be the associated with later-onset and early-stage AD.
Collapse
Affiliation(s)
- Mélanie Leroy
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France
| | - Anne Laure Aziz
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Susanna Schraen
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | | | - Simon Lecerf
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France
| | - Vincent Huin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France
| | - Maxime Bertoux
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; CHU de Lille, DISTALZ, Lille, France.
| |
Collapse
|
6
|
Santos LE, Mattos P, Pinheiro TL, Silva A, Drummond C, Sudo FK, Barros-Aragão F, Vanderborght B, Brandão CO, Ferreira ST, Tovar-Moll F, De Felice FG. Performance of plasma biomarkers for diagnosis and prediction of dementia in a Brazilian cohort. Nat Commun 2025; 16:2911. [PMID: 40133253 PMCID: PMC11937383 DOI: 10.1038/s41467-025-56756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
Despite remarkable progress in the biomarker field in recent years, local validation of plasma biomarkers of Alzheimer's disease (AD) and dementia is still lacking in Latin America. In this longitudinal cohort study of 145 elderly Brazilians, we assess the diagnostic performance of plasma biomarkers, based on clinical diagnosis and CSF biomarker positivity. Follow-up data of up to 4.7 years were used to determine performance in predicting diagnostic conversions. Participants were clinically categorized as cognitively unimpaired (n = 49), amnestic mild cognitive impairment (n = 29), AD (n = 38), Lewy body dementia (n = 22), or vascular dementia (n = 7). Plasma Tau, Aβ40, Aβ42, NfL, GFAP, pTau231, pTau181 and pTau217 were measured on the SIMOA HD-X platform. Plasma pTau217 showed excellent performance determining CSF biomarker status in the cohort, either alone (ROC AUC = 0.94, 95% CI: [0.88-1.00]) or as a ratio to Aβ42 (ROC AUC = 0.98, 95% CI: [0.94-1.00]). This study comprises an initial step towards local validation and adoption of dementia biomarkers in Brazil.
Collapse
Affiliation(s)
- Luis E Santos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais L Pinheiro
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ananssa Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Claudia Drummond
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Kenji Sudo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Bart Vanderborght
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Sergio T Ferreira
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fernanda G De Felice
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Schinke H, Förnvik Jonsson M, Gummesson M, Nilsson R, Gaupp S, Manuilova E, McIlwrick S, Weinberger JP, Rutz S, Carboni M, Stomrud E. Concordance between the updated Elecsys cerebrospinal fluid immunoassays and amyloid positron emission tomography for Alzheimer's disease assessment: findings from the Apollo study. Clin Chem Lab Med 2025:cclm-2024-1476. [PMID: 40068924 DOI: 10.1515/cclm-2024-1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVES The Apollo study was designed to support the clinical performance verification of the adjusted cutoffs of the Elecsys® β-Amyloid(1-42) (Aβ42) cerebrospinal fluid (CSF) II, β-Amyloid(1-40) (Aβ40) CSF, Phospho-Tau (181P) (pTau) CSF and Total-Tau (tTau) CSF immunoassays (Roche Diagnostics International Ltd) for measuring fresh CSF samples, and assess the concordance of the Elecsys CSF pTau/Aβ42, tTau/Aβ42 and Aβ42/Aβ40 ratios, as well as Aβ42 alone, with amyloid positron emission tomography (PET) visual read status. METHODS The primary study endpoint was to assess the concordance of the Elecsys CSF ratios and Aβ42 alone with amyloid PET visual read status using fresh CSF samples collected from individuals with subjective cognitive decline or mild cognitive impairment, handled with a new routine-use pre-analytical procedure and measured with the Elecsys CSF immunoassays. The sample stability after 1- to 13-week storage at -20 °C was also investigated in an exploratory analysis. RESULTS Of 108 screened individuals, 91 met the eligibility criteria, of whom 44.0 % were amyloid PET-positive and 56.0 % amyloid PET-negative. Positive percent agreement (PPA) and negative percent agreement, respectively, were 0.800 and 0.882 for pTau/Aβ42, 0.775 and 0.902 for tTau/Aβ42, and 0.950 and 0.824 for Aβ42/Aβ40. For Aβ42, PPA was 0.975 and negative likelihood ratio was 0.039. Overall, 33 samples (36.3 %) were frozen at -20 °C for 1-13 weeks. All concentration recoveries were within 100 ± 10 % when stored at -20 °C for ≤8 weeks. CONCLUSIONS Elecsys CSF ratios and Aβ42 alone may be reliable alternatives to amyloid PET for identifying amyloid positivity in clinical practice.
Collapse
Affiliation(s)
| | - Magnus Förnvik Jonsson
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mayme Gummesson
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - Rikard Nilsson
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | | | | | | | | | | | | | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
9
|
Leuzy A, Bollack A, Pellegrino D, Teunissen CE, La Joie R, Rabinovici GD, Franzmeier N, Johnson K, Barkhof F, Shaw LM, Arkhipenko A, Schindler SE, Honig LS, Moscoso Rial A, Schöll M, Zetterberg H, Blennow K, Hansson O, Farrar G. Considerations in the clinical use of amyloid PET and CSF biomarkers for Alzheimer's disease. Alzheimers Dement 2025; 21:e14528. [PMID: 40042435 PMCID: PMC11881640 DOI: 10.1002/alz.14528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025]
Abstract
Amyloid-β (Aβ) positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) biomarkers are now established tools in the diagnostic workup of patients with Alzheimer's disease (AD), and their use is anticipated to increase with the introduction of new disease-modifying therapies. Although these biomarkers are comparable alternatives in research settings to determine Aβ status, biomarker testing in clinical practice requires careful consideration of the strengths and limitations of each modality, as well as the specific clinical context, to identify which test is best suited for each patient. This article provides a comprehensive review of the pathologic processes reflected by Aβ-PET and CSF biomarkers, their performance, and their current and future applications and contexts of use. The primary aim is to assist clinicians in making better-informed decisions about the suitability of each biomarker in different clinical situations, thereby reducing the risk of misdiagnosis or incorrect interpretation of biomarker results. HIGHLIGHTS: Recent advances have positioned Aβ PET and CSF biomarkers as pivotal in AD diagnosis. It is crucial to understand the differences in the clinical use of these biomarkers. A team of experts reviewed the state of Aβ PET and CSF markers in clinical settings. Differential features in the clinical application of these biomarkers were reviewed. We discussed the role of Aβ PET and CSF in the context of novel plasma biomarkers.
Collapse
Grants
- AF-930351 Neurodegenerative Disease Research
- 101053962 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- R01 AG066107 NIA NIH HHS
- FO2022-0270 Bluefield Project, Olav Thon Foundation, Erling-Persson Family Foundation
- 101112145 European Union's Horizon Europe
- Alzheimer Netherlands
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- 2022-0231 Knut and Alice Wallenberg foundation
- KAW 2023.0371 Knut and Alice Wallenberg Foundation
- U19 ADNI4 Harvard Aging Brain Study
- R01 AG081394 NIA NIH HHS
- ADRC P30-AG-072979 Harvard Aging Brain Study
- 2022-1259 Regionalt Forskningsstöd
- Shanendoah Foundation
- 2020-O000028 Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, Skåne University Hospital Foundation
- The Selfridges Group Foundation
- R56 AG057195 NIA NIH HHS
- U01 NS100600 NINDS NIH HHS
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 AG057195 NIA NIH HHS
- Dutch National Dementia Strategy
- ZEN24-1069572 Alzheimer's Association
- R01AG072474 Harvard Aging Brain Study
- 860197 Marie Curie International Training Network
- AF-939721 Neurodegenerative Disease Research
- R01 AG070941 NIA NIH HHS
- P01 AG036694 NIA NIH HHS
- JPND2021-00694 Neurodegenerative Disease Research
- ADSF-21-831376-C AD Strategic Fund, and Alzheimer's Association
- AF-994900 Swedish Alzheimer Foundation
- NIH
- ALFGBG-813971 County Councils, the ALF-agreement
- FO2021-0293 Swedish Brain Foundation
- U19AG063893 NINDS NIH HHS
- 2022-01018 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 201809-2016862 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- 831434 Innovative Medicines Initiatives 3TR
- 101132933 European Union's Horizon Europe
- European Union Joint Programme
- Cure Alzheimer's fund, Rönström Family Foundation
- ID 390857198 Munich Cluster for Systems Neurology
- U01-AG057195 NIA NIH HHS
- Deutsche Forschungsgemeinschaft
- 2021-06545 Swedish Research Council
- Sahlgrenska Academy at the University of Gothenburg
- U19 AG024904 NIA NIH HHS
- GE Healthcare
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- P30 AG062422 NIA NIH HHS
- ADG-101096455 European Research Council
- 2022-00732 Neurodegenerative Disease Research
- 860197 Marie Skłodowska-Curie
- P01 AG019724 NIA NIH HHS
- U01NS100600 NINDS NIH HHS
- AF-980907 Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson's disease) at Lund University, Swedish Alzheimer Foundation
- P30 AG066462 NIA NIH HHS
- 2022-00775 GHR Foundation, Swedish Research Council
- R44 AG071388 NIA NIH HHS
- FO2017-0243 Hjärnfonden, Sweden
- AF-968270 Neurodegenerative Disease Research
- KAW2014.0363 Knut and Alice Wallenberg Foundation
- SG-23-1061717 Alzheimer's Association
- 2021-02678 Swedish Research Council
- R01 AG059013 NIA NIH HHS
- R35 AG072362 NIA NIH HHS
- VGFOUREG-995510 Västra Götaland Region R&D
- American College of Radiology
- R01 AG081394-01 European Union's Horizon Europe
- R21 AG070768 NIA NIH HHS
- U19 AG063893 NIA NIH HHS
- 2022-Projekt0080 Swedish Federal Government under the ALF agreement
- ALFGBG-965326 County Councils, the ALF-agreement
- Alzheimer Drug Discovery Foundation
- Rainwater Charitable Foundation
- Research of the European Commission
- R01AG083740 National Institute of Aging
- ADSF-21-831381-C AD Strategic Fund, and Alzheimer's Association
- SG-23-1038904 Alzheimer's Association 2022-2025
- RS-2023-00263612 National Research Foundation of Korea
- P30-AG062422 NIA NIH HHS
- R21AG070768 Harvard Aging Brain Study
- 2017-02869 Swedish Research Council
- 101034344 Joint Undertaking
- ALFGBG-715986 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- ERAPERMED2021-184 ERA PerMed
- U19AG024904 Harvard Aging Brain Study
- R01 AG072474 NIA NIH HHS
- UKDRI-1003 Neurodegenerative Disease Research
- 10510032120003 Health Holland, the Dutch Research Council
- 2019-02397 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- EXC 2145 SyNergy Munich Cluster for Systems Neurology
- 1412/22 Parkinson foundation of Sweden
- R01 AG046396 NIA NIH HHS
- ALFGBG-71320 National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
- P01-AG019724 NIA NIH HHS
- ALFGBG-965240 Swedish state under the agreement between the Swedish government and the County Councils, ALF-agreement
- Deutsche Parkinson Gesellschaft
- ADSF-21-831377-C AD Strategic Fund, and Alzheimer's Association
- National MS Society
- R01 AG083740 NIA NIH HHS
- 2017-00915 Neurodegenerative Disease Research
- 2023-06188 Swedish Research Council
- Alzheimer Association
- National MS Society
- Alzheimer Netherlands
- NIH
- NIA
- National Institute of Neurological Disorders and Stroke
- American College of Radiology
- Rainwater Charitable Foundation
- Deutsche Forschungsgemeinschaft
- NINDS
- Knut and Alice Wallenberg Foundation
- Swedish Research Council
- National Research Foundation of Korea
- Swedish Brain Foundation
- European Research Council
- Alzheimer's Association
- GE Healthcare
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Ariane Bollack
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
- Department of Medical Physics and BioengineeringCentre for Medical Image Computing (CMIC)University College LondonLondonUK
| | | | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam NeuroscienceNeurodegenerationAmsterdam UMC Vrije UniversiteitAmsterdamThe Netherlands
| | - Renaud La Joie
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nicolai Franzmeier
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Keith Johnson
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineVrije Universiteit AmsterdamAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain imagingAmsterdamThe Netherlands
- UCL Queen Square Institute of Neurology and Center for Medical Image ComputingUniversity College LondonLondonUK
| | - Leslie M. Shaw
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Department of NeurologyKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Lawrence S. Honig
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Alexis Moscoso Rial
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Nuclear Medicine Department and Molecular Imaging GroupInstituto de Investigación Sanitaria de Santiago de CompostelaSantiago de CompostelaSpain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Department of NeuropsychiatrySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
- Dementia Research CentreInstitute of NeurologyUniversity College LondonLondonUK
| | - Henrik Zetterberg
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondonUK
- Hong Kong Center for Neurodegenerative DiseasesScience ParkHong KongChina
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of WisconsinUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- The Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiChina
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Gill Farrar
- The Grove CentreWhite Lion Road BuckinghamshireGE HealthCareAmershamUK
| |
Collapse
|
10
|
Andersson E, Lindblom N, Janelidze S, Salvadó G, Gkanatsiou E, Söderberg L, Möller C, Lannfelt L, Ge J, Hanrieder J, Blennow K, Deierborg T, Mattsson-Carlgren N, Zetterberg H, Gouras G, Hansson O. Soluble cerebral Aβ protofibrils link Aβ plaque pathology to changes in CSF Aβ 42/Aβ 40 ratios, neurofilament light and tau in Alzheimer's disease model mice. NATURE AGING 2025; 5:366-375. [PMID: 39939821 PMCID: PMC11922755 DOI: 10.1038/s43587-025-00810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
The Aβ42/Aβ40 ratio in the cerebrospinal fluid (CSF) and the concentrations of neurofilament light (NfL) and total tau (t-tau) are changed in the early stages of Alzheimer's disease (AD)1, but their neurobiological correlates are not entirely understood. Here, we used 5xFAD transgenic mice to investigate the associations between these CSF biomarkers and measures of cerebral Aβ, including Aβ42/Aβ40 ratios in plaques, insoluble fibrillar deposits and soluble protofibrils. A high Aβ42/Aβ40 ratio in soluble protofibrils was the strongest independent predictor of low CSF Aβ42/Aβ40 ratios and high CSF NfL and t-tau concentrations when compared to Aβ42/Aβ40 ratios in plaques and insoluble fibrillar deposits. Furthermore, the Aβ42/Aβ40 ratio in soluble protofibrils fully mediated the associations between the corresponding ratio in plaques and all the investigated CSF biomarkers. In AppNL-G-F/NL-G-F knock-in mice, protofibrils fully mediated the association between plaques and the CSF Aβ42/Aβ40 ratio. Together, the results suggest that the Aβ42/Aβ40 ratio in CSF might better reflect brain levels of soluble Aβ protofibrils than insoluble Aβ fibrils in plaques in AD. Furthermore, elevated concentrations of NfL and t-tau in CSF might be triggered by increased brain levels of soluble Aβ protofibrils.
Collapse
Affiliation(s)
| | - Nils Lindblom
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | | | - Gemma Salvadó
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | | | | | - Lars Lannfelt
- BioArctic AB, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Gunnar Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
11
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2025; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
12
|
Gao Y, Wang L, Doeswijk T, Winblad B, Schedin‐Weiss S, Tjernberg LO. Intraneuronal Aβ accumulation causes tau hyperphosphorylation via endolysosomal leakage. Alzheimers Dement 2025; 21:e70091. [PMID: 40145397 PMCID: PMC11947758 DOI: 10.1002/alz.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) peptide plaques and intracellular neurofibrillary tangles formed by hyperphosphorylated tau. Many attempts have been made to clarify the link between Aβ and tau in the pathogenesis, but conclusive data describing a pathway for this connection are still lacking. METHODS We developed a neuronal model of Aβ-induced toxicity and studied downstream effects of intraneuronal Aβ42 accumulation on tau hyperphosphorylation using confocal microscopy and live cell imaging. RESULTS Aβ42 added to the medium was endocytosed into neurons, inducing the formation of endolysosomal protofibrils and endolysosomal leakage, which in turn promoted tau hyperphosphorylation. Asparaginyl endopeptidase (AEP) was released from the disrupted lysosomes, and inhibition of this peptidase activity reduced tau hyperphosphorylation. DISCUSSION The data suggest a mechanism of AD in which Aβ42 accumulates and aggregates gradually in neurons over time, leading to endolysosomal leakage and release of AEP, which subsequently triggers tau hyperphosphorylation. HIGHLIGHTS Aβ42 endocytosis leads to its endolysosomal accumulation in neurons over time. Aβ42 polymerizes into protofibrils and causes endolysosomal leakage. Tau hyperphosphorylation is induced by endolysosomal asparagine endopeptidase leakage. Tau hyperphosphorylation is inhibited by an asparagine endopeptidase inhibitor.
Collapse
Affiliation(s)
- Yang Gao
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Lisha Wang
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Tosca Doeswijk
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
- Theme Inflammation and AgingKarolinska University HospitalHuddingeSweden
| | - Sophia Schedin‐Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| |
Collapse
|
13
|
Safi A, Giunti E, Melikechi O, Xia W, Melikechi N. Identification of blood plasma protein ratios for distinguishing Alzheimer's disease from healthy controls using machine learning. Heliyon 2025; 11:e42349. [PMID: 39981365 PMCID: PMC11840181 DOI: 10.1016/j.heliyon.2025.e42349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Early detection of Alzheimer's disease is essential for effective treatment and the development of therapies that modify disease progression. Developing sensitive and specific noninvasive diagnostic tools is crucial for improving clinical outcomes and advancing our understanding of this condition. Liquid biopsy techniques, especially those involving plasma biomarkers, provide a promising noninvasive method for early diagnosis and disease monitoring. In this study, we analyzed the plasma proteomic profiles of 38 healthy individuals, with an average age of 66.5 years, and 22 patients with Alzheimer's disease, with an average age of 79.7 years. Proteins in the plasma were quantified using specialized panels designed for proteomic extension assays. Through computational analysis using a linear support vector machine algorithm, we identified 82 differentially expressed proteins between the two groups. From these, we calculated 6642 possible protein ratios and identified specific combinations of these ratios as significant features for distinguishing between individuals with Alzheimer's disease and healthy individuals. Notably, the protein ratios kynureninase to macrophage scavenger receptor type 1, Neurocan to protogenin, and interleukin-5 receptor alpha to glial cell line-derived neurotrophic factor receptor alpha 1 achieving accuracy up to 98 % in differentiating between the two groups. This study underscores the potential of leveraging protein relationships, expressed as ratios, in advancing Alzheimer's disease diagnostics. Furthermore, our findings highlight the promise of liquid biopsy techniques as a noninvasive and accurate approach for early detection and monitoring of Alzheimer's disease using blood plasma.
Collapse
Affiliation(s)
- Ali Safi
- Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Elisa Giunti
- Bedford VA Healthcare System, Bedford, MA, 01730, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Omar Melikechi
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Weiming Xia
- Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
- Bedford VA Healthcare System, Bedford, MA, 01730, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Noureddine Melikechi
- Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
14
|
Schneider LS, Freiesleben SD, van Breukelen G, Wang X, Brosseron F, Heneka MT, Teipel S, Kleineidam L, Stark M, Roy‐Kluth N, Wagner M, Spottke A, Schmid M, Roeske S, Laske C, Munk MH, Perneczky R, Rauchmann B, Buerger K, Janowitz D, Düzel E, Glanz W, Jessen F, Rostamzadeh A, Wiltfang J, Bartels C, Kilimann I, Schneider A, Fliessbach K, Priller J, Spruth EJ, Hellmann‐Regen J, Peters O. Linking higher amyloid beta 1-38 (Aβ(1-38)) levels to reduced Alzheimer's disease progression risk. Alzheimers Dement 2025; 21:e14545. [PMID: 39868793 PMCID: PMC11863357 DOI: 10.1002/alz.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION The beneficial effects of amyloid beta 1-38, or Aβ(1-38), on Alzheimer's disease (AD) progression in humans in vivo remain controversial. We investigated AD patients' cerebrospinal fluid (CSF) Aβ(1-38) and AD progression. METHODS Cognitive function and diagnostic change were assessed annually for 3 years in 177 Aβ-positive participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia from the German Center for Neurodegenerative Diseases (DZNE) longitudinal cognitive impairment and dementia study (DELCODE) cohort using the Mini-Mental State Examination (MMSE), Preclinical Alzheimer's Cognitive Composite (PACC), Clinical Dementia Rating (CDR), and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria. Mixed linear and Cox regression analyses were conducted. CSF was collected at baseline. RESULTS Higher Aβ(1-38) levels were associated with slower PACC (p = 0.001) and slower CDR Sum of Boxes (CDR-SB) (p = 0.002) but not MMSE decline. Including Aβ(1-40) beyond Aβ(1-38) in the model confirmed an association of Aβ(1-38) with slower PACC decline (p = 0.005), but not with CDR-SB or MMSE decline. In addition, higher Aβ(1-38) baseline levels were associated with a reduced dementia conversion risk. DISCUSSION Further research is needed to understand the role of Aβ(1-38) in AD and its potential for future therapeutic strategies. HIGHLIGHTS This study not only replicates but also extends the existing findings on the role of Aβ(1-38) (amyloid beta 1-38) in Alzheimer's disease (AD) in humans in vivo. Higher baseline Aβ(1-38) levels were associated with a decreased risk of conversion to AD dementia in subjective cognitive decline (SCD) and mild cognitive impairment (MCI). Different linear-mixed regression models suggest an association between higher Aβ(1-38) baseline levels and slower Preclinical Alzheimer's Cognitive Composite (PACC) and Clinical Dementia Rating Sum of Boxes (CDR-SB) decline. Including Aβ(1-40) beyond Aβ(1-38) in the model confirmed a link between Aβ(1-38) and PACC decline, but showed no association of Aβ(1-38) on CDR-SB and Mini-Mental State Examination (MMSE) decline. The impact of short Aβ isoforms in AD progression might have been under-investigated These findings underscore the urgent need for additional research on the role of these shorter Aβ peptides in AD, as they may hold key insights for future therapeutic strategies.
Collapse
|
15
|
Hernandez P, Rackles E, Alboniga OE, Martínez‐Lage P, Camacho EN, Onaindia A, Fernandez M, Talamillo A, Falcon‐Perez JM. Metabolic Profiling of Brain Tissue and Brain-Derived Extracellular Vesicles in Alzheimer's Disease. J Extracell Vesicles 2025; 14:e70043. [PMID: 39901643 PMCID: PMC11791017 DOI: 10.1002/jev2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer´s disease (AD) is the most frequent neurodegenerative disorder in the world and is characterised by the loss of memory and other cognitive functions. Metabolic changes associated with AD are important players in the development of the disease. However, the mechanism underlying these changes is still unknown. Extracellular vesicles (EVs) are nano-sized particles that play an important role in regulating pathophysiological processes and are a non-invasive manner to obtain information of the cell that is secreting them. The analysis of brain-derived EVs (bdEVs) will provide new insights in the metabolic processes associated with AD. To characterize bdEVs in AD, we optimised a method to isolate them from tissue of different brain regions, obtaining the highest enrichment in isolations from the temporal cortex. We performed unbiased untargeted metabolomics analysis on post-mortem human temporal cortex tissue and bdEVs from the same region of AD patients and healthy controls. Both, univariate and multivariate statistical analysis were used to determine the metabolites that influence the separation between AD patients and controls. Interestingly, a clear separation between control and AD groups was obtained with bdEVs, which allowed to select 12 relevant features by a validated PLS-DA model. Furthermore, comparison of tissue and bdEVs identified 68 common features. The pathway enrichment analysis of the common metabolites showed that the alanine, aspartate and glutamate pathway and the arginine, phenylalanine, tyrosine pathway were the most significant ones in the separation between the AD patients and controls. The phenylalanine, tyrosine and tryptophan pathway, still had a very high influence in the separation between groups, albeit not significant. Notably, some metabolites were identified for the first time in bdEVs. For example, the N-acetyl aspartic acid (NAA) metabolite present in bdEVs was suitable to differentiate AD patients from healthy controls. Furthermore, the analysis of the hippocampus, midbrain, temporal and entorhinal cortex and their respective bdEVs indicated that the metabolic profiles of different brain areas were distinct and showed some correlation between the metabolome of the tissue and its respective bdEVs. Thus, our study highlights the potential of bdEVs to understand the metabolic fingerprint associated with AD and their potential use as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Patricia Hernandez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Pablo Martínez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Emma N. Camacho
- Anatomic PathologyAraba University HospitalVitoria‐GazteizAlavaSpain
| | - Arantza Onaindia
- Bioaraba Health Research InstituteOncohaematology Research GroupVitoria‐GasteizSpain
- Pathology DepartmentOsakidetza Basque Health ServiceAraba University HospitalVitoria‐GasteizSpain
| | - Manuel Fernandez
- Neurological DepartmentHospital Universitario Cruces (HUC)BarakaldoSpain
- Neuroscience DepartmentUniversidad del País Vasco (UPV‐EHU)LeioaSpain
| | - Ana Talamillo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Biomedical Research Centre of Hepatic and Digestive Diseases (CIBERehd)Carlos III Health Institute (ISCIII)MadridSpain
- IKERBASQUE Basque Foundation for ScienceBilbao, BizkaiaSpain
| |
Collapse
|
16
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
17
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated Appropriate Use Criteria for Amyloid and Tau PET: A Report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. J Nucl Med 2025:jnumed.124.268756. [PMID: 39778970 DOI: 10.2967/jnumed.124.268756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. Methods: The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. Results: For amyloid PET, 7 scenarios were rated as appropriate, 2 as uncertain, and 8 as rarely appropriate. For tau PET, 5 scenarios were rated as appropriate, 6 as uncertain, and 6 as rarely appropriate. Conclusion: AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology and Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California;
| | - David S Knopman
- Mayo Clinic Neurology and Neurosurgery, Rochester, Minnesota
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri; Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin J Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Phillip H Kuo
- Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jennifer H Lingler
- Department of Health and Community Systems, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen P Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
- Butler Hospital Memory and Aging Program, Providence, Rhode Island
| | | | | | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Molecular Neuroimaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Mravinacová S, Bergström S, Olofsson J, de San José NG, Anderl-Straub S, Diehl-Schmid J, Fassbender K, Fliessbach K, Jahn H, Kornhuber J, Landwehrmeyer GB, Lauer M, Levin J, Ludolph AC, Prudlo J, Schneider A, Schroeter ML, Wiltfang J, Steinacker P, Otto M, Nilsson P, Månberg A. Addressing inter individual variability in CSF levels of brain derived proteins across neurodegenerative diseases. Sci Rep 2025; 15:668. [PMID: 39753643 PMCID: PMC11698900 DOI: 10.1038/s41598-024-83281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls. We identify significant inter-individual variability in overall CSF levels of brain-derived proteins, which could not be attributed to specific disease associations. Using linear modelling, we show that adjusting for median CSF levels of brain-derived proteins increases the diagnostic accuracy of proteins previously identified as altered in CSF in the context of neurodegenerative disorders. We further demonstrate a simplified approach for the adjustment using pairs of correlated proteins with opposite alteration in the diseases. With this approach, the proteins adjust for each other and further increase the biomarker performance through additive effect. When comparing the diseases, two proteins-neurofilament medium and myelin basic protein-showed increased levels in ALS compared to other diseases, and neurogranin showed a specific increase in AD. Several other proteins showed similar trends across the studied diseases, indicating that these proteins likely reflect shared processes related to neurodegeneration. Overall, our findings suggest that accounting for inter-individual variability is crucial in future studies to improve the identification and performance of relevant biomarkers. Importantly, we highlight the need for multi-disease studies to identify disease-specific biomarkers.
Collapse
Affiliation(s)
- Sára Mravinacová
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sofia Bergström
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jennie Olofsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Janine Diehl-Schmid
- Department of Psychiatry, Technical University of Munich, Munich, Germany
- Kbo-Inn-Salzach-Klinikum Gemeinnützige GmbH, Wasserburg Am Inn, Germany
| | | | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Holger Jahn
- Department of Psychiatry, University Hospital, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | - Johannes Prudlo
- Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, and DZNE, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
19
|
Shaw LM, Korecka M, Lee EB, Cousins KAQ, Vanderstichele H, Schindler SE, Tosun D, DeMarco ML, Brylska M, Wan Y, Burnham S, Sciulli A, Vulaj A, Tropea TF, Chen‐Plotkin A, Wolk DA, the Alzheimer's Disease Neuroimaging Initiative. ADNI Biomarker Core: A review of progress since 2004 and future challenges. Alzheimers Dement 2025; 21:e14264. [PMID: 39614747 PMCID: PMC11773510 DOI: 10.1002/alz.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND We describe the Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core major activities from October 2004 to March 2024, including biobanking ADNI cerebrospinal fluid (CSF), plasma, and serum biofluid samples, biofluid analyses for Alzheimer's disease (AD) biomarkers in the Biomarker Core and various non-ADNI laboratories, and continuous assessments of pre-analytics. RESULTS Validated immunoassay and mass spectrometry-based assays were performed in CSF with a shift to plasma, a more accessible biofluid, as qualified assays became available. Performance comparisons across different CSF and plasma AD biomarker measurement platforms have enriched substantially the ADNI participant database enabling method performance determinations for AD pathology detection and longitudinal assessments of disease progression. DISCUSSION Close collaboration with academic and industrial partners in the validation and implementation of AD biomarkers for early detection of disease pathology in treatment trials and ultimately in clinical practice is a key factor for the success of the work done in the Biomarker Core. HIGHLIGHTS Describe ADNI Biomarker Core biobanking and sample distribution from 2007 to 2024. Discuss validated mass spectrometry and immunoassay methods for ADNI biofluid analyses. Review collaborations with academic and industrial partners to detect AD and progression. Discuss major challenges, and progress to date, for co-pathology detection. Implementation in the ATN scheme: co-pathology and modeling disease progression.
Collapse
Affiliation(s)
- Leslie M. Shaw
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Magdalena Korecka
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Katheryn A Q Cousins
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVan CouverCanada
| | - Magdalena Brylska
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Yang Wan
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alexandria Sciulli
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Amberley Vulaj
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Thomas F. Tropea
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alice Chen‐Plotkin
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
20
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated appropriate use criteria for amyloid and tau PET: A report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. Alzheimers Dement 2025; 21:e14338. [PMID: 39776249 PMCID: PMC11772739 DOI: 10.1002/alz.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. METHODS The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. RESULTS For amyloid PET, seven scenarios were rated as appropriate, two as uncertain, and eight as rarely appropriate. For tau PET, five scenarios were rated as appropriate, six as uncertain, and six as rarely appropriate. DISCUSSION AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease. HIGHLIGHTS A multidisciplinary workgroup convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging updated the appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. The goal of these updated AUC is to assist clinicians in identifying clinical scenarios in which amyloid or tau PET may be useful for guiding the diagnosis and management of patients who have, or are at risk for, cognitive decline These updated AUC are intended for dementia specialists who spend a significant proportion of their clinical effort caring for patients with cognitive complaints, as well as serve as a general reference for a broader audience interested in implementation of amyloid and tau PET in clinical practice.
Collapse
Affiliation(s)
- Gil D. Rabinovici
- Department of Neurology and Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Javier Arbizu
- Department of Nuclear MedicineUniversity of Navarra ClinicPamplonaSpain
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Knight Alzheimer's Disease Research CenterWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Kevin J. Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Oskar Hansson
- Department of Clinical Sciences MalmöClinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
- Memory Clinic, Skåne University HospitalSkånes universitetssjukhusMalmöSweden
| | - Peter Herscovitch
- Positron Emission Tomography DepartmentNational Institutes of Health Clinical CenterBethesdaMarylandUSA
| | - Phillip H. Kuo
- Medical Imaging, Medicine, and Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Jennifer H. Lingler
- Department of Health and Community SystemsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Satoshi Minoshima
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Julie C. Price
- Department of RadiologyMassachusetts General Hospital, BostonCharlestownMassachusettsUSA
| | - Stephen P. Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine at Brown UniversityProvidenceRhode IslandUSA
- Butler Hospital Memory and Aging ProgramProvidenceRhode IslandUSA
| | | | - Maria C. Carrillo
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Keith A. Johnson
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Molecular Neuroimaging, Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Neurology and RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
21
|
Hunter TR, Santos LE, Tovar-Moll F, De Felice FG. Alzheimer's disease biomarkers and their current use in clinical research and practice. Mol Psychiatry 2025; 30:272-284. [PMID: 39232196 DOI: 10.1038/s41380-024-02709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
While blood-based tests are readily available for various conditions, including cardiovascular diseases, type 2 diabetes, and common cancers, Alzheimer's disease (AD) and other neurodegenerative diseases lack an early blood-based screening test that can be used in primary care. Major efforts have been made towards the investigation of approaches that may lead to minimally invasive, cost-effective, and reliable tests capable of measuring brain pathological status. Here, we review past and current technologies developed to investigate biomarkers of AD, including novel blood-based approaches and the more established cerebrospinal fluid and neuroimaging biomarkers of disease. The utility of blood as a source of AD-related biomarkers in both clinical practice and interventional trials is discussed, supported by a comprehensive list of clinical trials for AD drugs and interventions that list biomarkers as primary or secondary endpoints. We highlight that identifying individuals in early preclinical AD using blood-based biomarkers will improve clinical trials and the optimization of therapeutic treatments as they become available. Lastly, we discuss challenges that remain in the field and address new approaches being developed, such as the examination of cargo packaged within extracellular vesicles of neuronal origin isolated from peripheral blood.
Collapse
Affiliation(s)
- Tai R Hunter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Luis E Santos
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
| | | | - Fernanda G De Felice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Reas ET, Solders SK, Tsiknia A, Triebswetter C, Shen Q, Rivera CS, Andrews MJ, Alderson-Myers A, Brewer JB. APOE 𝜀4-related blood-brain barrier breakdown is associated with microstructural abnormalities. Alzheimers Dement 2024; 20:8615-8624. [PMID: 39411970 DOI: 10.1002/alz.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Blood-brain barrier (BBB) dysfunction occurs in Alzheimer's disease (AD). Yet, the stage at which it appears along the AD time course and whether it contributes to neurodegeneration remain unclear. METHODS Older adults (61 to 90 years) from cognitively normal (CN) to mildly cognitively impaired (CI), enriched for APOE 𝜀4 and amyloid positivity, underwent dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and diffusion MRI to measure BBB permeability and brain microstructure. Analysis of variance compared BBB permeability according to cognitive status, amyloid beta (Aβ), and APOE4. Linear regressions assessed associations of BBB permeability with brain microstructure and interactions with Aβ and APOE4. RESULTS BBB permeability was elevated for APOE4 carriers across the cortical gray matter, with the strongest differences among CN amyloid-negative individuals. Associations between entorhinal BBB permeability and microstructure interacted with Aβ and APOE4, with the strongest relationships in amyloid-positive individuals and APOE4 carriers. DISCUSSION APOE4 may drive widespread BBB dysfunction in preclinical AD, which may contribute to neurodegenerative changes early along the AD cascade. HIGHLIGHTS Gray matter blood-brain barrier (BBB) permeability is elevated for APOE4 carriers. APOE4-related BBB breakdown appears in the absence of cognitive decline or amyloid. BBB leakage correlates with entorhinal cortex microstructural injury. Associations with microstructure are strongest for amyloid-positive APOE4 carriers.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Seraphina K Solders
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Amaryllis Tsiknia
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina Del Rey, California, USA
| | | | - Qian Shen
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Charlotte S Rivera
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Murray J Andrews
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Austin Alderson-Myers
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Bamford AR, Adams JN, Kim S, McMillan LC, Malhas R, Mapstone M, Hitt BD, Yassa MA, Thomas EA. The amyloid beta 42/38 ratio as a plasma biomarker of early memory deficits in cognitively unimpaired older adults. Neurobiol Aging 2024; 144:12-18. [PMID: 39241563 PMCID: PMC11706698 DOI: 10.1016/j.neurobiolaging.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The amyloid beta (Aβ) 42/40 ratio has been widely studied as a biomarker in Alzheimer's disease (AD); however, other Aβ peptides could also represent relevant biomarkers. We measured levels of Aβ38/40/42 in plasma samples from cognitively-unimpaired older adults and determined the relationships between Aβ levels and amyloid positron-emission-tomography (PET) and performance on a learning and memory task. We found that all Aβ peptides individually and the Aβ42/40 ratio, but not the Aβ42/38 ratio, were significantly correlated with brain amyloid (Aβ-PET). Multiple linear modeling, adjusting for age, sex, education, APOE4 and Aβ-PET showed significant associations between the Aβ42/38 ratio and memory. Further, associations between the Aβ42/38 ratio and learning scores were stronger in males and in Aβ-PET-negative individuals. In contrast, no significant associations were detected between the Aβ42/40 ratio and any learning measure. These studies implicate the Aβ42/38 ratio as a biomarker to assess early memory deficits and underscore the utility of the Aβ38 fragment as an important biomarker in the AD field.
Collapse
Affiliation(s)
- Alison R Bamford
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Liv C McMillan
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Rond Malhas
- Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brian D Hitt
- Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Wang X, Liu Y, Qin G, Yu Y. Robust double machine learning model with application to omics data. BMC Bioinformatics 2024; 25:355. [PMID: 39543508 PMCID: PMC11566156 DOI: 10.1186/s12859-024-05975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Recently, there has been a growing interest in combining causal inference with machine learning algorithms. Double machine learning model (DML), as an implementation of this combination, has received widespread attention for their expertise in estimating causal effects within high-dimensional complex data. However, the DML model is sensitive to the presence of outliers and heavy-tailed noise in the outcome variable. In this paper, we propose the robust double machine learning (RDML) model to achieve a robust estimation of causal effects when the distribution of the outcome is contaminated by outliers or exhibits symmetrically heavy-tailed characteristics. RESULTS In the modelling of RDML model, we employed median machine learning algorithms to achieve robust predictions for the treatment and outcome variables. Subsequently, we established a median regression model for the prediction residuals. These two steps ensure robust causal effect estimation. Simulation study show that the RDML model is comparable to the existing DML model when the data follow normal distribution, while the RDML model has obvious superiority when the data follow mixed normal distribution and t-distribution, which is manifested by having a smaller RMSE. Meanwhile, we also apply the RDML model to the deoxyribonucleic acid methylation dataset from the Alzheimer's disease (AD) neuroimaging initiative database with the aim of investigating the impact of Cerebrospinal Fluid Amyloid β 42 (CSF A β 42) on AD severity. CONCLUSION These findings illustrate that the RDML model is capable of robustly estimating causal effect, even when the outcome distribution is affected by outliers or displays symmetrically heavy-tailed properties.
Collapse
Affiliation(s)
- Xuqing Wang
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China
| | - Yahang Liu
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China
| | - Guoyou Qin
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
| | - Yongfu Yu
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
| |
Collapse
|
25
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
26
|
Svenningsson AL, Bocancea DI, Stomrud E, van Loenhoud A, Barkhof F, Mattsson-Carlgren N, Palmqvist S, Hansson O, Ossenkoppele R. Biological mechanisms of resilience to tau pathology in Alzheimer's disease. Alzheimers Res Ther 2024; 16:221. [PMID: 39396028 PMCID: PMC11470552 DOI: 10.1186/s13195-024-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND In Alzheimer's disease (AD), the associations between tau pathology and brain atrophy and cognitive decline are well established, but imperfect. We investigate whether cerebrospinal fluid (CSF) biomarkers of biological processes (vascular, synaptic, and axonal integrity, neuroinflammation, neurotrophic factors) explain the disconnection between tau pathology and brain atrophy (brain resilience), and tau pathology and cognitive decline (cognitive resilience). METHODS We included 428 amyloid positive participants (134 cognitively unimpaired (CU), 128 with mild cognitive impairment (MCI), 166 with AD dementia) from the BioFINDER-2 study. At baseline, participants underwent tau positron emission tomography (tau-PET), magnetic resonance imaging (MRI), cognitive testing, and lumbar puncture. Longitudinal data were available for MRI (mean (standard deviation) follow-up 26.4 (10.7) months) and cognition (25.2 (11.4) months). We analysed 18 pre-selected CSF proteins, reflecting vascular, synaptic, and axonal integrity, neuroinflammation, and neurotrophic factors. Stratifying by cognitive status, we performed linear mixed-effects models with cortical thickness (brain resilience) and global cognition (cognitive resilience) as dependent variables to assess whether the CSF biomarkers interacted with tau-PET levels in its effect on cortical atrophy and cognitive decline. RESULTS Regarding brain resilience, interaction effects were observed in AD dementia, with vascular integrity biomarkers (VEGF-A (βinteraction = -0.009, pFDR = 0.047) and VEGF-B (βinteraction = -0.010, pFDR = 0.037)) negatively moderating the association between tau-PET signal and atrophy. In MCI, higher NfL levels were associated with more longitudinal cortical atrophy (β = -0.109, pFDR = 0.033) and lower baseline cortical thickness (β = -0.708, pFDR = 0.033) controlling for tau-PET signal. Cognitive resilience analyses in CU revealed interactions with tau-PET signal for inflammatory (GFAP, IL-15; βinteraction -0.073--0.069, pFDR 0.001-0.045), vascular (VEGF-A, VEGF-D, PGF; βinteraction -0.099--0.063, pFDR < 0.001-0.046), synaptic (14-3-3ζ/δ; βinteraction = -0.092, pFDR = 0.041), axonal (NfL; βinteraction = -0.079, pFDR < 0.001), and neurotrophic (NGF; βinteraction = 0.091, pFDR < 0.001) biomarkers. In MCI higher NfL levels (βmain = -0.690, pFDR = 0.025) were associated with faster cognitive decline independent of tau-PET signal. CONCLUSIONS Biomarkers of co-existing pathological processes, in particular vascular pathology and axonal degeneration, interact with levels of tau pathology on its association with the downstream effects of AD pathology (i.e. brain atrophy and cognitive decline). This indicates that vascular pathology and axonal degeneration could impact brain and cognitive resilience.
Collapse
Affiliation(s)
- Anna L Svenningsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden.
| | - Diana I Bocancea
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Anita van Loenhoud
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, WC1N 3BG, UK
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Department of Neurology, Skåne University Hospital, 211 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Uchida Y, Nishimaki K, Soldan A, Moghekar A, Albert M, Oishi K. Acceleration of Brain Atrophy and Progression From Normal Cognition to Mild Cognitive Impairment. JAMA Netw Open 2024; 7:e2441505. [PMID: 39476236 PMCID: PMC11525609 DOI: 10.1001/jamanetworkopen.2024.41505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
Importance It remains unclear which risk factors accelerate brain atrophy along with a progression from normal cognition to mild cognitive impairment (MCI). Objective To examine risk factors associated with the acceleration of brain atrophy and progression from normal cognition to MCI based on long-term longitudinal data for middle-aged and older adults. Design, Setting, and Participants Data for this cohort study were extracted from the Biomarkers for Older Controls at Risk for Dementia (BIOCARD) cohort, initiated at the National Institutes of Health from January 1, 1995, to December 31, 2005, and continued at Johns Hopkins University from January 1, 2015, to October 31, 2023. All participants were cognitively normal at baseline. The participants whose structural magnetic brain imaging (MRI) of the brain and cerebrospinal fluid (CSF) measures were available for over 10 years were included. Exposures Longitudinal structural MRI of the brain and measurement of CSF biomarkers for Alzheimer disease pathology (ratio of amyloid β peptide 42 [Aβ42] to Aβ40, tau phosphorylated at threonine 181, and total tau). Main Outcomes and Measures Annual change rates of segmental brain volumes, Kaplan-Meier survival curves plotting time to event for progression to MCI symptom onset, and hazard ratios (HRs) determined by Cox proportional hazards regression models. Results A total of 185 participants (mean [SD] age, 55.4 [8.4] years; 116 women [63%]) were included and followed up for a maximum of 27 years (median, 20 [IQR, 18-22] years). The groups with high levels of atrophy in the white matter and enlargement in the ventricles had an earlier progression from normal cognition to MCI symptom onset (HR for white matter, 1.86 [95% CI, 1.24-2.49]; P = .001; HR for ventricles, 1.71 [95% CI, 1.19-2.24]; P = .009). Diabetes was associated with progression to MCI (HR, 1.41 [95% CI, 1.06-1.76]; P = .04), as was a low CSF Aβ42:Aβ40 ratio (HR, 1.48 [95% CI, 1.09-1.88]; P = .04), and their combination had a higher HR of 1.55 (95% CI, 1.13-1.98]; P = .03), indicating a synergic association of diabetes and amyloid pathology with MCI progression. Conclusions and Relevance In this cohort study of middle-aged and older adults, higher rates of volume change in the white matter and ventricles, along with the presence of diabetes and a low CSF Aβ42:Aβ40 ratio, were identified as important risk factors for the progression to MCI. These results support the importance of identifying individuals who have accelerated brain atrophy to optimize preventive strategies for progression to MCI.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kei Nishimaki
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Baltimore, Maryland
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Baltimore, Maryland
| |
Collapse
|
28
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
29
|
Leuzy A, Raket LL, Villemagne VL, Klein G, Tonietto M, Olafson E, Baker S, Saad ZS, Bullich S, Lopresti B, Bohorquez SS, Boada M, Betthauser TJ, Charil A, Collins EC, Collins JA, Cullen N, Gunn RN, Higuchi M, Hostetler E, Hutchison RM, Iaccarino L, Insel PS, Irizarry MC, Jack CR, Jagust WJ, Johnson KA, Johnson SC, Karten Y, Marquié M, Mathotaarachchi S, Mintun MA, Ossenkoppele R, Pappas I, Petersen RC, Rabinovici GD, Rosa‐Neto P, Schwarz CG, Smith R, Stephens AW, Whittington A, Carrillo MC, Pontecorvo MJ, Haeberlein SB, Dunn B, Kolb HC, Sivakumaran S, Rowe CC, Hansson O, Doré V. Harmonizing tau positron emission tomography in Alzheimer's disease: The CenTauR scale and the joint propagation model. Alzheimers Dement 2024; 20:5833-5848. [PMID: 39041435 PMCID: PMC11497758 DOI: 10.1002/alz.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.
Collapse
|
30
|
Moody JN, Howard E, Nolan KE, Prieto S, Logue MW, Hayes JP, for the Alzheimer’s Disease Neuroimaging Initiative. Traumatic Brain Injury and Genetic Risk for Alzheimer's Disease Impact Cerebrospinal Fluid β-Amyloid Levels in Vietnam War Veterans. Neurotrauma Rep 2024; 5:760-769. [PMID: 39184178 PMCID: PMC11342050 DOI: 10.1089/neur.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Traumatic brain injuries (TBIs) may increase the risk for Alzheimer's disease (AD) and its neuropathological correlates, although the mechanisms of this relationship are unclear. The current study examined the synergistic effects of TBI and genetic risk for AD on β-amyloid (Aβ) levels among Vietnam War Veterans. We hypothesized that the combination of TBI and higher polygenic risk score (PRS) for AD would be associated with lower cerebrospinal fluid (CSF) Aβ42/40. Data were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative. Participants included Vietnam War Veterans without dementia who identified as White non-Hispanic/Latino and had available demographic, clinical assessment, genetic, and CSF biomarker data. Lifetime TBI history was assessed using The Ohio State University TBI Identification Method. Participants were categorized into those with and without TBI. Among those with a prior TBI, injury severity was defined as either mild or moderate/severe. CSF Aβ42/40 ratios were calculated. Genetic propensity for AD was assessed using PRSs. Hierarchical linear regression models examined the interactive effects of TBI and PRS for AD on Aβ42/40. Exploratory analyses examined the interaction between TBI severity and PRS. The final sample included 88 male Vietnam War Veterans who identified as White non-Hispanic/Latino (M age = 68.3 years), 49 of whom reported a prior TBI. There was a significant interaction between TBI and PRS, such that individuals with TBI and higher PRS for AD had lower Aβ42/40 (B = -0.45, 95% CI: -0.86 to -0.05, p = 0.03). This relationship may be stronger with increasing TBI severity (p = 0.05). Overall, TBI was associated with lower Aβ42/40, indicating greater amyloid deposition in the brain, in the context of greater polygenic risk for AD. These findings highlight who may be at increased risk for AD neuropathology following TBI.
Collapse
Affiliation(s)
- Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Psychiatry and Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
31
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
32
|
Huq A, Thompson B, Winship I. Clinical application of whole genome sequencing in young onset dementia: challenges and opportunities. Expert Rev Mol Diagn 2024; 24:659-675. [PMID: 39135326 DOI: 10.1080/14737159.2024.2388765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024]
Abstract
INTRODUCTION Young onset dementia (YOD) by its nature is difficult to diagnose. Despite involvement of multidisciplinary neurogenetics services, patients with YOD and their families face significant diagnostic delays. Genetic testing for people with YOD currently involves a staggered, iterative approach. There is currently no optimal single genetic investigation that simultaneously identifies the different genetic variants resulting in YOD. AREAS COVERED This review discusses the advances in clinical genomic testing for people with YOD. Whole genome sequencing (WGS) can be employed as a 'one stop shop' genomic test for YOD. In addition to single nucleotide variants, WGS can reliably detect structural variants, short tandem repeat expansions, mitochondrial genetic variants as well as capture single nucleotide polymorphisms for the calculation of polygenic risk scores. EXPERT OPINION WGS, when used as the initial genetic test, can enhance the likelihood of a precision diagnosis and curtail the time taken to reach this. Finding a clinical diagnosis using WGS can reduce invasive and expensive investigations and could be cost effective. These advances need to be balanced against the limitations of the technology and the genetic counseling needs for these vulnerable patients and their families.
Collapse
Affiliation(s)
- Aamira Huq
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Bryony Thompson
- Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Abramowitz A, Weber M. Management of MCI in the Outpatient Setting. Curr Psychiatry Rep 2024; 26:413-421. [PMID: 38856858 DOI: 10.1007/s11920-024-01514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE OF REVIEW We review current literature related to the clinical assessment of Mild Cognitive Impairment (MCI). We compile recommendations related to the evaluation of MCI and examine literature regarding the use of clinical biomarkers in this assessment, the role of non-pharmacologic therapy in the prevention of cognitive decline, and recent approval of anti-amyloid therapy in the treatment of MCI. RECENT FINDINGS The role of imaging and plasma biomarkers in the clinical assessment of MCI has expanded. There is data that non-pharmacologic therapy may have a role in the prevention of neurocognitive decline. Anti-amyloid therapies have recently been approved for clinical use. Clinical assessment of MCI remains multifactorial and includes screening and treating for underlying psychiatric and medical co-morbidities. The use of biomarkers in clinical settings is expanding with the rise of anti-amyloid therapies. These new diagnostics and therapeutics require nuanced discussion of risks and benefits. Psychiatrist's skillset is uniquely suited for these complex evaluations.
Collapse
Affiliation(s)
- Amy Abramowitz
- UNC School of Medicine and UNC Hospitals, Chapel Hill, NC, USA.
| | - Michael Weber
- UNC School of Medicine and UNC Hospitals, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Kalaimathi K, Prabhu S, Ayyanar M, Thiruvengadam M, Shine K, Vijaya Prabhu S, Amalraj S. Unravelling the Untapped Pharmacological Potential of Plant Molecules as Inhibitors of BACE1: In Silico Explorations for Alzheimer's Disease. Appl Biochem Biotechnol 2024; 196:5447-5470. [PMID: 38158488 DOI: 10.1007/s12010-023-04803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex, heterogeneous, and multifactorial neurodegenerative disease clinically characterized by progressive memory loss and progressive decline in cognitive function. There is currently no effective treatment for the onset and/or progression of the pathophysiological diseases of AD. The global prevalence of this disease has increased in recent years due to modern lifestyle. Therefore, there is an urgent need to develop a drug with significant neuroprotective potential. Since plant metabolites, especially polyphenols, have important pharmacological properties acting against β-amyloid (Aβ), Tau, neuroinflammation, and oxidative stress, such phytochemicals were selected in the present research. Using the Schrödinger tool (Maestro V.13.6), the drug potency of these metabolites was studied after installation in the highly configured workstation. Among the 120 polyphenols docked, amygdalin showed notable docking values of - 11.2638, followed by eriocitrin (- 10.9569), keracyanin (- 10.7086), and amaroswerin (- 9.48126). The prominent MM-GBSA values of these molecules were - 62.8829, - 52.1914, - 68.6307, and - 63.1074, respectively. The MM-GBSA energy values demonstrated the drug stability of these molecules for β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)-causing AD. In the absorption and distribution assessment, these phytochemicals showed significantly better values than the inhibitors CNP520. The chosen phytochemicals have been demonstrated as non-hepatotoxic; however, the BACE1 inhibitor CNP520 is hepatotoxic. In both the molecular docking and ADMET assessments, these natural chemicals have shown optimism as potential drug candidates for Alzheimer's disease. However, in order to understand the detailed biological metabolism of these compounds in AD, they need to be evaluated in in vivo studies to validate its efficacy.
Collapse
Affiliation(s)
- Karunanithi Kalaimathi
- Department of Chemistry, Government College of Engineering, Sengipatti, Thanjavur, 613402, Tamil Nadu, India
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India.
| | - Muniappan Ayyanar
- PG and Research Department of Botany, AVVM Sri Pushpam College (Autonomous) Poondi (Affiliated to Bharathidasan University), Thanjavur (Dist), 613503, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Korea
| | - Kadaikunnan Shine
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- PG & Research Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| |
Collapse
|
35
|
Santillo AF, Strandberg TO, Reislev NH, Nilsson M, Stomrud E, Spotorno N, van Westen D, Hansson O. Divergent functional connectivity changes associated with white matter hyperintensities. Neuroimage 2024; 296:120672. [PMID: 38851551 DOI: 10.1016/j.neuroimage.2024.120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.
Collapse
Affiliation(s)
- Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Tor O Strandberg
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Nina H Reislev
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Diagnostic Radiology, Lund. Diagnostic Radiology, Lunds Universitet/SUS/Lund, 221 85 Lund, Sweden, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicola Spotorno
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Danielle van Westen
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Diagnostic Radiology, Lund. Diagnostic Radiology, Lunds Universitet/SUS/Lund, 221 85 Lund, Sweden, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden. Postal address: Memory Clinic, Skåne University Hospital, SE-20502 Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
36
|
Mastenbroek SE, Sala A, Vállez García D, Shekari M, Salvadó G, Lorenzini L, Pieperhoff L, Wink AM, Lopes Alves I, Wolz R, Ritchie C, Boada M, Visser PJ, Bucci M, Farrar G, Hansson O, Nordberg AK, Ossenkoppele R, Barkhof F, Gispert JD, Rodriguez-Vieitez E, Collij LE. Continuous β-Amyloid CSF/PET Imbalance Model to Capture Alzheimer Disease Heterogeneity. Neurology 2024; 103:e209419. [PMID: 38862136 PMCID: PMC11244744 DOI: 10.1212/wnl.0000000000209419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Discordance between CSF and PET biomarkers of β-amyloid (Aβ) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aβ-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aβ, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aβ42 and global Aβ-PET to a hyperbolic regression model, deriving a participant-specific Aβ-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aβ and positive values more aggregated relative to soluble Aβ. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aβ-aggregation scores. With linear mixed models, we assessed whether Aβ-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aβ-aggregation scores were associated with larger ventricular volume (β = 0.13, p < 0.001), male sex (β = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (β = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (β = 0.17, p < 0.001) and t-tau (β = 0.16, p < 0.001), better baseline executive functioning (β = 0.12, p < 0.001), and slower global cognitive decline (β = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION We propose a novel continuous model of Aβ CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aβ pools in 2 independent cohorts across the full Aβ continuum. Aβ-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Arianna Sala
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - David Vállez García
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Mahnaz Shekari
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Gemma Salvadó
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Luigi Lorenzini
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Leonard Pieperhoff
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Alle Meije Wink
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Isadora Lopes Alves
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Robin Wolz
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Craig Ritchie
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Mercè Boada
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Pieter Jelle Visser
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Marco Bucci
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Gill Farrar
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Oskar Hansson
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Agneta K Nordberg
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Rik Ossenkoppele
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Frederik Barkhof
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Juan Domingo Gispert
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Elena Rodriguez-Vieitez
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Lyduine E Collij
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| |
Collapse
|
37
|
van den Berg E, Kersten I, Brinkmalm G, Johansson K, de Kort AM, Klijn CJ, Schreuder FH, Gobom J, Stoops E, Portelius E, Gkanatsiou E, Zetterberg H, Blennow K, Kuiperij HB, Verbeek MM. Profiling amyloid-β peptides as biomarkers for cerebral amyloid angiopathy. J Neurochem 2024; 168:1254-1264. [PMID: 38362804 PMCID: PMC11260253 DOI: 10.1111/jnc.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brain amyloid-β (Aβ) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aβ40 peptide, whereas Aβ42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aβ isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aβ isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aβ1-34, Aβ1-37, Aβ1-38, Aβ1-39, Aβ1-40, and Aβ1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aβ peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aβ1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aβ1-42, none of the Aβ peptides were decreased in AD-like subjects compared with controls. All Aβ peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aβ1-42 in the model (since decreased Aβ1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aβ profiles. Peptides shorter than Aβ1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aβ accumulation. This study supports the potential use of this panel of CSF Aβ peptides to indicate presence of CAA pathology with high accuracy.
Collapse
Affiliation(s)
- Emma van den Berg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kjell Johansson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna M. de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Sharma M, Pal P, Gupta SK. Advances in Alzheimer's disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem Int 2024; 177:105761. [PMID: 38723902 DOI: 10.1016/j.neuint.2024.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most formidable neurological disorders, affecting millions globally. This review provides a holistic overview of the therapeutic strategies, both conventional and novel, aimed at mitigating the impact of AD. Initially, we delve into the conventional approach, emphasizing the role of Acetylcholinesterase (AChE) inhibition, which has been a cornerstone in AD management. As our understanding of AD evolves, several novel potential approaches emerge. We discuss the promising roles of Butyrylcholinesterase (BChE) inhibition, Tau Protein inhibitors, COX-2 inhibition, PPAR-γ agonism, and FAHH inhibition, among others. The potential of the endocannabinoids (eCB) system, cholesterol-lowering drugs, metal chelators, and MMPs inhibitors are also explored, culminating in the exploration of the pivotal role of microRNA in AD progression. Parallel to these therapeutic insights, we shed light on the novel tools and methodologies revolutionizing AD research. From the quantitative analysis of gene expression by qRTPCR to the evaluation of mitochondrial function using induced pluripotent stem cells (iPSCs), the advances in diagnostic and research tools offer renewed hope. Moreover, we explore the current landscape of clinical trials, highlighting the leading drug interventions and their respective stages of development. This comprehensive review concludes with a look into the future perspectives, capturing the potential breakthroughs and innovations on the horizon. Through a synthesis of current knowledge and emerging research, this article aims to provide a consolidated resource for clinicians, researchers, and academicians in the realm of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
39
|
Dammer EB, Shantaraman A, Ping L, Duong DM, Gerasimov ES, Ravindran SP, Gudmundsdottir V, Frick EA, Gomez GT, Walker KA, Emilsson V, Jennings LL, Gudnason V, Western D, Cruchaga C, Lah JJ, Wingo TS, Wingo AP, Seyfried NT, Levey AI, Johnson ECB. Proteomic analysis of Alzheimer's disease cerebrospinal fluid reveals alterations associated with APOE ε4 and atomoxetine treatment. Sci Transl Med 2024; 16:eadn3504. [PMID: 38924431 DOI: 10.1126/scitranslmed.adn3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-β (Aβ) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aβ and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aβ and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aβ and tau.
Collapse
Affiliation(s)
- Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anantharaman Shantaraman
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lingyan Ping
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ekaterina S Gerasimov
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Valborg Gudmundsdottir
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | | | - Gabriela T Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Valur Emilsson
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO 63108, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO 63108, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63108, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO 63108, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Aliza P Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
41
|
Yue K, Webster J, Grabowski T, Jahanian H, Shojaie A. Unraveling Alzheimer's Disease: Investigating Dynamic Functional Connectivity in the Default Mode Network through DCC-GARCH Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597071. [PMID: 38895209 PMCID: PMC11185527 DOI: 10.1101/2024.06.02.597071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) has a prolonged latent phase. Sensitive biomarkers of amyloid beta ( A β ), in the absence of clinical symptoms, offer opportunities for early detection and identification of patients at risk. Current A β biomarkers, such as CSF and PET biomarkers, are effective but face practical limitations due to high cost and limited availability. Recent blood plasma biomarkers, though accessible, still incur high costs and lack physiological significance in the Alzheimer's process. This study explores the potential of brain functional connectivity (FC) alterations associated with AD pathology as a non-invasive avenue for A β detection. While current stationary FC measurements lack sensitivity at the single-subject level, our investigation focuses on dynamic FC using resting-state functional MRI (rs-fMRI) and introduces the Generalized Auto-Regressive Conditional Heteroscedastic Dynamic Conditional Correlation (DCC-GARCH) model. Our findings demonstrate the superior sensitivity of DCC-GARCH to CSF A β status, and offer key insights into dynamic functional connectivity analysis in AD.
Collapse
Affiliation(s)
- Kun Yue
- Department of Biostatistics, University of Washington, Seattle
| | - Jason Webster
- Department of Radiology, University of Washington, Seattle
| | - Thomas Grabowski
- Department of Radiology, University of Washington, Seattle
- Department of Neurology, University of Washington, Seattle
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle
| |
Collapse
|
42
|
Hu H, Hu H, Jiang J, Bi Y, Sun Y, Ou Y, Tan L, Yu J. Echocardiographic measures of the left heart and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact adults: The CABLE study. Alzheimers Dement 2024; 20:3943-3957. [PMID: 38676443 PMCID: PMC11180853 DOI: 10.1002/alz.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION This study delineated the interrelationships between subclinical alterations in the left heart, cerebrospinal fluid (CSF), Alzheimer's disease (AD) biomarkers, and cognition. METHODS Multiple linear regressions were conducted in 1244 cognitively normal participants (mean age = 65.5; 43% female) who underwent echocardiography (left atrial [LA] and left ventricular [LV] morphologic or functional parameters) and CSF AD biomarkers measurements. Mediating effects of AD pathologies were examined. Differences in cardiac parameters across ATN categories were tested using analysis of variance (ANOVA) and logistic regressions. RESULTS LA or LV enlargement (characterized by increased diameters and volumes) and LV hypertrophy (increased interventricular septal or posterior wall thickness and ventricular mass) were associated with higher CSF phosphorylated (p)-tau and total (t)-tau levels, and poorer cognition. Tau pathologies mediated the heart-cognition relationships. Cardiac parameters were higher in stage 2 and suspected non-Alzheimer's pathology groups than controls. DISCUSSION These findings suggested close associations of subclinical cardiac changes with tau pathologies and cognition. HIGHLIGHTS Various subclinical alterations in the left heart related to poorer cognition. Subclinical cardiac changes related to tau pathologies in cognitively normal adults. Tau pathologies mediated the heart-cognition relationships. Subclinical cardiac changes related to the AD continuum, especially to stage 2. The accumulation of cardiac alterations magnified their damage to the brain.
Collapse
Affiliation(s)
- He‐Ying Hu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Hao Hu
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Jing Jiang
- Department of Cardiac UltrasonographyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Yan‐Lin Bi
- Department of AnesthesiologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Yan Sun
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Ya‐Nan Ou
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandongChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
43
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
44
|
Arslan B, Zetterberg H, Ashton NJ. Blood-based biomarkers in Alzheimer's disease - moving towards a new era of diagnostics. Clin Chem Lab Med 2024; 62:1063-1069. [PMID: 38253262 DOI: 10.1515/cclm-2023-1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD), a primary cause of dementia globally, is traditionally diagnosed via cerebrospinal fluid (CSF) measures and positron emission tomography (PET). The invasiveness, cost, and limited accessibility of these methods have led to exploring blood-based biomarkers as a promising alternative for AD diagnosis and monitoring. Recent advancements in sensitive immunoassays have identified potential blood-based biomarkers, such as Aβ42/Aβ40 ratios and phosphorylated tau (p-tau) species. This paper briefly evaluates the clinical utility and reliability of these biomarkers across various AD stages, highlighting challenges like refining plasma Aβ42/Aβ40 assays and enhancing the precision of p-tau, particularly p-tau181, p-tau217, and p-tau231. The discussion also covers other plasma biomarkers like neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and synaptic biomarkers, assessing their significance in AD diagnostics. The need for ongoing research and development of robust assays to match the performance of CSF and PET biomarkers is underscored. In summary, blood-based biomarkers are increasingly crucial in AD diagnosis, follow-up, prognostication, treatment response evaluation, and population screening, particularly in primary care settings. These developments are set to revolutionize AD diagnostics, offering earlier and more accessible detection and management options.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, P.R. China
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College London, Institute of Psychiatry, London, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley, NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
45
|
Sun J, Xie Z, Sun Y, Shen A, Li R, Yuan X, Lu B, Li Y. Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer's disease detection using multimodal data. MedComm (Beijing) 2024; 5:e532. [PMID: 38645663 PMCID: PMC11027992 DOI: 10.1002/mco2.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
Alzheimer's disease (AD) constitutes a neurodegenerative disorder marked by a progressive decline in cognitive function and memory capacity. The accurate diagnosis of this condition predominantly relies on cerebrospinal fluid (CSF) markers, notwithstanding the associated burdens of pain and substantial financial costs endured by patients. This study encompasses subjects exhibiting varying degrees of cognitive impairment, encompassing individuals with subjective cognitive decline, mild cognitive impairment, and dementia, constituting a total sample size of 82 participants. The primary objective of this investigation is to explore the relationships among brain atrophy measurements derived from magnetic resonance imaging, atypical electroencephalography (EEG) patterns, behavioral assessment scales, and amyloid β-protein (Aβ) indicators. The findings of this research reveal that individuals displaying reduced Aβ1-42/Aβ-40 levels exhibit significant atrophy in the frontotemporal lobe, alongside irregularities in various parameters related to EEG frequency characteristics, signal complexity, inter-regional information exchange, and microstates. The study additionally endeavors to estimate Aβ1-42/Aβ-40 content through the application of a random forest algorithm, amalgamating structural data, electrophysiological features, and clinical scales, achieving a remarkable predictive precision of 91.6%. In summary, this study proposes a cost-effective methodology for acquiring CSF markers, thereby offering a valuable tool for the early detection of AD.
Collapse
Affiliation(s)
- Jingnan Sun
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Zengmai Xie
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Yike Sun
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Anruo Shen
- Department of Biomedical EngineeringTsinghua UniversityBeijingChina
| | - Renren Li
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Xiao Yuan
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
| | - Bai Lu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
- Beijing Academy of Artificial IntelligenceBeijingChina
| | - Yunxia Li
- Department of Neurology, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
- Shanghai Key Laboratory of Vascular Lesions Regulation and RemodelingShanghaiChina
- Department of NeurologyTongji HospitalTongji UniversityShanghaiChina
| |
Collapse
|
46
|
Karlsson L, Vogel J, Arvidsson I, Åström K, Janelidze S, Blennow K, Palmqvist S, Stomrud E, Mattsson-Carlgren N, Hansson O. Cerebrospinal fluid reference proteins increase accuracy and interpretability of biomarkers for brain diseases. Nat Commun 2024; 15:3676. [PMID: 38693142 PMCID: PMC11063138 DOI: 10.1038/s41467-024-47971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.
Collapse
Affiliation(s)
- Linda Karlsson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
| | - Jacob Vogel
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Clinical Sciences, Clinical Memory Research Unit, SciLifeLab, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Kalle Åström
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sebastian Palmqvist
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences in Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
47
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
48
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024; 16:658-682. [PMID: 38739937 PMCID: PMC11964437 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
49
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
50
|
Guo Z, Tian C, Shi Y, Song XR, Yin W, Tao QQ, Liu J, Peng GP, Wu ZY, Wang YJ, Zhang ZX, Zhang J. Blood-based CNS regionally and neuronally enriched extracellular vesicles carrying pTau217 for Alzheimer's disease diagnosis and differential diagnosis. Acta Neuropathol Commun 2024; 12:38. [PMID: 38444036 PMCID: PMC10913681 DOI: 10.1186/s40478-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024] Open
Abstract
Accurate differential diagnosis among various dementias is crucial for effective treatment of Alzheimer's disease (AD). The study began with searching for novel blood-based neuronal extracellular vesicles (EVs) that are more enriched in the brain regions vulnerable to AD development and progression. With extensive proteomic profiling, GABRD and GPR162 were identified as novel brain regionally enriched plasma EVs markers. The performance of GABRD and GPR162, along with the AD molecule pTau217, was tested using the self-developed and optimized nanoflow cytometry-based technology, which not only detected the positive ratio of EVs but also concurrently presented the corresponding particle size of the EVs, in discovery (n = 310) and validation (n = 213) cohorts. Plasma GABRD+- or GPR162+-carrying pTau217-EVs were significantly reduced in AD compared with healthy control (HC). Additionally, the size distribution of GABRD+- and GPR162+-carrying pTau217-EVs were significantly different between AD and non-AD dementia (NAD). An integrative model, combining age, the number and corresponding size of the distribution of GABRD+- or GPR162+-carrying pTau217-EVs, accurately and sensitively discriminated AD from HC [discovery cohort, area under the curve (AUC) = 0.96; validation cohort, AUC = 0.93] and effectively differentiated AD from NAD (discovery cohort, AUC = 0.91; validation cohort, AUC = 0.90). This study showed that brain regionally enriched neuronal EVs carrying pTau217 in plasma may serve as a robust diagnostic and differential diagnostic tool in both clinical practice and trials for AD.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yang Shi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ru Song
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, 310011, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Guo-Ping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| |
Collapse
|