1
|
Choi J, Shim S, Shin J, Lee A, Strang J, Braun T, Naef R, Jung H. Suprachoroidal space-inducing hydrogel-forming microneedles (SI-HFMN): An innovative platform for drug delivery to the posterior segment of the eye. Bioact Mater 2025; 50:47-60. [PMID: 40242502 PMCID: PMC11998108 DOI: 10.1016/j.bioactmat.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The suprachoroidal space (SCS), which exists between the sclera and choroid, offers a promising delivery route to the posterior segment of the eye (PSE) and is integrated with hollow microneedles (HMNs) for minimally invasive delivery. However, HMNs are limited by backflow owing to their narrow channel. Therefore, this study proposes a biocompatible SCS-inducing hydrogel-forming microneedle (SI-HFMN) with a specially designed candlelit shape that swells to separate the sclera from the choroid. The induced SCS provides a route for delivering loaded drugs to the PSE upon application. The optimized formulation of 20 % (w/w) poly(methyl vinyl ether-alt-maleic acid) (PMVE/MA) crosslinked with 7.5 % (w/w) polyethylene glycol (PEG) possesses sufficient mechanical strength (5.1 ± 0.7 N) to penetrate both the sclera and swell by 356 ± 28 %, to mechanically stimulate SCS formation. The formulation also recorded a drug absorption amount of 101 ± 9 μg/mg of hydrogel. Furthermore, in vitro and ex vivo experiments demonstrated the ability of the SI-HFMN to deliver drugs to the PSE via the formed SCS. Thus, this system offers an innovative method for drug delivery to PSE by inducing SCS formation.
Collapse
Affiliation(s)
- Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Suhyeon Shim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ahhyun Lee
- Program in Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jaan Strang
- TOPADUR Pharma AG, Grabenstrasse 11A, Schlieren, 8952, Switzerland
| | - Tobias Braun
- TOPADUR Pharma AG, Grabenstrasse 11A, Schlieren, 8952, Switzerland
| | - Reto Naef
- TOPADUR Pharma AG, Grabenstrasse 11A, Schlieren, 8952, Switzerland
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- JUVIC Inc., 272 Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| |
Collapse
|
2
|
Bazargani Z, Khorram M, Zomorodian K, Ghahartars M, Omidifar N. Development and comparative analysis of clobetasol-loaded microneedle patches versus clobetasol propionate ointment in experimental induced-psoriasis model. Int J Pharm 2025; 674:125423. [PMID: 40074158 DOI: 10.1016/j.ijpharm.2025.125423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
The utilization of dissolvable microneedles (MNs) is a promising and cutting-edge approach to drug delivery for the treatment of psoriasis, an autoimmune skin disorder characterized by the appearance of red, scaly patches on the skin. This study presents the development of a dissolving MN patch made of polyvinylpyrrolidone for the purpose of delivering Clobetasol 17-Propionate through the skin. The MN patches were evaluated for their physical characteristics, including morphology, solubility, strength, and ability to penetrate the skin. This evaluation was conducted on both unloaded and drug-loaded MN patches to determine their suitability for future applications. The manufacturing of 484 pyramidal-shaped tips, each measuring roughly 400 µm in height, was demonstrated by microscopy photographs. Compression tests revealed that the MN patch could endure a force greater than 1 N/needle while displacing around 300 µm, confirming the needle's ability to penetrate the stratum corneum. Following H&E staining, the penetration depth in mice skin was determined to be around 200 µm. The MN tips exhibited rapid drug release within a 10-minute timeframe, while the MN patch dissolved in the mice skin in roughly 20 min. An animal model was utilized to examine the effects of the produced patches on the treatment of psoriasis. Psoriasis was artificially induced in three groups of mice using imiquimod cream, applied for eight consecutive days to evaluate the inhibitory effect of clobetasol on exacerbating the disease. This assessment was accomplished using two methods: applying clobetasol ointment and using CP-loaded MNs. This innovative drug delivery system demonstrated encouraging results in terms of quick and effective administration, highlighting the potential of dissolvable MNs for psoriasis treatment.
Collapse
Affiliation(s)
- Zohreh Bazargani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Mohammad Khorram
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran.
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| | - Mehdi Ghahartars
- Molecular Dermatology Research Center, Dermatology Department, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Wang G, Moriyama N, Tottori S, Nishizawa M. Recent advances in iontophoresis-assisted microneedle devices for transdermal biosensing and drug delivery. Mater Today Bio 2025; 31:101504. [PMID: 39906204 PMCID: PMC11791360 DOI: 10.1016/j.mtbio.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Integrating advanced manufacturing techniques and nanotechnology with cutting-edge materials has driven significant progress in global healthcare. Microneedles, recognized for their minimally invasive approach to transdermal sensing and drug delivery, achieve enhanced functionality when combined with iontophoresis. Iontophoresis-assisted microneedles have emerged as an innovative solution, enabling real-time biosensing and precise drug delivery within closed-loop systems. These integrated platforms represent a major advancement in personalized medicine, allowing dynamic therapeutic adjustments based on continuous feedback. This review highlights the latest developments in iontophoresis-assisted microneedles for transdermal biosensing, drug delivery, and closed-loop applications. It delves into the mechanisms of iontophoresis, assesses its advantages and limitations, and explores future directions for these transformative technologies.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Natsuho Moriyama
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
4
|
Bhuimali T, Sarifuddin, Mandal PK. Modelling receptor-mediated endocytosis in hollow microneedle-based verapamil delivery through viscoelastic skin. Comput Methods Biomech Biomed Engin 2025:1-19. [PMID: 40109032 DOI: 10.1080/10255842.2025.2477223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Drug delivered from the microneedle (MN) tip diffuses across the viscoelastic skin before entering the blood compartment and being absorbed. Reversible uptake kinetics between the blood and tissue compartments, reversible specific saturable binding with its receptors, and endocytosis are given due attention. Simulations predict that, unlike skin thinning, skin viscoelasticity and a higher Young's modulus value, as in an older person, inhibit verapamil diffusion within the skin, and metabolism stabilises the concentrations in the blood and tissue compartments. Simultaneously, the irreversible uptake kinetics improve drug concentrations in the tissue compartment, facilitating receptor-mediated endocytosis. The results also predict that internalised verapamil increases with time at slower internalisation rates; however, at higher rates, it attains a peak value before gradually diminishing. Furthermore, as the rate of lysosomal degradation escalates, the peak value of internalised concentration diminishes and shifts upward. A comprehensive sensitivity analysis has been performed because of uncertainty about several crucial parameters. Our findings align well with the existing literature.
Collapse
Affiliation(s)
- Tanmoy Bhuimali
- Department of Mathematics, Visva-Bharati University, Santiniketan, India
| | - Sarifuddin
- Department of Mathematics, Berhampore College, Baharampur, India
| | | |
Collapse
|
5
|
Balde A, Kim SK, Nazeer RA. A review on microneedle patch as a delivery system for proteins/peptides and their applications in transdermal inflammation suppression. Int J Biol Macromol 2025; 307:141963. [PMID: 40086558 DOI: 10.1016/j.ijbiomac.2025.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Transdermal delivery is one of the most recent modes of administration studied due to several shortfalls observed for intra-venous, and oral drug administrations. Among, microneedle-based transdermal delivery is the popular choice due to non-invasive procedure and minimal toxicological effects. Microneedle devices consist of micron scaled needle patch entrapped with the target specific drug molecules. Due to body's immune response and occasional pathogen attack, various inflammatory diseases are developed such as psoriasis, dermatitis, rashes, rheumatoid arthritis, gouty arthritis, and fibrosis. These inflammatory conditions can be treated by microneedle assisted transdermal delivery. Moreover, for localized suppression of pain and inflammation, various therapeutic peptides and proteins have been investigated. Although, these therapeutic agents can show reduced activity and undergo enzymatic degradation when administered orally or intra-venously. Hence, a microneedle-based delivery system can be used as an effective way to localize these peptides/proteins and reduce the inflammation. Herein, this review includes various microneedle fabrication methods for enhancing drug delivery for suppression of inflammation. Moreover, recent development in microneedle devices of peptide and protein delivery applications are discoursed. At last, future scope and challenges endured for preparing an efficient microneedle patch for peptide and protein delivery are also elaborated.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
6
|
Shu W, Kilroy S, Ní Annaidh A, O'Cearbhaill ED. Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery. Acta Biomater 2025; 194:233-245. [PMID: 39710220 DOI: 10.1016/j.actbio.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions. This may impede the accuracy of MNs pre-clinical assessments. Here, we develop a multiphysics finite element model which simulates the biomechanics of microneedle skin penetration and the subsequent permeation of therapeutics. Employing the aqueous pore path hypothesis, we consider how strain (induced through the insertion of a MN), affects pore geometry in the skin and therefore the diffusion of therapeutics. Our models show that considering the insertion-induced skin deformation alone reduces the transdermal permeation of insulin by 25 %, while considering the effect of strain can reduce the overall permeation by a further 45 % over 24 h. Our model also indicates that once the mechanical strain is removed i.e. through removal or dissolution of the array, the permeation through the skin will recover. Furthermore, our results indicate that the delivery of high molecular weight compounds may be most susceptible to strain-induced changes in drug permeation. These findings could have significant implications for the preferred type of microneedle administration when targeting, for example, intradermal or transdermal delivery. STATEMENT OF SIGNIFICANCE: This manuscript presents an advanced computational model of microneedle insertion into human skin. Here, we adopt a multiphysics modelling strategy, where we predict the influence of microneedle insertion on skin deformation and strain and how that influences subsequent therapeutic permeation through the skin. Our model predicts that whether or not the microneedle remains in situ, the resultant change in tissue deformation and strain has a major impact on how quickly the therapeutic diffuses through the skin. This has important implications for transdermal device design, administration strategies and protocols and associated clinical studies, where either intradermal or transdermal therapeutic delivery is being targetted.
Collapse
Affiliation(s)
- Wenting Shu
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Kilroy
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
Kuang D, Tan Y, Song L, Tang J, Wang C. MWCNTs/PANI silk fibroin film sensor based on microneedle array for sweat pH detection. Mikrochim Acta 2025; 192:184. [PMID: 39992491 DOI: 10.1007/s00604-025-07043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Incorporating silk fibroin (SF) into the biosensing platform provides a level of flexibility and macro-structure control that holds immense importance for monitoring of sweat pH. It accomplishes non-invasive surveillance of the human physiology while concurrently tackling the issue of electrode-skin friction. The preparation of the multi-walled carbon nanotubes (MWCNTs)/polyaniline (PANI) silk fibroin pH-responsive microneedle array sensor involves the dispersion of PANI powder in silk fibroin and the addition of MWCNTs for the analysis of human sweat. The template method offers an efficient and straightforward means of producing microneedles with a high degree of precision, achieving micrometer resolution. The pH sensor is designed with a two-electrode configuration, comprising an MWCNTs/PANI silk fibroin microneedle array sensing electrode as well as an Ag/AgCl reference electrode. The pH sensor shows a sensitivity of 53.60 mV/pH over the pH range 3 to 9, a response time of 68 s, and a recovery time of 77 s. The pH sensor displays other outstanding sensor performances regarding reversibility, repeatability, selectivity, and stability. The pH sensor is capable of detecting alterations in the pH levels of human sweat.
Collapse
Affiliation(s)
- Dajiang Kuang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liyang Song
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jinglei Tang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
9
|
Himawan A, Korelidou A, Pérez-Moreno AM, Paris JL, Dominguez-Robles J, Vora LK, Permana AD, Larrañeta E, Graham R, Scott CJ, Donnelly RF. Formulation and evaluation of PVA-based composite hydrogels: physicochemical, leachables, and in vitro immunogenicity studies. J Mater Chem B 2025; 13:2431-2445. [PMID: 39813071 DOI: 10.1039/d4tb02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior. Qualitative analysis of leachables identified water-soluble components, including dehydrated PVA and PVP. Fourier-transform infrared (FTIR) spectroscopy confirmed the formation of ester bonds and indicated increased hydrogen bonding post-crosslinking. Thermal stability was validated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), with decomposition observed at 320-330 °C. X-ray diffraction (XRD) analysis revealed enhanced crystallinity following crosslinking. Solid-state nuclear magnetic resonance (NMR) further confirmed chemical changes consistent with the results from other characterization techniques. In vitro assays using DC2.4 mouse dendritic cells showed that hydrogel extracts inhibited cell proliferation without causing cytotoxicity or triggering significant immune responses. These findings highlight the hydrogels' biocompatibility and stability, supporting their potential for biomedical applications.
Collapse
Affiliation(s)
- Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga 29590, Spain
- Universidad de Málaga, Málaga 29071, Spain
| | - Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga 29590, Spain
| | - Juan Dominguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville 41004, Spain
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Robert Graham
- School of Biological Science, Queen's University Belfast, Belfast BT9 7AF, UK
| | - Christopher J Scott
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT97BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| |
Collapse
|
10
|
Wang Z, Hu H, Chai Z, Hu Y, Wang S, Zhang C, Yan C, Wang J, Coll W, Huang TJ, Xu X, Deng H. Bioinspired hydrophobic pseudo-hydrogel for programmable shape-morphing. Nat Commun 2025; 16:875. [PMID: 39833266 PMCID: PMC11746949 DOI: 10.1038/s41467-025-56291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior. By systematically programming the pore structure, we demonstrate tunable, anisotropic, and programmable absorption-induced expansion. This leads to dedicated self-shaping transformations. Incorporating magnetic particles, we engineer HPH-based soft robots capable of swimming, rolling, and walking. This study demonstrates a unusual approach to achieve water-responsive behavior in hydrophobic materials, expanding the possibilities for programmable shape-morphing in soft materials and soft robotic applications.
Collapse
Affiliation(s)
- Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Haotian Hu
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yuhang Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Siyuan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jun Wang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Wesley Coll
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Xianchen Xu
- Department of Biomedical Engineering, Duke University, Durham, USA.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, China.
| |
Collapse
|
11
|
Bhuimali T, Sarifuddin, Das DB, Mandal PK. Modelling Hollow Microneedle-Mediated Drug Delivery in Skin Considering Drug Binding. Pharmaceutics 2025; 17:105. [PMID: 39861753 PMCID: PMC11768192 DOI: 10.3390/pharmaceutics17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account. Methods: The governing equations representing the flow of interstitial fluid, the transport of verapamil in the viable skin and the concentrations in the blood and tissue compartments are solved using combined Marker and Cell and Immersed Boundary Methods to gain a quantitative understanding of the model under consideration. Results: The viscoelastic skin is predicted to impede the transport of verapamil in the viable skin and, hence, reduce the concentrations of all forms in the blood and the tissue compartments. The findings reveal that a higher mean concentration in the viable skin is not always associated with a longer MN length. Simulations also predict that the concentrations of verapamil in the blood and bound verapamil in the tissue compartment rise with decreasing tip diameters. In contrast, the concentration of free verapamil in the tissue increases with increasing injection velocities. Conclusions: The novelty of this study includes verapamil metabolism in two-dimensional viscoelastic irregular viable skin and the nonlinear, specific, saturable, and reversible binding of verapamil in the tissue compartment. The tip diameter and the drug's injection velocity are thought to serve as regulatory parameters for the effectiveness and efficacy of MN-mediated therapy if the MN is robust enough to sustain the force needed to penetrate a wider tip into the skin.
Collapse
Affiliation(s)
- Tanmoy Bhuimali
- Department of Mathematics, Visva-Bharati University, Santiniketan 731235, WB, India;
| | - Sarifuddin
- Department of Mathematics, Berhampore College, Berhampore 742101, WB, India;
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| | | |
Collapse
|
12
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
13
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
14
|
Darmau B, Sacchi M, Texier I, Gross AJ. Self-Extracting Dextran-Based Hydrogel Microneedle Arrays with an Interpenetrating Bioelectroenzymatic Sensor for Transdermal Monitoring with Matrix Protection. Adv Healthc Mater 2025; 14:e2403209. [PMID: 39580665 PMCID: PMC11729986 DOI: 10.1002/adhm.202403209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Continuous glucose monitors have revolutionized diabetes management, yet such devices are limited by their cost, invasiveness, and stability. Microneedle (MN) arrays could offer improved comfort compared to invasive implanted or mm-sized needle devices, but such arrays are hampered by complex fabrication processes, limited mechanical and sensor stability, and/or cytotoxicity concerns. This work demonstrates the first crosslinked hydrogel microneedle-bioelectroenzymatic sensor arrays capable of biomarker extraction and robust transdermal continuous monitoring in artificial interstitial fluid for 10 days. The fabrication process via micromolding of dextran-methacrylate (Dex-MA) and dry-state visible light crosslinking is simple and permits the robust fixation of diverse prefabricated electrodes in a single array. Dry-state crosslinking minimized material shrinkage to enable the formation of resistant Dex-MA microneedles with shape control and reproducibility. The polymer substitution level (9-62%) and mass content (10-30 wt%) affect the mechanical, swelling, and bioelectrocatalytic properties of the integrated sensors. Crosslinked Dex-MA hydrogel matrices provide beneficial cytotoxicity protection and flux-limiting membrane properties to the integrated second generation dehydrogenase-based nanostructured buckypaper biosensor and Ag/AgCl reference electrodes. Polysaccharide-based microneedle technology with encapsulated porous bioelectrodes promise to be a valuable alternative to more invasive devices for safer and longer-term biomarker monitoring.
Collapse
Affiliation(s)
- Bastien Darmau
- Department of Molecular ChemistryUniv. Grenoble Alpes‐CNRS38041 GrenobleFrance
- CEALETIUniv. Grenoble AlpesF‐38054 GrenobleFrance
| | - Marta Sacchi
- CEALETIUniv. Grenoble AlpesF‐38054 GrenobleFrance
| | | | - Andrew J. Gross
- Department of Molecular ChemistryUniv. Grenoble Alpes‐CNRS38041 GrenobleFrance
| |
Collapse
|
15
|
Golshirazi A, Mohammadzadeh M, Labbaf S. The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy. Macromol Biosci 2025; 25:e2400228. [PMID: 39195571 DOI: 10.1002/mabi.202400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Atefeh Golshirazi
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahsa Mohammadzadeh
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sheyda Labbaf
- Department of materials engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
16
|
Al Yabhouni SA, Mozumder MS, Hassan N, Mourad AHI, Issa Md TMA. Nanocarrier-Based, ocular drug delivery: Challenges, prospects, and the therapeutic landscape in the United Arab Emirates. Int J Pharm 2024; 667:124899. [PMID: 39521159 DOI: 10.1016/j.ijpharm.2024.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human eyes have the most complex and advanced physiological defense barriers. Due to these barriers, efficient delivery of ocular drugs is a major challenge in the treatment of eye diseases and disorders. Posterior eye diseases such as retinopathy are the leading causes of impaired vision and blindness globally. The topical and systemic administration of drugs such as eye drops, ointments, intravitreal injections, intraocular implants, contact lenses, and emulsions are the perennial approaches employed to treat ocular diseases. However, these modalities are inefficient due to the low bioavailability of the active drug and the potential for drug-related cytotoxicity to the ocular tissue. In this review, the conventional approaches in ocular drug delivery systems (DDSs) are explored and the limitations associated with each technique are elucidated. A comparison between the different DDSs is presented, showing the most effective treatment techniques available to date. In addition, this review presents recent advances in the field of nanocarriers and microcarriers used in ocular drug delivery systems such as nanoparticles, nano-suspensions, nanofibers, nanogels, nano-liposomes, nano micelles, dendrimers, contact lens, microneedle, and implants. Further, this review identifies the utility of nano-carriers in enabling the development of new-generation ocular DDSs with low toxicity, high efficiency, and high stability of targeted drug delivery systems to overcome the limitations observed with conventional ocular DDSs. In addition, this manuscript sheds light on the incidence and unique landscape of ocular diseases in the United Arab Emirates (UAE), and the potential for employing novel ocular DDSs for targeted treatment of conditions such as diabetic retinopathy in the UAE. It also discusses the putative role genetic variants of the VEGF gene may play in predisposing the local population in the UAE to developing posterior eye segment diseases such as retinopathy.
Collapse
Affiliation(s)
- Salama A Al Yabhouni
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates; General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Nurudeen Hassan
- General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Abdel-Hamid I Mourad
- Mechanical & Aerospace Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Tareq M A Issa Md
- Consultant Ophthalmologist, Ultra Medical Center, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Leyba A, Francian A, Razjmoo M, Bierle A, Janardhana R, Jackson N, Chackerian B, Muttil P. Formulation, Characterization, and in vivo Immunogenicity of Heat-Stabilized Dissolvable Microneedles Containing a Novel VLP Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628763. [PMID: 39763766 PMCID: PMC11702720 DOI: 10.1101/2024.12.16.628763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Since its introduction, vaccination has heavily improved health outcomes. However, implementing vaccination efforts can be challenging, particularly in low and middle-income countries with warmer climates. Microneedle technology has been developed for its simple and relatively painless applications of vaccines. However, no microneedle vaccine has yet been approved by the FDA. A few hurdles must be overcome, including the need to evaluate the safety and biocompatibility of the polymer used to fabricate these microneedles. Additionally, it is important to demonstrate reliable immune responses comparable to or better than those achieved through traditional administration routes. Scalability in manufacturing and the ability to maintain vaccine potency during storage and transportation are also critical factors. In this study, we developed vaccine-loaded dissolvable microneedles that showed preclinical immunogenicity after storage in extreme conditions. We developed our microneedles using the conventional micromolding technique with polyacrylic acid (PAA) polymer, incorporating a novel virus-like particle (VLP) vaccine targeting arboviruses. We performed characterization studies on these microneedles to assess needle sharpness, skin insertion force, and VLP integrity. We also investigated the thermostability of the vaccine after storing the microneedles at elevated temperatures for approximately 140 days. Finally, we evaluated the immunogenicity of this vaccine in mice, comparing transdermal (microneedle) with intramuscular (hypodermic needle) administration. We successfully fabricated and characterized VLP-loaded microneedles that could penetrate the skin and maintain vaccine integrity even after exposure to extreme storage conditions. These microneedles also elicited robust and long-lasting antibody responses similar to those achieved with intramuscular administration.
Collapse
Affiliation(s)
- Aidan Leyba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Alexandra Francian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Mohammad Razjmoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Amelia Bierle
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Ranjith Janardhana
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Nathan Jackson
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
18
|
Permana AD, Mahfud MAS, Munir M, Aries A, Rezka Putra A, Fikri A, Setiawan H, Mahendra I, Rizaludin A, Ramadhani Aziz AY, Djabir YY, Arsyad A, Harahap Y, Saputri WD, Fajarwati R, Darmawan N. A Combinatorial Approach with Microneedle Pretreatment and Thermosensitive Gel Loaded with Rivastigmine Lipid Nanoparticle Formulation Enables Brain Delivery via the Trigeminal Nerve. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68388-68406. [PMID: 39591987 DOI: 10.1021/acsami.4c16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Alzheimer's disease (AD) often leads to dementia, causing cognitive decline and increased care needs. Rivastigmine (RV) is a key AD treatment, but its brain delivery is limited by the blood-brain barrier (BBB). Aside from oral, olfactory, and intradermal injection (i.d.) routes, the application of polymeric microneedles via the trigeminal nerve on the facial skin as a pretreatment, followed by a solid lipid nanoparticle RV-loaded thermosensitive gel (PMN-SLN-RV-TG), is an alternative to deal with the problems. This study aims to determine the optimal formula for PMN-SLN-RV-TG application and assess its brain delivery ability compared to conventional routes. The optimum SLN-RV formula had a particle size <200 nm and sustained release for 72 h, which was selected for the SLN-RV-TG formulation. SLN-RV-TG was transformed into a gel at normal skin temperature (32-37 °C), with good physical properties and nontoxic behavior. The ideal PMN formula was able to penetrate the dermal layer as an alternative to i.d. administration. Ex vivo dermatokinetics showed significant improvement of PMN-SLN-RV-TG application (p < 0.05) compared to without PMN application. In vivo pharmacokinetic studies on rats also revealed that the PMN-SLN-RV-TG had superior pharmacokinetic parameters (Cmax, AUC, t1/2, and MRT) compared to other groups (p < 0.05). Radiolabeling SLN-RV with 99mTc showed good physical properties, with a radiochemical yield of >95%. In vivo distribution studies of PMN-SLN-RV-TG application exhibited a higher brain:blood ratio than i.v. administration after 5 h, as well as being safe for the brain due to a good histological profile. These results show that PMN-SLN-RV-TG application via the trigeminal nerve on the facial skin has strong potential delivery to the brain for AD treatment.
Collapse
Affiliation(s)
- Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi Indonesia
| | | | - Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Arni Aries
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Amal Rezka Putra
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Ahsanal Fikri
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | - Asep Rizaludin
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency of Indonesia, KST. BJ Habibie, South Tangerang 15314, Indonesia
| | | | - Yulia Yusrini Djabir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi Indonesia
| | - Aryadi Arsyad
- Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi Indonesia
| | - Yahdiana Harahap
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java Indonesia
| | - Wahyu Dita Saputri
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
| | - Ria Fajarwati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong Bogor 16911, West Java Indonesia
| | - Noviyan Darmawan
- Department of Chemistry, IPB University, Bogor 16680, West Java Indonesia
| |
Collapse
|
19
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
20
|
Li L, Anjani QK, Hutton ARJ, Li M, Sabri AHB, Vora L, Naser YA, Tao Y, McCarthy HO, Donnelly RF. Evaluation of physical and chemical modifications to drug reservoirs for stimuli-responsive microneedles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01737-0. [PMID: 39565514 DOI: 10.1007/s13346-024-01737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Hydrogel-forming microneedle (MN) arrays are minimally-invasive devices that can penetrate the stratum corneum, the main barrier to topical drug application, without causing pain. However, drug delivery using hydrogel-forming MN arrays tends to be relatively slow compared to rapid drug delivery using conventional needles and syringes. Therefore, in this work, for the first time, different physical and chemical delivery enhancement methods were employed in combination with PVA-based hydrogel-forming MN arrays. Using a model drug, ibuprofen (IBU) sodium, the designed systems were assessed in terms of the extent of transdermal delivery. Iontophoresis (ITP) and heat-assisted drug delivery technology were investigated as physical permeation enhancement techniques. Ex vivo studies demonstrated that the ITP (0.5 mA/cm2)-mediated combination strategy significantly enhanced the transdermal permeation of IBU sodium over the first 6 h (~ 5.11 mg) when compared to MN alone (~ 1.63 mg) (p < 0.05). In contrast, heat-assisted technology showed almost no promoting effect on transdermal delivery. Furthermore, IBU sodium-containing rapidly dissolving lyophilised and effervescent reservoirs, classified as chemical modification methods, were prepared. Both strategies achieved rapid and effective ex vivo IBU sodium permeation, equating to ~ 78% (30.66 mg) and ~ 71% (28.43 mg) from lyophilised and effervescent reservoirs, respectively. Moreover, in vivo pharmacokinetic studies showed that the IBU sodium plasma concentration within lyophilised and effervescent groups reached a maximum concentration (Cmax) at 4 h (~ 282.15 µg/mL) and 6 h (~ 140.81 µg/mL), respectively. These strategies not only provided rapid achievement of therapeutic levels (10-15 µg/ml), but also resulted in sustained release of IBU sodium for at least 48 h, which could effectively reduce the frequency of administration, thereby improving patient compliance and reducing side effects of IBU sodium.
Collapse
Affiliation(s)
- Luchi Li
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Aaron R J Hutton
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, United Kingdom, Block Y, 1SA, Cromore Rd, BT52 1SA
| | - Mingshan Li
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Lalitkumar Vora
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Yara A Naser
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Yushi Tao
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, United Kingdom.
| |
Collapse
|
21
|
Ripolin A, Volpe-Zanutto F, Sabri AH, Dos Santos VAB, Figueroba SR, Bezerra AAC, Vinicius Rodrigues Louredo B, Agustin Vargas P, McGuckin MB, Hutton ARJ, Larrañeta E, Franz-Montan M, Donnelly RF. Transdermal delivery of bisphosphonates using dissolving and hydrogel-forming microarray patches: Potential for enhanced treatment of osteoporosis. Int J Pharm 2024; 665:124642. [PMID: 39208953 DOI: 10.1016/j.ijpharm.2024.124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
As of 2023, more than 200 million people worldwide are living with osteoporosis. Oral bisphosphonates (BPs) are the primary treatment but can cause gastrointestinal (GI) side effects, reducing patient compliance. Microarray (MAP) technology has the potential to overcome GI irritation by facilitating the transdermal delivery of BPs. This study examines the delivery of alendronic acid (ALN) and risedronate sodium (RDN) using dissolving and hydrogel-forming MAPs for osteoporosis treatment. In vivo testing on osteoporotic female Sprague Dawley rats demonstrated the efficacy of MAPs, showing significant improvements in mean serum and bone alkaline phosphatase levels, bone volume, and porosity compared to untreated bilateral ovariectomy (OVX) controls. Specifically, MAP treatment increased mean bone volume to 55.04 ± 2.25 % versus 47.16 ± 1.71 % in OVX controls and reduced porosity to 44.30 ± 2.97 % versus 52.84 ± 1.70 % in the distal epiphysis of the femur. In the distal metaphysis, bone volume increased to 43.32 ± 3.24 % in MAP-treated rats compared to 24.31 ± 3.21 % in OVX controls, while porosity decreased to 55.39 ± 5.81 % versus 75.69 ± 3.21 % in OVX controls. This proof-of-concept study indicates that MAP technology has the potential to be a novel, patient-friendly alternative for weekly osteoporosis management.
Collapse
Affiliation(s)
- Anastasia Ripolin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmaceutical Sciences, R. Cândido Portinari, 200 - Cidade Universitária, Campinas - SP, 13083-871, Universidade Estadual de Campinas-UNICAMP, Brazil
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Sidney R Figueroba
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Arthur A C Bezerra
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | | | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Mary B McGuckin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
22
|
Mohite P, Puri A, Munde S, Ade N, Kumar A, Jantrawut P, Singh S, Chittasupho C. Hydrogel-Forming Microneedles in the Management of Dermal Disorders Through a Non-Invasive Process: A Review. Gels 2024; 10:719. [PMID: 39590075 PMCID: PMC11594199 DOI: 10.3390/gels10110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Microneedle (MN) technology has emerged as a promising approach for delivering therapeutic agents to the skin, offering significant potential in treating various dermal conditions. Among these technologies, hydrogel-forming microneedles (HFMNs) represent a transformative advancement in the management of dermal diseases through non-invasive drug delivery. These innovative devices consist of micrometer-sized needles made of native or crosslinked hydrophilic polymers, capable of penetrating the stratum corneum without damaging underlying tissues. Upon insertion, HFMNs rapidly absorb interstitial fluid, swelling to form a hydrogel conduit that enables the efficient transport of therapeutic agents directly into the dermal microcirculation. The non-invasive nature of HFMNs enhances patient compliance by eliminating the pain and discomfort associated with traditional hypodermic needles. This technology allows for the delivery of a wide range of drugs, including macromolecules and biomacromolecules, which are often difficult to administer dermally due to their size and polarity. Moreover, HFMNs provide controlled and regulated release profiles, enabling sustained therapeutic effects while minimizing systemic side effects. Additionally, HFMNs can be used for both drug delivery and real-time interstitial fluid monitoring, offering valuable insights into disease states and treatment responses. This dual functionality positions HFMNs as a versatile dermatology tool capable of effectively addressing various dermal complications. This review explores the potential use of polymeric biomaterials in HFMN fabrication and their application in treating major dermal disorders, such as acne, psoriasis, and other skin conditions. Furthermore, the review highlights the non-invasive nature of MN-based treatments, underscoring their potential to reduce patient discomfort and improve treatment adherence, as supported by the recent literature.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (N.A.)
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (N.A.)
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (N.A.)
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (N.A.)
| | - Ashwini Kumar
- Research and Development Cell, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad 121003, Haryana, India;
| | - Pensak Jantrawut
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
23
|
Parisi C, Laneri F, Martins TJ, Fraix A, Sortino S. Nitric Oxide-Photodelivering Materials with Multiple Functionalities: From Rational Design to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59697-59720. [PMID: 39445390 DOI: 10.1021/acsami.4c13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The achievement of materials that are able to release therapeutic agents under the control of light stimuli to improve therapeutic efficacy is a significant challenge in health care. Nitric oxide (NO) is one of the most studied molecules in the fascinating realm of biomedical sciences, not only for its crucial role as a gaseous signaling molecule in the human body but also for its great potential as an unconventional therapeutic in a variety of diseases including cancer, bacterial and viral infections, and neurodegeneration. Handling difficulties due to its gaseous nature, reduced region of action due to its short half-life, and strict dependence of the biological effects on its concentration and generation site are critical questions to be solved for appropriate therapeutic uses of NO. Light-activatable NO precursors, namely, NO photodonors (NOPDs), address the above issues since they are stable in the dark and permit in a noninvasive fashion the remote-controlled delivery of NO on demand with great spatiotemporal precision. Engineering biocompatible materials with NOPDs and their combination with additional imaging, therapeutic, and phototherapeutic components leads to intriguing light-responsive multifunctional constructs exhibiting promising potential for biomedical applications. This contribution illustrates the most significant progress made over the last five years in achieving engineered materials including nanoparticles, gels, and thin films, sharing the common feature to deliver NO under the exclusive control of the biocompatible visible/near infrared light inputs. We will highlight the logical design behind the fabrication of these systems, illustrating the potential therapeutic applications with particular emphasis on cancer and bacterial infections.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Tassia J Martins
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
24
|
Zhang S, Staples AE. Microfluidic-based systems for the management of diabetes. Drug Deliv Transl Res 2024; 14:2989-3008. [PMID: 38509342 PMCID: PMC11445324 DOI: 10.1007/s13346-024-01569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Diabetes currently affects approximately 500 million people worldwide and is one of the most common causes of mortality in the United States. To diagnose and monitor diabetes, finger-prick blood glucose testing has long been used as the clinical gold standard. For diabetes treatment, insulin is typically delivered subcutaneously through cannula-based syringes, pens, or pumps in almost all type 1 diabetic (T1D) patients and some type 2 diabetic (T2D) patients. These painful, invasive approaches can cause non-adherence to glucose testing and insulin therapy. To address these problems, researchers have developed miniaturized blood glucose testing devices as well as microfluidic platforms for non-invasive glucose testing through other body fluids. In addition, glycated hemoglobin (HbA1c), insulin levels, and cellular biomechanics-related metrics have also been considered for microfluidic-based diabetes diagnosis. For the treatment of diabetes, insulin has been delivered transdermally through microdevices, mostly through microneedle array-based, minimally invasive injections. Researchers have also developed microfluidic platforms for oral, intraperitoneal, and inhalation-based delivery of insulin. For T2D patients, metformin, glucagon-like peptide 1 (GLP-1), and GLP-1 receptor agonists have also been delivered using microfluidic technologies. Thus far, clinical studies have been widely performed on microfluidic-based diabetes monitoring, especially glucose sensing, yet technologies for the delivery of insulin and other drugs to diabetic patients with microfluidics are still mostly in the preclinical stage. This article provides a concise review of the role of microfluidic devices in the diagnosis and monitoring of diabetes, as well as the delivery of pharmaceuticals to treat diabetes using microfluidic technologies in the recent literature.
Collapse
Affiliation(s)
- Shuyu Zhang
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Anne E Staples
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
25
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
26
|
Sivadasan D, Madkhali OA. The Design Features, Quality by Design Approach, Characterization, Therapeutic Applications, and Clinical Considerations of Transdermal Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1346. [PMID: 39458987 PMCID: PMC11510585 DOI: 10.3390/ph17101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Transdermal drug delivery systems (TDDSs) are designed to administer a consistent and effective dose of an active pharmaceutical ingredient (API) through the patient's skin. These pharmaceutical preparations are self-contained, discrete dosage forms designed to be placed topically on intact skin to release the active component at a controlled rate by penetrating the skin barriers. The API provides the continuous and prolonged administration of a substance at a consistent rate. TDDSs, or transdermal drug delivery systems, have gained significant attention as a non-invasive method of administering APIs to vulnerable patient populations, such as pediatric and geriatric patients. This approach is considered easy to administer and helps overcome the bioavailability issues associated with conventional drug delivery, which can be hindered by poor absorption and metabolism. A TDDS has various advantages compared to conventional methods of drug administration. It is less intrusive, more patient-friendly, and can circumvent first pass metabolism, as well as the corrosive acidic environment of the stomach, that happens when drugs are taken orally. Various approaches have been developed to enhance the transdermal permeability of different medicinal compounds. Recent improvements in TDDSs have enabled the accurate administration of APIs to their target sites by enhancing their penetration through the stratum corneum (SC), hence boosting the bioavailability of drugs throughout the body. Popular physical penetration augmentation methods covered in this review article include thermophoresis, iontophoresis, magnetophoresis, sonophoresis, needle-free injections, and microneedles. This review seeks to provide a concise overview of several methods employed in the production of TDDSs, as well as their evaluation, therapeutic uses, clinical considerations, and the current advancements intended to enhance the transdermal administration of drugs. These advancements have resulted in the development of intelligent, biodegradable, and highly efficient TDDSs.
Collapse
Affiliation(s)
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
27
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
28
|
Naser YA, Vora LK, Tekko IA, Peng K, Volpe-Zanutto F, Greer B, Paredes A, McCarthy HO, Donnelly RF. Atorvastatin-Loaded Dissolving Microarray Patches for Long-Acting Microdepot Delivery: Comparison of Nanoparticle and Microparticle Drug Formulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39356645 PMCID: PMC11492242 DOI: 10.1021/acsami.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024]
Abstract
The increasing popularity of prolonged-release dosage forms, owing to their ability to provide continuous drug release after administration, has significantly improved patient compliance and overall quality of life. However, achieving prolonged release beyond 24 h frequently requires the use of invasive methods, including injections or implants, which may prove challenging for people suffering from needle phobia. This study introduces atorvastatin (ATR) microparticles (MPs) or nanocrystal (NCs) dissolving microarray patches (D-MAPs) as a noninvasive alternative for intradermal drug delivery over a two-week period for the management of hyperlipidemia. The MP-loaded D-MAPs exhibited an average drug loading of 5.15 ± 0.4 mg of ATR per patch, surpassing the 2.4 ± 0.11 mg/patch observed with NC-loaded D-MAPs. Skin deposition studies demonstrated the superior performance of MP D-MAPs, which delivered 2.0 ± 0.33 mg of ATR per 0.75 cm2 patch within 24 h, representing 38.76% of the initial amount of drug loaded. In contrast, NC D-MAPs delivered approximately 0.89 ± 0.12 mg of ATR per 0.75 cm2 patch at 24 h, equivalent to 38.42 ± 5.13% of the initial ATR loaded. Due to their favorable results, MP D-MAPs were chosen for an in vivo study using Sprague-Dawley rats. The findings demonstrated the capacity of D-MAPs to deliver and attain therapeutically relevant ATR concentrations (>20 ng/mL) for 14 days after a single 24-h application. This study is the first to successfully demonstrate the long-acting transdermal delivery of ATR using MP-loaded D-MAPs after a 24-h single-dose application. The innovative D-MAP system, particularly when loaded with MP, arises as a promising, minimally invasive, long-acting substitute for ATR delivery. This technology has the potential to improve patient compliance and therapeutic outcomes while also significantly advancing the field of transdermal drug delivery.
Collapse
Affiliation(s)
- Yara A. Naser
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Ismaiel A. Tekko
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo 00 963, Syria
| | - Ke Peng
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Fabiana Volpe-Zanutto
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
- School
of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, U.K.
| | - Brett Greer
- Institute
for Global Food Security, School of Biological Science, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, U.K.
| | - Alejandro Paredes
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Helen O. McCarthy
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K.
| |
Collapse
|
29
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
30
|
Zhou X, Liu H, Yu Z, Yu H, Meng D, Zhu L, Li H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J Colloid Interface Sci 2024; 670:1-11. [PMID: 38749378 DOI: 10.1016/j.jcis.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Hydrogel microneedle patches have emerged as promising platforms for painless, minimally invasive, safe, and portable transdermal drug administration. However, the conventional mold-based fabrication processes and inherent single-functionality of such microneedles present significant hurdles to broader implementation. Herein, we have developed a novel approach utilizing a precursor solution of robust nanocomposite hydrogels to formulate photo-printable inks suitable for the direct 3D printing of high-precision, triple-responsive hydrogel microneedle patches through digital light processing (DLP) technology. The ink formulation comprises four functionally diverse monomers including 2-(dimethylamino)ethyl methacrylate, N-isopropylacrylamide, acrylic acid, and acrylamide, which were crosslinked by aluminum hydroxide nanoparticles (AH NPs) acting as both reinforcing agents and crosslinking centers. This results in the formation of a nanocomposite hydrogel characterized by exceptional mechanical strength, an essential attribute for the 3D printing of hydrogel microneeedle patches. Furthermore, this innovative 3D printing strategy facilitates facile customization of microneedle geometry and patch dimensions. As a proof-of-concept, we employed the fabricated hydrogel microneedles for transdermal delivery of bovine serum albumin (BSA). Importantly, these hydrogel microneedles displayed no cytotoxic effects and exhibited triple sensitivity to pH, temperature and glucose levels, thereby enabling more precise on-demand drug delivery. This study provides a universal method for the rapid fabrication of hydrogel microneedles with smart responsiveness for transdermal drug delivery applications.
Collapse
Affiliation(s)
- Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
31
|
Czarczynska-Goslinska B, Goslinski T, Roszak A, Froelich A, Szyk P, Mlynarczyk DT, Sobotta L, Budnik I, Kordyl O, Osmałek T. Microneedle System Coated with Hydrogels Containing Protoporphyrin IX for Potential Application in Pharmaceutical Technology. Methods Protoc 2024; 7:73. [PMID: 39311374 PMCID: PMC11417702 DOI: 10.3390/mps7050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
The article aims to outline the potential of treating malignant skin cancer with microneedles covered with polymer layers containing a photosensitizer-protoporphyrin IX disodium salt (PPIX). The usefulness of stereolithography (SLA), which is a form of 3D-printing technology, for the preparation of a microneedle system with protoporphyrin IX was demonstrated. The SLA method allowed for pyramid-shaped microneedles to be printed that were covered with three different 0.1% PPIX hydrogels based on sodium alginate, xanthan, and poloxamer. Rheological tests and microscopic analysis of the hydrogels were performed. Microneedles coated with two layers of poloxamer-based hydrogel containing 0.1% PPIX were subjected to release tests in Franz diffusion cells. The release profile of PPIX initially increased and then remained relatively constant. The amount of substance released after a four-hour test in three Franz cells was 0.2569 ± 0.0683 mg/cm2. Moreover, the acute toxicity of this type of microneedle was assessed using the Microtox system. The obtained results show the usefulness of further development studies on microneedles as carriers of photosensitizing agents.
Collapse
Affiliation(s)
- Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.R.); (T.O.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (P.S.); (D.T.M.)
| | - Agata Roszak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.R.); (T.O.)
| | - Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.F.); (I.B.); (O.K.)
| | - Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (P.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (P.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Irena Budnik
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.F.); (I.B.); (O.K.)
| | - Oliwia Kordyl
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.F.); (I.B.); (O.K.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.R.); (T.O.)
| |
Collapse
|
32
|
Ghanma R, Anjani QK, Naser YA, Sabri AHB, Hutton ARJ, Vora LK, Himawan A, Greer B, McCarthy HO, Donnelly RF. Risperidone-cyclodextrin complex reservoir combined with hydrogel-forming microneedle array patches for enhanced transdermal delivery. Eur J Pharm Biopharm 2024; 202:114415. [PMID: 39013492 DOI: 10.1016/j.ejpb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Hydrogel-forming microneedle array patches (HFMAPs) are microneedles that create microconduits upon insertion and swelling in the skin, potentially allowing prolonged drug delivery without generating sharps waste. Delivering hydrophobic drugs using HFMAPs poses challenges, which can be addressed using solubility enhancers such as cyclodextrins (CDs). This study aimed to deliver risperidone (RIS) transdermally using HFMAPs. To enhance the aqueous solubility of RIS hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were utilised and their performance was tested using phase solubility studies. The aqueous solubility of RIS was enhanced by 4.75-fold and 2-fold using HP-β-CD and HP-γ-CD, respectively. RIS-HP-β-CD complex (CX) and physical mixture (PM) directly compressed tablets were prepared and combined with HFMAPs. Among the tested formulations, RIS-HP-β-CD PM reservoirs with 11 x 11 PVA/PVP HFMAPs exhibited the best performance in ex vivo studies and were further evaluated in in vivo experiments using female Sprague Dawley rats. The extended wear time of the MAPs resulted in the sustained release of RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in plasma samples, lasting from 3 to 5 days with a 1-day application and up to 10 days with a 5-day application. For a 1-day application, HFMAPs showed greater systemic exposure to RIS compared to intramuscular control (AUC0-t: 13330.05 ± 2759.95 ng/mL/hour versus 2706 ± 1472 ng/mL/hour). Moreover, RIS exposure was extended to 5 days (AUC0-t: 12292.37 ± 1801.94 ng/mL/hour). In conclusion, HFMAPs could serve as an alternative for delivering RIS in a sustained manner, potentially improving the treatment of schizophrenia.
Collapse
Affiliation(s)
- Rand Ghanma
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
33
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
34
|
Wei C, Fu D, Ma T, Chen M, Wang F, Chen G, Wang Z. Sensing patches for biomarker identification in skin-derived biofluids. Biosens Bioelectron 2024; 258:116326. [PMID: 38696965 DOI: 10.1016/j.bios.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).
Collapse
Affiliation(s)
- Chen Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Tianyue Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Fangling Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
35
|
Tan S, Wang Y, Wei X, Xiao X, Gao L. Microneedle-mediated drug delivery for neurological diseases. Int J Pharm 2024; 661:124400. [PMID: 38950662 DOI: 10.1016/j.ijpharm.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.
Collapse
Affiliation(s)
- Shuna Tan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xuan Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
36
|
Ji M, Zhan F, Qiu X, Liu H, Liu X, Bu P, Zhou B, Serda M, Feng Q. Research Progress of Hydrogel Microneedles in Wound Management. ACS Biomater Sci Eng 2024; 10:4771-4790. [PMID: 38982708 PMCID: PMC11322915 DOI: 10.1021/acsbiomaterials.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Microneedles are a novel drug delivery system that offers advantages such as safety, painlessness, minimally invasive administration, simplicity of use, and controllable drug delivery. As a type of polymer microneedle with a three-dimensional network structure, hydrogel microneedles (HMNs) possess excellent biocompatibility and biodegradability and encapsulate various therapeutic drugs while maintaining drug activity, thus attracting significant attention. Recently, they have been widely employed to promote wound healing and have demonstrated favorable therapeutic effects. Although there are reviews about HMNs, few of them focus on wound management. Herein, we present a comprehensive overview of the design and preparation methods of HMNs, with a particular emphasis on their application status in wound healing, including acute wound healing, infected wound healing, diabetic wound healing, and scarless wound healing. Finally, we examine the advantages and limitations of HMNs in wound management and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Ming Ji
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Fangbiao Zhan
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xingan Qiu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hong Liu
- Department
of Orthopedics, Chongqing University Three Gorges Hospital, School
of Medicine, Chongqing University, Chongqing 404000, China
| | - Xuezhe Liu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Pengzhen Bu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bikun Zhou
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maciej Serda
- Institute
of Chemistry, University of Silesia in Katowice, Katowice 40-006, Poland
| | - Qian Feng
- Key
Laboratory of Biorheological Science and Technology, Ministry of Educations,
Collage of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
37
|
Li Y, Wang J, Vora LK, Sabri AHB, McGuckin MB, Paredes AJ, Donnelly RF. Dissolving microarray patches loaded with a rotigotine nanosuspension: A potential alternative to Neupro® patch. J Control Release 2024; 372:304-317. [PMID: 38906420 DOI: 10.1016/j.jconrel.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.
Collapse
Affiliation(s)
- Yaocun Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Jiawen Wang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Akmal Hidayat Bin Sabri
- Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mary B McGuckin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
38
|
Bedir T, Kadian S, Shukla S, Gunduz O, Narayan R. Additive manufacturing of microneedles for sensing and drug delivery. Expert Opin Drug Deliv 2024; 21:1053-1068. [PMID: 39049741 DOI: 10.1080/17425247.2024.2384696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Microneedles (MNs) are miniaturized, painless, and minimally invasive platforms that have attracted significant attention over recent decades across multiple fields, such as drug delivery, disease monitoring, disease diagnosis, and cosmetics. Several manufacturing methods have been employed to create MNs; however, these approaches come with drawbacks related to complicated, costly, and time-consuming fabrication processes. In this context, employing additive manufacturing (AM) technology for MN fabrication allows for the quick production of intricate MN prototypes with exceptional precision, providing the flexibility to customize MNs according to the desired shape and dimensions. Furthermore, AM demonstrates significant promise in the fabrication of sophisticated transdermal drug delivery systems and medical devices through the integration of MNs with various technologies. AREAS COVERED This review offers an extensive overview of various AM technologies with great potential for the fabrication of MNs. Different types of MNs and the materials utilized in their fabrication are also discussed. Recent applications of 3D-printed MNs in the fields of transdermal drug delivery and biosensing are highlighted. EXPERT OPINION This review also mentions the critical obstacles, including drug loading, biocompatibility, and regulatory requirements, which must be resolved to enable the mass-scale adoption of AM methods for MN production, and future trends.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Duan W, Xu K, Huang S, Gao Y, Guo Y, Shen Q, Wei Q, Zheng W, Hu Q, Shen JW. Nanomaterials-incorporated polymeric microneedles for wound healing applications. Int J Pharm 2024; 659:124247. [PMID: 38782153 DOI: 10.1016/j.ijpharm.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, PR China
| | - Wei Zheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
40
|
Omidian H, Dey Chowdhury S. Swellable Microneedles in Drug Delivery and Diagnostics. Pharmaceuticals (Basel) 2024; 17:791. [PMID: 38931458 PMCID: PMC11206711 DOI: 10.3390/ph17060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This manuscript explores the transformative potential of swellable microneedles (MNs) in drug delivery and diagnostics, addressing critical needs in medical treatment and monitoring. Innovations in hydrogel-integrated MN arrays facilitate controlled drug release, thereby expanding treatment options for chronic diseases and conditions that require precise dosage control. The review covers challenges, such as scalability, patient compliance, and manufacturing processes, as well as achievements in advanced manufacturing, biocompatibility, and versatile applications. Nonetheless, limitations in physiological responsiveness and long-term stability remain, necessitating further research in material innovation and integration with digital technologies. Future directions focus on expanding biomedical applications, material advancements, and regulatory considerations for widespread clinical adoption.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
41
|
Zhao Q, Gu N, Li Y, Wu X, Ouyang Q, Deng L, Ma H, Zhu Y, Fang F, Ye H, Wu K. Self-assembled gel microneedle formed by MS deep eutectic solvent as a transdermal delivery system for hyperpigmentation treatment. Mater Today Bio 2024; 26:101090. [PMID: 38800564 PMCID: PMC11127278 DOI: 10.1016/j.mtbio.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.
Collapse
Affiliation(s)
- Qi Zhao
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Na Gu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yier Li
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Xia Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Qianqian Ouyang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Luming Deng
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Hui Ma
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Yuzhen Zhu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Fang Fang
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
| | - Hua Ye
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| | - Kefeng Wu
- The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524003, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, 524023, China
| |
Collapse
|
42
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
43
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
44
|
Abraham AM, Anjani QK, Adhami M, Hutton ARJ, Larrañeta E, Donnelly RF. Novel SmartReservoirs for hydrogel-forming microneedles to improve the transdermal delivery of rifampicin. J Mater Chem B 2024; 12:4375-4388. [PMID: 38477350 DOI: 10.1039/d4tb00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Hydrogel-forming microneedles (HF-MNs) are composed of unique cross-linked polymers that are devoid of the active pharmaceutical ingredient (API) within the microneedle array. Instead, the API is housed in a reservoir affixed on the top of the baseplate of the HF-MNs. To date, various types of drug-reservoirs and multiple solubility-enhancing approaches have been employed to deliver hydrophobic molecules combined with HF-MNs. These strategies are not without drawbacks, as they require multiple manufacturing steps, from solubility enhancement to reservoir production. However, this current study challenges this trend and focuses on the delivery of the hydrophobic antibiotic rifampicin using SmartFilm-technology as a solubility-enhancing strategy. In contrast to previous techniques, smart drug-reservoirs (SmartReservoirs) for hydrophobic compounds can be manufactured using a one step process. In this study, HF-MNs and three different concentrations of rifampicin SmartFilms (SFs) were produced. Following this, both HF-MNs and SFs were fully characterised regarding their physicochemical and mechanical properties, morphology, Raman surface mapping, the interaction with the cellulose matrix and maintenance of the loaded drug in the amorphous form. In addition, their drug loading and transdermal permeation efficacy were studied. The resulting SFs showed that the API was intact inside the cellulose matrix within the SFs, with the majority of the drug in the amorphous state. SFs alone demonstrated no transdermal penetration and less than 20 ± 4 μg of rifampicin deposited in the skin layers. In contrast, the transdermal permeation profile using SFs combined with HF-MNs (i.e. SmartReservoirs) demonstrated a 4-fold increase in rifampicin deposition (80 ± 7 μg) in the skin layers and a permeation of approx. 500 ± 22 μg. Results therefore illustrate that SFs can be viewed as novel drug-reservoirs (i.e. SmartReservoirs) for HF-MNs, achieving highly efficient loading and diffusion properties through the hydrogel matrix.
Collapse
Affiliation(s)
- Abraham M Abraham
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Masoud Adhami
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
45
|
McGuckin MB, Hutton AR, Davis ER, Sabri AH, Ripolin A, Himawan A, Naser YA, Ghanma R, Greer B, McCarthy HO, Paredes AJ, Larrañeta E, Donnelly RF. Transdermal Delivery of Pramipexole Using Microneedle Technology for the Potential Treatment of Parkinson's Disease. Mol Pharm 2024; 21:2512-2533. [PMID: 38602861 PMCID: PMC11080471 DOI: 10.1021/acs.molpharmaceut.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.
Collapse
Affiliation(s)
- Mary B. McGuckin
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Aaron R.J. Hutton
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ellie R. Davis
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Akmal H.B. Sabri
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Anastasia Ripolin
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Achmad Himawan
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yara A. Naser
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Rand Ghanma
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Brett Greer
- Institute
for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
- The International
Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin
Road, Khong Luang ,Pathum
Thani12120, Thailand
| | - Helen O. McCarthy
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Alejandro J. Paredes
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
46
|
Sulistiawati S, Kristina Enggi C, Wiyulanda Iskandar I, Rachmad Saputra R, Sartini S, Rifai Y, Rahman L, Aswad M, Dian Permana A. Bioavailability enhancement of sildenafil citrate via hydrogel-forming microneedle strategy in combination with cyclodextrin complexation. Int J Pharm 2024; 655:124053. [PMID: 38537922 DOI: 10.1016/j.ijpharm.2024.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with β-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the β-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.
Collapse
Affiliation(s)
| | | | | | - Rizki Rachmad Saputra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Central Kalimantan 73111, Indonesia
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
47
|
Dai L, Wu F, Xiao Y, Liu Q, Meng M, Xi R, Yin Y. Template-Free Self-Assembly of Hollow Microtubular Covalent Organic Frameworks for Oral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17891-17903. [PMID: 38546545 DOI: 10.1021/acsami.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated versatile application potential since their discovery. Although the structure of COFs is orderly arranged, the synthesis of controllable macrostructures still faces challenges. Herein, we report, to our knowledge, the first template-free self-assembled COF-18 Å hollow microtubule (MT-COF-18 Å) structure and its use for insulin delivery that exhibits high loading capacity, gastroresistance, and glucose-responsive properties. The hollow MT-COF-18 Å was achieved by a template-free method benefiting from the mixed solvents of mesitylene and dioxane. The formation mechanism and morphology changes with insulin loading and release were observed. In Caco-2 cells, the transferrin-coated system demonstrated enhanced insulin cellular uptake and transcellular transport, which indicated great potential for oral applications. Additionally, the composites presented sustained glycemic control and effective insulin blood concentrations without noticeable toxicity in diabetic rats. This work shows that hollow microtubular COFs hold great promise in loading and delivery of biomolecules.
Collapse
Affiliation(s)
- Lihui Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yi Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
48
|
Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12434. [PMID: 38571937 PMCID: PMC10987780 DOI: 10.3389/jpps.2024.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.
Collapse
Affiliation(s)
- Fanda Meng
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Qiao
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| |
Collapse
|
49
|
Enggi CK, Sulistiawati S, Himawan A, Raihan M, Iskandar IW, Saputra RR, Rahman L, Yulianty R, Manggau MA, Donelly RF, Aswad M, Permana AD. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomater Sci Eng 2024; 10:1554-1576. [PMID: 38407993 DOI: 10.1021/acsbiomaterials.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Telmisartan (TEL) is a promising antihypertensive agent among other angiotensin receptor blockers. However, its oral application is limited by its poor water solubility. This study presents the successful utilization of biomaterial-based hydrogel-forming microneedles integrated with a direct compressed tablet reservoir (HFMN-DCT) for the transdermal delivery of telmisartan in the treatment of hypertension. The combination of PVP, PVA, and tartaric acid was used in the HFMN formulation. A range of cross-linking temperatures and times were employed to optimize the characteristics of the HFMN. The HFMN exhibited excellent swelling capacity, mechanical strength, and insertion properties. Additionally, the poorly soluble characteristic of TEL was improved by the inclusion complex formulation with β-cyclodextrin (βCD). Phase solubility analysis showed an Ap-type diagram, indicating a higher-order complex between TEL and βCD, with respect to βCD. A ratio of TEL:βCD of 1:4 mM demonstrates the highest solubility enhancement of TEL. The inclusion complex formation was confirmed by FTIR, XRD, DSC, and molecular docking studies. A significantly higher release of TEL (up to 20-fold) from the inclusion complex was observed in the in vitro release study. Subsequently, a DCT reservoir was developed using various concentrations of sodium starch glycolate. Essentially, both the HFMN and DCT reservoir exhibit hemocompatibility and did not induce any skin irritation. The optimized combination of the HFMN-DCT reservoir showed an ex vivo permeation profile of 83.275 ± 2.405%. Notably, the proposed system showed superior pharmacokinetic profiles in the in vivo investigation using male Wistar rats. Overall, this study highlights the potential of HFMN-DCT reservoir systems as a versatile platform for transdermal drug delivery applications.
Collapse
Affiliation(s)
| | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Rizki Rachmad Saputra
- Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Palangkaraya, Central Kalimantan 73111, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Ryan F Donelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
50
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|