1
|
Wu Q, Choi V, Bau L, Carugo D, Evans ND, Stride E. Investigation of Ultrasound Mediated Extravasation of a Model Drug by Perfluorobutane Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1573-1584. [PMID: 39060156 DOI: 10.1016/j.ultrasmedbio.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Perfluorocarbon nanodroplets (NDs) have been widely investigated as both diagnostic and therapeutic agents. There remains, however, a challenge in generating NDs that do not vaporize spontaneously but can be activated at ultrasound pressures that do not produce unwanted bioeffects. In previous work, it has been shown that phospholipid-coated perfluorobutane (PFB) NDs can potentially overcome this challenge. The aim of this study was to investigate whether these NDs can promote drug delivery. METHODS A combination of high-speed optical imaging and passive cavitation detection was used to study the acoustic properties of the PFB-NDs in a tissue mimicking phantom. PFB-NDs were exposed to ultrasound at frequencies from 0.5 to 1.5 MHz and peak negative pressures from 0.5 to 3.5 MPa. In addition, the penetration depth of two model drugs (Nile Red and 200 nm diameter fluorescent polymer spheres) into the phantom was measured. RESULTS PFB NDs were found to be stable in aqueous suspension at both 4°C and 37°C; their size remaining unchanged at 215 ± 11 nm over 24 h. Penetration of both model drugs in the phantom was found to increase with increasing ultrasound peak negative pressure and decreasing frequency and was found to be positively correlated with the energy of acoustic emissions. Extravasation depths >1 mm were observed at 0.5 MHz with pressures <1 MPa. CONCLUSION The results of the study thus suggest that PFB NDs can be used both as drug carriers and as nuclei for cavitation to enhance drug delivery without the need for high intensity ultrasound.
Collapse
Affiliation(s)
- Qiang Wu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Victor Choi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Dario Carugo
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, University of Southampton, Southampton, UK; Bioengineering Sciences Group, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Dong F, An J, Guo W, Dang J, Huang S, Feng F, Zhang J, Wang D, Yin J, Fang J, Cheng H, Zhang J. Programmable ultrasound imaging guided theranostic nanodroplet destruction for precision therapy of breast cancer. ULTRASONICS SONOCHEMISTRY 2024; 105:106854. [PMID: 38537562 PMCID: PMC11059134 DOI: 10.1016/j.ultsonch.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Ultrasound-stimulated contrast agents have gained significant attention in the field of tumor treatment as drug delivery systems. However, their limited drug-loading efficiency and the issue of bulky, imprecise release have resulted in inadequate drug concentrations at targeted tissues. Herein, we developed a highly efficient approach for doxorubicin (DOX) precise release at tumor site and real-time feedback via an integrated strategy of "programmable ultrasonic imaging guided accurate nanodroplet destruction for drug release" (PND). We synthesized DOX-loaded nanodroplets (DOX-NDs) with improved loading efficiency (15 %) and smaller size (mean particle size: 358 nm). These DOX-NDs exhibited lower ultrasound activation thresholds (2.46 MPa). By utilizing a single diagnostic transducer for both ultrasound stimulation and imaging guidance, we successfully vaporized the DOX-NDs and released the drug at the tumor site in 4 T1 tumor-bearing mice. Remarkably, the PND group achieved similar tumor remission effects with less than half the dose of DOX required in conventional treatment. Furthermore, the ultrasound-mediated vaporization of DOX-NDs induced tumor cell apoptosis with minimal damage to surrounding normal tissues. In summary, our PND strategy offers a precise and programmable approach for drug delivery and therapy, combining ultrasound imaging guidance. This approach shows great potential in enhancing tumor treatment efficacy while minimizing harm to healthy tissues.
Collapse
Affiliation(s)
- Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingyi Yin
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, 211899, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; College of Engineering, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
4
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024:10.1007/s11030-024-10810-2. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
5
|
Jiao H, Mao Q, Razzaq N, Ankri R, Cui J. Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. ULTRASONICS SONOCHEMISTRY 2024; 103:106798. [PMID: 38330546 PMCID: PMC10865478 DOI: 10.1016/j.ultsonch.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Non-invasive and high spatiotemporal resolution mythologies for the diagnosis and treatment of disease in clinical medicine promote the development of modern medicine. Ultrasound (US) technology provides a non-invasive, real-time, and cost-effective clinical imaging modality, which plays a significant role in chemical synthesis and clinical translation, especially in in vivo imaging and cancer therapy. On the one hand, the US treatment is usually accompanied by cavitation, leading to high temperature and pressure, so-called "hot spot", playing a significant role in sonochemical-based colloidal synthesis. Compared with the classical nucleation synthetic method, the sonochemical synthesis strategy presents high efficiency for the fabrication of colloidal nanocrystals due to its fast nucleation and growth procedure. On the other hand, the US is attractive for in vivo and medical treatment, with applications increasing with the development of novel contrast agents, such as the micro and nano bubbles, which are widely used in neuromodulation, with which the US can breach the blood-brain barrier temporarily and safely, opening a new door to neuromodulation and therapy. In terms of cancer treatment, sonodynamic therapy and US-assisted synergetic therapy show great effects against cancer and sonodynamic immunotherapy present unparalleled potentiality compared with other synergetic therapies. Further development of ultrasound technology can revolutionize both chemical synthesis and clinical translation by improving efficiency, precision, and accessibility while reducing environmental impact and enhancing patient care. In this paper, we review the US-assisted sonochemical synthesis and biological applications, to promote the next generation US technology-assisted applications.
Collapse
Affiliation(s)
- Haorong Jiao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Qiulian Mao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Noman Razzaq
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Rinat Ankri
- The Biomolecular and Nanophotonics Lab, Ariel University, 407000, P.O.B. 3, Ariel, Israel.
| | - Jiabin Cui
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
6
|
Asadi K, Samiraninezhad N, Akbarizadeh AR, Amini A, Gholami A. Stimuli-responsive hydrogel based on natural polymers for breast cancer. Front Chem 2024; 12:1325204. [PMID: 38304867 PMCID: PMC10830687 DOI: 10.3389/fchem.2024.1325204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Aims: Breast cancer is the most common malignancy among women in both high- and low-resource settings. Conventional breast cancer therapies were inefficient and had low patient compliance. Stimuli-responsive hydrogels possessing similar physicochemical features as soft tissue facilitate diagnostic and therapeutic approaches for breast cancer subtypes. Scope: Polysaccharides and polypeptides are major natural polymers with unique biocompatibility, biodegradability, and feasible modification approaches utilized frequently for hydrogel fabrication. Alternating the natural polymer-based hydrogel properties in response to external stimuli such as pH, temperature, light, ultrasonic, enzyme, glucose, magnetic, redox, and electric have provided great potential for the evolution of novel drug delivery systems (DDSs) and various advanced technologies in medical applications. Stimuli-responsive hydrogels are triggered by specific cancer tissue features, promote target delivery techniques, and modify release therapeutic agents at localized sites. This narrative review presented innovation in preparing and characterizing the most common stimuli-responsive natural polymer-based hydrogels for diagnostic and therapeutic applications in the breast cancer area. Conclusion: Stimuli-responsive hydrogels display bioinspiration products as DDSs for breast cancer subtypes, protect the shape of breast tissue, provide modified drug release, enhance therapeutic efficacy, and minimize chemotherapy agents' side effects. The potential benefits of smart natural polymer-based hydrogels make them an exciting area of practice for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Amin Reza Akbarizadeh
- Department of Quality Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Amini
- Abdullah Al Salem University (AASU), College of Engineering and Energy, Khaldiya, Kuwait
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Lai C, Lin S, Liu W, Jin Y. Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy. Curr Med Chem 2024; 31:3074-3092. [PMID: 37062062 DOI: 10.2174/0929867330666230416153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/17/2023]
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
Collapse
Affiliation(s)
- Chunmei Lai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Simin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
8
|
Zhang W, Metzger H, Vlatakis S, Claxton A, Carbajal MA, Fung LF, Mason J, Chan KLA, Pouliopoulos AN, Fleck RA, Prentice P, Thanou M. Characterising the chemical and physical properties of phase-change nanodroplets. ULTRASONICS SONOCHEMISTRY 2023; 97:106445. [PMID: 37257208 PMCID: PMC10241977 DOI: 10.1016/j.ultsonch.2023.106445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Phase-change nanodroplets have attracted increasing interest in recent years as ultrasound theranostic nanoparticles. They are smaller compared to microbubbles and they may distribute better in tissues (e.g. in tumours). They are composed of a stabilising shell and a perfluorocarbon core. Nanodroplets can vaporise into echogenic microbubbles forming cavitation nuclei when exposed to ultrasound. Their perfluorocarbon core phase-change is responsible for the acoustic droplet vaporisation. However, methods to quantify the perfluorocarbon core in nanodroplets are lacking. This is an important feature that can help explain nanodroplet phase change characteristics. In this study, we fabricated nanodroplets using lipids shell and perfluorocarbons. To assess the amount of perfluorocarbon in the core we used two methods, 19F NMR and FTIR. To assess the cavitation after vaporisation we used an ultrasound transducer (1.1 MHz) and a high-speed camera. The 19F NMR based method showed that the fluorine signal correlated accurately with the perfluorocarbon concentration. Using this correlation, we were able to quantify the perfluorocarbon core of nanodroplets. This method was used to assess the content of the perfluorocarbon of the nanodroplets in solutions over time. It was found that perfluoropentane nanodroplets lost their content faster and at higher ratio compared to perfluorohexane nanodroplets. The high-speed imaging indicates that the nanodroplets generate cavitation comparable to that from commercial contrast agent microbubbles. Nanodroplet characterisation should include perfluorocarbon concentration assessment as critical information for their development.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Hilde Metzger
- School of Engineering, University of Glasgow, United Kingdom
| | - Stavros Vlatakis
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Amelia Claxton
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | | | - Leong Fan Fung
- Department of Surgical & Interventional Engineering, King's College London, United Kingdom
| | - James Mason
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - K L Andrew Chan
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, United Kingdom
| | - Paul Prentice
- School of Engineering, University of Glasgow, United Kingdom
| | - Maya Thanou
- Institute of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| |
Collapse
|
9
|
Vince J, Lewis A, Stride E. High-Speed Imaging of Microsphere Transport by Cavitation Activity in a Tissue-Mimicking Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1415-1421. [PMID: 36931999 DOI: 10.1016/j.ultrasmedbio.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Ultrasound-mediated cavitation has been harnessed to improve the delivery of various therapeutics, including the extravasation of small molecule drugs and nanoparticles (<1 µm) into soft tissue. This study investigated whether cavitation could also enhance the extravasation of larger (>10 µm) therapeutic particles, representative of radio- or chemo-embolic particles, in a tissue-mimicking phantom. METHODS High-speed (103-106 frames/s) optical imaging was used to observe the motion of glass microspheres with diameters of 15-32 or 105-107 µm in an agar phantom under exposure to high-intensity focused ultrasound (0.5 MHz) at a range of peak negative pressures (1.9-2.8 MPa) in the presence of SonoVue microbubbles. RESULTS In contrast to the microstreaming reported to be responsible for nanoparticle transport, the formation and translation of bubble clouds were found to be primarily responsible for the motion of glass microspheres. The bubble clouds were seen both to create channels in the phantom and to travel along them under the action of primary acoustic radiation force, either propelling or entraining microspheres with them. Collisions between microspheres were also seen to promote cloud formation and cavitation activity. CONCLUSION Ultrasound-mediated cavitation can promote the transport of solid microparticles in tissue-mimicking material. Further work is needed to understand the influence of tissue mechanical properties and ultrasound exposure parameters on the extent and uniformity of particle distribution that can be achieved.
Collapse
Affiliation(s)
- Jonathan Vince
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andrew Lewis
- Alchemed Bioscience Consulting Ltd., Stable Cottage, Farnham, Surrey, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Novel hydrogel comprising non-ionic copolymer with various concentrations of pharmacologically active bile acids for cellular injectable gel. Colloids Surf B Biointerfaces 2023; 222:113014. [PMID: 36427407 DOI: 10.1016/j.colsurfb.2022.113014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties. Biocompatibility and biological effect were examined on various cell lines. Cell viability was determent in normal and various hypoxic conditions, and full mitochondrial bioenergetic parameters were assessed in cell lines in order to illustrate hydrogel effects on survival, and cell metabolic profile within the hydrogels. Obtained data suggest that a low dose of DCA in permeable, biocompatible hydrogels can be beneficial for cells to combat hypoxic conditions.
Collapse
|
11
|
Li H, Li X, Collado-Lara G, Lattwein KR, Mastik F, Beurskens R, van der Steen AFW, Verweij MD, de Jong N, Kooiman K. Coupling Two Ultra-high-Speed Cameras to Elucidate Ultrasound Contrast-Mediated Imaging and Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:388-397. [PMID: 36241587 DOI: 10.1016/j.ultrasmedbio.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.
Collapse
Affiliation(s)
- Hongchen Li
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Xiufeng Li
- Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Gonzalo Collado-Lara
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Section of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
13
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci 2022; 310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
14
|
Huang S, Guo W, An J, Zhang J, Dong F, Wang D, Feng F, Zhang J. Enhanced Acoustic Droplet Vaporization through the Active Magnetic Accumulation of Drug-Loaded Magnetic Particle-Encapsulated Nanodroplets (MPE-NDs) in Cancer Therapy. NANO LETTERS 2022; 22:8143-8151. [PMID: 36194752 DOI: 10.1021/acs.nanolett.2c02580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The application of drug-loaded nanodroplets is still limited by their insufficient accumulation owing to the enhanced permeability and retention (EPR) effect failure in cancer therapy. To overcome these limitations, we propose an alternative magnetic particle-encapsulated nanodroplet (MPE-ND) with outstanding biosafety and magnetic targeting by encapsulating fluorinated Fe3O4-SiO2 nanoparticles inside the liquid core of the nanodroplets. Meanwhile, doxorubicin (DOX) can be stably loaded into the shell through both electrostatic and hydrophobic interactions to obtain drug-loaded MPE-NDs. Both in vitro and in vivo experiments have consistently demonstrated that drug-loaded MPE-NDs can significantly increase the local drug concentration and enhance the damage of tumor tissues through acoustic droplet vaporization under a static magnetic field (eADV therapy). Histological examination reveals that eADV therapy efficiently suppresses tumor proliferation by inducing apoptosis, destroying supply vessels, and inhibiting neovascularization. Drug-loaded MPE-NDs can be expected to open a new gateway for ultrasound-triggered drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, College of Future Technology, Peking University, Beijing, 100871, China
| | - Feihong Dong
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, College of Future Technology, Peking University, Beijing, 100871, China
| | - Di Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Feng Feng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- College of Engineering, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
16
|
Hussein Ali T, Mousa Mandal A, Alhasan A, Dehaen W. Surface fabrication of magnetic core-shell silica nanoparticles with perylene diimide as a fluorescent dye for nucleic acid visualization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Vidallon MLP, Teo BM, Bishop AI, Tabor RF. Next-Generation Colloidal Materials for Ultrasound Imaging Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1373-1396. [PMID: 35641393 DOI: 10.1016/j.ultrasmedbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments. In this article, we review recent developments in new colloids with applications that use ultrasound contrast enhancement. This work also highlights the emergence of colloidal materials fabricated from or modified with biologically derived and bio-inspired materials, particularly in the form of biopolymers and biomembranes. Challenges, limitations, potential developments and future directions of these next-generation colloidal systems are also presented and discussed.
Collapse
Affiliation(s)
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
18
|
Valiunas V, Gordon C, Valiuniene L, Devine D, Lin RZ, Cohen IS, Brink PR. Intercellular delivery of therapeutic oligonucleotides. J Drug Deliv Sci Technol 2022; 72:103404. [PMID: 36721641 PMCID: PMC9886232 DOI: 10.1016/j.jddst.2022.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One promising approach to cancer therapeutics is to induce changes in gene expression that either reduce cancer cell proliferation or induce cancer cell death. Therefore, delivering oligonucleotides (siRNA/miRNA) that target specific genes or gene programs might have a potential therapeutic benefit. The aim of this study was to examine the potential of cell-based delivery of oligonucleotides to cancer cells via two naturally occurring intercellular pathways: gap junctions and vesicular/exosomal traffic. We utilized human mesenchymal stem cells (hMSCs) as delivery cells and chose to deliver in vitro two synthetic oligonucleotides, AllStars HS Cell Death siRNA and miR-16 mimic, as toxic (therapeutic) oligonucleotides targeting three cancer cell lines: prostate (PC3), pancreatic (PANC1) and cervical (HeLa). Both oligonucleotides dramatically reduced cell proliferation and/or induced cell death when transfected directly into target cells and delivery hMSCs. The delivery and target cells we chose express gap junction connexin 43 (Cx43) endogenously (PC3, PANC1, hMSC) or via stable transfection (HeLaCx43). Co-culture of hMSCs (transfected with either toxic oligonucleotide) with any of Cx43 expressing cancer cells induced target cell death (~20% surviving) or senescence (~85% proliferation reduction) over 96 hours. We eliminated gap junction-mediated delivery by using connexin deficient HeLaWT cells or knocking out endogenous Cx43 in PANC1 and PC3 cells via CRISPR/Cas9. Subsequently, all Cx43 deficient target cells co-cultured with the same toxic oligonucleotide loaded hMSCs proliferated, albeit at significantly slower rates, with cell number increasing on average ~2.2-fold (30% of control cells) over 96 hours. Our results show that both gap junction and vesicular/exosomal intercellular delivery pathways from hMSCs to target cancer cells deliver oligonucleotides and function to either induce cell death or significantly reduce their proliferation. Thus, hMSC-based cellular delivery is an effective method of delivering synthetic oligonucleotides that can significantly reduce tumor cell growth and should be further investigated as a possible approach to cancer therapy.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Chris Gordon
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Laima Valiuniene
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Daniel Devine
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Richard Z Lin
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Ira S Cohen
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Peter R Brink
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology Stony Brook University, Stony Brook, NY 11794-8661, USA
| |
Collapse
|
19
|
Toumia Y, Pullia M, Domenici F, Facoetti A, Ferrarini M, Heymans SV, Carlier B, Van Den Abeele K, Sterpin E, D'hooge J, D'Agostino E, Paradossi G. Ultrasound-assisted carbon ion dosimetry and range measurement using injectable polymer-shelled phase-change nanodroplets: in vitro study. Sci Rep 2022; 12:8012. [PMID: 35568710 PMCID: PMC9107472 DOI: 10.1038/s41598-022-11524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Methods allowing for in situ dosimetry and range verification are essential in radiotherapy to reduce the safety margins required to account for uncertainties introduced in the entire treatment workflow. This study suggests a non-invasive dosimetry concept for carbon ion radiotherapy based on phase-change ultrasound contrast agents. Injectable nanodroplets made of a metastable perfluorobutane (PFB) liquid core, stabilized with a crosslinked poly(vinylalcohol) shell, are vaporized at physiological temperature when exposed to carbon ion radiation (C-ions), converting them into echogenic microbubbles. Nanodroplets, embedded in tissue-mimicking phantoms, are exposed at 37 °C to a 312 MeV/u clinical C-ions beam at different doses between 0.1 and 4 Gy. The evaluation of the contrast enhancement from ultrasound imaging of the phantoms, pre- and post-irradiation, reveals a significant radiation-triggered nanodroplets vaporization occurring at the C-ions Bragg peak with sub-millimeter shift reproducibility and dose dependency. The specific response of the nanodroplets to C-ions is further confirmed by varying the phantom position, the beam range, and by performing spread-out Bragg peak irradiation. The nanodroplets' response to C-ions is influenced by their concentration and is dose rate independent. These early findings show the ground-breaking potential of polymer-shelled PFB nanodroplets to enable in vivo carbon ion dosimetry and range verification.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy.
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy.
| | - Marco Pullia
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy
| | - Angelica Facoetti
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Michele Ferrarini
- Fondazione CNAO, The National Center of Oncological Hadrontherapy, 27100, Pavia, Italy
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
- National Institute for Nuclear Physics, INFN Sez. Roma Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
20
|
Vidallon MLP, Salimova E, Crawford SA, Teo BM, Tabor RF, Bishop AI. Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. ULTRASONICS SONOCHEMISTRY 2022; 86:106041. [PMID: 35617883 PMCID: PMC9136156 DOI: 10.1016/j.ultsonch.2022.106041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.
Collapse
Affiliation(s)
| | - Ekaterina Salimova
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
21
|
Woźniak M, Płoska A, Siekierzycka A, Dobrucki LW, Kalinowski L, Dobrucki IT. Molecular Imaging and Nanotechnology-Emerging Tools in Diagnostics and Therapy. Int J Mol Sci 2022; 23:ijms23052658. [PMID: 35269797 PMCID: PMC8910312 DOI: 10.3390/ijms23052658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine is emerging as a new goal in the diagnosis and treatment of diseases. This approach aims to establish differences between patients suffering from the same disease, which allows to choose the most effective treatment. Molecular imaging (MI) enables advanced insight into molecule interactions and disease pathology, improving the process of diagnosis and therapy and, for that reason, plays a crucial role in personalized medicine. Nanoparticles are widely used in MI techniques due to their size, high surface area to volume ratio, and multifunctional properties. After conjugation to specific ligands and drugs, nanoparticles can transport therapeutic compounds directly to their area of action and therefore may be used in theranostics—the simultaneous implementation of treatment and diagnostics. This review summarizes different MI techniques, including optical imaging, ultrasound imaging, magnetic resonance imaging, nuclear imaging, and computed tomography imaging with theranostics nanoparticles. Furthermore, it explores the potential use of constructs that enables multimodal imaging and track diseases in real time.
Collapse
Affiliation(s)
- Marcin Woźniak
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.W.); (A.P.); (A.S.); (L.W.D.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, 80-210 Gdansk, Poland
- Correspondence: (L.K.); (I.T.D.); Tel.: +48-58-349-27-91 or +48-58-349-27-92 (L.K.)
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: (L.K.); (I.T.D.); Tel.: +48-58-349-27-91 or +48-58-349-27-92 (L.K.)
| |
Collapse
|
22
|
Huang C, Sun F, Ma X, Gao C, Yang N, Nishinari K. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance. Carbohydr Polym 2022; 288:119277. [DOI: 10.1016/j.carbpol.2022.119277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
|
23
|
Lin X, Wu J, Liu Y, Lin N, Hu J, Zhang B. Stimuli-Responsive Drug Delivery Systems for the Diagnosis and Therapy of Lung Cancer. Molecules 2022; 27:molecules27030948. [PMID: 35164213 PMCID: PMC8838081 DOI: 10.3390/molecules27030948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Numerous drugs have been developed to treat lung cancer patients in recent years, whereas most of these drugs have undesirable adverse effects due to nonspecific distribution in the body. To address this problem, stimuli-responsive drug delivery systems are imparted with unique characteristics and specifically deliver loaded drugs at lung cancer tissues on the basis of internal tumor microenvironment or external stimuli. This review summarized recent studies focusing on the smart carriers that could respond to light, ultrasound, pH, or enzyme, and provided a promising strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Yupeng Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Correspondence: (J.H.); (B.Z.)
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.W.); (Y.L.); (N.L.)
- Cancer Center, Zhejiang University, Hangzhou 310003, China
- Correspondence: (J.H.); (B.Z.)
| |
Collapse
|
24
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
26
|
Durham PG, Dayton PA. Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
28
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
29
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
30
|
Vidallon MLP, Giles LW, Pottage MJ, Butler CSG, Crawford SA, Bishop AI, Tabor RF, de Campo L, Teo BM. Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. J Colloid Interface Sci 2021; 607:836-847. [PMID: 34536938 DOI: 10.1016/j.jcis.2021.08.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.
Collapse
Affiliation(s)
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Pottage
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
31
|
Guo R, Xu N, Liu Y, Ling G, Yu J, Zhang P. Functional ultrasound-triggered phase-shift perfluorocarbon nanodroplets for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2064-2079. [PMID: 33992473 DOI: 10.1016/j.ultrasmedbio.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
In recent years, because of their unique properties, the use of perfluorocarbon nanodroplets (PFC NDs) in ultrasound-mediated tumor theranostics has attracted increasing interest. PFC is one of the most stable organic compounds with high hydrophobicity. Phase-shift PFC NDs can be transformed into highly echogenic microbubbles for ultrasound and photoacoustic imaging by ultrasound and laser light. In addition, in the process of acoustic droplet vaporization, PFC NDs with cavitation nuclei can be combined with a variety of ultrasound technologies to produce cavitation effects for tumor ablation, antivascular therapy and release of therapeutic agents loaded in nanodroplets. Moreover, they can also be used to overcome tumor hypoxia by virtue of high oxygen solubility. In this review, first the preparation and stabilization of PFC NDs are summarized and then the issues and outlook are discussed. More importantly, multifunctional platforms based on PFC NDs for cancer diagnostics, therapy and theranostics are reviewed in detail.
Collapse
Affiliation(s)
- Ranran Guo
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Xu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Liu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Yu
- Shenyang Pharmaceutical University, Shenyang, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
32
|
Vidallon MLP, Teo BM. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chem Commun (Camb) 2021; 56:13907-13917. [PMID: 33146161 DOI: 10.1039/d0cc05880g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules are very attractive nanomaterial components, generally, due to their biocompatibility, biodegradability, abundance, renewability, and sustainability, as compared to other resources for nanoparticle-based delivery systems. Biomolecule-based nanoencapsulation and nanodelivery systems can be designed and engineered for antimicrobial cargos in order to surmount classical and current challenges, including the emergence of multi-drug resistant strains of microorganisms, the low effectiveness and limitations in the applicability of the present antimicrobials, and biofilm formation. This feature article highlights the recent applications and capabilities of biomacromolecule-based nanomaterials for the delivery and activity enhancement of antimicrobials, and disruption of biofilms. Unique properties of some nanomaterials, arising from specific biomacromolecules, were also emphasized. We expect that this review will be helpful to researchers in engineering new types of antimicrobial nanocarriers, hybrid particles and colloidal systems with tailored properties.
Collapse
Affiliation(s)
- Mark Louis P Vidallon
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
33
|
Vidallon MLP, Giles LW, Crawford S, Bishop AI, Tabor RF, de Campo L, Teo BM. Exploring the transition of polydopamine-shelled perfluorohexane emulsion droplets into microbubbles using small- and ultra-small-angle neutron scattering. Phys Chem Chem Phys 2021; 23:9843-9850. [PMID: 33908524 DOI: 10.1039/d1cp01146d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Perfluorocarbon emulsion droplets are interesting colloidal systems with applications, ranging from diagnostics and theranostics to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. This work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS, respectively), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-stabilised perfluorohexane (PDA/PFH) emulsion droplets into microbubbles during heating. Results show peak USANS intensities at temperatures around 90 °C, which indicates that the phase transition of PDA/PFH emulsion droplets occurs at significantly higher temperatures than the bulk boiling point of pure liquid PFH (56 °C). Analysis and model fitting of the SANS and USANS data allowed us to estimate droplet sizes and interfacial properties at different temperatures (20 °C, 90 °C, and 20 °C after cooling), giving valuable insights about the transformation of these polydisperse emulsion droplet systems.
Collapse
|
34
|
Dong C, Hu H, Sun L, Chen Y. Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies. Biomed Mater 2021; 16. [PMID: 33725684 DOI: 10.1088/1748-605x/abef58] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
The fast development of nanomedicine and nanobiotechnology has enabled the emerging of versatile therapeutic modalities with high therapeutic efficiency and biosafety, among which nanosonosensitizer-involved sonodynamic therapy (SDT) employs ultrasound (US) as the exogenous activation source for inducing the production of reactive oxygen species (ROS) and disease therapy. The chemoreactive nanosonosensitizers are the critical components participating in the SDT process, which generally determine the SDT efficiency and therapeutic outcome. Compared to the traditional and mostly explored organic sonosensitizers, the recently developed inorganic chemoreactive nanosonosensitizers feature the distinct high stability, multifunctionality and significantly different SDT mechanism. This review dominantly discusses and highlights two types of inorganic nanosensitizers in sonodynamic treatments of various diseases and their underlying therapeutic mechanism, including US-activated generation of electrons (e-) and holes (h+) for facilitating the following ROS production and delivery of organic molecular sonosensitizers. Especially, this review proposes four strategies aiming for augmenting the SDT efficiency on antitumor and antibacterial applications based on inorganic sonosensitizers, including defect engineering, novel metal coupling, increasing electric conductivity and alleviating tumor hypoxia. The encountered challenges and critical issues facing these inorganic nanosonosensitzers are also highlighted and discussed for advancing their clinical translations.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Hui Hu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang 212002, People's Republic of China
| | - Liping Sun
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
35
|
Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021; 7:33. [PMID: 33804970 PMCID: PMC8103278 DOI: 10.3390/gels7020033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The discovery of paclitaxel (PTX) has been a milestone in anti-cancer therapy and has promoted the development and marketing of various formulations that have revolutionized the therapeutic approach towards several malignancies. Despite its peculiar anti-cancer activity, the physico-chemical properties of PTX compromise the administration of the compound in polar media. Because of this, since the development of the first Food and Drug Administration (FDA)-approved formulation (Taxol®), consistent efforts have been made to obtain suitable delivery systems able to preserve/increase PTX efficacy and to overcome the side effects correlated to the presence of some excipients. The exploitation of natural polymers as potential materials for drug delivery purposes has favored the modulation of the bioavailability and the pharmacokinetic profiles of the drug, and in this regard, several formulations have been developed that allow the controlled release of the active compound. In this mini-review, the recent advances concerning the design and applications of natural polymer-based hydrogels containing PTX-loaded biocompatible nanocarriers are discussed. The technological features of these formulations as well as the therapeutic outcome achieved following their administration will be described, demonstrating their potential role as innovative systems to be used in anti-tumor therapy.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | | | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S.Venuta”, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
36
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
37
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
38
|
Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J Pharm Sci 2020; 16:318-336. [PMID: 34276821 PMCID: PMC8261086 DOI: 10.1016/j.ajps.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sorafenib, a molecular targeted multi-kinase inhibitor, has received considerable interests in recent years due to its significant profiles of efficacy in cancer therapy. However, poor pharmacokinetic properties such as limited water solubility, rapid elimination and metabolism lead to low bioavailability, restricting its further clinical application. Over the past decade, with substantial progress achieved in the development of nanotechnology, various types of smart sorafenib nanoformulations have been developed to improve the targetability as well as the bioavailability of sorafenib. In this review, we summarize various aspects from the preparation and characterization to the evaluation of antitumor efficacy of numerous stimuli-responsive sorafenib nanodelivery systems, particularly with emphasis on their mechanism of drug release and tumor microenvironment response. In addition, this review makes great effort to summarize the nanosystem-based combination therapy of sorafenib with other antitumor agents, which can provide detailed information for further synergistic cancer therapy. In the final section of this review, we also provide a detailed discussion of future challenges and prospects of designing and developing ideal sorafenib nanoformulations for clinical cancer therapy.
Collapse
|
39
|
Dong W, Wu P, Qin M, Guo S, Liu H, Yang X, He W, Bouakaz A, Wan M, Zong Y. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy. Mol Pharm 2020; 17:2891-2910. [PMID: 32678617 DOI: 10.1021/acs.molpharmaceut.0c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy is likely to be the most promising way to tackle cancer, while defects in molecular strategies and delivery systems have led to an impasse in clinical application. Here, it is found that onco-miRNAs of the miR-515 and -449 families were upregulated in hepatocellular carcinoma (HCC), and the sponge targeting miR-515 family had a significant probability to suppress cancer cell proliferation. Then, we constructed non-toxic sponge-loaded magnetic nanodroplets containing 20% C6F14 (SLMNDs-20%) that are incorporated with fluorinated superparamagnetic iron oxide nanoparticles enhancing external magnetism-assisted targeting and enabling a direct visualization of SLMNDs-20% distribution in vivo via magnetic resonance imaging monitoring. SLMNDs-20% could be vaporized by programmable focused ultrasound (FUS) activation, achieving ∼45% in vitro sponge delivery efficiency and significantly enhancing in vivo sponge delivery without a clear apoptosis. Moreover, the sponge-1-carrying SLMNDs-20% could effectively suppress proliferation of xenograft HCC after FUS exposure because sponge-1-suppressing onco-miR-515 enhanced the expression of anti-oncogenes (P21, CD22, TIMP1, NFKB, and E-cadherin) in cancer cells. The current results indicated that ultrasonic cavitation-inducing sonoporation enhanced the intracellular delivery of sponge-1 using SLMNDs-20% after magnetic-assisted accumulation, which was a therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Wei Dong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengying Wu
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengfan Qin
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shifang Guo
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xinxing Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Ultrasound, The First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Wen He
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ayache Bouakaz
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours 37000, France
| | - Mingxi Wan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujin Zong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
40
|
Wang W, Hao Y, Liu Y, Li R, Huang DB, Pan YY. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1654. [PMID: 32700465 DOI: 10.1002/wnan.1654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Lung cancer is considered to cause the most cancer-related deaths worldwide. Due to the deficiency in early-stage diagnostics and local invasion or distant metastasis, the first line of treatment for most patients unsuitable for surgery is chemotherapy, targeted therapy or immunotherapy. Nanocarriers with the function of improving drug solubility, in vivo stability, drug distribution in the body, and sustained and targeted delivery, can effectively improve the effect of drug treatment and reduce toxic and side effects, and have been used in clinical treatment for lung cancer and many types of cancers. Here, we review nanoparticle (NP) formulation for lung cancer treatment including liposomes, polymers, and inorganic NPs via systemic and inhaled administration, and highlight the works of overcoming drug resistance and improving cancer immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuhao Hao
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yusheng Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Da-Bing Huang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue-Yin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Yi L, Chen Y, Jin Q, Deng C, Wu Y, Li H, Liu T, Li Y, Yang Y, Wang J, Lv Q, Zhang L, Xie M. Antagomir-155 Attenuates Acute Cardiac Rejection Using Ultrasound Targeted Microbubbles Destruction. Adv Healthc Mater 2020; 9:e2000189. [PMID: 32548962 DOI: 10.1002/adhm.202000189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Antagomir-155 is an artificial inhibitor of miRNA-155, which is expected to be a promising therapeutic target to attenuate acute cardiac rejection (ACR). However, its vulnerability of being degraded by endogenous nuclease and potential off-target effect make the authors seek for a more suitable way to delivery it. In attribution of efficiency and safety, ultrasound targeted microbubbles destruction (UTMD) turns out to be an appropriate method to deliver gene to target tissues. Here, cationic microbubbles to deliver antagomir-155 downregulating miRNA-155 in murine allograft hearts triggered by UTMD are synthesized. The viability of this therapy is verified by fluorescent microscopy. The biodistribution of antagomir-155 is analyzed by optical imaging system. The results show antagomir-155 delivered by UTMD which significantly decreases the levels of miR-155. Also, this therapy downregulates the expression of cytokines and inflammation infiltration. And allograft survival time is significantly prolonged. Therefore, antagomir-loaded microbubbles trigged by UTMD may provide a novel platform for ACR target treatment.
Collapse
Affiliation(s)
- Luyang Yi
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yihan Chen
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qiaofeng Jin
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Cheng Deng
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Ya Wu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Huiling Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Tianshu Liu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yuman Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yali Yang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Jing Wang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qing Lv
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Li Zhang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Mingxing Xie
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| |
Collapse
|
42
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Mannaris C, Yang C, Carugo D, Owen J, Lee JY, Nwokeoha S, Seth A, Teo BM. Acoustically responsive polydopamine nanodroplets: A novel theranostic agent. ULTRASONICS SONOCHEMISTRY 2020; 60:104782. [PMID: 31539725 DOI: 10.1016/j.ultsonch.2019.104782] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 05/06/2023]
Abstract
Ultrasound-induced cavitation has been used as a tool of enhancing extravasation and tissue penetration of anticancer agents in tumours. Initiating cavitation in tissue however, requires high acoustic intensities that are neither safe nor easy to achieve with current clinical systems. The use of cavitation nuclei can however lower the acoustic intensities required to initiate cavitation and the resulting bio-effects in situ. Microbubbles, solid gas-trapping nanoparticles, and phase shift nanodroplets are some examples in a growing list of proposed cavitation nuclei. Besides the ability to lower the cavitation threshold, stability, long circulation times, biocompatibility and biodegradability, are some of the desirable characteristics that a clinically applicable cavitation agent should possess. In this study, we present a novel formulation of ultrasound-triggered phase transition sub-micrometer sized nanodroplets (~400 nm) stabilised with a biocompatible polymer, polydopamine (PDA). PDA offers some important benefits: (1) facile fabrication, as dopamine monomers are directly polymerised on the nanodroplets, (2) high polymer biocompatibility, and (3) ease of functionalisation with other molecules such as drugs or targeting species. We demonstrate that the acoustic intensities required to initiate inertial cavitation can all be achieved with existing clinical ultrasound systems. Cell viability and haemolysis studies show that nanodroplets are biocompatible. Our results demonstrate the great potential of PDA nanodroplets as an acoustically active nanodevice, which is highly valuable for biomedical applications including drug delivery and treatment monitoring.
Collapse
Affiliation(s)
- Christophoros Mannaris
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Dario Carugo
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Mechatronics and Bioengineering Science Research Groups, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Joshua Owen
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Jeong Yu Lee
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Sandra Nwokeoha
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Anjali Seth
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Boon Mian Teo
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; School of Chemistry, Clayton Campus, Monash University Victoria, 3800, Australia.
| |
Collapse
|
44
|
Liu Y, Cen Y, Cheng K, Li J, Wu W, Li R, Wu H. Novel biodegradable application of chitosan/lysine compounds for delivery of ligustrazine. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yude Liu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyou Cen
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaili Cheng
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarui Li
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Roovers S, Deprez J, Priwitaningrum D, Lajoinie G, Rivron N, Declercq H, De Wever O, Stride E, Le Gac S, Versluis M, Prakash J, De Smedt SC, Lentacker I. Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. J Control Release 2019; 316:79-92. [PMID: 31676384 DOI: 10.1016/j.jconrel.2019.10.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Ultrasound-triggered drug-loaded microbubbles have great potential for drug delivery due to their ability to locally release drugs and simultaneously enhance their delivery into the target tissue. We have recently shown that upon applying ultrasound, nanoparticle-loaded microbubbles can deposit nanoparticles onto cells grown in 2D monolayers, through a process that we termed "sonoprinting". However, the rigid surfaces on which cell monolayers are typically growing might be a source of acoustic reflections and aspherical microbubble oscillations, which can influence microbubble-cell interactions. In the present study, we aim to reveal whether sonoprinting can also occur in more complex and physiologically relevant tissues, by using free-floating 3D tumor spheroids as a tissue model. We show that both monospheroids (consisting of tumor cells alone) and cospheroids (consisting of tumor cells and fibroblasts, which produce an extracellular matrix) can be sonoprinted. Using doxorubicin-liposome-loaded microbubbles, we show that sonoprinting allows to deposit large amounts of doxorubicin-containing liposomes to the outer cell layers of the spheroids, followed by doxorubicin release into the deeper layers of the spheroids, resulting in a significant reduction in cell viability. Sonoprinting may become an attractive approach to deposit drug patches at the surface of tissues, thereby promoting the delivery of drugs into target tissues.
Collapse
Affiliation(s)
- S Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - J Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - D Priwitaningrum
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - G Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - N Rivron
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - H Declercq
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tissue Engineering Group, Department of Human Structure and Repair, Ghent University, Belgium
| | - O De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - E Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - S Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - M Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - J Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, Enschede, the Netherlands
| | - S C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
46
|
Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt SC, Lentacker I. Sonoprinting of nanoparticle-loaded microbubbles: Unraveling the multi-timescale mechanism. Biomaterials 2019; 217:119250. [DOI: 10.1016/j.biomaterials.2019.119250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
47
|
Liu Y, Zhao N, Xu FJ. pH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34707-34716. [PMID: 31482705 DOI: 10.1021/acsami.9b12198] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great significance to develop biocompatible and degradable gene carriers with stimuli-enhanced gene therapy and imaging function. In this work, low-cytotoxic polycation PGEA (ethanolamine-functionalized poly(glycidyl methacrylate))-functionalized dextran-quantum dot (QD) nanohybrids (DQ-PGEA) were proposed as safe and efficient gene carriers via a facile and feasible method. The highly water-soluble dextran gives the carrier good stability, biocompatibility, and abundant modification sites, while QDs allow fluorescence (FL) imaging. Taking advantage of the pH-responsive self-destruction characteristic introduced by Schiff base linkages, DQ-PGEA nanohybrids could not only result in enhanced gene release but also contribute to the elimination of the carriers. Reduced (nondegradable) DQ-PGEA-R nanohybrids were also synthesized as counterparts to reveal the superiority of the responsive DQ-PGEA carriers. The effectiveness of the as-prepared gene delivery systems was verified adopting the antioncogene p53 in the mouse model of breast cancer. As expected, DQ-PGEA nanohybrids demonstrated a superior gene transfection performance and antitumor inhibition compared with their counterparts. Meanwhile, the gene delivery processes could be tracked in real time to visualize the therapeutic processes and realize FL imaging-guided gene therapy. The current multifunctional stimuli-responsive nanoplatforms with the self-destruction feature are intriguing candidates to achieve enhanced gene therapy for tumor treatment.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Materials Engineering , Taiyuan Institute of Technology , Taiyuan 030008 , China
| | | | | |
Collapse
|
48
|
Kee ALY, Teo BM. Biomedical applications of acoustically responsive phase shift nanodroplets: Current status and future directions. ULTRASONICS SONOCHEMISTRY 2019; 56:37-45. [PMID: 31101274 DOI: 10.1016/j.ultsonch.2019.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 05/19/2023]
Abstract
The evolution of ultrasonic contrast agents to enhance the reflectivity of structures in the human body has consolidated ultrasound's stance as a reliable diagnostic imaging modality. A significant development within this field includes the advent of liquid nanodroplets that are capable of vaporising into gaseous microbubbles upon ultrasonic irradiation. This literature review will therefore appraise and summarise the available literature on the generation of phase-shift nanodroplets, their formulations, applications, safety issues, future developments and any implications that may inhibit their clinical implementation. The main findings of this review affirm that phase change nanodroplets do indeed demonstrate functionality in drug delivery and targeting and characterisation of tumours. Its bioeffects however, have not yet been extensively researched, prompting further exploration into how bubble size can be controlled once it has vaporised into microbubbles and the resulting complications. As such, future research should be directed towards determining the safety, longevity and suitability of phase-shift nanodroplets over contrast agents in current clinical use.
Collapse
Affiliation(s)
- Allison Loo Yong Kee
- Department of Medical Imaging and Radiation Sciences, Monash University, 10 Chancellors Walk, Clayton, Victoria 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia.
| |
Collapse
|
49
|
Cheon HJ, Adhikari MD, Chung M, Tran TD, Kim J, Kim MI. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Adv Healthc Mater 2019; 8:e1801507. [PMID: 30848070 DOI: 10.1002/adhm.201801507] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/05/2019] [Indexed: 01/05/2023]
Abstract
It is reported that glucose oxidase (GOx)-copper hybrid nanoflowers embedded with Fe3 O4 magnetic nanoparticles (MNPs) exhibit superior peroxidase-mimicking activity as well as substrate channeling for glucose detection. This is due to the synergistic integration of GOx, crystalline copper phosphates and MNPs being in close proximity within the nanoflowers. The preparation of MNP-embedded GOx-copper hybrid nanoflowers (MNPs-GOx NFs) begins with the facile conjugation of amine-functionalized MNPs with GOx molecules via electrostatic attraction, followed by the addition of copper sulfate that leads to full blooming of the hybrid nanoflowers. In the presence of glucose, the catalytic action of GOx entrapped in the nanoflowers generates H2 O2 , which is subsequently used by peroxidase-mimicking MNPs and copper phosphate crystals, located close to GOx molecules, to convert Amplex UltraRed substrate into a highly fluorescent product. Using this strategy, the target glucose is successfully determined with excellent selectivity, stability, and magnetic reusability. This biosensor based on hybrid nanoflowers also exhibits a high degree of precision and reproducibility when applied to real human blood samples. Such novel MNP-embedded enzyme-inorganic hybrid nanoflowers have a great potential to be expanded to any oxidases, which will be highly beneficial for the detection of various other clinically important target molecules.
Collapse
Affiliation(s)
- Hong Jae Cheon
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Manab Deb Adhikari
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Minsoo Chung
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Tai Duc Tran
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Jungbae Kim
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Moon Il Kim
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| |
Collapse
|
50
|
Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: A review. J Control Release 2019; 293:144-154. [PMID: 30503398 PMCID: PMC6459400 DOI: 10.1016/j.jconrel.2018.11.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the development of acoustically activated droplets, also known as phase-change emulsions, from a diagnostic tool to a therapeutic agent. Through bubble effects and triggered drug release, these superheated agents have found potential applications from oncology to neuromodulation. The aim of this review is to summarise the key developments in therapeutic droplet design and use, to discuss the current challenges slowing clinical translation, and to highlight the new frontiers progressing towards clinical implementation. The literature is summarised by addressing the droplet design criteria and by carrying out a multiparametric study of a range of droplet formulations and their associated vaporisation thresholds.
Collapse
Affiliation(s)
- H Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - M A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|