1
|
Xie M, Jiang C, Zhang C, Wu Y, Zhang X, Yao R, Han C, Dai Y, Xu K, Zheng S. Tumor microenvironment triggered iron-based metal organic frameworks for magnetic resonance imaging and photodynamic-enhanced ferroptosis therapy. J Colloid Interface Sci 2025; 685:382-395. [PMID: 39855085 DOI: 10.1016/j.jcis.2025.01.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Photodynamic therapy (PDT) primarily relies on the generation of reactive oxygen species (ROS) to eliminate tumor cells. However, the elevated levels of glutathione (GSH) within tumor cells can limit the efficacy of PDT, posing a challenge to achieve complete tumor eradication. Herein, a porous iron-based metal-organic frameworks (PEG-Fe-MOFs) nanoplatform was developed for the combined application of PDT and ferroptosis in cancer treatment. The coordination between tetrakis (4-carboxyphenyl) porphyrin (TCPP) and ferric (Fe3+) enabled PEG-modified Fe-MOFs (PEG-Fe-MOFs) to deliver excellent T1-weighted magnetic resonance (MR) imaging performance in physiological environments. Within the tumor microenvironment (TME), PEG-Fe-MOFs gradually degraded to release TCPP, which could be utilized for fluorescence imaging. Moreover, Fe2+ enhanced intracellular ROS levels via the Fenton reaction, generating hydroxyl radicals that further amplified ROS production. This synergistic effect comprising increased ROS levels and GSH depletion augmented the efficacy of PDT while simultaneously inducing robust ferroptosis in tumor cells, thereby maximizing therapeutic outcomes. Both in vitro and in vivo experiments have demonstrated the superior T1 weighted MR and fluorescence imaging capabilities of PEG-Fe-MOFs, along with its potent synergistic therapeutic effects on tumors. These results highlighted the potential of this nanoplatform for combining PDT and ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Canran Jiang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Cong Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Yun Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuli Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Ruosi Yao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yue Dai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
2
|
Haotian R, Zhu Z, Zhang H, Lv T, Tang S, Zhang J, Luo A, Liang A. Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor. Biosens Bioelectron 2025; 273:117195. [PMID: 39862675 DOI: 10.1016/j.bios.2025.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier. Aza-fuzed π-conjugated COFs exhibit exceptional signal enhancement and are an effective electron transport layer for electrochemical sensing applications. In this work, different conductive aza-fuzed π-conjugated COFs were optimized by synthetic engineering. Among them, 2D crystalline COF4 with the highest conductivity (240 % via the bare electrodes) was used to modify the screen printing carbon electrode to construct a portable molecularly imprinted electrochemical biosensor for point-of-care glutathione detection. Compared with the conventional strategy of co-modifing with gold nanoparticles, the single conductive COF4 electrochemical sensor exhibited excellent detection performance and better selectivity for thiol interferents. Conductive COFs combining molecularly imprinted polymer provide a promising strategy for constructing low-cost, easy fabrication and operation, highly sensitive and selective electrochemical biosensors.
Collapse
Affiliation(s)
- Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Heao Zhang
- Ruixin Academy of Classic Learning, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Tang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Chen XQ, Cui SS, Chen YZ, Wang CY, Liu Q, Qi YK, Du SS. Efficient Delivery of Oncolytic Peptide LTX-315 by ZIF-8: pH-Responsive Release, Improved Stability, and Reduced Hemolysis. Mol Pharm 2025; 22:1449-1461. [PMID: 39913295 DOI: 10.1021/acs.molpharmaceut.4c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The first-in-class oncolytic peptide LTX-315 has exhibited positive anticancer responses in multiple phase I/II clinical trials. Nevertheless, the linear peptide LTX-315 suffers from poor proteolytic stability and undesired toxicity, especially hemolysis, which may limit its widespread applications. Except for the direct structural modifications, drug delivery systems (DDSs) are expected to protect LTX-315 from degradation and shield its hemolytic properties. Therefore, the LTX-315 and zeolitic imidazolate framework (ZIF-8)-based nanoparticles (NPs) were constructed with a high LTX-315 encapsulation rate of 59.9%, utilizing the biomineralized "one-pot method" in an aqueous system. The release of LTX-315, in vitro anticancer potency, serum stability, anticancer durability, antimigration activity, hemolysis effect, subcellular localization, and the membrane disruption/permeation effects of LTX-315@ZIF-8 NPs were investigated. LTX-315@ZIF-8 NPs exhibited potent cytotoxicity against cancer cells. The serum stability experiment and time-inhibition curve assay indicated that ZIF-8 NPs could effectively improve the stability of LTX-315, prolong the duration of anticancer action, and enhance the cytostatic potency. Especially, the LTX-315@ZIF-8 NPs not only effectively attenuated the hemolytic toxicity of LTX-315 but also achieved the pH-responsive release of LTX-315. The mechanism investigation indicated that LTX-315@ZIF-8 NPs possessed potent membranolytic activity and reduced the mitochondrial membrane potential to trigger cell death. Collectively, this paper not only established a robust strategy to improve the stability and reduce the hemolytic properties of LTX-315 but also provided a reliable reference for the future delivery of oncolytic peptides.
Collapse
Affiliation(s)
- Xin-Qi Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Su-Su Cui
- Suzhou Jinchang Street Bailian Community Health Service Center, Suzhou 215000, China
| | - Yu-Zhen Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cai-Yun Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
4
|
Najafabadi SN, Huang C, Betlem K, van Voorthuizen TA, de Smet LCPM, Ghatkesar MK, van Dongen M, van der Veen MA. Advancements in Inkjet Printing of Metal- and Covalent-Organic Frameworks: Process Design and Ink Optimization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11469-11494. [PMID: 39950749 PMCID: PMC11873967 DOI: 10.1021/acsami.4c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) are highly versatile materials based on inorganic modes connected via organic linkers or purely via the connection of organic building blocks, respectively. This results in 3-D nanoporous frameworks, which, due to their combination of high porosity and variability of building blocks, can exhibit exceptional properties that make them attractive. Certain applications (e.g., in electronics and as membranes) require a thin film or even a patterned morphology on various substrates. Inkjet printing of MOFs has emerged as a simple and effective technique for the scalable production of a wide range of MOF (gradient) films and patterns on a wide range of substrates according to specific requirements. This review comprehensively reviews the achievements in inkjet printing of both MOFs and COFs. We discuss the different substrates, ink formulation, and hardware intertwined requirements needed to achieve high-resolution printing and obtain desired properties such as porosity, physical-mechanical characteristics, and uniform thickness. Crucial aspects related to ink formulation, such as colloidal stability and size control of MOFs and COFs, are discussed. Additionally, we highlight potential opportunities for furthering the development of inkjet printing of MOFs/COFs and critically assess the reporting of the printing procedures and characterization of the resultant materials. In this manner, this review aims to contribute to the advancements in understanding and optimization of inkjet printing of MOFs and COFs, as this technique holds great potential for diverse applications and functionalization of MOF/COF films and patterns.
Collapse
Affiliation(s)
- Seyyed
Abbas Noorian Najafabadi
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Chunyu Huang
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Kaï Betlem
- Department
of Microelectronics, Delft University of
Technology, 2628 CD Delft,The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Thijmen A. van Voorthuizen
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Murali Krishna Ghatkesar
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Martijn van Dongen
- Research Group Applied Natural Sciences, Fontys University of Applied Sciences, 5600 AH Eindhoven, The Netherlands
| | | |
Collapse
|
5
|
Edward A, Ettlinger R, Janczuk ZZ, Hua G, Morris RE, Kay ER. Chemospecific Heterostructure and Heteromaterial Assembly of Metal-Organic Framework Nanoparticles. J Am Chem Soc 2025; 147:5114-5124. [PMID: 39882727 PMCID: PMC11826876 DOI: 10.1021/jacs.4c15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface. Pairwise combinations of nanometer-sized building blocks with complementary dynamic covalent surface units can be used to prepare heterostructure assemblies (i.e., two MOFs with different structures and morphologies) and heteromaterial assemblies (a MOF with a nanoparticle of another kind, in this case gold) in which the directional molecular-level dynamic covalent links demand intimate mixing of the two nanoscale components. Crucially, the defining characteristic of the MOF components─their porosity─is minimally affected by the external functionalization and interparticle linking. The development of atomically precise dynamic covalent functionalization on the external surface of MOF NPs opens up new avenues for programmable frameworks with responsive behaviors and modular assembly of porous materials with precise control over the spatial organization of multiple nanoscale building blocks.
Collapse
Affiliation(s)
- Ailsa
K. Edward
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Romy Ettlinger
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
- TUM School
of Natural Sciences, Technical University
of Munich, Lichtenbergstr.
4, Garching b. München 85748, Germany
| | - Zuzanna Z. Janczuk
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Guoxiong Hua
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Russell E. Morris
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Euan R. Kay
- EaStCHEM
School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| |
Collapse
|
6
|
Liao P, Zeng B, Li S, Zhang Y, Xiang R, Kang J, Liu Q, Li G. Cu-Bi Bimetallic Catalysts Derived from Metal-Organic Framework Arrays on Copper Foam for Efficient Glycine Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202417130. [PMID: 39344002 DOI: 10.1002/anie.202417130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Glycine as one of the most abundant amino acids in human proteins, with extensive applications in both life and industry, is conventionally synthesized through complex procedures or toxic feedstocks. In this study, we present a facile and benign electrochemical pathway for synthesis of glycine through reductive coupling of glyoxylic acid and nitrate over a copper-bismuth bimetal catalyst derived from a metal-organic framework (MOF) array on copper foam (Cu/Bi-C@CF). Remarkably, Cu/Bi-C@CF achieves a fantastic selectivity of 89 %, corresponding a high Faraday efficiency of 65.9 %. From control experiments, the introduction of Bi caused the binding energy of Cu shift to a lower state, which leads to a high selectivity towards the formation of key intermediate hydroxylamine rather than ammonia product, facilitating the formation of oxime and providing additional sites for subsequent hydrogenation reaction on the way to glycine. Moreover, the derivation of MOF arrays ensures the effective dispersion of Bi and enhances the stability of Cu/Bi-C@CF. This innovative approach not only presents sustainable pathways for the production of value-added organonitrogen compounds utilizing readily available carbon and nitrogen sources, but also provides novel insights into the design of multistage structural catalysts for sequential reactions.
Collapse
Affiliation(s)
- Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Binning Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Runan Xiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Guo X, Feng S, Peng Y, Li B, Zhao J, Xu H, Meng X, Zhai W, Pang H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem 2025; 463:141387. [PMID: 39332375 DOI: 10.1016/j.foodchem.2024.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Heavy metal ions are one of the main sources of water pollution, which has become a major global problem. Given the growing need for heavy metal ion detection, electrochemical sensor stands out for its high sensitivity and efficiency. Metal-organic frameworks (MOFs) have garnered much interest as electrode modifiers for electrochemical detection of heavy metal ions owing to their significant specific surface area, tailored pore size, and catalytic activity. This review summarizes the progress of MOF-based materials, including pristine MOFs and MOF composites, in the electrochemical detection of various heavy metal ions. The synthetic methods of pristine MOFs, the detection mechanisms of heavy metal ions and the modification strategies of MOFs are introduced. Besides, the diverse applications of MOF-based materials in detecting both single and multiple heavy metal ions are presented. Furthermore, we present the current challenges and prospects for MOF-based materials in electrochemical heavy metal ion detection.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Siyi Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yi Peng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, PR China
| | - Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Weiwei Zhai
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
8
|
Zhang B, Peng G, Dong N, Shi H, Shao T, Ren X, Guo X, Kumar A, Subramaniam V, Ramachandran K, Zhang F, Liu X. Data-Driven Machine Learning Strategy for Designing Metal-Ion-Doped γ-Bi 2MoO 6 Photocatalysts to Enhance Degradation Performance. J Phys Chem B 2025; 129:305-317. [PMID: 39719039 DOI: 10.1021/acs.jpcb.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Doped semiconductors are often used to improve photocatalytic efficiency and address the challenges of easy recombination of electron-hole pairs and poor photoluminescence. However, the reproducibility and complexity of experimental studies result in time-consuming and less cost-effective studies, and it is difficult to gain insights into the intrinsic properties of doped photocatalysts to control their performance. Introducing a machine learning approach, we constructed a photocatalytic model of transition-metal- and rare earth metal-ion-doped γ-Bi2MoO6. We selected 18 factors of preparation conditions and dopant ion properties, and constructed 806 data sets through literature collection for correlation analysis, paving the way for a more efficient and cost-effective research process. The results of our study are promising. The trained and improved XGboost model demonstrated high resistance to the variability caused by data segmentation, with a cross-validated model showing a coefficient of determination of 0.942. Through the combination of characteristic importance and Shapley additive explanation analysis, the importance and correlation trends of preparation conditions and dopant ion properties are obtained, especially the positive correlation trend of excitation time and preparation time and the negative correlation trend of atomic mass and bandwidth. Model prediction and experimental validation are used to demonstrate the effectiveness and behavioral prediction ability, and the Zn and Cd elements are successfully predicted for doping modification means. This study contributes to the modification and preparation of γ-Bi2MoO6 materials and provides a solid foundation for the efficient design of photocatalysts.
Collapse
Affiliation(s)
- Bohang Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Guanhongye Peng
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Nan Dong
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Huihui Shi
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Tingting Shao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xincheng Ren
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Ashish Kumar
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Vadivel Subramaniam
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India
| | - Krishnamoorthy Ramachandran
- Department of Physics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai 600 026, Tamil Nadu, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Laboratory of Emergency Safety and Rescue Technology, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| |
Collapse
|
9
|
Hu Y, Zhang S, Xu K, Zhuang X, Tang Y, Gong H, Pi Y, Tian T, Pang H. Nano-Metal-Organic Frameworks and Nano-Covalent-Organic Frameworks: Controllable Synthesis and Applications. Chem Asian J 2025; 20:e202400896. [PMID: 39384549 DOI: 10.1002/asia.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoscale framework materials have attracted extensive attention due to their diverse morphology and good properties, and synthesis methods of different size structures have been reported. Therefore, the relationship between different sizes and performance has become a research hotspot. This paper reviews the controllable synthesis strategies of nano-metal-organic frameworks (nano-MOFs) and nano-covalent-organic frameworks (nano-COFs). Firstly, the synthetic evolution of nano-frame materials is summarized. Due to their special surface area, regular pores and adjustable structural functions, nano-frame materials have attracted much attention. Then the preparation methods of nanostructures with different dimensions are introduced. These synthetic strategies provide the basis for the design of novel energy storage and catalytic materials. In addition, the latest advances in the field of energy storage and catalysis are reviewed, with emphasis on the application of nano-MOFs/COFs in zinc-, lithium-, and sodium-based batteries, as well as supercapacitors.
Collapse
Affiliation(s)
- Yaxun Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
10
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
11
|
Deng W, Wei Z, Xu Y, Gong Z, Cai F, Shi Q, Guo K, Jia M, Zhao Y, Feng Y, Deng J, Zhang B. "One-Pot" Synthesized Phosphorus Corrole-Based Metal-Organic Frameworks for Synergistic Phototherapy and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408975. [PMID: 39676348 DOI: 10.1002/smll.202408975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
As a distinctive class of porphyrin derivatives, corroles offer exceptional potential in phototherapy applications owing to their unique electronic structures. However, developing metal-organic frameworks (MOFs) that incorporate photosensitive corroles as functional ligands for synergistic phototherapy remains a formidable challenge. Herein, for the first time, the unique phosphorus corrole-based MOFs Cor(P)-Hf with (3,18)-connected gea topology are reported, which are constructed by Cs-symmetric dicarboxylate 3-connected linkers, 10-pentafluorophenyl-5,15-di(p-benzoate)phosphorus corrole (Cor(P)), and the peculiar D3h-symmetric 18-connected Hf12-oxo clusters. Interestingly, six para-position F substituents of six Cor(P) linkers are found to be coordinated with the apex of the Hf12-oxo cluster through Hf-F bonds along the c-axis direction, which is believed to help stabilize the framework. Furthermore, the mixed corrolic ligand-based MOFs Cor(P)/Cor(Cu)-Hf and Cor(P)/Cor(Fe)-Hf involving Cor(Fe) or Cor(Cu) as the secondary functional linkers are constructed by a simple "one-pot" solvent-thermal method, respectively. Remarkably, Cor(P)/Cor(Fe)-Hf facilitates synergistic phototherapy combining photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) when activated by an 808 nm laser, as evidenced by in vivo and in vitro experiments. This study demonstrates corrole-based MOFs Cor(P)-Hf as a powerful multifunctional nanoplatform for anti-cancer phototherapy.
Collapse
Affiliation(s)
- Wenbo Deng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zixiang Wei
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yunhao Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhichao Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fenglin Cai
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Quan Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Kai Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Meng Jia
- Xi'an Aerospace Propulsion Test Technology Institute, Xian, 710000, China
| | - Yanming Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zheng Zhou, 450000, China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jingyu Deng
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
12
|
Le PH, Liu A, Zasada LB, Geary J, Kamin AA, Rollins DS, Nguyen HA, Hill AM, Liu Y, Xiao DJ. Nitrogen-Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO 2 Capture. Angew Chem Int Ed Engl 2024:e202421822. [PMID: 39637287 DOI: 10.1002/anie.202421822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Here we report a series of nitrogen-rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal-organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni-N and phenazine-based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal-organic macrocycles, good out-of-plane charge transport is preserved, with pressed pellet conductivities of 10-3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine-based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.
Collapse
Affiliation(s)
- Phuong H Le
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leo B Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jackson Geary
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ashlyn A Kamin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Devin S Rollins
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Audrey M Hill
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dianne J Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
13
|
Fu X, Tian X, Lin J, Wang Q, Gu L, Wang Z, Chi M, Yu B, Feng Z, Liu W, Zhang L, Li C, Zhao G. Zeolitic Imidazolate Framework-8 Offers an Anti-Inflammatory and Antifungal Method in the Treatment of Aspergillus Fungal Keratitis in vitro and in vivo. Int J Nanomedicine 2024; 19:11163-11179. [PMID: 39502641 PMCID: PMC11537184 DOI: 10.2147/ijn.s480800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fungal keratitis is a serious blinding eye disease. Traditional drugs used to treat fungal keratitis commonly have the disadvantages of low bioavailability, poor dispersion, and limited permeability. Purpose To develop a new method for the treatment of fungal keratitis with improved bioavailability, dispersion, and permeability. Methods Zeolitic Imidazolate Framework-8 (ZIF-8) was formed by zinc ions and 2-methylimidazole linked by coordination bonds and characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Zeta potential. The safety of ZIF-8 on HCECs and RAW 264.7 cells was detected by Cell Counting Kit-8 (CCK-8). Safety evaluation of ZIF-8 on mice corneal epithelium was conducted using the Draize corneal toxicity test. The effects of ZIF-8 on fungal growth, biofilm formation, and hyphae structure were detected by Minimal inhibit concentration (MIC), crystal violet staining, Propidium Iodide (PI) testing, and calcofluor white staining. The anti-inflammatory effects of ZIF-8 on RAW 246.7 cells were evaluated by Quantitative Real-Time PCR Experiments (qPCR) and Enzyme-linked immunosorbent assay (ELISA). Clinical score, Colony-Forming Units (CFU), Hematoxylin-eosin (HE) staining, and immunofluorescence were conducted to verify the therapeutic effect of ZIF-8 on C57BL/6 female mice with fungal keratitis. Results In vitro, ZIF-8 showed outstanding antifungal effects, including inhibiting the growth of Aspergillus fumigatus over 90% at 64 μg/mL, restraining the formation of biofilm, and destroying cell membranes. In vivo, treatment with ZIF-8 reduced corneal fungal load and mitigated neutrophil infiltration in fungal keratitis, which effectively reduced the severity of keratitis in mice and alleviated the infiltration of inflammatory factors in the mouse cornea. In addition, ZIF-8 reduces the inflammatory response by downregulating the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β after Aspergillus fumigatus infection in vivo and in vitro. Conclusion ZIF-8 has a significant anti-inflammatory and antifungal effect, which provides a new solution for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
14
|
Raza A, Wu W. Metal-organic frameworks in oral drug delivery. Asian J Pharm Sci 2024; 19:100951. [PMID: 39493807 PMCID: PMC11530798 DOI: 10.1016/j.ajps.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 11/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.
Collapse
Affiliation(s)
- Aun Raza
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
15
|
Di Matteo V, Di Filippo MF, Ballarin B, Bonvicini F, Iaquinta MR, Panzavolta S, Mazzoni E, Cassani MC. Porous titanium scaffolds modified with Zeolitic Imidazolate Framework (ZIF-8) with enhanced osteogenic activity for the prevention of implant-associated infections. Front Chem 2024; 12:1452670. [PMID: 39268004 PMCID: PMC11390653 DOI: 10.3389/fchem.2024.1452670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, zeolitic imidazolate framework 8 (ZIF-8) was coated on porous Ti6Al4V scaffolds, either bare or previously modified using hydroxyapatite (HA) or HA and gelatin (HAgel), via a growing single-step method in aqueous media using two contact times at 6 h and 24 h. The coated scaffolds termed ZIF-8@Ti, ZIF-8@HA/Ti, and ZIF-8@HAgel/Ti were characterized via scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and molecular plasma-atomic emission spectroscopy (MP-AES). In order to assess the cell proliferation rate, the cytocompatibility of the scaffolds was evaluated in primary osteoblasts (hOBs) using alamarBlue assay, while the osteoconductivity was analyzed in hOBs using a real-time approach, evaluating the expression of secreted phosphoprotein 1 (SPP1). Osteopontin, which is the protein encoded by this gene, represents the major non-collagenous bone protein that binds tightly to HA. The scaffolds were shown to be non-cytotoxic based on hOB proliferation at all time points of analysis (24 h and 72 h). In hOB cultures, the scaffolds induced the upregulation of SPP1 with different fold changes. Some selected scaffolds were assayed in vitro for their antibacterial potential against Staphylococcus epidermidis; the scaffolds coated with ZIF-8 crystals, regardless of the presence of HA and gelatin, strongly inhibited bacterial adhesion to the materials and reduced bacterial proliferation in the culture medium, demonstrating the suitable release of ZIF-8 in a bioactive form. These experiments suggest that the innovative scaffolds, tested herein, provide a good microenvironment for hOB adhesion, viability, and osteoconduction with effective prevention of S. epidermidis adhesion.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | | | - Barbara Ballarin
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Panzavolta
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
17
|
Huang X, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Recent progress on charge transfer engineering in reticular framework for efficient electrochemiluminescence. Anal Bioanal Chem 2024; 416:3859-3867. [PMID: 38613684 DOI: 10.1007/s00216-024-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Electrochemiluminescence (ECL) is a luminescence production technique triggered by electrochemistry, which has emerged as a powerful analytical technique in bioanalysis and clinical diagnosis. During ECL, charge transfer (CT) is an important process between electrochemical excitation and luminescent emission, and dramatically affects the efficiency of exciton generation, playing a pivotal role in the light-emitting properties of nanomaterials. Reticular framework materials with intramolecular/intermolecular interactions offer a promising platform for regulating CT pathways and enhancing luminescence efficiency. Deciphering the role of intramolecular/intermolecular CT processes in reticular framework materials allows for the targeted design and synthesis of emitters with precisely controlled CT properties. This sheds light on the microscopic mechanisms of electro-optical conversion in ECL, propelling advancements in their efficiency and breakthrough applications. This mini-review focuses on recent advancements in engineering CT within reticular frameworks to boost ECL efficiency. We summarized strategies including intra-reticular charge transfer, CT between the metal and ligands, and CT between guest molecules and frameworks within reticular frameworks, which holds promise for developing next-generation ECL devices with enhanced sensitivity and light emission.
Collapse
Affiliation(s)
- Xinzhou Huang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Csizi KS, Steiner M, Reiher M. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nat Commun 2024; 15:5320. [PMID: 38909029 PMCID: PMC11193806 DOI: 10.1038/s41467-024-49594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
Nanoscopic systems exhibit diverse molecular substructures by which they facilitate specific functions. Theoretical models of them, which aim at describing, understanding, and predicting these capabilities, are difficult to build. Viable quantum-classical hybrid models come with specific challenges regarding atomistic structure construction and quantum region selection. Moreover, if their dynamics are mapped onto a state-to-state mechanism such as a chemical reaction network, its exhaustive exploration will be impossible due to the combinatorial explosion of the reaction space. Here, we introduce a "quantum magnifying glass" that allows one to interactively manipulate nanoscale structures at the quantum level. The quantum magnifying glass seamlessly combines autonomous model parametrization, ultra-fast quantum mechanical calculations, and automated reaction exploration. It represents an approach to investigate complex reaction sequences in a physically consistent manner with unprecedented effortlessness in real time. We demonstrate these features for reactions in bio-macromolecules and metal-organic frameworks, diverse systems that highlight general applicability.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
19
|
Momeni Abkharaki A, Ensafi AA. Fabrication of binary metal-organic frameworks of Ni-Mn@ZIFs(Co x·Zn 1-xO) decorated on CF/CuO nanowire for high-performance electrochemical pseudocapacitors. Sci Rep 2024; 14:13482. [PMID: 38866922 PMCID: PMC11169229 DOI: 10.1038/s41598-024-64307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Herein, metal-organic frameworks (MOFs) derived nanoflower-like based binary transition metal (Ni-Mn) are successfully fabricated by a simple synthesis method. The fabricated nanoflower-like structure displays a unique nanoflower-like architecture and internal porous channels constructed by MOF coated on CuO/CF/ZIFs (Cox·Zn1-xO) substrate, which is beneficial for the penetration of electrolyte and electron/ion transportation. The as-prepared CF/CuO/ZIFs (Cox·Zn1-xO)@BMOF(Ni-Mn) electrode materials present significant synergy among transition metal ions, contributing to enhanced electrochemical performances. The as-prepared CF/CuO/ZIFs (Cox·Zn1-xO)@BMOF(Ni-Mn) hybrid nanoflower-like display a high specific capacity of 1249.99 C g-1 at 1 A g-1 and the specific capacitance retention is about 91.74% after 5000 cycles. In addition, the as-assembled CF/CuO/ZIFs (Cox·Zn1-xO)@BMOF(Ni-Mn)//AC asymmetric supercapacitor (ASC) device exhibited a maximum energy density of 21.77 Wh·kg-1 at a power density of 799 W kg-1, and the capacity retention rate after 5000 charge and discharge cycles was 88.52%.
Collapse
Affiliation(s)
- Ali Momeni Abkharaki
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
20
|
Ren X, Shao M, Li X, Xie Z, Zhao J, Wang H, Gao M, Wu D, Ju H, Wei Q. Confinement-enhanced electrochemiluminescence by Ru(dcbpy) 32+-functionalized γ-CD-MOF@COF-LZU1 porous hybrid material as micro-reactor for CYFRA 21-1 detection. Talanta 2024; 273:125959. [PMID: 38537493 DOI: 10.1016/j.talanta.2024.125959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
The improvement of electrochemiluminescence (ECL) performance relies on the electron transfer efficiency between luminophore and coreactant. An ultrasensitive ECL micro-reactor with confinement-enhanced performance was prepared by using the covalent organic framework-LZU1-functionalized metal-organic framework (MOF@COF-LZU1) as a platform to assemble enormous N,N-dibutyl-2-hydroxyethylamine (DBAE) and tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) [Ru(dcbpy)32+] into its pore channels. Compared to individual substances of γ-CD-MOF and COF-LZU1, the synergistic effects can conduce to the enhancement of the intensity, durability and sensitivity of the micro-reactor. Besides, COF-LZU1 can provide a mild environment to accommodate a certain amount of DBAE by concentrating them from the aqueous solution into its hydrophobic cavities and boost the oxidation efficiency of DBAE to generate more DBAE●+ and profited the survival of DBAE●, leading to an improved reaction efficiency with the Ru(dcbpy)32+ intermediate. Thanks to the confinement-enhanced strategy, engineered as high-functioning luminescent materials, Ru@γ-CD-MOF@COF-LZU1 micro-reactors decorated with Au NPs can facilitate electron transfer and capture primary antibodies (Ab1). Moreover, Au-Pd-Pt noble metal aerogels (NMAs) functionalized MoS2 NFs (Au-Pd-Pt NMAs@MoS2 NFs) were chosen as base material due to its large specific surface areas, high porosity, and excellent electrical conductivity. Based on above merits, the sensor demonstrated a sensitive response to CYFRA 21-1 detection in a linear concentration gradient from 10 fg/mL to 50 ng/mL with a detection limit of 0.0055 pg/mL (S/N = 3). The COF-LZU1 decorated ECL micro-reactors were constructed based on the signal amplification strategies to realize accurate CYFRA 21-1 detection.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyue Shao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofei Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zuoxun Xie
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinxiu Zhao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Huan Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min Gao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Daxue Rd, Changqing District, Jinan, Shandong 250353, China.
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Huangxian Ju
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
21
|
Cheng H, Li J, Meng T, Shu D. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308804. [PMID: 38073335 DOI: 10.1002/smll.202308804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Indexed: 05/18/2024]
Abstract
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Jianping Li
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510800, P. R. China
| | - Tao Meng
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Alizadeh Sani M, Khezerlou A, McClements DJ. Zeolitic imidazolate frameworks (ZIFs): Advanced nanostructured materials to enhance the functional performance of food packaging materials. Adv Colloid Interface Sci 2024; 327:103153. [PMID: 38604082 DOI: 10.1016/j.cis.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Christodoulou I, Patriarche G, Serre C, Boissiére C, Gref R. Advanced Characterization Methodology to Unravel the Biodegradability of Metal-Organic Framework Nanoparticles in Extremely Diluted Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14296-14307. [PMID: 38452344 DOI: 10.1021/acsami.3c18958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Porous iron(III) carboxylate metal-organic frameworks (MIL-100; MIL stands for Material of Institute Lavoisier) of submicronic size (nanoMOFs) have attracted a growing interest in the field of drug delivery due to their high drug payloads, excellent entrapment efficiencies, biodegradable character, and poor toxicity. However, only a few studies have dealt with the nanoMOF degradation mechanism, which is key to their biological applications. Complementary methods have been used here to investigate the degradation mechanism of Fe-based nanoMOFs under neutral or acidic conditions and in the presence of albumin. High-resolution STEM-HAADF coupled with energy-dispersive X-ray spectroscopy enabled the monitoring of the crystalline organization and elemental distribution during degradation. NanoMOFs were also deposited onto silicon substrates by dip-coating, forming stable thin films of high optical quality. The mean film thickness and structural changes were further monitored by IR ellipsometry, approaching the "sink conditions" occurring in vivo. This approach is essential for the successful design of biocompatible nano-vectors under extreme diluted conditions. It was revealed that while the presence of a protein coating layer did not impede the degradation process, the pH of the medium in contact with the nanoMOFs played a major role. The degradation of nanoMOFs occurred to a larger extent under neutral conditions, rapidly and homogeneously within the crystalline matrices, and was associated with the departure of their constitutive organic ligand. Remarkably, the nanoMOFs' particles maintained their global morphology during degradation.
Collapse
Affiliation(s)
- Ioanna Christodoulou
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS UMR 8214, 91405 Orsay, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay, CNRS UMR 9001, 91120 Palaiseau, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Cédric Boissiére
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, 75005 Paris, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS UMR 8214, 91405 Orsay, France
| |
Collapse
|
24
|
He L, Wang L, He Z, Pang CH, Tang B, Wu A, Li J. Strategies for utilizing covalent organic frameworks as host materials for the integration and delivery of bioactives. MATERIALS HORIZONS 2024; 11:1126-1151. [PMID: 38112198 DOI: 10.1039/d3mh01492d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs), a new and developing class of porous framework materials, are considered a type of promising carrier for the integration and delivery of bioactives, which have diverse fascinating merits, such as a large specific surface area, designable and specific porosity, stable and orderly framework structure, and various active sites. However, owing to the significant differences among bioactives (including drugs, proteins, nucleic acid, and exosomes), such as size, structure, and physicochemical properties, the interaction between COFs and bioactives also varies. In this review, we firstly summarize three strategies for the construction of single or hybrid COF-based matrices for the delivery of cargos, including encapsulation, covalent binding, and coordination bonding. Besides, their smart response release behaviors are also categorized. Subsequently, the applications of cargo@COF biocomposites in biomedicine are comprehensively summarized, including tumor therapy, central nervous system (CNS) modulation, biomarker analysis, bioimaging, and anti-bacterial therapy. Finally, the challenges and opportunities in this field are briefly discussed.
Collapse
Affiliation(s)
- Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Le Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Cheng Heng Pang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
25
|
El-Newehy MH, Aldalbahi A, Thamer BM, Abdulhameed MM. Preparation of photoluminescent nano-biocomposite nacre from graphene oxide and polylactic acid. LUMINESCENCE 2024; 39:e4688. [PMID: 38444125 DOI: 10.1002/bio.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Nano-biocomposites of inorganic and organic components wereprepared to produce long-persistent phosphorescent artificial nacre-like materials. Biodegradable polylactic acid (PLA), graphene oxide (GO), and nanoparticles (13-20 nm) of lanthanide-doped aluminate pigment (NLAP) were used in a simple production procedure of an organic/inorganic hybrid nano-biocomposite. Both polylactic acid and GO nanosheets were chemically modified to form covalent and hydrogen bonding. The high toughness, good tensile strength, and great endurance of those bonds were achieved by their interactions at the interfaces. Long-persistent and reversible photoluminescence was shown by the prepared nacre substrates. Upon excitation at 365 nm, the nacre substrates generated an emission peak at 517 nm. When ultraviolet light was shone on luminescent nacres, they displayed a bright green colour. The high superhydrophobicity of the generated nacres was obtained without altering their mechanical characteristics.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
26
|
Chen Q, Zhang XN, Ding GY, Ma YF, Zhou MS, Zhang Y. Preparation and biological evaluation of antibody targeted metal-organic framework drug delivery system (TDDS) in Her2 receptor-positive cells. Talanta 2024; 269:125380. [PMID: 37995639 DOI: 10.1016/j.talanta.2023.125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
In this study, we designed and prepared a trastuzumab-coupled drug delivery system with pH response characteristics using mesoporous zeolitic imidazolate framework-8 (ZIF-8) as the carrier, Trastuzumab@ZIF-8@DOX. As results, the targeted drug delivery system (TDDS) ultimately showed high drug loading and good biocompatibility. The cumulative curve of drug release indicated that the early leakage levels were low under neutral pH conditions. However, under acidic pH conditions, there was an effective enhancement in drug release, indicating the presence of an explicit pH-triggered drug release mechanism. The results indicate that the prepared nanoparticles have the potential to serve as drug delivery systems, as they can release the loaded drug in a controlled manner. The results of cellular uptake tests showed that the uptake of the nanoparticles was greatly enhanced by the internalization mediated by the HER2 antibody. This finding indicates that the prepared nanoparticles can selectively target cancer cells that overexpress HER2. When the doxorubicin dose was 5 μg/ml, the survival rate of SK-BR-3 cells (cancer cells) was 47.75 %, and the survival rate of HaCaT cells (healthy cells) was 75.25 % when co-cultured with both cells. The therapeutic efficacy of Trastuzumab@ZIF-8@DOX was assessed on BALB/c nude mice to validate its potential as an effective drug delivery system for tumor inhibition in vivo. In conclusion, these findings demonstrate the specificity-targeted and pH-responsive nature of this smart drug delivery system, highlighting its promising prospects for efficient and controllable cancer treatment applications.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, PR China
| | - Xiao-Nan Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, PR China
| | - Guo-Yu Ding
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, PR China
| | - Yu-Fei Ma
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, PR China
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, Science and Experiment Center, Shenyang Medical College, Shenyang, 110034, PR China.
| | - Yang Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, PR China.
| |
Collapse
|
27
|
Wang J, Li X, Yi G, Teong SP, Chan SP, Zhang X, Zhang Y. Noncrystalline Zeolitic Imidazolate Frameworks Tethered with Ionic Liquids as Catalysts for CO 2 Conversion into Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10277-10284. [PMID: 38361486 DOI: 10.1021/acsami.3c19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Noncrystalline zeolitic imidazolate frameworks (ZIFs) tethered with ionic liquids (ILs) were successfully employed as catalysts for mild CO2 conversion into cyclic carbonates for the first time. Notably, noncrystalline ZIFs exhibit outstanding catalytic performance in terms of activity, stability, and substrate suitability. Z3 was obtained through the simultaneous incorporation of a boronic acid group and ILs into its ZIF framework and exhibited a superior catalytic activity. A reaction mechanism for the propylene oxide-CO2 cycloaddition has been proposed, which integrates experimental findings with density functional theory calculations. The results indicate that zinc, ILs, and boronic acid play crucial roles in achieving high activity. Zinc and ILs are identified as key contributors to epoxide activation and ring opening, while boronic acid plays a crucial role in stabilizing the turnover frequency-determining transition states. The simplicity of this ZIF synthesis approach, combined with the high activity, stability, and versatility of the products, facilitates practical and efficient conversion of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xiukai Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Guangshun Yi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Siew Ping Teong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Shook Pui Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yugen Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Singapore
| |
Collapse
|
28
|
Wang Y, Wu X, Zhou Z, Feng J, Li M, Chen J, Yan W. Selective Adsorption Behavior of Sulfuric Acid Oxidized and Doped Conjugated Microporous Poly(aniline)s toward Lead Ions in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38329721 DOI: 10.1021/acs.langmuir.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The coexistence of lead, zinc, and copper ions in wastewater constitutes an environmental challenge of pressing concern. This research delves into the preparation of innovative oxidation-doped conjugated microporous poly(aniline) frameworks, exploring their prospective efficacy in regulating lead ion adsorption from aqueous solutions. H2SO4-CMPTA demonstrates the capability to reach adsorption equilibrium within 15 min at a lead concentration of 50 ppm. Even at a lead concentration of 20 ppm, it still efficaciously attenuates these levels to sub-10 ppb, a value surpassing extant standard. H2SO4-CMPTA retains over 78.8% adsorption efficiency after six cycles. Analytical characterization coupled with computational calculations suggests that sulfate-coordinated nitrogen cationic structure plays a crucial role in adsorption. A deeper investigation reveals the cardinal role of electrostatic attraction and exclusive chelation adsorption underpinning the efficient capture of lead ions by doped sulfate ions. Intriguingly, in a mixed heavy metal solution containing lead, zinc, and copper ions, H2SO4-CMPTA exhibits an initial predilection toward zinc ions, yet an eventual ion-exchange adsorption gravitating toward lead ions was discerned, governed by the latter's superior binding energy. Our study elucidates a promising material as an efficacious tool for the remediation of aquatic environments tainted with lead contaminants.
Collapse
Affiliation(s)
- Yubing Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoxi Wu
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ziyi Zhou
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiangtao Feng
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
29
|
Gomez-Romero P, Pokhriyal A, Rueda-García D, Bengoa LN, González-Gil RM. Hybrid Materials: A Metareview. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8-27. [PMID: 38222940 PMCID: PMC10783426 DOI: 10.1021/acs.chemmater.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024]
Abstract
The field of hybrid materials has grown so wildly in the last 30 years that writing a comprehensive review has turned into an impossible mission. Yet, the need for a general view of the field remains, and it would be certainly useful to draw a scientific and technological map connecting the dots of the very different subfields of hybrid materials, a map which could relate the essential common characteristics of these fascinating materials while providing an overview of the very different combinations, synthetic approaches, and final applications formulated in this field, which has become a whole world. That is why we decided to write this metareview, that is, a review of reviews that could provide an eagle's eye view of a complex and varied landscape of materials which nevertheless share a common driving force: the power of hybridization.
Collapse
Affiliation(s)
- Pedro Gomez-Romero
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Anukriti Pokhriyal
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Rueda-García
- Napptilus
Battery Labs, Tech Barcelona
01, Plaça de Pau Vila, 1, Oficina 2B, 08039 Barcelona, Spain
| | - Leandro N. Bengoa
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Rosa M. González-Gil
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
30
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
31
|
Maurya A, Marvaniya K, Dobariya P, Mane MV, Tothadi S, Patel K, Kushwaha S. Biomimetic Helical Hydrogen Bonded Organic Framework Membranes for Efficient Uranium Recovery from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306824. [PMID: 37975153 DOI: 10.1002/smll.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Inspired by the uranyl-imidazole interactions via nitrogen's (N's) of histidine residues in single helical protein assemblies with open framework geometry that allows through migration/coordination of metal ions. Here, preliminary components of a stable hydrogen-bonded organic framework (HOF) are designed to mimic the stable single helical open framework with imidazole residues available for Uranium (U) binding. The imidazolate-HOF (CSMCRI HOF2-S) is synthesized with solvent-directed H-bonding in 1D array and tuned hydrophobic CH-π interactions leading to single helix pattern having enhanced hydrolytic stability. De-solvation led CSMCRI HOF2-P with porous helical 1D channels are transformed in a freestanding thin film that showcased improved mass transfer and adsorption of uranyl carbonate. CSMCRI HOF2-P thin film can effectively extract ≈14.8 mg g-1 in 4 weeks period from natural seawater, with > 1.7 U/V (Uranium to Vanadium ratio) selectivity. This strategy can be extended for rational designing of hydrolytically stable, U selective HOFs to realize the massive potential of the blue economy toward sustainable energy.
Collapse
Affiliation(s)
- Ashish Maurya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karan Marvaniya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Dobariya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ketan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpi Kushwaha
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
32
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
33
|
Wu J, Shi N, Li N, Wang Z. Dual-Ligand ZIF-8 Bearing the Cyano Group for Efficient and Selective Uranium Capture from Seawater. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46952-46961. [PMID: 37774146 DOI: 10.1021/acsami.3c09809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Uranium extraction from seawater is a potential technique that will change the world. Adsorption capacity, selectivity, and antibacterial ability for high-performance uranium adsorbents remain the major challenges. In this study, a dual-ligand zeolitic imidazolate framework 8 (ZIF-8) decorated with cyano groups (ZIF-8-CN) is prepared via a facile blend strategy at room temperature. Owing to the abundant mesopores and nitrogen functional groups, ZIF-8-CN shows an extremely high uranium uptake of 1000 mg/g at pH = 6, which is 2.42 times that of pristine ZIF-8. Noteworthily, ZIF-8-CN possesses a 16.2 mg/g uranium adsorption in natural seawater within 28 days, and the distribution coefficient (Kd = 3.25 × 106 mL/g) is far greater than that for other coexisting metal ions, demonstrating a marked preference for uranyl ions. Except for the coordination between uranium and nitrogen in imidazole, the cyano groups provide additional adsorption sites and preferentially bind to uranyl, thereby strengthening the affinity for uranyl. Notably, ZIF-8-CN displays ultrastrong antimicrobial ability against both Escherichia coli and Staphylococcus aureus, which is greatly desired for the scale-up marine tests. Our study demonstrates the high potential of ZIF-8-CN in uranium capture and provides a wide scope for the application of mixed-ligand MOFs.
Collapse
Affiliation(s)
- Jiakun Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Nan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
34
|
Ding J, Deng X, Fan J, Wang Y, Li Z, Liang Q. Embedding CsPbBr 3 Quantum Dots into an In 2O 3 Nanotube for Selective Photocatalytic CO 2 Reduction to Hydrocarbon Fuels. Inorg Chem 2023; 62:16493-16502. [PMID: 37750864 DOI: 10.1021/acs.inorgchem.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Halide perovskite quantum dots (QDs) are one of the most prospective candidates for photocatalytic CO2 reduction, but their photocatalytic performances are far from satisfactory due to structural instability and severe charge recombination. In this study, we demonstrated a CsPbBr3 QDs/In2O3 hierarchical nanotube (CPB/IO) for efficient CO2 conversion, in which CsPbBr3 QDs were well-dispersed on the In-MOF-derived In2O3 nanotube by a facile self-assembly process. The optimized CPB/IO catalyst displayed an enhanced photocatalytic CO2 performance with a (CO + CH4) generation rate of 16.37 μmol·g-1·h-1 upon simulated solar illumination without a photosensitizer and sacrificial agent, which is 3.59 times stronger than that of pristine CsPbBr3 QDs (4.56 μmol·g-1·h-1). Besides, the modified CsPbBr3 QD catalyst exhibited an obvious increase of CH4 selectivity and excellent stability after four cycles. The unique zero-dimensional (0D)/one-dimensional (1D) heterostructure and matching band potentials between CsPbBr3 and In2O3 supply an intimate interfacial contact, numerous active sites, and effective charge transfer for CO2 photoreduction. This work can inspire the formation of novel halide-perovskite-involving photocatalysts for solar fuel formation.
Collapse
Affiliation(s)
- Jiawen Ding
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xiuzheng Deng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jingshan Fan
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yanan Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qian Liang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, CNPC-CZU Innovation Alliance, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
35
|
Yu X, Andreo J, Walden M, Del Campo JF, Basabe-Desmonts L, Benito-Lopez F, Burg TP, Wuttke S. The Importance of Dean Flow in Microfluidic Nanoparticle Synthesis: A ZIF-8 Case Study. SMALL METHODS 2023:e2300603. [PMID: 37772633 DOI: 10.1002/smtd.202300603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The Dean Flow, a physics phenomenon that accounts for the impact of channel curvature on fluid dynamics, has great potential to be used in microfluidic synthesis of nanoparticles. This study explores the impact of the Dean Flow on the synthesis of ZIF-8 particles. Several variables that influence the Dean Equation (the mathematical expression of Dean Flow) are tested to validate the applicability of this expression in microfluidic synthesis, including the flow rate, radius of curvature, channel cross sectional area, and reagent concentration. It is demonstrated that the current standard of reporting, providing only the flow rate and crucially not the radius of curvature, is an incomplete description that will invariably lead to irreproducible syntheses across different laboratories. An alternative standard of reporting is presented and it is demonstrated how the sleek and simple math of the Dean Equation can be used to precisely tune the final dimensions of high quality, monodisperse ZIF-8 nanoparticles between 40 and 700 nm.
Collapse
Affiliation(s)
- Xiangjiang Yu
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Madeline Walden
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
| | - Javier F Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Lourdes Basabe-Desmonts
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain
| | - Fernando Benito-Lopez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Thomas P Burg
- Department of Electrical Engineering and Information Technology, The Darmstadt University of Technology, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Vizcaya, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
36
|
Li WJ, Li YM, Ren H, Ji CY, Cheng L. Improving the Bioactivity and Stability of Embedded Enzymes by Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43580-43590. [PMID: 37672761 DOI: 10.1021/acsami.3c09459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
De novo embedding enzymes within reticular chemistry materials have shown the enhancement of physical and chemical stability for versatile catalytic reactions. Compared to metal-organic frameworks (MOFs), covalent organic frameworks (COFs) are usually considered to be the more superior host of enzymes because of their large channels with low diffusion barriers, outstanding chemical/thermal stability, and metal-free nature. However, detailed investigations on the comparison of COFs and MOFs in enhancing biocatalytic performance have not been explored. Here, we de novo encapsulated enzymes within two COFs via a mechanochemical strategy, which avoided the extreme synthetic conditions of COFs and highly maintained the biological activities of the embedded enzymes. The enzymes@COFs biocomposites exhibited a much higher activity (3.4-14.7 times higher) and enhanced stability than those in MOFs (ZIF-8, ZIF-67, HKUST-1, MIL-53, and CaBDC), and the rate parameter (kcat/Km) of enzyme@COFs was 41.3 times higher than that of enzyme@ZIF-8. Further explorations showed that the conformation of enzymes inside MOFs was disrupted, owing to the harmful interfacial interactions between enzymes and metal ions as confirmed by ATR-FTIR, fluorescence spectroscopy, and XPS data. In contrast, enzymes that were embedded in metal-free COFs highly preserved the natural conformation of free enzymes. This study provides a better understanding of the interfacial interactions between reticular supports and enzymes, which paves a new road for optimizing the bioactivities of immobilized enzymes.
Collapse
Affiliation(s)
- Wen-Jing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
37
|
Di Matteo V, Di Filippo MF, Ballarin B, Gentilomi GA, Bonvicini F, Panzavolta S, Cassani MC. Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections. J Funct Biomater 2023; 14:472. [PMID: 37754886 PMCID: PMC10532010 DOI: 10.3390/jfb14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.
Collapse
Affiliation(s)
- Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Center for Industrial Research—Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.)
- Center for Industrial Research—Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy; (V.D.M.); (B.B.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST–ICIR), Alma Mater Studiorum—University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
38
|
Andreo J, Balsa AD, Tsang MY, Sinelshchikova A, Zaremba O, Wuttke S, Chin JM. Alignment of Breathing Metal-Organic Framework Particles for Enhanced Water-Driven Actuation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6943-6952. [PMID: 37719036 PMCID: PMC10500993 DOI: 10.1021/acs.chemmater.3c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Indexed: 09/19/2023]
Abstract
As the majority of known metal-organic frameworks (MOFs) possess anisotropic crystal lattices and thus anisotropic physicochemical properties, a pressing practical challenge in MOF research is the establishment of robust and simple processing methods to fully harness the anisotropic properties of the MOFs in various applications. We address this challenge by applying an E-field to precisely align MIL-88A microcrystals and generate MIL-88A@polymer films. Thereafter, we demonstrate the impact of MOF crystal alignment on the actuation properties of the films as a proof of concept. We investigate how different anisotropies of the MIL-88A@polymer films, specifically, crystal anisotropy, particle alignment, and film composition, can lead to the synergetic enhancement of the film actuation upon water exposure. Moreover, we explore how the directionality in application of the external stimuli (dry/humid air stream, water/air interface) affects the direction and the extent of the MIL-88A@polymer film movement. Apart from the superior water-driven actuation properties of the developed films, we demonstrate by dynamometer measurements the higher degree of mechanical work performed by the aligned MIL-88A@polymer films with the preserved anisotropies compared to the unaligned films. The insights provided by this work into anisotropic properties displayed by aligned MIL-88A@polymer films promise to translate crystal performance benefits measured in laboratories into real-world applications. We anticipate that our work is a starting point to utilize the full potential of anisotropic properties of MOFs.
Collapse
Affiliation(s)
- Jacopo Andreo
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Alejandra Durán Balsa
- Faculty
of Chemistry, Department of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Min Ying Tsang
- Faculty
of Chemistry, Department of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Anna Sinelshchikova
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Orysia Zaremba
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Stefan Wuttke
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Jia Min Chin
- Faculty
of Chemistry, Department of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| |
Collapse
|
39
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
41
|
Leng R, Sun Y, Wang C, Qu Z, Feng R, Zhao G, Han B, Wang J, Ji Z, Wang X. Design and Fabrication of Hypercrosslinked Covalent Organic Adsorbents for Selective Uranium Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [DOI: doi.org/10.1021/acs.est.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Ran Leng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yichen Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chenzhan Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhao Qu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Rui Feng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guixia Zhao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bing Han
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhuoyu Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
42
|
Lin B, Dai R, Liu Z, Li W, Bai J, Zhang G, Lv R. Dual-targeting lanthanide-ICG-MOF nanoplatform for cancer Theranostics: NIR II luminescence imaging guided sentinel lymph nodes surgical navigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112731. [PMID: 37331158 DOI: 10.1016/j.jphotobiol.2023.112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Sentinel lymph node imaging is important for breast tumor staging and prediction of postoperative metastasis. However, clinical sentinel lymph node imaging has limitations such as low specificity, low contrast, and short retention time. The combination of bio-conjugates chemistry and luminescence technology may achieve the specific targeting effect. In this research, we designed a dual-targeting composite nanoprobe (∼50 nm) using a metal-organic framework (MOF) as carrier, loaded with lanthanide and ICG, and combined with hyaluronic acid and folic acid to detect metastatic lymph nodes. The coupled hyaluronic acid and folic acid can target to the tumor cells and dentritic cells with a dual-targeting effect. The FA-HA/ZIF-8@ICG nanoprobes can accumulate rapidly in sentinel lymph node with a stronger luminescence intensity (1.6 times) than that of normal popliteal lymph nodes in vivo, thus distinguish metastatic sentinel lymph node from normal effectively. Furthermore, due to the MOF carrier, the integrated lanthanide and near-infrared dye by transferring the absorbed excitation energy from ICG to Nd3+ can enhance the signal-to-background ratio of NIR II imaging and have long retention time in vivo imaging. Finally, the FA-HA/ICG@Ln@ZIF-8 nanoplatform increased the penetration depth and contrast of imaging, prolonged the retention time, and achieved the sentinel lymph nodes surgical resection. This study has important implications for lymph node imaging and surgical navigation.
Collapse
Affiliation(s)
- Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Ruiyi Dai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhenghao Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jingwen Bai
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China
| | - Guojun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| |
Collapse
|
43
|
Oh JY, Choi E, Jana B, Go EM, Jin E, Jin S, Lee J, Bae JH, Yang G, Kwak SK, Choe W, Ryu JH. Protein-Precoated Surface of Metal-Organic Framework Nanoparticles for Targeted Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300218. [PMID: 36864579 DOI: 10.1002/smll.202300218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6 -based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinhyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Hoon Bae
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Gyeongseok Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
44
|
Pappas NS, Mason JA. Effect of modulator ligands on the growth of Co 2(dobdc) nanorods. Chem Sci 2023; 14:4647-4652. [PMID: 37152265 PMCID: PMC10155910 DOI: 10.1039/d2sc06869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Control over the size, shape, uniformity, and external surface chemistry of metal-organic framework nanocrystals is important for a wide range of applications. Here, we investigate how monotopic modulators that mimic the coordination mode of native bridging ligands affect the growth of anisotropic Co2(dobdc) (dobdc4- = 2,5-dihydroxy-1,4-benzenedicarboxylic acid) nanorods. Through a combination of transmission electron microscopy (TEM) and nuclear magnetic resonance spectroscopy (NMR) studies, nanorod diameter was found to be strongly correlated to the acidity of the modulator and to the degree of modulator incorporation into the nanorod structure. Notably, highly acidic modulators allowed for the preparation of sub-10 nm nanorods, a previously elusive size regime for the M2(dobdc) family. More broadly, this study provides new insights into the mechanism of modulated growth of metal-organic framework nanoparticles.
Collapse
Affiliation(s)
- Nina S Pappas
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
45
|
Hong Y, Fang Q, Bai T, Zhao P, Han Y, Lin Q. Cascade reaction triggering and photothermal AuNPs@MIL MOFs doped intraocular lens for enhanced posterior capsular opacification prevention. J Nanobiotechnology 2023; 21:134. [PMID: 37095517 PMCID: PMC10127092 DOI: 10.1186/s12951-023-01897-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery. Present strategies can't meet the clinical needs of long-term prevention. This research reports a novel intraocular lens (IOL) bulk material with high biocompatibility and synergistic therapy. Gold nanoparticles (AuNPs) doped MIL-101-NH2 metal-organic frameworks (MOFs) (AuNPs@MIL) was firstly fabricated via in situ reductions. Then the functionalized MOFs were uniformly mixed with glycidyl methacrylate (GMA) and 2-(2-ethoxyethoxy) ethyl acrylate (EA) to form the nanoparticle doped polymer (AuNPs@MIL-PGE), and which was used to fabricate IOL bulk materials. The materials' optical and mechanical properties with different mass contents of nanoparticles are investigated. Such bulk functionalized IOL material could efficiently remove residual human lens epithelial cells (HLECs) in the capsular bag in the short term, and can prevent PCO on demand in the long run by near-infrared illumination (NIR) action. In vivo and in vitro experiments demonstrate the biosafety of the material. The AuNPs@MIL-PGE exhibits excellent photothermal effects, which could inhibit cell proliferation under NIR and doesn't cause pathological effects on the surrounding tissues. Such functionalized IOL can not only avoid the side effects of the antiproliferative drugs but also realize the enhanced PCO prevention in clinical practice.
Collapse
Affiliation(s)
- Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuna Fang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Bai
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuemei Han
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
46
|
Zhang J, Li Y, Teng L, Cao Y, Hu X, Fang G, Wang S. A molecularly imprinted fluorescence sensor for sensitive detection of tetracycline using nitrogen-doped carbon dots-embedded zinc-based metal-organic frameworks as signal-amplifying tags. Anal Chim Acta 2023; 1251:341032. [PMID: 36925300 DOI: 10.1016/j.aca.2023.341032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Tetracycline (TC) residues not only endanger human health, but also are detrimental to the sustainable development of aquaculture and animal husbandry. Herein, a novel fluorescence sensor with high sensitivity and selectivity was developed based on nitrogen-doped carbon dots embedded in zinc-based metal-organic frameworks and incorporating molecularly imprinted polymer (ZIF-8&N-CDs@MIP). The physical and chemical properties of the ZIF-8&N-CDs@MIP had been characterized by SEM, TEM, FTIR, XRD, BET, TGA, etc. Under optimal conditions, the limit of detection (LOD) of the novel sensor was 0.045 μg mL-1 with the concentration of TC in the range of 0.1-4.0 μg mL-1. In addition, the prepared imprinted polymers showed superior adsorption selectivity to tetracycline compared with non-imprinted polymers, and the quenching mechanism of ZIF-8&N-CDs@MIP was demonstrated to be attributed to the inner filter effect (IFE). This work provided an effective and reliable method for the specific detection of tetracycline and was successfully applied in milk and egg samples with satisfactory recoveries (80.67-95.22%).
Collapse
Affiliation(s)
- Jinni Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Longhao Teng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
47
|
Cheng Z, Zhang P, Wang Z, Jiang H, Wang W, Liu D, Wang L, Zhu G, Zou X. A Bipyridyl Covalent Organic Framework with Coordinated Cu(I) for Membrane C 3 H 6 /C 3 H 8 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300438. [PMID: 37029586 DOI: 10.1002/smll.202300438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic frameworks (COFs) mixed matrix membranes (MMMs) combining individual attributes of COFs and polymers are promising for gas separation. However, applying COF MMMs for propylene/propane (C3 H6 /C3 H8 ) separation remains a big challenge due to COF inert pores and C3 H6 /C3 H8 similar molecular sizes. Herein, the designed synthesis of a Cu(I) coordinated COF for membrane C3 H6 /C3 H8 separation is reported. A platform COF is synthesized from 5,5'-diamino-2,2'-bipyridine and 2-hydroxybenzene-1,3,5-tricarbaldehyde. This COF possesses a porous 2D structure with high crystallinity. Cu(I) is coordinated to bipyridyl moieties in the COF framework, acting as recognizable sites for C3 H6 gas, as shown by the adsorption measurements. Cu(I) COF is blended with 6FDA-DAM polymer to yield MMMs. This COF MMM exhibits selective and permeable separation of C3 H6 from C3 H8 (C3 H6 permeability of 44.7 barrer, C3 H6 /C3 H8 selectivity of 28.1). The high porosity and Cu(I) species contribute to the great improvement of separation performance by virtue of 2.3-fold increase in permeability and 2.2-fold increase in selectivity compared to pure 6FDA-DAM. The superior performance to those of most relevant reported MMMs demonstrates that the Cu(I) coordinated COF is an excellent candidate material for C3 H6 separation membranes.
Collapse
Affiliation(s)
- Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Pinyue Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Dandan Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lina Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
48
|
Liu J, Rickel A, Smith S, Hong Z, Wang C. "Non-cytotoxic" doses of metal-organic framework nanoparticles increase endothelial permeability by inducing actin reorganization. J Colloid Interface Sci 2023; 634:323-335. [PMID: 36535168 PMCID: PMC9840705 DOI: 10.1016/j.jcis.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cytotoxicity of nanoparticles is routinely characterized by biochemical assays such as cell viability and membrane integrity assays. However, these approaches overlook cellular biophysical properties including changes in the actin cytoskeleton, cell stiffness, and cell morphology, particularly when cells are exposed to "non-cytotoxic" doses of nanoparticles. Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs), a member of metal-organic framework family, has received increasing interest in various fields such as environmental and biomedical sciences. ZIF-8 NPs may enter the blood circulation system after unintended oral and inhalational exposure or intended intravenous injection for diagnostic and therapeutic applications, yet the effect of ZIF-8 NPs on vascular endothelial cells is not well understood. Here, the biophysical impact of "non-cytotoxic" dose ZIF-8 NPs on human aortic endothelial cells (HAECs) is investigated. We demonstrate that "non-cytotoxic" doses of ZIF-8 NPs, pre-defined by a series of biochemical assays, can increase the endothelial permeability of HAEC monolayers by causing cell junction disruption and intercellular gap formation, which can be attributed to actin reorganization within adjacent HAECs. Nanomechanical atomic force microscopy and super resolution fluorescence microscopy further confirm that "non-cytotoxic" doses of ZIF-8 NPs change the actin structure and cell morphology of HAECs at the single cell level. Finally, the underlying mechanism of actin reorganization induced by the "non-cytotoxic" dose ZIF-8 NPs is elucidated. Together, this study indicates that the "non-cytotoxic" doses of ZIF-8 NPs, intentionally or unintentionally introduced into blood circulation, may still pose a threat to human health, considering increased endothelial permeability is essential to the progression of a variety of diseases. From a broad view of cytotoxicity evaluation, it is important to consider the biophysical properties of cells, since they can serve as novel and more sensitive markers to assess nanomaterial's cytotoxicity.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Alex Rickel
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Zhongkui Hong
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA; Mechanical Engineering, Texas Tech University, 805 Boston Ave, Lubbock, TX 79409, USA.
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
49
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
50
|
Li WY, Wan JJ, Kan JL, Wang B, Song T, Guan Q, Zhou LL, Li YA, Dong YB. A biodegradable covalent organic framework for synergistic tumor therapy. Chem Sci 2023; 14:1453-1460. [PMID: 36794183 PMCID: PMC9906711 DOI: 10.1039/d2sc05732h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023] Open
Abstract
Stimulus-responsive biodegradable nanocarriers with tumor-selective targeted drug delivery are critical for cancer therapy. Herein, we report for the first time a redox-responsive disulfide-linked porphyrin covalent organic framework (COF) that can be nanocrystallized by glutathione (GSH)-triggered biodegradation. After loading 5-fluorouracil (5-Fu), the generated nanoscale COF-based multifunctional nanoagent can be further effectively dissociated by endogenous GSH in tumor cells, releasing 5-Fu efficiently to achieve selective chemotherapy on tumor cells. Together with the GSH depletion-enhanced photodynamic therapy (PDT), an ideal synergistic tumor therapy for MCF-7 breast cancer via ferroptosis is achieved. In this research, the therapeutic efficacy was significantly improved in terms of enhanced combined anti-tumor efficiency and reduced side effects by responding to significant abnormalities such as high concentrations of GSH in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jing-Jing Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Tian Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|