1
|
Singh A, Ghosh R, Li H, Geiss MP, Yoo H, Strat AN, Ganapathy PS, Herberg S. Three-Dimensional Extracellular Matrix Protein Hydrogels for Human Trabecular Meshwork Cell Studies. Methods Mol Biol 2025; 2858:17-29. [PMID: 39433663 DOI: 10.1007/978-1-0716-4140-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The extracellular microenvironment plays a crucial role in regulating a wide range of cell behaviors. Biopolymer hydrogels are ideally suited to present a realistic three-dimensional extracellular milieu to cells in vitro. Here, we describe the fabrication and use of soft tissue-mimetic extracellular matrix protein hydrogels for investigations of human trabecular meshwork cell biology.
Collapse
Affiliation(s)
- Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Michael P Geiss
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ana N Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- BioInspired Institute, Syracuse University, Syracuse, NY, USA.
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
2
|
Liu Z, Li H, Li J, Yu J, Liu K. Engineered protein elastomeric materials. Chem Commun (Camb) 2024; 60:11267-11274. [PMID: 39258457 DOI: 10.1039/d4cc02905d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural evolution endows some insects and marine organisms with a special class of protein-based elastic tissues that possess energy feedback characteristics, providing them with the foundation for jumping and flying, and protecting them from the damage caused by movements or waves. However, the design and fabrication of such protein-based elastomeric materials that can function in human society through biomimetic strategies still remains challenging. Recombinant proteins designed by synthetic biology can mimic the advantageous structures in natural proteins and can be biosynthesized without the requirements for harsh conditions such as high temperatures and cytotoxic agents, which provides a great opportunity to prepare protein-based elastomeric materials. In this review, starting from the design of protein molecules, we highlight an overview of the synthesis of elastomeric materials based on recombinant resilin, recombinant elastin-like proteins and other recombinant folded proteins, etc., and then demonstrate their application progress in the fields of biomedicine and high technology. Finally, the challenges and prospects for the future development of protein-based elastomeric materials are envisioned to provide insights into the design and synthesis of the next generation of protein-based elastomeric materials.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
| | - Haopeng Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Beijing 100084, P. R. China.
- Xiangfu Laboratory, Jiaxing 314102, P. R. China
| |
Collapse
|
3
|
Al Musaimi O, Ng KW, Gavva V, Mercado-Valenzo OM, Haroon HB, Williams DR. Elastin-Derived Peptide-Based Hydrogels as a Potential Drug Delivery System. Gels 2024; 10:531. [PMID: 39195060 DOI: 10.3390/gels10080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
A peptide-based hydrogel sequence was computationally predicted from the Ala-rich cross-linked domains of elastin. Three candidate peptides were subsequently synthesised and characterised as potential drug delivery vehicles. The elastin-derived peptides are Fmoc-FFAAAAKAA-NH2, Fmoc-FFAAAKAA-NH2, and Fmoc-FFAAAKAAA-NH2. All three peptide sequences were able to self-assemble into nanofibers. However, only the first two could form hydrogels, which are preferred as delivery systems compared to solutions. Both of these peptides also exhibited favourable nanofiber lengths of at least 1.86 and 4.57 µm, respectively, which are beneficial for the successful delivery and stability of drugs. The shorter fibre lengths of the third peptide (maximum 0.649 µm) could have inhibited their self-assembly into the three-dimensional networks crucial to hydrogel formation.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Keng Wooi Ng
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Varshitha Gavva
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Hajira Banu Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daryl R Williams
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Niknezhad SV, Mehrali M, Khorasgani FR, Heidari R, Kadumudi FB, Golafshan N, Castilho M, Pennisi CP, Hasany M, Jahanshahi M, Mehrali M, Ghasemi Y, Azarpira N, Andresen TL, Dolatshahi-Pirouz A. Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria. Bioact Mater 2024; 38:540-558. [PMID: 38872731 PMCID: PMC11170101 DOI: 10.1016/j.bioactmat.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes - something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nasim Golafshan
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260, Gistrup, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mohammad Mehrali
- Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, 7500 AE, Enschede, the Netherlands
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas L. Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
5
|
Abdoli M, Khaledian S, Mavaei M, Hajmomeni P, Ghowsi M, Qalekhani F, Nemati H, Fattahi A, Sadrjavadi K. Centaurea behen leaf extract mediated green synthesized silver nanoparticles as antibacterial and removing agent of environmental pollutants with blood compatible and hemostatic effects. Sci Rep 2024; 14:13941. [PMID: 38886391 PMCID: PMC11183110 DOI: 10.1038/s41598-024-64468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The present study focused on evaluating the antibacterial properties, radical scavenging, and photocatalytic activities of Centaurea behen-mediated silver nanoparticles (Cb-AgNPs). The formation of Cb-AgNPs was approved by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. The results showed that the obtained AgNPs have a maximum absorbance peak at 450 nm with spherical morphology and an average size of 13.03 ± 5.8 nm. The catalytic activity of the Cb-AgNPs was investigated using Safranin O (SO) solution as a cationic dye model. The Cb-AgNPs performed well in the removal of SO. The coupled physical adsorption/photocatalysis reaction calculated about 68% and 98% degradation of SO dye under solar irradiation. The Cb-AgNPs inhibited the growth of gram-negative or positive bacteria strains and had excellent DPPH radicals scavenging ability (100% in a concentration of 200 µg/ml) as well as a good effect on reducing coagulation time (at concentrations of 200 and 500 µg/mL reduced clotting time up to 3 min). Considering the fact that green synthesized Cb-AgNPs have antioxidant and antibacterial properties and have a good ability to reduce coagulation time, they can be used in wound dressings. As well as these NPs with good photocatalytic activity can be a suitable option for degrading organic pollutants.
Collapse
Affiliation(s)
- Mohadese Abdoli
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nanobiotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Salar Khaledian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryamosadat Mavaei
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Pouria Hajmomeni
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Nemati
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Komail Sadrjavadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Bennett JI, Boit MO, Gregorio NE, Zhang F, Kibler RD, Hoye JW, Prado O, Rapp PB, Murry CE, Stevens KR, DeForest CA. Genetically Encoded XTEN-based Hydrogels with Tunable Viscoelasticity and Biodegradability for Injectable Cell Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301708. [PMID: 38477407 PMCID: PMC11200090 DOI: 10.1002/advs.202301708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/08/2024] [Indexed: 03/14/2024]
Abstract
While direct cell transplantation holds great promise in treating many debilitating diseases, poor cell survival and engraftment following injection have limited effective clinical translation. Though injectable biomaterials offer protection against membrane-damaging extensional flow and supply a supportive 3D environment in vivo that ultimately improves cell retention and therapeutic costs, most are created from synthetic or naturally harvested polymers that are immunogenic and/or chemically ill-defined. This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN - a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to "eXTENd" the in vivo half-life of fused protein therapeutics. By flanking XTEN with self-associating coil domains derived from cartilage oligomeric matrix protein, single-component physically crosslinked hydrogels exhibiting rapid shear thinning and self-healing through homopentameric coiled-coil bundling are formed. Individual and combined point mutations that variably stabilize coil association enables a straightforward method to genetically program material viscoelasticity and biodegradability. Finally, these materials protect and sustain viability of encapsulated human fibroblasts, hepatocytes, embryonic kidney (HEK), and embryonic stem-cell-derived cardiomyocytes (hESC-CMs) through culture, injection, and transcutaneous implantation in mice. These injectable XTEN-based hydrogels show promise for both in vitro cell culture and in vivo cell transplantation applications.
Collapse
Affiliation(s)
| | - Mary O'Kelly Boit
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | | | - Fan Zhang
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Ryan D. Kibler
- Department of BiochemistryUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
| | - Jack W. Hoye
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
| | - Olivia Prado
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
| | - Peter B. Rapp
- Flagship Labs 83, Inc.135 Morrissey Blvd.BostonMA02125USA
| | - Charles E. Murry
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
- Department of Medicine/CardiologyUniversity of WashingtonSeattleWA98109USA
| | - Kelly R. Stevens
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWA98195USA
| | - Cole A. DeForest
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98105USA
- Department of BioengineeringUniversity of WashingtonSeattleWA98105USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98105USA
- Institute of Stem Cell & Regenerative MedicineUniversity of WashingtonSeattleWA98109USA
- Department of ChemistryUniversity of WashingtonSeattleWA98105USA
- Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWA98105USA
| |
Collapse
|
7
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
8
|
Feng M, Li Y, Sun Y, Liu T, Yunusov KE, Jiang G. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels. Biomed Phys Eng Express 2024; 10:045004. [PMID: 38670077 DOI: 10.1088/2057-1976/ad43f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The transdermal drug delivery based on microneedles (MNs) provides a suitable and painless self-administration for diabetic patients. In this work, the hydrogel-forming MNs were firstly fabricated using poly(vinyl alcohol) (PVA) and chitosan (CS) as matrix. A hypoglycemic drug, metformin (Met), had been loaded into MIL-100(Fe). Then, both of free Met and Met-loaded MIL-100(Fe) were integrated into hydrogel-forming MNs for regulation of blood glucose levels (BGLs) on diabetic rats. After penetrated into the skin, the free Met could be firstly released from MNs. Due to the absorption of interstitial fluid and subsequent release of loaded Met from MIL-100(Fe), leading to a sustainable and long-term drug release behaviors. A notable hypoglycemic effect and low risk of hypoglycemia could be obtained on diabetic rat modelsin vivo. The as-fabricated hydrogel-forming MNs expected to become a new type of transdermal drug delivery platform for transdermal delivery of high-dose drugs to form a long-term hypoglycemic effect.
Collapse
Affiliation(s)
- Mingjia Feng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
10
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
11
|
Sun Y, Huo Y, Ran X, Chen H, Pan Q, Chen Y, Zhang Y, Ren W, Wang X, Zhou G, Hua Y. Instant trachea reconstruction using 3D-bioprinted C-shape biomimetic trachea based on tissue-specific matrix hydrogels. Bioact Mater 2024; 32:52-65. [PMID: 37818289 PMCID: PMC10562117 DOI: 10.1016/j.bioactmat.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Currently, 3D-bioprinting technique has emerged as a promising strategy to offer native-like tracheal substitutes for segmental trachea reconstruction. However, there has been very limited breakthrough in tracheal repair using 3D-bioprinted biomimetic trachea owing to the lack of ideal bioinks, the requirement for precise structural biomimicking, and the complexity of multi-step surgical procedures by mean of intramuscular pre-implantation. Herein, we propose a one-step surgical technique, namely direct end-to-end anastomosis using C-shape 3D-bioprinted biomimetic trachea, for segmental trachea defect repair. First, two types of tissue-specific matrix hydrogels were exploited to provide mechanical and biological microenvironment conducive to the specific growth ways of cartilage and fibrous tissue respectively. In contrast to our previous O-shape tracheal design, the tubular structure of alternating C-shape cartilage rings and connecting vascularized-fibrous-tissue rings was meticulously designed for rapid 3D-bioprinting of tracheal constructs with optimal printing paths and models. Furthermore, in vivo trachea regeneration in nude mice showed satisfactory mechanical adaptability and efficient physiological regeneration. Finally, in situ segmental trachea reconstruction by direct end-to-end anastomosis in rabbits was successfully achieved using 3D-bioprinted C-shape biomimetic trachea. This study demonstrates the potential of advanced 3D-bioprinting for instant and efficient repair of segmental trachea defects.
Collapse
Affiliation(s)
- Yuyan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261053, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Yingying Huo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Xinyue Ran
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261053, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Hongying Chen
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Qingqing Pan
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yujie Chen
- Morphology and Spatial Multi-omics Technology Platform, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Ying Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
| | - Wenjie Ren
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaoyun Wang
- Department of Plastic Surgery, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- National Tissue Engineering Center of China, Shanghai, 200241, PR China
| |
Collapse
|
12
|
Jia S, Wang J, Li S, Wang X, Liu Q, Li Y, Shad M, Ma B, Wang L, Li C, Li X. Genetically encoded zinc-binding collagen-like protein hybrid hydrogels for wound repair. Int J Biol Macromol 2024; 254:127592. [PMID: 37913885 DOI: 10.1016/j.ijbiomac.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Incorporating zinc oxide nanoparticles (ZnOnps) into collagen is a promising strategy for fabricating biomaterials with excellent antibacterial activity, but modifications are necessary due to the low zinc binding affinity of native collagen, which can cause disturbances to the functions of both ZnOnps and collagen and result in heterogeneous effects. To address this issue, we have developed a genetically encoded zinc-binding collagen-like protein, Zn-eCLP3, which was genetically modified by Scl2 collagen-like protein. Our study found that Zn-eCLP3 has a binding affinity for zinc that is 3-fold higher than that of commercialized type I collagen, as determined by isothermal titration calorimetry (ITC). Using ZnOnps-coordinated Zn-eCLP3 protein and xanthan gum, we prepared a hydrogel that showed significantly stronger antibacterial activity compared to a collagen hydrogel prepared in the same manner. In vitro cytocompatibility tests were conducted to assess the potential of the Zn-eCLP3 hydrogel for wound repair applications. In vivo experiments, which involved an S. aureus-infected mouse trauma model, showed that the application of the Zn-eCLP3 hydrogel resulted in rapid wound regeneration and increased expression of collagen-1α and cytokeratin-14. Our study highlights the potential of Zn-eCLP3 and the hybrid hydrogel for further studies and applications in wound repair.
Collapse
Affiliation(s)
- Shuang Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Jie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, 20 Zhaowuda Road, Hohhot 010021, Inner Mongolia, China
| | - Xiaojie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, China
| | - Yimiao Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Man Shad
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Bin Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Liyao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, China.
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Institutes of Biomedical Sciences, Inner Mongolia University, China.
| |
Collapse
|
13
|
Guo Z, Xiong Y, Zhang S, Yuan T, Xia J, Wei R, Chen L, Sun W. Naturally derived highly resilient and adhesive hydrogels with application as surgical adhesive. Int J Biol Macromol 2023; 253:127192. [PMID: 37793510 DOI: 10.1016/j.ijbiomac.2023.127192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
The inadequacy of conventional surgical techniques for wound closure and repair in soft and resilient tissues may lead to poor healing outcomes such as local tissue fibrosis and contracture. Therefore, the development of adhesive and resilient hydrogels that can adhere firmly to irregular and dynamic wound interfaces and provide a "tension-free proximity" environment for tissue regeneration has become extremely important. Herein, we describe an integrated modeling-experiment-application strategy for engineering a promising hydrogel-based bioadhesive based on recombinant human collagen (RHC) and catechol-modified hyaluronic acid (HA-Cat). Molecular modeling and simulations were used to verify and explore the hypothesis that RHC and HA-Cat can form an assembly complex through physical interactions. The complex was synergistically crosslinked via a catechol/o-quinone coupling reaction and a carbodiimide coupling reactions, resulting in superior hydrogels with strong adhesion and resilience properties. The application of this bioadhesive to tissue adhesion and wound sealing in vivo was successfully demonstrated, with an optimum collagen index, epidermal thickness, and lowest scar width. Furthermore, subcutaneous implantation demonstrated that the bioadhesive exhibited good biocompatibility and degradability. This newly developed hydrogel may be a highly promising surgical adhesive for medical applications, including wound closure and repair.
Collapse
Affiliation(s)
- Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shiqiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tianying Yuan
- Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China
| | - Jingjing Xia
- Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China.
| | - Ronghan Wei
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Wei Sun
- Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
14
|
Jia S, Wang J, Wang X, Liu X, Li S, Li Y, Li J, Wang J, Man S, Guo Z, Sun Y, Jia Z, Wang L, Li X. Genetically encoded in situ gelation redox-responsive collagen-like protein hydrogel for accelerating diabetic wound healing. Biomater Sci 2023; 11:7748-7758. [PMID: 37753880 DOI: 10.1039/d3bm01010d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Genetically encoded collagen-like protein-based hydrogels have demonstrated remarkable efficacy in promoting the healing process in diabetic patients. However, the current methods for preparing these hydrogels pose significant challenges due to harsh reaction conditions and the reliance on chemical crosslinkers. In this study, we present a genetically encoded approach that allows for the creation of protein hydrogels without the need for chemical additives. Our design involves the genetic encoding of paired-cysteine residues at the C- and N-terminals of a meticulously engineered collagen-like recombination protein. The protein-based hydrogel undergoes a gel-sol transition in response to redox stimulation, achieving a gel-sol transition. We provide evidence that the co-incubation of the protein hydrogel with 3T3 cells not only enhances cell viability but also promotes cell migration. Moreover, the application of the protein hydrogel significantly accelerates the healing of diabetic wounds by upregulating the expression of collagen-1α (COL-1α) and Cytokeratin 14 (CK-14), while simultaneously reducing oxidant stress in the wound microenvironment. Our study highlights a straightforward strategy for the preparation of redox-responsive protein hydrogels, removing the need for additional chemical agents. Importantly, our findings underscore the potential of this hydrogel system for effectively treating diabetic wounds, offering a promising avenue for future therapeutic applications.
Collapse
Affiliation(s)
- Shuang Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xiaojie Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xing Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia people's Hospital, 20 Zhaowuda Road, Hohhot, 010021, Inner Mongolia, China
| | - Yimiao Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jiaqi Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Jieqi Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Shad Man
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhao Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Yinan Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Liyao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Xinyu Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
- Institutes of Biomedical Sciences, Inner Mongolia University, Inner Mongolia University, Hohhot, 010020, PR China
| |
Collapse
|
15
|
Noh Y, Son E, Cha C. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators. Front Bioeng Biotechnol 2023; 11:1284226. [PMID: 37965051 PMCID: PMC10642932 DOI: 10.3389/fbioe.2023.1284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
With the emergence of soft robotics, there is a growing need to develop actuator systems that are lightweight, mechanically compliant, stimuli-responsive, and readily programmable for precise and intelligent operation. Therefore, "smart" polymeric materials that can precisely change their physicomechanical properties in response to various external stimuli (e.g., pH, temperature, electromagnetic force) are increasingly investigated. Many different types of polymers demonstrating stimuli-responsiveness and shape memory effect have been developed over the years, but their focus has been mostly placed on controlling their mechanical properties. In order to impart complexity in actuation systems, there is a concerted effort to implement additional desired functionalities. For this purpose, elastin-like polypeptide (ELP), a class of genetically-engineered thermoresponsive polypeptides that have been mostly utilized for biomedical applications, is being increasingly investigated for stimuli-responsive actuation. Herein, unique characteristics and biomedical applications of ELP, and recent progress on utilizing ELP for programmable actuation are introduced.
Collapse
Affiliation(s)
| | | | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
16
|
Zheng Y, Shariati K, Ghovvati M, Vo S, Origer N, Imahori T, Kaneko N, Annabi N. Hemostatic patch with ultra-strengthened mechanical properties for efficient adhesion to wet surfaces. Biomaterials 2023; 301:122240. [PMID: 37480758 DOI: 10.1016/j.biomaterials.2023.122240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Vo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nolan Origer
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Taichiro Imahori
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
17
|
Li Y, Liu C, Cheng X, Wang J, Pan Y, Liu C, Zhang S, Jian X. PDA-BPs integrated mussel-inspired multifunctional hydrogel coating on PPENK implants for anti-tumor therapy, antibacterial infection and bone regeneration. Bioact Mater 2023; 27:546-559. [PMID: 37397628 PMCID: PMC10313727 DOI: 10.1016/j.bioactmat.2023.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023] Open
Abstract
Currently, many cancer patients with bone defects are still threatened by tumor recurrence, postoperative bacterial infection, and massive bone loss. Many methods have been studied to endow bone implants with biocompatibility, but it is difficult to find an implant material that can simultaneously solve the problems of anticancer, antibacterial and bone promotion. Here, a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus (BP) nanoparticle protected by polydopamine (pBP) is prepared by photocrosslinking to modify the surface of poly (aryl ether nitrile ketone) containing phthalazinone (PPENK) implant. The multifunctional hydrogel coating works in conjunction with pBP, which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration. In this design, photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction. Meanwhile, pBP can generate reactive oxygen species (ROS) to eliminate bacterial infection under 808 nm laser. In the slow degradation process, pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells, but also degrade into PO43- to promote osteogenesis. In summary, nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinyan Wang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- Liaoning Province Engineering Research Centre of High-Performance Resins, Dalian, 116024, China
| |
Collapse
|
18
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
19
|
Powers J, Jang Y. Temperature-responsive membrane permeability of recombinant fusion protein vesicles. SOFT MATTER 2023; 19:3273-3280. [PMID: 37089115 DOI: 10.1039/d3sm00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we investigate the changes in the permeability of the recombinant fusion protein vesicles with different membrane structures as a function of solution temperature. The protein vesicles are self-assembled from recombinant fusion protein complexes composed of an mCherry fused with a glutamic acid-rich leucine zipper and a counter arginine-rich leucine zipper fused with an elastin-like polypeptide (ELP). We have found that the molecular weight cut-off (MWCO) of the protein vesicle membranes varies inversely with solution temperature by monitoring the transport of fluorescent-tagged dextran dyes with different molecular weights. The temperature-responsiveness of the protein vesicle membranes is obtained from the lower critical solution temperature behavior of ELP in the protein building blocks. Consequently, the unique vesicle membrane structures with different single-layered and double-layered ELP organizations impact the sensitivity of the permeability responses of the protein vesicles. Single-layered protein vesicles with the ELP domains facing the interior show more drastic permeability changes as a function of temperature than double-layered protein vesicles in which ELP blocks are buried inside the membranes. This work about the temperature-responsive membrane permeability of unique protein vesicles will provide design guidelines for new biomaterials and their applications, such as drug delivery and synthetic protocell development.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| |
Collapse
|
20
|
Miyamoto Y. Cryopreservation of Cell Sheets for Regenerative Therapy: Application of Vitrified Hydrogel Membranes. Gels 2023; 9:gels9040321. [PMID: 37102933 PMCID: PMC10137452 DOI: 10.3390/gels9040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Organ transplantation is the first and most effective treatment for missing or damaged tissues or organs. However, there is a need to establish an alternative treatment method for organ transplantation due to the shortage of donors and viral infections. Rheinwald and Green et al. established epidermal cell culture technology and successfully transplanted human-cultured skin into severely diseased patients. Eventually, artificial cell sheets of cultured skin were created, targeting various tissues and organs, including epithelial sheets, chondrocyte sheets, and myoblast cell sheets. These sheets have been successfully used for clinical applications. Extracellular matrix hydrogels (collagen, elastin, fibronectin, and laminin), thermoresponsive polymers, and vitrified hydrogel membranes have been used as scaffold materials to prepare cell sheets. Collagen is a major structural component of basement membranes and tissue scaffold proteins. Collagen hydrogel membranes (collagen vitrigel), created from collagen hydrogels through a vitrification process, are composed of high-density collagen fibers and are expected to be used as carriers for transplantation. In this review, the essential technologies for cell sheet implantation are described, including cell sheets, vitrified hydrogel membranes, and their cryopreservation applications in regenerative medicine.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Graduate School of BASE, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
21
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
22
|
Mechanical Properties of Protein-Based Hydrogels Derived from Binary Protein Mixtures-A Feasibility Study. Polymers (Basel) 2023; 15:polym15040964. [PMID: 36850249 PMCID: PMC9964579 DOI: 10.3390/polym15040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Hydrogels based on natural polymers such as proteins are considered biocompatible and, therefore, represent an interesting class of materials for application in the field of biomedicine and high-performance materials. However, there is a lack of understanding of the proteins which are able to form hydrogel networks by photoinduced dityrosine crosslinking as well as a profound knowledge of the formed network itself and the mechanisms which are responsible for the resulting mechanical properties of such protein-based hydrogels. In this study, casein, bovine serum albumin, α-amylase, and a hydrophobic elastin-like protein were used to prepare binary protein mixtures with defined concentration ratios. After polymerization, the mechanical properties of the resulting homopolymeric and copolymeric hydrogels were determined using rheological methods depending on the protein shares used. In additional uniaxial compression tests, the fracture strain was shown to be independent of the protein shares, while hydrogel toughness and compressive strength were increased for protein-based hydrogels containing casein.
Collapse
|
23
|
Sun L, Lu M, Chen L, Zhao B, Yao J, Shao Z, Chen X, Liu Y. Silk-Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial. J Funct Biomater 2023; 14:jfb14020086. [PMID: 36826885 PMCID: PMC9966230 DOI: 10.3390/jfb14020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Minqi Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ling Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jinrong Yao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xin Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Correspondence: (X.C.); (Y.L.)
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Correspondence: (X.C.); (Y.L.)
| |
Collapse
|
24
|
Garcia Garcia C, Patkar SS, Wang B, Abouomar R, Kiick KL. Recombinant protein-based injectable materials for biomedical applications. Adv Drug Deliv Rev 2023; 193:114673. [PMID: 36574920 DOI: 10.1016/j.addr.2022.114673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramadan Abouomar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19176, USA.
| |
Collapse
|
25
|
Song Y, Zhang Y, Qu Q, Zhang X, Lu T, Xu J, Ma W, Zhu M, Huang C, Xiong R. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226:14-36. [PMID: 36436602 DOI: 10.1016/j.ijbiomac.2022.11.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
In recent decades, three-dimensional (3D) cell culture technologies have been developed rapidly in the field of tissue engineering and regeneration, and have shown unique advantages and great prospects in the differentiation of stem cells. Herein, the article reviews the progress and advantages of 3D cell culture technologies in the field of stem cell differentiation. Firstly, 3D cell culture technologies are divided into two main categories: scaffoldless and scaffolds. Secondly, the effects of hydrogels scaffolds and porous scaffolds on stem cell differentiation in the scaffold category were mainly reviewed. Among them, hydrogels scaffolds are divided into natural hydrogels and synthetic hydrogels. Natural materials include polysaccharides, proteins, and their derivatives, focusing on hyaluronic acid, collagen and polypeptides. Synthetic materials mainly include polyethylene glycol (PEG), polyacrylic acid (PAA), polyvinyl alcohol (PVA), etc. In addition, since the preparation techniques have a large impact on the properties of porous scaffolds, several techniques for preparing porous scaffolds based on different macromolecular materials are reviewed. Finally, the future prospects and challenges of 3D cell culture in the field of stem cell differentiation are reviewed. This review will provide a useful guideline for the selection of materials and techniques for 3D cell culture in stem cell differentiation.
Collapse
Affiliation(s)
- Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| |
Collapse
|
26
|
Lee K, Noh Y, Bae Y, Kang S, Cha C. Tunable Physicomechanical and Drug Release Properties of In Situ Forming Thermoresponsive Elastin-like Polypeptide Hydrogels. Biomacromolecules 2022; 23:5193-5201. [PMID: 36378752 DOI: 10.1021/acs.biomac.2c01001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continued advancement in the design and engineering of hydrogels for biomedical applications, there is a growing interest in imparting stimuli-responsiveness to the hydrogels in order to control their physicomechanical properties in a more programmable manner. In this study, an in situ forming hydrogel is developed by cross-linking alginate with an elastin-like polypeptide (ELP). Lysine-rich ELP synthesized by recombinant DNA technology is reacted with alginate presenting an aldehyde via Schiff base formation, resulting in facile hydrogel formation under physiological conditions. The physicomechanical properties of alginate-ELP hydrogels can be controlled in a wide range by the concentrations of alginate and ELP. Owing to the thermoresponsive properties of the ELP, the alginate-ELP hydrogels undergo swelling/deswelling near the physiological temperature. Taking advantage of these highly attractive properties of alginate-ELP, drug release kinetics were measured to evaluate their potential as a thermoresponsive drug delivery system. Furthermore, an ex vivo model was used to demonstrate the minimally invasive tissue injectability.
Collapse
Affiliation(s)
- Kangseok Lee
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yeongjin Noh
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Chaenyung Cha
- Center for Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
27
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Goncalves AG, Hartzell EJ, Sullivan MO, Chen W. Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine. Adv Drug Deliv Rev 2022; 191:114570. [PMID: 36228897 DOI: 10.1016/j.addr.2022.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various diseases. The increasing importance of antibody treatment is further highlighted by the recent FDA emergency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodispersity, and straightforward synthesis and purification. In this review, we discuss progress in engineering the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for introducing novel functionalities and enhancing the delivery properties of antibodies and related binding protein domains.
Collapse
Affiliation(s)
- Antonio G Goncalves
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
29
|
An engineered three-in-one hybrid nanosystem from elastin-like polypeptides for enhanced cancer suppression. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Baidya A, Ghovvati M, Lu C, Naghsh-Nilchi H, Annabi N. Designing a Nitro-Induced Sutured Biomacromolecule to Engineer Electroconductive Adhesive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49483-49494. [PMID: 36286540 DOI: 10.1021/acsami.2c11348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitro-functionality, with a large deficit of negative charge, embraces biological importance and has proven its therapeutic essence even in chemotherapy. Functionally, with its strong electron-withdrawing capability, nitro can manipulate the electron density of organic moieties and regulates cellular-biochemical reactions. However, the chemistry of nitro-functionality to introduce physiologically relevant macroscopic properties from the molecular skeleton is unknown. Therefore, herein, a neurotransmitter moiety, dopamine, was chemically modified with a nitro-group to explore its influence on synthesizing a multifunctional biomaterial for therapeutic applications. Chemically, while the nitro-group perturbed the aromatic electron density of nitrocatecholic domain, it facilitated the suturing of nitrocatechol moieties to regain its aromaticity through a radical transfer mechanism, forming a novel macromolecular structure. Incorporation of the sutured-nitrocatecholic strand (S-nCAT) in a gelatin-based hydrogel introduced an electroconductive microenvironment through the delocalization of π-electrons in S-nCAT, while maintaining its catechol-mediated adhesive property for tissue repairing/sealing. Meanwhile, the engineered hydrogel enriched with noncovalent interactions, demonstrated excellent mechano-physical properties to support tissue functions. Cytocompatibility of the bioadhesive was assessed with in vitro and in vivo studies, confirming its potential usage for biomedical applications. In conclusion, this novel chemical approach enabled designing a multifunctional biomaterial by manipulating the electronic properties of small bioactive molecules for various biomedical applications.
Collapse
Affiliation(s)
- Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Cathy Lu
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Hamed Naghsh-Nilchi
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California90095, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California90095, United States
| |
Collapse
|
31
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
32
|
Knoff DS, Kim S, Fajardo Cortes KA, Rivera J, Cathey MVJ, Altamirano D, Camp C, Kim M. Non-Covalently Associated Streptavidin Multi-Arm Nanohubs Exhibit Mechanical and Thermal Stability in Cross-Linked Protein-Network Materials. Biomacromolecules 2022; 23:4130-4140. [PMID: 36149316 DOI: 10.1021/acs.biomac.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Constructing protein-network materials that exhibit physicochemical and mechanical properties of individual protein constituents requires molecular cross-linkers with specificity and stability. A well-known example involves specific chemical fusion of a four-arm polyethylene glycol (tetra-PEG) to desired proteins with secondary cross-linkers. However, it is necessary to investigate tetra-PEG-like biomolecular cross-linkers that are genetically fused to the proteins, simplifying synthesis by removing additional conjugation and purification steps. Non-covalently, self-associating, streptavidin homotetramer is a viable, biomolecular alternative to tetra-PEG. Here, a multi-arm streptavidin design is characterized as a protein-network material platform using various secondary, biomolecular cross-linkers, such as high-affinity physical (i.e., non-covalent), transient physical, spontaneous chemical (i.e., covalent), or stimuli-induced chemical cross-linkers. Stimuli-induced, chemical cross-linkers fused to multi-arm streptavidin nanohubs provide sufficient diffusion prior to initiating permanent covalent bonds, allowing proper characterization of streptavidin nanohubs. Surprisingly, non-covalently associated streptavidin nanohubs exhibit extreme stability, which translates into material properties that resemble hydrogels formed by chemical bonds even at high temperatures. Therefore, this study not only establishes that the streptavidin nanohub is an ideal multi-arm biopolymer precursor but also provides valuable guidance for designing self-assembling nanostructured molecular networks that can properly harness the extraordinary properties of protein-based building blocks.
Collapse
Affiliation(s)
- David S Knoff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Samuel Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Jocelyne Rivera
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Marcus V J Cathey
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Dallas Altamirano
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Camp
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States.,Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, University of Arizona, Tucson, Arizona 85719, United States
| |
Collapse
|
33
|
Grosskopf A, Mann JL, Baillet J, Lopez Hernandez H, Autzen AAA, Yu AC, Appel EA. Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer-Nanoparticle Interactions. Macromolecules 2022; 55:7498-7511. [PMID: 36118599 PMCID: PMC9476865 DOI: 10.1021/acs.macromol.2c00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Designing yield stress fluids to exhibit desired functional properties is an integral challenge in many applications such as 3D printing, drilling, food formulation, fiber spinning, adhesives, and injectable biomaterials. Extensibility in particular has been found to be a highly beneficial characteristic for materials in these applications; however, few highly extensible, high water content materials have been reported to date. Herein we engineer a class of high water content nanocomposite hydrogel materials leveraging multivalent, noncovalent, polymer-nanoparticle (PNP) interactions between modified cellulose polymers and biodegradable nanoparticles. We show that modulation of the chemical composition of the PNP hydrogels controls the dynamic cross-linking interactions within the polymer network and directly impacts yielding and viscoelastic responses. These materials can be engineered to stretch up to 2000% strain and occupy an unprecedented property regime for extensible yield stress fluids. Moreover, a dimensional analysis of the relationships between extensibility and the relaxation and recovery time scales of these nanocomposite hydrogels uncovers generalizable design criteria that will be critical for future development of extensible materials.
Collapse
Affiliation(s)
- Abigail
K. Grosskopf
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Joseph L. Mann
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Julie Baillet
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- CNRS,
Bordeaux INP, LCPO, University of Bordeaux, Pessac 33600, France
| | - Hector Lopez Hernandez
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Anton A. A. Autzen
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Health Technology, Technical University
of Denmark, 2800 Lyngby, Denmark
| | - Anthony C. Yu
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics- Endocrinology, Stanford University, Stanford, California 94305, United States
- ChEM-H
Institute, Stanford University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
35
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Shi X, Chen D, Liu G, Zhang H, Wang X, Wu Z, Wu Y, Yu F, Xu Q. Application of Elastin-Like Polypeptide in Tumor Therapy. Cancers (Basel) 2022; 14:cancers14153683. [PMID: 35954346 PMCID: PMC9367306 DOI: 10.3390/cancers14153683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elastin-like Polypeptide (ELP) are widely applied in protein purification, drug delivery, tissue engineering, and even tumor therapy. Recent studies show that usage of ELP has made great progress in combination with peptide drugs or antibody drugs. The combination of ELP and photosensitizer in cancer therapy or imaging has made more progress and needs to be summarized. In this review, we summarize the specific application of ELP in cancer therapy, especially the latest developments in the combined use of ELP with photosensitizers. We seek to provide the most recent understanding of ELP and its new application in combination with Photosensitizer. Abstract Elastin-like polypeptides (ELPs) are stimulus-responsive artificially designed proteins synthesized from the core amino acid sequence of human tropoelastin. ELPs have good biocompatibility and biodegradability and do not systemically induce adverse immune responses, making them a suitable module for drug delivery. Design strategies can equip ELPs with the ability to respond to changes in temperature and pH or the capacity to self-assemble into nanoparticles. These unique tunable biophysicochemical properties make ELPs among the most widely studied biopolymers employed in protein purification, drug delivery, tissue engineering and even in tumor therapy. As a module for drug delivery and as a carrier to target tumor cells, the combination of ELPs with therapeutic drugs, antibodies and photo-oxidation molecules has been shown to result in improved pharmacokinetic properties (prolonged half-life, drug targeting, cell penetration and controlled release) while restricting the cytotoxicity of the drug to a confined infected site. In this review, we summarize the latest developments in the application methods of ELP employed in tumor therapy, with a focus on its conjugation with peptide drugs, antibodies and photosensitizers.
Collapse
Affiliation(s)
- Xianggang Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Guodong Liu
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Hailing Zhang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Xiaoyan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Zhi Wu
- Jiangsu Key Laboratory of High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| |
Collapse
|
37
|
Bagué T, Singh A, Ghosh R, Yoo H, Kelly C, deLong MA, Kopczynski CC, Herberg S. Effects of Netarsudil-Family Rho Kinase Inhibitors on Human Trabecular Meshwork Cell Contractility and Actin Remodeling Using a Bioengineered ECM Hydrogel. FRONTIERS IN OPHTHALMOLOGY 2022; 2:948397. [PMID: 38983571 PMCID: PMC11182288 DOI: 10.3389/fopht.2022.948397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 07/11/2024]
Abstract
Interactions between trabecular meshwork (TM) cells and their extracellular matrix (ECM) are critical for normal outflow function in the healthy eye. Multifactorial dysregulation of the TM is the principal cause of elevated intraocular pressure that is strongly associated with glaucomatous vision loss. Key characteristics of the diseased TM are pathologic contraction and actin stress fiber assembly, contributing to overall tissue stiffening. Among first-line glaucoma medications, the Rho-associated kinase inhibitor (ROCKi) netarsudil is known to directly target the stiffened TM to improve outflow function via tissue relaxation involving focal adhesion and actin stress fiber disassembly. Yet, no in vitro studies have explored the effect of netarsudil on human TM (HTM) cell contractility and actin remodeling in a 3D ECM environment. Here, we use our bioengineered HTM cell-encapsulated ECM hydrogel to investigate the efficacy of different netarsudil-family ROCKi compounds on reversing pathologic contraction and actin stress fibers. Netarsudil and all related experimental ROCKi compounds exhibited significant ROCK1/2 inhibitory and focal adhesion disruption activities. Furthermore, all ROCKi compounds displayed potent contraction-reversing effects on HTM hydrogels upon glaucomatous induction in a dose-dependent manner, relatively consistent with their biochemical/cellular inhibitory activities. At their tailored EC50 levels, netarsudil-family ROCKi compounds exhibited distinct effect signatures of reversing pathologic HTM hydrogel contraction and actin stress fibers, independent of the cell strain used. Netarsudil outperformed the experimental ROCKi compounds in support of its clinical status. In contrast, at uniform EC50-levels using netarsudil as reference, all ROCKi compounds performed similarly. Collectively, our data suggest that netarsudil exhibits high potency to rescue HTM cell pathobiology in a tissue-mimetic 3D ECM microenvironment, solidifying the utility of our bioengineered hydrogel model as a viable screening platform to further our understanding of TM pathophysiology in glaucoma.
Collapse
Affiliation(s)
- Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Curtis Kelly
- Aerie Pharmaceuticals Inc., Durham, NC, United States
| | | | | | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
38
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
39
|
Haas S, Desombre M, Kirschhöfer F, Huber MC, Schiller SM, Hubbuch J. Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials. Front Bioeng Biotechnol 2022; 10:878838. [PMID: 35814018 PMCID: PMC9257828 DOI: 10.3389/fbioe.2022.878838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.
Collapse
Affiliation(s)
- Sandra Haas
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Monika Desombre
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias C. Huber
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Stefan M. Schiller
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Jürgen Hubbuch,
| |
Collapse
|
40
|
Anderson CF, Chakroun RW, Grimmett ME, Domalewski CJ, Wang F, Cui H. Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. NANO LETTERS 2022; 22:4182-4191. [PMID: 35522052 PMCID: PMC9844543 DOI: 10.1021/acs.nanolett.2c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Spraying serves as an attractive, minimally invasive means of administering hydrogels for localized delivery, particularly due to high-throughput deposition of therapeutic depots over an entire target site of uneven surfaces. However, it remains a great challenge to design systems capable of rapid gelation after shear-thinning during spraying and adhering to coated tissues in wet, physiological environments. We report here on the use of a collagen-binding peptide to enable a supramolecular design of a biocompatible, bioadhesive, and sprayable hydrogel for sustained release of therapeutics. After spraying, the designed peptide amphiphile-based supramolecular filaments exhibit fast, physical cross-linking under physiological conditions. Our ex vivo studies suggest that the hydrogelator strongly adheres to the wet surfaces of multiple organs, and the extent of binding to collagen influences release kinetics from the gel. We envision that the sprayable organ-adhesive hydrogel can serve to enhance the efficacy of incorporated therapeutics for many biomedical applications.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rami W Chakroun
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
41
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
42
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
43
|
Slawinski M, Khoury LR, Sharma S, Nowitzke J, Gutzman JH, Popa I. Kinetic Method of Producing Pores Inside Protein-Based Biomaterials without Compromising Their Structural Integrity. ACS Biomater Sci Eng 2022; 8:1132-1142. [PMID: 35188361 DOI: 10.1021/acsbiomaterials.1c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels made from globular proteins cross-linked covalently into a stable network are becoming an important type of biomaterial, with applications in artificial tissue design and cell culture scaffolds, and represent a promising system to study the mechanical and biochemical unfolding of proteins in crowded environments. Due to the small size of the globular protein domains, typically 2-5 nm, the primary network allows for a limited transfer of protein molecules and prevents the passing of particles and aggregates with dimensions over 100 nm. Here, we demonstrate a method to produce protein materials with micrometer-sized pores and increased permeability. Our approach relies on forming two competing networks: a covalent network made from cross-linked bovine serum albumin (BSA) proteins via a light-activated reaction and a physical network triggered by the aggregation of a polysaccharide, alginate, in the presence of Ca2+ ions. By fine-tuning the reaction times, we produce porous-protein hydrogels that retain the mechanical characteristics of their less-porous counterparts. We further describe a simple model to investigate the kinetic balance between the nucleation of alginate and cross-linking of BSA molecules and find the upper rate of the alginate aggregation reaction driving pore formation. By enabling a more significant permeability for protein-based materials without compromising their mechanical response, our method opens new vistas into studying protein-protein interactions and cell growth and designing novel affinity methods.
Collapse
Affiliation(s)
- Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States.,Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
44
|
Ghovvati M, Baghdasarian S, Baidya A, Dhal J, Annabi N. Engineering a highly elastic bioadhesive for sealing soft and dynamic tissues. J Biomed Mater Res B Appl Biomater 2022; 110:1511-1522. [PMID: 35148016 DOI: 10.1002/jbm.b.35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Injured tissues often require immediate closure to restore the normal functionality of the organ. In most cases, injuries are associated with trauma or various physical surgeries where different adhesive hydrogel materials are applied to close the wounds. However, these materials are typically toxic, have low elasticity, and lack strong adhesion especially to the wet tissues. In this study, a stretchable composite hydrogel consisting of gelatin methacrylol catechol (GelMAC) with ferric ions, and poly(ethylene glycol) diacrylate (PEGDA) was developed. The engineered material could adhere to the wet tissue surfaces through the chemical conjugation of catechol and methacrylate groups to the gelatin backbone. Moreover, the incorporation of PEGDA enhanced the elasticity of the bioadhesives. Our results showed that the physical properties and adhesion of the hydrogels could be tuned by changing the ratio of GelMAC/PEGDA. In addition, the in vitro toxicity tests confirmed the biocompatibility of the engineered bioadhesives. Finally, using an ex vivo lung incision model, we showed the potential application of the developed bioadhesives for sealing elastic tissues.
Collapse
Affiliation(s)
- Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Jharana Dhal
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
45
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
46
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
47
|
Liberato MS, Cavalcante NGS, Sindu PA, Rodrigues-Jesus MJ, Zelenovskii P, Carreira ACO, Baptista MS, Sogayar MC, Ferreira LCS, Catalani LH. Histidine-based hydrogels via singlet-oxygen photooxidation. SOFT MATTER 2021; 17:10926-10934. [PMID: 34811564 DOI: 10.1039/d1sm01023a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.
Collapse
Affiliation(s)
- Michelle S Liberato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Nayara G S Cavalcante
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - P Abinaya Sindu
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Mônica J Rodrigues-Jesus
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C O Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Mari C Sogayar
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Luís C S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Luiz H Catalani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
48
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
49
|
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021; 11:23276. [PMID: 34857867 PMCID: PMC8640009 DOI: 10.1038/s41598-021-02830-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - James Chodosh
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| |
Collapse
|
50
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|