1
|
Bunyatova U, Dogan M, Tekin E, Ferhanoğlu O. Ultra-stable nano-micro bubbles in a biocompatible medium for safe delivery of anti-cancer drugs. Sci Rep 2024; 14:5321. [PMID: 38438442 PMCID: PMC10912087 DOI: 10.1038/s41598-024-55654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
We conducted a series of experimental investigations to generate laser-stimulated millimeter bubbles (MBs) around silver nanoparticles (AgNPs) and thoroughly examined the mechanism of bubble formation within this nanocomposite system. One crucial aspect we explored was the lifetime and kinetics of these bubbles, given that bubbles generated by plasmonic nanoparticles are known to be transient with short durations. Surprisingly, our findings revealed that the achieved lifetime of these MBs extended beyond seven days. This impressive longevity far surpasses what has been reported in the existing literature. Further analysis of the experimental data uncovered a significant correlation between bubble volume and its lifetime. Smaller bubbles demonstrated longer lifetimes compared to larger ones, which provided valuable insights for future applications. The experimental results not only confirmed the validity of our model and simulations but also highlighted essential characteristics, including extended lifetime, matching absorption coefficients, adherence to physical boundary conditions, and agreement with simulated system parameters. Notably, we generated these MBs around functionalized AgNPs in a biocompatible nanocomposite medium by utilizing low-power light excitation. By readily binding potent cancer drugs to AgNPs through simple physical mixing, these medications can be securely encapsulated within bubbles and precisely guided to targeted locations within the human body. This capability to deliver drugs directly to the tumor site, while minimizing contact with healthy tissues, can lead to improved treatment outcomes and reduced side effects, significantly enhancing the quality of life for cancer patients.
Collapse
Affiliation(s)
- Ulviye Bunyatova
- Biomedical Engineering Department, Engineering Facility, Baskent University, Ankara, Turkey.
| | - Mustafa Dogan
- Department of Control and Automation Engineering, Faculty of Electrical-Electronics Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Engincan Tekin
- Department of Electronics and Communications Engineering, Faculty of Electrical-Electronics Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Onur Ferhanoğlu
- Department of Electronics and Communications Engineering, Faculty of Electrical-Electronics Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
3
|
Rundén-Pran E, Mariussen E, El Yamani N, Elje E, Longhin EM, Dusinska M. The colony forming efficiency assay for toxicity testing of nanomaterials—Modifications for higher-throughput. FRONTIERS IN TOXICOLOGY 2022; 4:983316. [PMID: 36157975 PMCID: PMC9489936 DOI: 10.3389/ftox.2022.983316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
To cope with the high number of nanomaterials manufactured, it is essential to develop high-throughput methods for in vitro toxicity screening. At the same time, the issue with interference of the nanomaterial (NM) with the read-out or the reagent of the assay needs to be addressed to avoid biased results. Thus, validated label-free methods are urgently needed for hazard identification of NMs to avoid unintended adverse effects on human health. The colony forming efficiency (CFE) assay is a label- and interference-free method for quantification of cytotoxicity by cell survival and colony forming efficiency by CFE formation. The CFE has shown to be compatible with toxicity testing of NMs. Here we present an optimized protocol for a higher-throughput set up.
Collapse
Affiliation(s)
- Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
- *Correspondence: Elise Rundén-Pran,
| | - Espen Mariussen
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
- Norwegian Institute of Public Health, Department for Environmental Chemistry, Department of Air Quality and Noise, Oslo, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - Elisabeth Elje
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
- University of Oslo, Faculty of Medicine, Institute of Basic Medical Sciences, Department of Molecular Medicine, Oslo, Norway
| | - Eleonora Marta Longhin
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
4
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
5
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
6
|
Dusinska M, Mariussen E, Rundén-Pran E, Hudecova AM, Elje E, Kazimirova A, El Yamani N, Dommershausen N, Tharmann J, Fieblinger D, Herzberg F, Luch A, Haase A. In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. Methods Mol Biol 2019; 1894:83-122. [PMID: 30547457 DOI: 10.1007/978-1-4939-8916-4_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations. Typically various in vitro assays are performed in the first tier. It is not very likely that NMs may induce as yet unknown types of genotoxic damage beyond what is already known for chemicals. Thus, principles of genotoxicity testing as established for chemicals should be applicable to NMs as well. However, established test guidelines (i.e., OECD TG) may require adaptations for NM testing, as currently under discussion at the OECD. This chapter gives an overview of genotoxicity testing of NMs in vitro based on experiences from various research projects. We recommend a combination of a mammalian gene mutation assay (at either Tk or HPRT locus), the in vitro comet assay, and the cytokinesis-block micronucleus assay, which are discussed in detail here. In addition we also include the Cell Transformation Assay (CTA) as a promising novel test for predicting NM-induced cell transformation in vitro.
Collapse
Affiliation(s)
- Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway.
| | - Espen Mariussen
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alexandra Misci Hudecova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elisabeth Elje
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alena Kazimirova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Nils Dommershausen
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Julian Tharmann
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Dagmar Fieblinger
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Frank Herzberg
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
7
|
Silver/silver chloride nanoparticles inhibit the proliferation of human glioblastoma cells. Cytotechnology 2018; 70:1607-1618. [PMID: 30203320 DOI: 10.1007/s10616-018-0253-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL-1 Ag/AgCl-NPs with that of 9.7-48.5 µg mL-1 temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs + TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs + TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~ 67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP + TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL-1 Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.
Collapse
|
8
|
Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B 2017; 5:3995-4018. [PMID: 32264132 DOI: 10.1039/c6tb03247h] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last twenty years have witnessed great advances in biology, medicine, and materials science, leading to the development of various nanoparticle (NP)-mediated drug delivery systems. Innovation in materials science has led the generation of biodegradable, biocompatible, stimuli-responsive, and targeted delivery systems. However, currently available nanotherapeutic technologies are not efficient, which has culminated in the failure of their clinical trials. Despite huge efforts devoted to drug delivery nanotherapeutics, only a small amount of the injected material could reach the desired target. One promising strategy to enhance the efficiency of NP drug delivery is to hybridize multiple materials, where each component could play a critical role in an efficient multipurpose delivery system. This review aims to comprehensively cover different techniques, materials, advantages, and drawbacks of various systems to develop hybrid nano-vesicles for drug delivery. Attention is finally given to the hybridization benefits in overcoming the biological barriers for drug delivery. It is believed that the advent of modern nano-formulations for multifunctional hybrid carriers paves the way for future advances to achieve more efficient drug delivery systems.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
9
|
Monaco I, Arena F, Biffi S, Locatelli E, Bortot B, La Cava F, Marini GM, Severini GM, Terreno E, Comes Franchini M. Synthesis of Lipophilic Core–Shell Fe3O4@SiO2@Au Nanoparticles and Polymeric Entrapment into Nanomicelles: A Novel Nanosystem for in Vivo Active Targeting and Magnetic Resonance–Photoacoustic Dual Imaging. Bioconjug Chem 2017; 28:1382-1390. [DOI: 10.1021/acs.bioconjchem.7b00076] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilaria Monaco
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Francesca Arena
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Barbara Bortot
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Francesca La Cava
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giada Maria Marini
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Maria Severini
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Enzo Terreno
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
10
|
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016; 17:E1534. [PMID: 27649147 PMCID: PMC5037809 DOI: 10.3390/ijms17091534] [Citation(s) in RCA: 1200] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhi-Guo Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
11
|
Bunschoten A, Chin PTK, Buckle T, van der Linden M, Barendregt A, Verheijen MA, van Leeuwen FWB. Receptor-Targeted Luminescent Silver Bionanoparticles. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anton Bunschoten
- Interventional Molecular Imaging Laboratory; Department of Radiology; Leiden University Medical Center; PO Box 9600 2300 RC Leiden The Netherlands
- BioNanoTechnology, Agrotechnology and Food Sciences; Wageningen University & Research; PO Box 8038 6703HB Wageningen The Netherlands
| | - Patrick T. K. Chin
- Interventional Molecular Imaging Laboratory; Department of Radiology; Leiden University Medical Center; PO Box 9600 2300 RC Leiden The Netherlands
- Condensed Matter and Interfaces; Debeye Institute for Nanomaterial Science; Utrecht University; Princetonplein 5 3584CC Utrecht The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory; Department of Radiology; Leiden University Medical Center; PO Box 9600 2300 RC Leiden The Netherlands
- Molecular Pathology; Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital; PO Box 90203 1006BE Amsterdam The Netherlands
| | - Marte van der Linden
- Condensed Matter and Interfaces; Debeye Institute for Nanomaterial Science; Utrecht University; Princetonplein 5 3584CC Utrecht The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Padualaan 8 3584CA Utrecht The Netherlands
| | - Marcel A. Verheijen
- Applied Physics; Eindhoven University of Technology; PO Box 513 5600MB Eindhoven The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory; Department of Radiology; Leiden University Medical Center; PO Box 9600 2300 RC Leiden The Netherlands
- BioNanoTechnology, Agrotechnology and Food Sciences; Wageningen University & Research; PO Box 8038 6703HB Wageningen The Netherlands
| |
Collapse
|
12
|
Tamborini M, Locatelli E, Rasile M, Monaco I, Rodighiero S, Corradini I, Franchini MC, Passoni L, Matteoli M. A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. ACS NANO 2016; 10:2509-2520. [PMID: 26745323 DOI: 10.1021/acsnano.5b07375] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma, with life expectancy of around 2 years after diagnosis, due to recidivism and to the blood-brain barrier (BBB) limiting the amount of drugs which reach the residual malignant cells, thus contributing to the failure of chemotherapies. To bypass the obstacles imposed by the BBB, we investigated the use of nanotechnologies combined with radiotherapy, as a potential therapeutic strategy for GBM. We used poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells. Silver nanoparticles were entrapped inside the functionalized nanoparticles (Ag-PNP-CTX), to allow detection and quantification of the cellular uptake by confocal microscopy, both in vitro and in vivo. In vitro experiments performed with different human glioblastoma cell lines showed higher cytoplasmic uptake of Ag-PNP-CTX, with respect to nonfunctionalized nanoparticles. In vivo experiments showed that Ag-NP-CTX efficiently targets the tumor, but are scarcely effective in crossing the blood brain barrier in the healthy brain, where dispersed metastatic cells are present. We show here that single whole brain X-ray irradiation, performed 20 h before nanoparticle injection, enhances the expression of the CTX targets, MMP-2 and ClC-3, and, through BBB permeabilization, potently increases the amount of internalized Ag-PNP-CTX even in dispersed cells, and generated an efficient antitumor synergistic effect able to inhibit in vivo tumor growth. Notably, the application of Ag-PNP-CTX to irradiated tumor cells decreases the extracellular activity of MMP-2. By targeting dispersed GBM cells and reducing MMP-2 activity, the combined use of CTX-nanovectors with radiotherapy may represent a promising therapeutic approach toward GBM.
Collapse
Affiliation(s)
- Matteo Tamborini
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | - Marco Rasile
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- Laboratory of Pharmacology and Brain Pathology, Humanitas Research Hospital , Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - Ilaria Monaco
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | | | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy
| | - Lorena Passoni
- Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | - Michela Matteoli
- CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy
- Laboratory of Pharmacology and Brain Pathology, Humanitas Research Hospital , Via Manzoni 56, Rozzano, 20089 Milano, Italy
| |
Collapse
|
13
|
Tao W, Zeng X, Wu J, Zhu X, Yu X, Zhang X, Zhang J, Liu G, Mei L. Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for In Vivo Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics 2016; 6:470-84. [PMID: 26941841 PMCID: PMC4775858 DOI: 10.7150/thno.14184] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we reported a simple polydopamine (pD)-based surface modification method to prepare novel nanoparticle-aptamer bioconjugates (Apt-pD-DTX/NPs) for in vivo tumor targeting and enhanced therapeutic effects of breast cancer. With simple preparation procedures, the new functionalized Apt-pD-DTX/NPs could maximumly increase the local effective drug concentration on tumor sites, achieving enhanced treatment effectiveness and minimizing side effects. The dopamine polymerization and aptamer conjugation barely changed the characters of NPs. Both in vitro cell experiments (i.e. endocytosis of fluorescent NPs, in vitro cellular targeting and cytotoxicity assays) and in vivo animal studies (i.e. in vivo imaging, biodistribution and antitumor effects of NPs) demonstrated that the Apt-pD-DTX/NPs could achieve significantly high targeting efficiency and enhanced therapeutic effects compared with clinical Taxotere(®) and NPs without functional modification. Above all, the Apt-pD-DTX/NPs showed great potential as a promising nanoformulation for in vivo breast cancer therapy and the construction of pD-modified NP-aptamer bioconjugates could be of great value in medical use.
Collapse
Affiliation(s)
- Wei Tao
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- 2. School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
- 3. Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaowei Zeng
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- 2. School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Jun Wu
- 4. Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xi Zhu
- 3. Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinghua Yu
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
| | - Xudong Zhang
- 5. Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinxie Zhang
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- 2. School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Gan Liu
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- 2. School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Lin Mei
- 1. The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
- 2. School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
14
|
Yang J, Feng Y, Zhang L. Biodegradable carrier/gene complexes to mediate the transfection and proliferation of human vascular endothelial cells. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| | - Li Zhang
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| |
Collapse
|
15
|
Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y. Nanoparticles complexed with gene vectors to promote proliferation of human vascular endothelial cells. Adv Healthc Mater 2015; 4:1225-35. [PMID: 25755152 DOI: 10.1002/adhm.201400817] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Indexed: 11/09/2022]
Abstract
Amphiphilic block copolymers containing biodegradable hydrophobic segments of depsipeptide based copolymers have been synthesized and explored as gene carriers for enhancing proliferation of endothelial cells in vitro. These polymers form nanoparticles (NPs) with positive charges on their surface, which could condense recombinant plasmids of enhanced green fluorescent protein plasmid and ZNF580 gene (pEGFP-ZNF580) and protect them against DNase I. ZNF580 gene is efficiently transported into EA.hy926 cells to promote their proliferation, whereby the transfection efficiency of NPs/pEGFP-ZNF580 is approximately similar to that of Lipofectamine 2000. These results indicate that the NPs might have potential as a carrier for pEGFP-ZNF580, which could support endothelialization of cardiovascular implants.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Changcan Shi
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology; Logistics University of Chinese People's Armed Police Force; Tianjin 300162 China
| | - Marc Behl
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Andreas Lendlein
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Key Laboratory of Systems Bioengineering of Ministry of Education; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
16
|
Naddaka M, Locatelli E, Colecchia D, Sambri L, Monaco I, Baschieri A, Sasdelli F, Chiariello M, Matteucci E, Zani P, Franchini MC. Hybrid cholesterol-based nanocarriers containing phosphorescent Ir complexes: in vitro imaging on glioblastoma cell line. RSC Adv 2015. [DOI: 10.1039/c4ra12936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently the use of phosphorescent heavy-metal complexes in bioimaging techniques has been a promising research field and has been attracted increasing interest.
Collapse
|
17
|
Han K, Liu Y, Yin WN, Wang SB, Xu Q, Zhuo RX, Zhang XZ. A FRET-based dual-targeting theranostic chimeric peptide for tumor therapy and real-time apoptosis imaging. Adv Healthc Mater 2014; 3:1765-8. [PMID: 24700529 DOI: 10.1002/adhm.201400020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Yun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Wei-Na Yin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Qi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|
18
|
McCall RL, Cacaccio J, Wrabel E, Schwartz ME, Coleman TP, Sirianni RW. Pathogen-inspired drug delivery to the central nervous system. Tissue Barriers 2014; 2:e944449. [PMID: 25610755 PMCID: PMC4292043 DOI: 10.4161/21688362.2014.944449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 12/12/2022] Open
Abstract
For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents.
Collapse
Affiliation(s)
- Rebecca L McCall
- Barrow Brain Tumor Research Center; Barrow Neurological Institute ; Phoenix, AZ USA
| | | | - Eileen Wrabel
- Nemucore Medical Innovations, Inc. ; Worcester, MA USA
| | | | - Timothy P Coleman
- Blue Ocean Biomanufacturing , Worcester, MA USA ; Nemucore Medical Innovations, Inc. ; Worcester, MA USA ; Center for Translational Cancer Nanomedicine; Northeastern University ; Boston, MA USA ; Foundation for the Advancement of Personalized Medicine Manufacturing ; Phoenix, AZ USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center; Barrow Neurological Institute ; Phoenix, AZ USA
| |
Collapse
|
19
|
Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC. Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (Lond) 2014; 9:839-49. [PMID: 24433240 DOI: 10.2217/nnm.14.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great potential for the treatment of cancer. MATERIALS & METHODS Multifunctional nanocomposites formed by polymeric nanoparticles (PNPs) containing two cytotoxic agents - the drug alisertib and silver nanoparticles - were synthesized. These PNPs have been conjugated with a chlorotoxin, an active targeting 36-amino acid-long peptide that specifically binds to MMP-2, a receptor overexpressed by brain cancer cells. RESULTS The individual and synergistic activity of these two cytotoxic agents against glioblastoma multiforme was tested both in vitro and in vivo. The induced cytotoxicity in a human glioblastoma-astrocytoma epithelial-like cell line (U87MG) was studied in vitro through a trypan blue exclusion test after 48 and 72 h of exposure. Subsequently, the PNPs' biodistribution in healthy animals and their effect on tumor reduction in tumor-bearing mice were studied using PNPs radiolabeled with (99m)Tc. CONCLUSION Tumor reduction was achieved in vivo when using silver/alisertib@PNPs-chlorotoxin.
Collapse
Affiliation(s)
- Erica Locatelli
- Department of Industrial Chemistry, "TosoMontanari", University of Bologna, Via Risorgimento 4, 40136, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Senkiv YV. Action of free and polymer carrier encapsulated doxorubicin towards HCT116 cells of human colorectal carcinoma. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Rebuttini V, Pucci A, Arosio P, Bai X, Locatelli E, Pinna N, Lascialfari A, Franchini MC. Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents. J Mater Chem B 2013; 1:919-923. [DOI: 10.1039/c2tb00208f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|