1
|
Wu Z, Wu Z, Chen IM, Xu Q. Recent Advances in Piezoelectric Compliant Devices for Ultrahigh-Precision Engineering. MICROMACHINES 2024; 15:1456. [PMID: 39770209 PMCID: PMC11677329 DOI: 10.3390/mi15121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications. Smart materials, particularly piezoelectric materials, offer promising solutions with their rapid response and high resolution, making them ideal for creating efficient piezoelectric transducers. Meanwhile, compliant mechanisms, which use elastic deformation to transmit force and motion, eliminate inaccuracies induced by rigid-body mechanisms. Integrating piezoelectric transducers and compliant mechanisms into piezoelectric compliant devices enhances UHPE system performance. This paper reviews the recent advances in piezoelectric compliant devices. By focusing on the utilization of piezoelectric transducers and compliant mechanisms, their applications in perception, energy harvesting, and actuation have been surveyed, and future research suggestions are discussed.
Collapse
Affiliation(s)
- Zeyi Wu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China; (Z.W.); (Z.W.)
| | - Zehao Wu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China; (Z.W.); (Z.W.)
| | - I-Ming Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China; (Z.W.); (Z.W.)
| |
Collapse
|
2
|
Bentzen M, Lindauer V, Mokrý P, Aune RE, Glaum J. Long-term leaching kinetics and solution chemistry of aqueous BaTiO 3 powder suspensions: a numerical model supported experiment. J Mater Chem B 2024. [PMID: 39480599 DOI: 10.1039/d4tb01708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The advent of lead-free perovskite materials with favorable toxicity profiles has made them candidates for in vivo and environmental applications. However, their tendency to leach A-site cations raises concerns about toxicity, catalytic efficiency, and slurry properties. The present study investigates the long-term leaching kinetics of BaTiO3 powders over 31 days in aqueous solutions of varying pH levels. Using ICP-MS analysis and a numerical model based on the Unreacted Shrinking Core (USC) principle. The study extends the understanding of BaTiO3 stability beyond previously reported timeframes. The findings highlight the material's long-term stability, with implications for biomedical and environmental applications.
Collapse
Affiliation(s)
- Marcus Bentzen
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Sem Sælands vei 12, Trondheim 7034, Norway.
| | - Vojtěch Lindauer
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, Liberec 461 17, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, Liberec 461 17, Czech Republic
| | - Pavel Mokrý
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, Liberec 461 17, Czech Republic
| | - Ragnhild Elizabeth Aune
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Sem Sælands vei 12, Trondheim 7034, Norway.
| | - Julia Glaum
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Sem Sælands vei 12, Trondheim 7034, Norway.
| |
Collapse
|
3
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
5
|
Zhou Q, Zhu C, Xue H, Jiang L, Wu J. Flexible, Wearable Wireless-Charging Power System Incorporating Piezo-Ultrasonic Arrays and MXene-Based Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35268-35278. [PMID: 38916408 DOI: 10.1021/acsami.4c03143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
With the continuous development of wearable electronics, higher requirements are put forward for flexible, detachable, stable output, and long service life power modules. Given the limited capacity of energy storage devices, the integration of energy capture and storage is a viable approach. Here, we present a flexible, wearable, wireless-charging power system that integrates a piezoelectric ultrasonic array harvester (PUAH) with MXene-based solid-state supercapacitors (MSSSs) in a soft wristband format for sustainable applications. The MSSS as the energy storage module is developed by using Ti3C2Tx nanosheet-loaded inserted finger-like carbon cloth skeletons as electrodes and poly(vinyl alcohol)/H3PO4 gel as electrolytes, with high energy density (58.74 Wh kg-1) and long cycle life (99.37%, 10,000 cycles). A two-dimensional stretchable piezoelectric array as a wireless-charging module hybridizes high-performance 1-3 composite units with serpentine electrodes, which allows wireless power via ultrasonic waves, with a maximum power density of 1.56 W cm-2 and an output voltage of 20.75 V. The overall PUAH-MSSS wireless energy supply system is 2 mm thick and offers excellent energy conversion/storage performance, cyclic stability, and mechanical flexibility. The results of this project will lay the foundation for the development of next-generation wearable electronics.
Collapse
Affiliation(s)
- Qin Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Chong Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Lee S, Cho Y, Heo S, Bae JH, Kang IM, Kim K, Lee WY, Jang J. UV/Ozone-Treated and Sol-Gel-Processed Y 2O 3 Insulators Prepared Using Gelation-Delaying Precursors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:791. [PMID: 38727385 PMCID: PMC11085385 DOI: 10.3390/nano14090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
In this study, a Y2O3 insulator was fabricated via the sol-gel process and the effect of precursors and annealing processes on its electrical performance was studied. Yttrium(III) acetate hydrate, yttrium(III) nitrate tetrahydrate, yttrium isopropoxide oxide, and yttrium(III) tris (isopropoxide) were used as precursors, and UV/ozone treatment and high-temperature annealing were performed to obtain Y2O3 films from the precursors. The structure and surface morphologies of the films were characterized via grazing-incidence X-ray diffraction and scanning probe microscopy. Chemical component analysis was performed via X-ray spectroscopy. Electrical insulator characteristics were analyzed based on current density versus electrical field data and frequency-dependent dielectric constants. The Y2O3 films fabricated using the acetate precursor and subjected to the UV/ozone treatment showed a uniform and flat surface morphology with the lowest number of oxygen vacancy defects and unwanted byproducts. The corresponding fabricated capacitors showed the lowest current density (Jg) value of 10-8 A/cm2 at 1 MV/cm and a stable dielectric constant in a frequency range of 20 Hz-100 KHz. At 20 Hz, the dielectric constant was 12.28, which decreased to 10.5 at 105 Hz. The results indicate that high-quality, high-k insulators can be fabricated for flexible electronics using suitable precursors and the suggested low-temperature fabrication methods.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
| | - Yoonjin Cho
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
| | - Seongwon Heo
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Man Kang
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwangeun Kim
- School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea;
| | - Won-Yong Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
- The Institute of Electronic Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaewon Jang
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (S.L.); (S.H.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Panghal A, Flora SJS. Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochim Biophys Acta Gen Subj 2024; 1868:130559. [PMID: 38191034 DOI: 10.1016/j.bbagen.2024.130559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by β-amyloid plaque, intraneuronal tangles, significant neuronal loss and cognitive deficit. Treatment in the early stages of the disease is crucial for preventing or perhaps reversing the neurodegeneration in the AD cases. However, none of the current diagnostic procedures are capable of early diagnosis of AD. Further, the available treatments merely provide symptomatic alleviation in AD and do not address the underlying illness. Therefore, there is no permanent cure for AD currently. Better therapeutic outcomes need the optimum drug concentration in the central nervous system (CNS) by traversing blood-brain-barrier (BBB). Nanotechnology offers enormous promise to transform the treatment and diagnostics of neurodegenerative diseases. Nanotechnology based diagnostic tools, drug delivery systems and theragnostic are capable of highly sensitive molecular detection, effective drug targeting and their combination. Significant work has been done in this area over the last decade and prospective results have been obtained in AD therapy. This review explores the various applications of nanotechnology in addressing the varied facets of AD, ranging from early detection to therapeutic interventions. This review also looks at how nanotechnology can help with the development of disease-modifying medicines, such as the delivery of anti-amyloid, anti-tau, cholinesterase inhibitors, antioxidants and hormonal drugs. In conclusion, this paper discusses the role of nanotechnology in the early detection of AD, effective drug targeting to the CNS and theragnostic applications in the management of AD.
Collapse
Affiliation(s)
- Archna Panghal
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India; Institute of Pharmaceutical Sciences, Era Medical University, Safarajganj, Lucknow 226003, U.P., India.
| |
Collapse
|
8
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Hong L, Zhang H, Kraus T, Jiao P. Ultra-Stretchable Kirigami Piezo-Metamaterials for Sensing Coupled Large Deformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303674. [PMID: 38044281 PMCID: PMC10837349 DOI: 10.1002/advs.202303674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/03/2023] [Indexed: 12/05/2023]
Abstract
Mechanical metamaterials are known for their prominent mechanical characteristics such as programmable deformation that are due to periodic microstructures. Recent research trends have shifted to utilizing mechanical metamaterials as structural substrates to integrate with functional materials for advanced functionalities beyond mechanical, such as active sensing. This study reports on the ultra-stretchable kirigami piezo-metamaterials (KPM) for sensing coupled large deformations caused by in- and out-of-plane displacements using the lead zirconate titanate (PZT) and barium titanate (BaTiO3 ) composite films. The KPM are fabricated by uniformly compounding and polarizing piezoelectric particles (i.e., PZT and BaTiO3 ) in silicon rubber and structured by cutting the piezoelectric rubbery films into ligaments. Characterizes the electrical properties of the KPM and investigates the bistable mechanical response under the coupled large deformations with the stretching ratio up to 200% strains. Finally, the PZT KPM sensors are integrated into wireless sensing systems for the detection of vehicle tire bulge, and the non-toxic BaTiO3 KPM are applied for human posture monitoring. The reported kirigami piezo-metamaterials open an exciting venue for the control and manipulation of mechanically functional metamaterials for active sensing under complex deformation scenarios in many applications.
Collapse
Affiliation(s)
- Luqin Hong
- Ocean CollegeZhejiang UniversityZhoushan316021China
- Shandong Institute of Advanced TechnologyJinan250000China
| | - Hao Zhang
- Ocean CollegeZhejiang UniversityZhoushan316021China
- Engineering Research Center of Oceanic Sensing Technology and EquipmentZhejiang UniversityMinistry of EducationChina
| | - Tobias Kraus
- INM‐Leibniz Institute for New Materials66123SaarbrückenGermany
- Saarland University, Colloid and Interface Chemistry66123SaarbrückenGermany
| | - Pengcheng Jiao
- Ocean CollegeZhejiang UniversityZhoushan316021China
- Engineering Research Center of Oceanic Sensing Technology and EquipmentZhejiang UniversityMinistry of EducationChina
| |
Collapse
|
10
|
Deng X, Zhao R, Tang Y, Yi M, Ge Z, Wang D, Fang Q, Xiong Z, Duan A, Liu W, Zhang Z, Xiang Y, Hu X, Lin W, Wang G. Highly Biocompatible Polyester-Based Piezoelectric Elastomer with Antitumor and Antibacterial Activity for Ultrasound-Enhanced Piezoelectric Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55308-55322. [PMID: 37991726 DOI: 10.1021/acsami.3c11749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Currently, the use of piezoelectric materials to provide sustainable and noninvasive bioelectric stimulation to eradicate tumor cells and accelerate wound healing has raised wide attention. The development of a multifunctional piezoelectric elastomer with the ability to perform in situ tumor therapy as well as wound repair is of paramount importance. However, current piezoelectric materials have a large elastic modulus and limited stretchability, making it difficult to match with the dynamic curvature changes of the wound. Therefore, by copolymerizing lactic acid, butanediol, sebacic acid, and itaconic acid to develop a piezoelectric elastomer (PLBSIE), we construct a new ultrasound-activated PLBSIE-based tumor/wound unified therapeutic platform. Excitedly, it showed outstanding piezoelectric performance and high stretchability, and the separated carrier could react with water to generate highly cytotoxic reactive oxygen species (ROS), contributing to effectively killing tumor cells and eliminating bacteria through piezoelectric therapy. In addition, ultrasound-triggered piezoelectric effects could promote the migration and differentiation of wound-healing-related cells, thus accelerating wound healing. Herein, such a piezoelectric elastomer exerted a critical role in postoperative tumor-induced wound therapy and healing with the merits of possessing multifunctional abilities. Taken together, the developed ultrasound-activated PLBSIE will offer a comprehensive treatment for postoperative osteosarcoma therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Renliang Zhao
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunfeng Tang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Yi
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Fang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhencheng Xiong
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ao Duan
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenzheng Liu
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Guanglin Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Das KK, Basu B, Maiti P, Dubey AK. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Acta Biomater 2023; 171:85-113. [PMID: 37673230 DOI: 10.1016/j.actbio.2023.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
One of the recent innovations in the field of personalized healthcare is the piezoelectric nanogenerators (PENGs) for various clinical applications, including self-powered sensors, drug delivery, tissue regeneration etc. Such innovations are perceived to potentially address some of the unmet clinical needs, e.g., limited life-span of implantable biomedical devices (e.g., pacemaker) and replacement related complications. To this end, the generation of green energy from biomechanical sources for wearable and implantable bioelectronic devices gained considerable attention in the scientific community. In this perspective, this article provides a comprehensive state-of-the-art review on the recent developments in the processing, applications and associated concerns of piezoelectric materials (synthetic/biological) for personalized healthcare applications. In particular, this review briefly discusses the concepts of piezoelectric energy harvesting, piezoelectric materials (ceramics, polymers, nature-inspired), and the various applications of piezoelectric nanogenerators, such as, self-powered sensors, self-powered pacemakers, deep brain stimulators etc. Important distinction has been made in terms of the potential clinical applications of PENGs, either as wearable or implantable bioelectronic devices. While discussing the potential applications as implantable devices, the biocompatibility of the several hybrid devices using large animal models is summarized. This review closes with the futuristic vision of integrating data science approaches in developmental pipeline of PENGs as well as clinical translation of the next generation PENGs. STATEMENT OF SIGNIFICANCE: Piezoelectric nanogenerators (PENGs) hold great promise for transforming personalized healthcare through self-powered sensors, drug delivery systems, and tissue regeneration. The limited battery life of implantable devices like pacemakers presents a significant challenge, leading to complications from repititive surgeries. To address such a critical issue, researchers are focusing on generating green energy from biomechanical sources to power wearable and implantable bioelectronic devices. This comprehensive review critically examines the latest advancements in synthetic and nature-inspired piezoelectric materials for PENGs in personalized healthcare. Moreover, it discusses the potential of piezoelectric materials and data science approaches to enhance the efficiency and reliability of personalized healthcare devices for clinical applications.
Collapse
Affiliation(s)
- Kuntal Kumar Das
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science, Bengaluru 560012, India
| | - Pralay Maiti
- SMST, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
12
|
Li Z, He D, Guo B, Wang Z, Yu H, Wang Y, Jin S, Yu M, Zhu L, Chen L, Ding C, Wu X, Wu T, Gong S, Mao J, Zhou Y, Luo D, Liu Y. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun 2023; 14:6963. [PMID: 37907455 PMCID: PMC10618168 DOI: 10.1038/s41467-023-42598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Infected bone defects are a major challenge in orthopedic treatment. Native bone tissue possesses an endogenous electroactive interface that induces stem cell differentiation and inhibits bacterial adhesion and activity. However, traditional bone substitutes have difficulty in reconstructing the electrical environment of bone. In this study, we develop a self-promoted electroactive mineralized scaffold (sp-EMS) that generates weak currents via spontaneous electrochemical reactions to activate voltage-gated Ca2+ channels, enhance adenosine triphosphate-induced actin remodeling, and ultimately achieve osteogenic differentiation of mesenchymal stem cells by activating the BMP2/Smad5 pathway. Furthermore, we show that the electroactive interface provided by the sp-EMS inhibits bacterial adhesion and activity via electrochemical products and concomitantly generated reactive oxygen species. We find that the osteogenic and antibacterial dual functions of the sp-EMS depend on its self-promoting electrical stimulation. We demonstrate that in vivo, the sp-EMS achieves complete or nearly complete in situ infected bone healing, from a rat calvarial defect model with single bacterial infection, to a rabbit open alveolar bone defect model and a beagle dog vertical bone defect model with the complex oral bacterial microenvironment. This translational study demonstrates that the electroactive bone graft presents a promising therapeutic platform for complex defect repair.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- Department of Stomatology, Peking University People's Hospital, Beijing, 100044, PR China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Bowen Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zekun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Huajie Yu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Sengupta D, Naskar S, Mandal D. Reactive oxygen species for therapeutic application: Role of piezoelectric materials. Phys Chem Chem Phys 2023; 25:25925-25941. [PMID: 37727027 DOI: 10.1039/d3cp01711g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This perspective article emphasizes the significant role of reactive oxygen species (ROS) in in vivo remedial therapy of various diseases and complications, capitalizing on their potential reactivity. Among the various influencers, herein, piezoelectric materials driven ROS generation activity is primarily considered. Intrinsic non-centrosymmetry of piezoelectric materials makes them suitable for distinct dipole formation in the presence of external mechanical stimuli. Such characteristics prompt the positioning of opposite charged carriers to execute associated redox transformations that effectively participate to generate ROS in the aqueous media of the cell cytoplasm, organelles and nucleus. The immense reactivity of piezoelectric material driven ROS is fostered to terminate cellular toxicity or curtail tumor cell growth, due to their higher specificity. This perspective considers the conjugated performance of piezoelectric materials and ultrasound which can remotely generate electrical charges that promote ROS production for therapeutic application. In particular, a substantial synopsis is provided for the remedial activity of numerous piezocatalytic materials in tumor cell apoptosis, antibacterial treatment, dental care and neurological disorders. Subsequently, the report precisely demonstrates the methods involving various spectrophotometric approaches for the analysis of the ROS. Finally, the key challenges of piezoelectric material-based therapy are discussed and systematic future progress is outlined.
Collapse
Affiliation(s)
- Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
- Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Moradabad 244001, India
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
| |
Collapse
|
14
|
Li P, Huang X, Zhao YP. Electro-capillary peeling of thin films. Nat Commun 2023; 14:6150. [PMID: 37788992 PMCID: PMC10547721 DOI: 10.1038/s41467-023-41922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Thin films are widely-used functional materials that have attracted much interest in academic and industrial applications. With thin films becoming micro/nanoscale, developing a simple and nondestructive peeling method for transferring and reusing the films remains a major challenge. Here, we develop an electro-capillary peeling strategy that achieves thin film detachment by driving liquid to percolate and spread into the bonding layer under electric fields, immensely reducing the deformation and strain of the film compared with traditional methods (reaching 86%). Our approach is evaluated via various applied voltages and films, showing active control characterizations and being appropriate for a broad range of films. Theoretically, electro-capillary peeling is achieved by utilizing the Maxwell stress to compete with the film's adhesion stress and tension stress. This work shows the great potential of the electro-capillary peeling method to provide a simple way to transfer films and facilitates valid avenues for reusing soft materials.
Collapse
Affiliation(s)
- Peiliu Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xianfu Huang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Raghavan S, Gupta R, Sharma L. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester. MICROMACHINES 2023; 14:1782. [PMID: 37763945 PMCID: PMC10536477 DOI: 10.3390/mi14091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Conversion of ambient energy to usable electrical energy is attracting attention from researchers since providing a maintenance-free power source for the sensors is critical in any IoT (Internet of Things)-based system and in SHM (structural health monitoring). Continuous health monitoring of structures is advantageous since the damage can be identified at inception and the necessary action taken. Sensor technology has advanced significantly, and MEMS (microelectromechanical systems)-based low-power sensors are available for incorporating into large structures. Relevant signal conditioning and transmission modules have also evolved, making them power-efficient and miniaturized. Various micro wireless sensor nodes (WSN) have also been developed in recent years that require very little power. This paper describes the applications of a novel tunable piezoelectric vibration energy harvester (PVEH) for providing autonomous power to low-power MEMS sensors for use in IoT and remote SHM. The novel device uses piezoelectric material and an ionic polymer-metal composite (IPMC) and enables electrical tuning of the resonant frequency using a small portion of the power generated.
Collapse
Affiliation(s)
- Sreekumari Raghavan
- Department of Civil Engineering, Engineering Computer Science (ECS) #314, University of Victoria, Victoria, BC V8W 2Y2, Canada; (R.G.); (L.S.)
| | | | | |
Collapse
|
16
|
Vijayakanth T, Shankar S, Finkelstein-Zuta G, Rencus-Lazar S, Gilead S, Gazit E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem Soc Rev 2023; 52:6191-6220. [PMID: 37585216 PMCID: PMC10464879 DOI: 10.1039/d3cs00202k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/17/2023]
Abstract
The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Gal Finkelstein-Zuta
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sharon Gilead
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| |
Collapse
|
17
|
Sheng T, He Q, Cao Y, Dong Z, Gai Y, Zhang W, Zhang D, Chen H, Jiang Y. Fish-Wearable Piezoelectric Nanogenerator for Dual-Modal Energy Scavenging from Fish-Tailing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39570-39577. [PMID: 37561408 DOI: 10.1021/acsami.3c08221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Aiming to develop a self-powered bioelectric tag for fish behavioral studies, here we present a fish-wearable piezoelectric nanogenerator (FWPNG) that can simultaneously harvest the strain energy and the flow impact energy caused by fish-tailing. The FWPNG is fabricated by transferring a 2 μm-thick Nb0.02-Pb(Zr0.6Ti0.4)O3 (PZT) layer from a silicon substrate to a spin-coated polyimide film via a novel zinc oxide (ZnO) release process. The open-circuit voltage of the strain energy harvester reaches 2.3 V under a strain of 1% at an ultra-low frequency of 1 Hz, and output voltage of the impact energy harvester reaches a 0.3 V under a pressure of 82.6 kPa at 1 Hz, which is in good agreement with our theoretical analysis. As a proof-of-concept demonstration, an event-driven underwater acoustic transmitter is developed by utilizing the FWPNG as a trigger switch. Acoustic transmission occurs when the amplitude of fish-tailing is larger than a preset threshold. The dual-modal FWPNG device shows the potential application in self-powered biotags for animal behavioral studies and ocean explorations.
Collapse
Affiliation(s)
- Tianyu Sheng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Qipei He
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yudong Cao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Zihao Dong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yansong Gai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yonggang Jiang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Park SH, Lei L, D'Souza D, Zipkin R, DiMartini ET, Atzampou M, Lallow EO, Shan JW, Zahn JD, Shreiber DI, Lin H, Maslow JN, Singer JP. Efficient electrospray deposition of surfaces smaller than the spray plume. Nat Commun 2023; 14:4896. [PMID: 37580341 PMCID: PMC10425365 DOI: 10.1038/s41467-023-40638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Electrospray deposition (ESD) is a promising technique for depositing micro-/nano-scale droplets and particles with high quality and repeatability. It is particularly attractive for surface coating of costly and delicate biomaterials and bioactive compounds. While high efficiency of ESD has only been successfully demonstrated for spraying surfaces larger than the spray plume, this work extends its utility to smaller surfaces. It is shown that by architecting the local "charge landscape", ESD coatings of surfaces smaller than plume size can be achieved. Efficiency approaching 100% is demonstrated with multiple model materials, including biocompatible polymers, proteins, and bioactive small molecules, on both flat and microneedle array targets. UV-visible spectroscopy and high-performance liquid chromatography measurements validate the high efficiency and quality of the sprayed material. Here, we show how this process is an efficient and more competitive alternative to other conformal coating mechanisms, such as dip coating or inkjet printing, for micro-engineered applications.
Collapse
Affiliation(s)
- Sarah H Park
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lin Lei
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Darrel D'Souza
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | | - Emily T DiMartini
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Maria Atzampou
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Emran O Lallow
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | | - Jonathan P Singer
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Dai B, Guo J, Gao C, Yin H, Xie Y, Lin Z. Recent Advances in Efficient Photocatalysis via Modulation of Electric and Magnetic Fields and Reactive Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210914. [PMID: 36638334 DOI: 10.1002/adma.202210914] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.e., piezoelectric, pyroelectric, and triboelectric fields, as well as their coupling) with specific examples and mechanisms discussion are first examined. Subsequently, the strategy via magnetic field manipulation for enhancing photocatalytic performance is scrutinized, including the spin polarization, Lorentz force, and magnetoresistance effect. Afterward, materials with tailored structure and composition design enabled by reactive phase control and their applications in photocatalytic hydrogen evolution and carbon dioxide reduction are reviewed. Finally, the challenges and potential opportunities to further boost photocatalytic efficiency are presented, aiming at providing crucial theoretical and experimental guidance for those working in photocatalysis, ferroelectrics, triboelectrics, piezo-/pyro-/tribo-phototronics, and electromagnetics, among other related areas.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hang Yin
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 118425, Singapore
| |
Collapse
|
20
|
Feng Z, Wang K, Liu Y, Han B, Yu DG. Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071243. [PMID: 37049335 PMCID: PMC10096487 DOI: 10.3390/nano13071243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/30/2023]
Abstract
Electrospinning is considered to be an efficient method to prepare piezoelectric thin films because of its ability to transform the phase of the polymers. A core-sheath structure can endow fibers with more functions and properties. In this study, fibers with a core-sheath structure were prepared using polyvinylidene fluoride (PVDF) included with nanoparticles (NPs) as the shell layer and polycaprolactone (PCL) as the core layer. Their mechanical and piezoelectric properties were studied in detail. During the course of the electrospinning process, PVDF was demonstrated to increase the amount of its polar phase, with the help of nanoparticles acting as a nucleating agent to facilitate the change. PCL was chosen as a core material because of its good mechanical properties and its compatibility with PVDF. Transmission electron microscope (TEM) assessments revealed that the fibers have a core-sheath structure, and shell layers were loaded with nanoparticles. Mechanical testing showed that the core layer can significantly improve mechanical properties. The XRD patterns of the core-sheath structure fibers indicated the β phase domain the main component. Piezoelectric testing showed that the doped nanoparticles were able to enhance piezoelectric performances. The increases of mechanical and piezoelectric properties of core-sheath structure fibers provide a feasible application for wearable electronics, which require flexibility and good mechanical properties.
Collapse
Affiliation(s)
| | - Ke Wang
- Correspondence: (K.W.); (D.-G.Y.)
| | | | | | | |
Collapse
|
21
|
Chen S, Zhu P, Mao L, Wu W, Lin H, Xu D, Lu X, Shi J. Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208256. [PMID: 36634150 DOI: 10.1002/adma.202208256] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Emerging piezocatalysts have demonstrated their remarkable application potential in diverse medical fields. In addition to their ultrahigh catalytic activities, their inherent and unique charge-carrier-releasing properties can be used to initiate various redox catalytic reactions, displaying bright prospects for future medical applications. Triggered by mechanical energy, piezocatalytic materials can release electrons/holes, catalyze redox reactions of substrates, or intervene in biological processes to promote the production of effector molecules for medical purposes, such as decontamination, sterilization, and therapy. Such a medical application of piezocatalysis is termed as piezocatalytic medicine (PCM) herein. To pioneer novel medical technologies, especially therapeutic modalities, this review provides an overview of the state-of-the-art research progress in piezocatalytic medicine. First, the principle of piezocatalysis and the preparation methodologies of piezoelectric materials are introduced. Then, a comprehensive summary of the medical applications of piezocatalytic materials in tumor treatment, antisepsis, organic degradation, tissue repair and regeneration, and biosensing is provided. Finally, the main challenges and future perspectives in piezocatalytic medicine are discussed and proposed, expecting to fuel the development of this emerging scientific discipline.
Collapse
Affiliation(s)
- Si Chen
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Piao Zhu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lijie Mao
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Xiangyu Lu
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Clinical Center For Brain And Spinal Cord Research, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| |
Collapse
|
22
|
Zhu Q, Wu T, Wang N. From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review. BIOSENSORS 2023; 13:113. [PMID: 36671948 PMCID: PMC9856170 DOI: 10.3390/bios13010113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Piezoelectric nanogenerators (PENGs) not only are able to harvest mechanical energy from the ambient environment or body and convert mechanical signals into electricity but can also inform us about pathophysiological changes and communicate this information using electrical signals, thus acting as medical sensors to provide personalized medical solutions to patients. In this review, we aim to present the latest advances in PENG-based non-invasive sensors for clinical diagnosis and medical treatment. While we begin with the basic principles of PENGs and their applications in energy harvesting, this review focuses on the medical sensing applications of PENGs, including detection mechanisms, material selection, and adaptive design, which are oriented toward disease diagnosis. Considering the non-invasive in vitro application scenario, discussions about the individualized designs that are intended to balance a high performance, durability, comfortability, and skin-friendliness are mainly divided into two types: mechanical sensors and biosensors, according to the key role of piezoelectric effects in disease diagnosis. The shortcomings, challenges, and possible corresponding solutions of PENG-based medical sensing devices are also highlighted, promoting the development of robust, reliable, scalable, and cost-effective medical systems that are helpful for the public.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Wu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- National Institute of Metrology, Beijing 100029, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Pattipaka S, Bae YM, Jeong CK, Park KI, Hwang GT. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239506. [PMID: 36502209 PMCID: PMC9735637 DOI: 10.3390/s22239506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.
Collapse
Affiliation(s)
- Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Young Min Bae
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
24
|
Bouyam C, Punsawad Y. Human–machine interface-based wheelchair control using piezoelectric sensors based on face and tongue movements. Heliyon 2022; 8:e11679. [DOI: 10.1016/j.heliyon.2022.e11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 11/20/2022] Open
|
25
|
Park S, Choi H, Hwang GT, Peddigari M, Ahn CW, Hahn BD, Yoon WH, Lee JW, Park KI, Jang J, Choi JJ, Min Y. Molten-Salt Processed Potassium Sodium Niobate Single-Crystal Microcuboids with Dislocation-Induced Nanodomain Structures and Relaxor Ferroelectric Behavior. ACS NANO 2022; 16:15328-15338. [PMID: 36074084 DOI: 10.1021/acsnano.2c06919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We herein report a facile molten-salt synthetic strategy to prepare transparent and uniform Li, Ba-doped (K,Na)NbO3 (KNN) single-crystal microcuboids (∼80 μm). By controlling the degree of supersaturation, different growth modes were found and the single-crystal microcuboids were synthesized via island-like oriented attachment of KNN particles onto the growing surface. The distinct relaxor ferroelectric (RFE) properties were achieved in the single-crystal microcuboids, which were different from the normal ferroelectric (FE) properties found in their KNN ceramic counterparts prepared through a solid-state reaction using the same initial precursors. The RFE properties were realized by dislocation-induced nanodomain formation during oriented attachment growth of single-crystal microcuboids, which is different from the current strategies to derive the nanodomains by the local compositional inhomogeneity or the application of an electric field. The dislocations served as nucleation sites for ferroelectric domain walls and block the growth of domains. The KNN single-crystal microcuboids exhibited a higher effective piezoelectric coefficient (∼459 pm/V) compared to that of the bulk KNN ceramic counterpart (∼90 pm/V) and showed the broad diffuse maxima in the temperature dependence dielectric permittivity. The high maximum polarization (69.6 μC/cm2) at a relatively low electric field (30 kV/cm) was beneficial for energy storage applications. Furthermore, the KNN-based transparent, flexible pressure sensor directly monitored the mechanical motion of human activity without any external electric power. This study provides insights and synthetic strategies of single-crystal RFE microcuboids for other different perovskites, in which nanodomain structures are primarily imposed by their chemical composition.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Hyunsu Choi
- Department of Materials Science and Engineering, Pukyong National University, Busan 48513, Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, Busan 48513, Korea
| | - Mahesh Peddigari
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Cheol-Woo Ahn
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Byung-Dong Hahn
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Woon-Ha Yoon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jongmoon Jang
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Jong-Jin Choi
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Korea
| | - Yuho Min
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
26
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
27
|
Abstract
The present study analyzed a computational model to evaluate the electromechanical properties of the AlN, BaTiO3, ZnO, PVDF, and KNN-NTK thin-films. With the rise in sustainable energy options for health monitoring devices and smart wearable sensors, developers need a scale to compare the popular biocompatible piezoelectric materials. Cantilever-based energy harvesting technologies are seldom used in sophisticated and efficient biosensors. Such approaches only study transverse sensor loading and are confined to fewer excitation models than real-world applications. The present research analyses transverse vibratory and axial-loading responses to help design such sensors. A thin-film strip (50 × 20 × 0.1 mm) of each sample was examined under volumetric body load stimulation and time-based axial displacement in both the d31 and d33 piezoelectric energy generation modes. By collecting evidence from the literature of the material performance, properties, and performing a validated finite element study to evaluate these performances, the study compared them with lead-based non-biocompatible materials such as PZT and PMN-PT under comparable boundary conditions. Based on the present study, biocompatible materials are swiftly catching up to their predecessors. However, there is still a significant voltage and power output performance disparity that may be difficult to close based on the method of excitation (i.e., transverse, axial, or shear. According to this study, BaTiO3 and PVDF are recommended for cantilever-based energy harvester setups and axially-loaded configurations.
Collapse
|
28
|
Moerke C, Wolff A, Ince H, Ortak J, Öner A. New strategies for energy supply of cardiac implantable devices. Herzschrittmacherther Elektrophysiol 2022; 33:224-231. [PMID: 35377021 PMCID: PMC9177465 DOI: 10.1007/s00399-022-00852-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Heart disease and atrial fibrillation are the leading causes of death worldwide. Patient morbidity and mortality associated with cardiovascular disease can be reduced by more accurate and continuous diagnostic and therapeutic tools provided by cardiovascular implantable electronic devices (CIEDs). OBJECTIVES Long-term operation of CIEDs continues to be a challenge due to limited battery life and the associated risk of device failure. To overcome this issue, new approaches for autonomous battery supply are being investigated. RESULTS Here, the state of the art in CIED power supply is presented and an overview of current strategies for autonomous power supply in the cardiovascular field is given, using the body as a sustainable energy source. Finally, future challenges and potentials as well as advanced features for CIEDs are discussed. CONCLUSION CIEDs need to fulfil more requirements for diagnostic and telemetric functions, which leads to higher energy requirements. Ongoing miniaturization and improved sensor technologies will help in the development of new devices.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Anne Wolff
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Jasmin Ortak
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
29
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
30
|
Wang C, Shi Q, Lee C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1366. [PMID: 35458075 PMCID: PMC9032723 DOI: 10.3390/nano12081366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Implantable biomedical devices (IMDs) play essential roles in healthcare. Subject to the limited battery life, IMDs cannot achieve long-term in situ monitoring, diagnosis, and treatment. The proposal and rapid development of triboelectric nanogenerators free IMDs from the shackles of batteries and spawn a self-powered healthcare system. This review aims to overview the development of IMDs based on triboelectric nanogenerators, divided into self-powered biosensors, in vivo energy harvesting devices, and direct electrical stimulation therapy devices. Meanwhile, future challenges and opportunities are discussed according to the development requirements of current-level self-powered IMDs to enhance output performance, develop advanced triboelectric nanogenerators with multifunctional materials, and self-driven close-looped diagnosis and treatment systems.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore; (C.W.); (Q.S.)
- Center for Intelligent Sensors and MEMS, National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Program (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
31
|
Abedini-Nassab R, Emami SM, Nowghabi AN. Nanotechnology and Acoustics in Medicine and Biology. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:198-206. [PMID: 33913408 DOI: 10.2174/1872210515666210428134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nanotechnology plays an important role in various engineering fields, one of which is acoustics. METHOD Here, we review the use of nanotechnology in multiple acoustic-based bioapplications, with a focus on recent patents and advances. Nanoparticles, nanorods, nanotubes, and nanofilms used in acoustic devices are discussed. We cover ultrasonic transducers, biosensors, imaging tools, nanomotors, and particle sorters. RESULTS AND CONCLUSION The way these ideas help in fundamental disciplines such as medicine is shown. We believe the current work is a good collection of advances in the field.
Collapse
|
32
|
Liu S, Wang W, Xu W, Liu L, Zhang W, Song K, Chen X. Continuous Three-Dimensional Printing of Architected Piezoelectric Sensors in Minutes. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9790307. [PMID: 35935134 PMCID: PMC9318352 DOI: 10.34133/2022/9790307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 11/06/2022]
Abstract
Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production (μCLIP) at speeds of up to ~60 μm s-1, which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d 33 of 27.70 pC N-1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring.
Collapse
Affiliation(s)
- Siying Liu
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Wenbo Wang
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Weiheng Xu
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Luyang Liu
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Wenlong Zhang
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Kenan Song
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Xiangfan Chen
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA
- The Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
33
|
Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, Lin Z. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021; 50:13646-13691. [PMID: 34821246 DOI: 10.1039/d1cs00506e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.
Collapse
Affiliation(s)
- Baoying Dai
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
34
|
Abstract
In the last decade, an enormous amount of attention has been paid to piezoelectric harvesters due to their flexibility in design and the increasing need for small-scale energy generation. As a result, various energy review papers have been presented by many researchers to cover different aspects of piezoelectric-based energy harvesting, including piezo-materials, modeling approaches, and design points for various applications. Most of these papers have tried to shed light on recent progress in related interdisciplinary fields, and to pave the road for future prospects in the development of these technologies. However, there are some missing parts, overlaps, and even some contradictions in these review papers. In the present review of these review articles, recommendations for future research directions suggested by the review papers have been systematically summed up under one umbrella. In the final section, topics for missing review papers, concluding remarks on outlooks and possible research topics, as well as potentially misleading strategies, have been presented. The review papers have been evaluated based on their merits and subcategories and the authors’ choice papers have been presented for each section based on clear classification criteria.
Collapse
|
35
|
Fernandez SV, Cai F, Chen S, Suh E, Tiepelt J, McIntosh R, Marcus C, Acosta D, Mejorado D, Dagdeviren C. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. ACS Biomater Sci Eng 2021; 9:2070-2086. [PMID: 34735770 DOI: 10.1021/acsbiomaterials.1c00800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body's continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.
Collapse
Affiliation(s)
- Sara V Fernandez
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Fiona Cai
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Sophia Chen
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Architecture, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emma Suh
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jan Tiepelt
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rachel McIntosh
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Colin Marcus
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Daniel Acosta
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - David Mejorado
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT. Flexible Wearable Sensors for Cardiovascular Health Monitoring. Adv Healthc Mater 2021; 10:e2100116. [PMID: 33960133 DOI: 10.1002/adhm.202100116] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for the highest mortality globally, but recent advances in wearable technologies may potentially change how these illnesses are diagnosed and managed. In particular, continuous monitoring of cardiovascular vital signs for early intervention is highly desired. To this end, flexible wearable sensors that can be comfortably worn over long durations are gaining significant attention. In this review, advanced flexible wearable sensors for monitoring cardiovascular vital signals are outlined and discussed. Specifically, the functional materials, configurations, mechanisms, and recent advances of these flexible sensors for heart rate, blood pressure, blood oxygen saturation, and blood glucose monitoring are highlighted. Different mechanisms in bioelectric, mechano-electric, optoelectric, and ultrasonic wearable sensors are presented to monitor cardiovascular vital signs from different body locations. Present challenges, possible strategies, and future directions of these wearable sensors are also discussed. With rapid development, these flexible wearable sensors will potentially be applicable for both medical diagnosis and daily healthcare use in tackling cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwen Chen
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Jiaming Qi
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Shicheng Fan
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Zheng Qiao
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Joo Chuan Yeo
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
37
|
Cheng YYS, Liu L, Huang Y, Shu L, Liu YX, Wei L, Li JF. All-Inorganic Flexible (K, Na)NbO 3-Based Lead-Free Piezoelectric Thin Films Spin-Coated on Metallic Foils. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39633-39640. [PMID: 34382760 DOI: 10.1021/acsami.1c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible piezoelectric thin films are raising interest in energy harvesting and wearable electronics, although their direct fabrication is challenging in the selection of substrates and thermal processing. In this work, we developed direct fabrication of flexible lead-free (K, Na)NbO3 (KNN)-based piezoelectric films on commercially available metallic foils by sol-gel processing. Stainless steel and platinum foils are selected as flexible substrates because of their good thermal stability, robust flexibility, and cost-efficiency. The sol-gel-processed KNN-based thin films on both of the metallic foils show good flexibility, with the bending radii reaching ±3 mm. The flexible thin films grown on stainless steel and platinum foils present high breakdown electric fields that reach 1760 and 2530 kV/cm, respectively, resulting from the fine-grained dense structure, limited leakage current density, and suppressed mobility of charged carriers. Improved effective piezoelectric coefficient d33, eff* (75.4 pm/V) with a slight decrease after bending was obtained in the flexible thin films on Pt when compared to their rigid counterparts. The flexible lead-free piezoelectric thin films with combined high breakdown electric fields and piezoelectric and energy storage properties may pave the way for integrating KNN-based multifunctional thin films into flexible electronics.
Collapse
Affiliation(s)
- Yue-Yu-Shan Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lisha Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Shu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yi-Xuan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liyu Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Comparison of Metal-Based PZT and PMN-PT Energy Harvesters Fabricated by Aerosol Deposition Method. SENSORS 2021; 21:s21144747. [PMID: 34300487 PMCID: PMC8309660 DOI: 10.3390/s21144747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022]
Abstract
In this study, polycrystalline lead magnesium niobate–lead titanate (PMN–PT) was explored as an alternative piezoelectric material, with a higher power density for energy harvesting (EH), and comprehensively compared to the widely used polycrystalline lead zirconate titanate (PZT). First, the size distribution and piezoelectric properties of PZT and PMN–PT raw powders and ceramics were compared. Thereafter, both materials were deposited on stainless-steel substrates as 10 μm thick films using the aerosol deposition method. The films were processed as {3–1}-mode cantilever-type EH devices using microelectromechanical systems. The films with different annealing temperatures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dielectric behavior measurements. Furthermore, the mechanical and electrical properties of PMN–PT- and PZT-based devices were measured and compared. The PMN–PT-based devices showed a higher Young’s modulus and lower damping ratio. Owing to their higher figure of merit and lower piezoelectric voltage constant, they showed a higher power and lower voltage than the PZT-based devices. Finally, when poly-PMN–PT material was the active layer, the output power was enhanced by 26% at the 0.5 g acceleration level. Thus, these devices exhibited promising properties, meeting the high current and low voltage requirements in integrated circuit designs.
Collapse
|
39
|
Xu Q, Gao X, Zhao S, Liu Y, Zhang D, Zhou K, Khanbareh H, Chen W, Zhang Y, Bowen C. Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008452. [PMID: 34033180 PMCID: PMC11469329 DOI: 10.1002/adma.202008452] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Indexed: 05/04/2023]
Abstract
Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.
Collapse
Affiliation(s)
- Qianqian Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Xinyu Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Dou Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Kechao Zhou
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | | | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface ScienceCollege of Chemistry and Chemical EngineeringCentral South UniversityHunan410083China
| | - Yan Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityHunan410083China
| | - Chris Bowen
- Department of Mechanical EngineeringUniversity of BathBathBA27AYUK
| |
Collapse
|
40
|
Li X, Cao J, Li H, Yu P, Fan Y, Xiao Y, Yin Y, Zhao X, Wang ZL, Zhu G. Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26394-26403. [PMID: 34032400 DOI: 10.1021/acsami.1c05572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human bodily kinesthetic sensing is generally complicated and ever-changing due to the diversity of body deformation as well as the complexity of mechanical stimulus, which is different from the unidirectional mechanical motion. So, there exists a huge challenge for current flexible sensors to accurately differentiate and identify what kind of external mechanical stimulus is exerted via analyzing digital signals. Here, we report a flexible dual-interdigital-electrode sensor (FDES) that consists of two interdigital electrodes and a highly pressure-sensitive porous conductive sponge. The FDES can precisely identify multiple mechanical stimuli, e.g., pressing, positive bending, negative bending, X-direction stretching, and Y-direction stretching, and convert them into corresponding current variation signals. Moreover, the FDES exhibits other exceptional properties, such as high sensitivity, stretchability, large measurement range, and outstanding stability, accompanied by simple structural design and low-cost processing simultaneously. Additionally, our FDES successfully identifies various complex activities of the human body, which lays a foundation for the further development of multimode flexible sensors.
Collapse
Affiliation(s)
- Xin Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwei Cao
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Huayang Li
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China
| | - Pengtao Yu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjun Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchuan Xiao
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No.11 Zhongguancun Beiyitiao, Beijing 100190, China
| | - Yiming Yin
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xuejiao Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
41
|
Wang YM, Zeng Q, He L, Yin P, Sun Y, Hu W, Yang R. Fabrication and application of biocompatible nanogenerators. iScience 2021; 24:102274. [PMID: 33817578 PMCID: PMC8010465 DOI: 10.1016/j.isci.2021.102274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
As a new sustainable energy source, ubiquitous mechanical energy has received great attention and was successfully harvested by different types of nanogenerators. Among them, biocompatible nanogenerators are of particular interests due to their potential for biomedical applications. In this review, we provide an overview of the recent achievements in the fabrication and application of biocompatible nanogenerators. The development process and working mechanism of nanogenerators are introduced. Different biocompatible materials for energy harvesting, such as amino acids, peptide, silk protein, and cellulose, are discussed and compared. We then discuss different applications of biocompatible nanogenerators. We conclude with the challenges and potential research directions in this emerging field.
Collapse
Affiliation(s)
- Yong-Mei Wang
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Qingfeng Zeng
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- MSEA International Institute for Materials Genome, Gu'an 065500, Hebei, China
| | - Lilong He
- Xi'an Chuanglian Electronic Component (Group) Co. Ltd., Xi'an 710065, China
| | - Pei Yin
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yu Sun
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Wen Hu
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Rusen Yang
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
- Joint Laboratory for Intelligent Biofabrication, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| |
Collapse
|
42
|
Dual Piezoelectric Energy Investing and Harvesting Interface for High-Voltage Input. SENSORS 2021; 21:s21072357. [PMID: 33800675 PMCID: PMC8037320 DOI: 10.3390/s21072357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
A novel harvesting interface for multiple piezoelectric transducers (PZTs) is proposed for high-voltage energy harvesting. Pre-biasing a PZT prior to its mechanical deformation increases its damping force, resulting in higher energy extraction. Unlike the conventional harvesters where a PZT-generated output is assumed to be continuous sinusoidal and output polarity is assumed to be alternating every cycle, PZT-generated output from human motion is expected to be random. Therefore, in the proposed approach, energy is invested to the PZT only when PZT deformation is detected. Upon the motion detection, energy stored at a storage capacitor (CSTOR) from earlier energy harvesting cycle is invested to pre-bias PZT, enhancing energy extraction. The harvested energy is transferred to back CSTOR for energy investment on the next cycle and then excess energy is transferred to the battery. In addition, partial electric charge extraction (PECE) is adapted to extract a partial amount of charges from the PZT every time its voltage approaches the process limit of 40 V. Simulations with 0.35 µm BCD process show 7.61× (with PECE only) and 8.38× (with PECE and energy investment) improvement compared to the conventional rectifier-based harvesting scheme Proposed harvesting interface successfully harvests energy from excitations with open-circuit voltages up to 100 V.
Collapse
|
43
|
Mahmud MAP, Zolfagharian A, Gharaie S, Kaynak A, Farjana SH, Ellis AV, Chen J, Kouzani AZ. 3D‐Printed Triboelectric Nanogenerators: State of the Art, Applications, and Challenges. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202000045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Ali Zolfagharian
- School of Engineering Deakin University Geelong Victoria 3216 Australia
| | - Saleh Gharaie
- School of Engineering Deakin University Geelong Victoria 3216 Australia
| | - Akif Kaynak
- School of Engineering Deakin University Geelong Victoria 3216 Australia
| | - Shahjadi Hisan Farjana
- Department of Mechanical Engineering University of Melbourne Parkville Victoria 3010 Australia
| | - Amanda V. Ellis
- Department of Chemical Engineering University of Melbourne Parkville Victoria 3010 Australia
| | - Jun Chen
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095 USA
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332−0245 USA
| | - Abbas Z. Kouzani
- School of Engineering Deakin University Geelong Victoria 3216 Australia
| |
Collapse
|
44
|
Lim SH, Sim HM, Kim G, Kim HK. Brush-Paintable Black Electrodes for Poly(vinylidene fluoride)-Based Flexible Piezoelectric Devices. ACS OMEGA 2021; 6:2549-2558. [PMID: 33553873 PMCID: PMC7859934 DOI: 10.1021/acsomega.0c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We investigated simple and unrestricted brush-paintable black electrodes for poly(vinylidene fluoride) (PVDF)-based artistic flexible piezoelectric devices. The conductive black ink for paintable electrodes was synthesized by mixing poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and typical black ink and optimizing the mixing ratio. At an optimal mixing ratio, the brush-paintable black electrodes showed a sheet resistance of 151 Ω/sq and high coatability for flexible piezoelectric devices. Noticeably, higher black ink ratios increased adhesion forces, while diminished the shear flow of the conductive black ink. In addition, the optimized conductive black electrode exhibited an outstanding level of mechanical flexibility due to good adhesion between the black electrode and the PVDF substrate. During the repeated inner/outer bending fatigue tests with high strain, no resistance change confirmed the outstanding flexibility of the brush-paintable conductive electrode. As a promising application of the brush-paintable optimized black electrode, we suggested highly flexible piezoelectric devices that can be used. A PVDF-based piezoelectric speaker and a generator with the brush-paintable black electrode showed acoustic and output signal values approximate to those of metallic electrodes fabricated by vacuum-based high-cost thermal evaporators. Our experiment demonstrated a cost-efficient and simple process for fabricating brush-paintable electrodes, applicable to the flexible PVDF-based piezoelectric devices.
Collapse
Affiliation(s)
- Sang-Hwi Lim
- School
of Advanced Materials Science and Engineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyeong-Min Sim
- School
of Advanced Materials Science and Engineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gyewon Kim
- Department
of Fine Arts, SKKU, 25-2, Sungkyunkwan-ro, Jongno-gu, Seoul 03063, Republic
of Korea
| | - Han-Ki Kim
- School
of Advanced Materials Science and Engineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
45
|
Co ML, Khouzam JP, Pour-Ghaz I, Minhas S, Basu-Ray I. Emerging Technologies in Cardiac Pacing From Leadless Pacers to Stem Cells. Curr Probl Cardiol 2021; 46:100797. [PMID: 33561694 DOI: 10.1016/j.cpcardiol.2021.100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/28/2023]
Abstract
Modern pacemakers can sense and pace multiple chambers of the heart. These pacemakers have different modes and features to optimize atrioventricular synchrony and promote intrinsic conduction. Despite recent advancements, current pacemakers have several drawbacks that limit their feasibility. In this review article, we discuss several of these limitations and detail several emerging technologies in cardiac pacing aimed to solve some of these limitations. We present several technological advancements in cardiac pacing, including the use of leadless pacemakers, physiologic pacing, battery improvements, and bioartificial pacemakers. More research still needs to be done in testing the safety and efficacy of these new developments.
Collapse
Affiliation(s)
- Michael Lawren Co
- Department of Cardiology, Loma Linda University Medical Center, Loma Linda, CA
| | | | - Issa Pour-Ghaz
- Department of Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Sheharyar Minhas
- Department of Internal Medicine, Baptist Memorial Hospital, Memphis, TN
| | - Indranill Basu-Ray
- Arrythmia Service, Department of Cardiology, Memphis VA Medical Center, The University of Memphis, Memphis, TN.
| |
Collapse
|
46
|
Hosseini ES, Bhattacharjee M, Manjakkal L, Dahiya R. Healing and monitoring of chronic wounds: advances in wearable technologies. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
48
|
Jiang L, Yang Y, Chen Y, Zhou Q. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications. NANO ENERGY 2020; 77:105131. [PMID: 32905454 PMCID: PMC7469949 DOI: 10.1016/j.nanoen.2020.105131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Wireless energy harvesting represents an emerging technology that can be integrated into a variety of systems for biomedical, physical, and chemical functions. The miniaturization and ease of implementation are the main challenges for the development of wireless energy harvesting systems. Unlike most reported wireless energy harvesting technologies represented by electromagnetic coupling, the new generation of ultrasound-induced wireless energy harvesting (UWEH) that use propagating ultrasound waves to carry the available energy provides a strategy with higher resolution, deeper penetration, and more security, especially in nanodevices and implantable medical systems where a long-term stable power is required. Recently, advances in nanotechnologies, microelectronics, and biomedical systems are revolutionizing UWEH. In this article, an overview of recent developments in UWEH technologies that use a variety of material strategies and system designs based on the piezoelectric and capacitive energy harvesting mechanisms is provided. Practical applications are also presented, including wireless power for bio-implantable devices, direct cell/tissue electrical stimulations, wireless recording and communication in nervous systems, ultrasonic modulated drug delivery, self-powered acoustic sensors, and ultrasound-induced piezoelectric catalysis. Finally, perspectives and opportunities are also highlighted.
Collapse
Affiliation(s)
- Laiming Jiang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Yang Yang
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
49
|
Bretos I, Jimenez R, Ricote J, Calzada ML. Low-Temperature Solution Approaches for the Potential Integration of Ferroelectric Oxide Films in Flexible Electronics. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1967-1979. [PMID: 32746158 DOI: 10.1109/tuffc.2020.2995287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This technical review presents the state of the art in low-temperature chemical solution deposition (CSD) processing of ferroelectric oxide thin films. To achieve the integration of multifunctional crystalline oxides with flexible and semiconductor devices is, today, crucial to meet the demands of coming electronic devices. Hence, amorphous metal-oxide-semiconductors have been recently introduced in thin-film electronics. However, their benefits are limited compared with those of ferroelectric oxides, in which intrinsic multifunctionality would make possible multiple operations in the device. However, ferroelectricity is linked to a noncentrosymmetric crystal structure that is achieved, in general, at high temperatures, over 500 °C. These temperatures exceed the thermal stability of flexible polymer substrates and are not compatible with those permitted in the current fabrication routines of Si-based devices. In addition, the manufacturing of flexible electronic devices not only calls for low-temperature fabrication processes but also for deposition techniques that scale easily to the large areas required in flexible devices. In this regard, CSD processes are the best positioned today to integrate metal oxide thin films with flexible substrates as a large-area, low-cost, high-throughput fabrication technique. Here, we review the progress made in the last years in fabricating at low-temperature crystalline ferroelectric oxide thin films via CSD methods, highlighting the recent work of our group in the preparation of ferroelectric oxide thin films on flexible polyimide substrates.
Collapse
|
50
|
Corzo D, Tostado-Blázquez G, Baran D. Flexible Electronics: Status, Challenges and Opportunities. FRONTIERS IN ELECTRONICS 2020. [DOI: 10.3389/felec.2020.594003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|