1
|
Cao X, Lv R, Wei Y. Cationic Carbon Dot Reinforced Highly Tensile, Tough, Dehydration Resistant Polyelectrolyte Hydrogels with Fluorescence for Flexible Sensing and Information Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501531. [PMID: 40405634 DOI: 10.1002/smll.202501531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/10/2025] [Indexed: 05/24/2025]
Abstract
With the rapid development of wearable devices, there is an increasing demand for multifunctional conductive soft materials. Nanocomposite hydrogels containing carbon nanofillers such as carbon dots (CDs) composite gels emerge as promising candidates. However, traditional CDs nanocomposite hydrogels face limitations in terms of mechanical strength, stability and elasticity. To overcome these critical challenges, in this work, a cationic carbon dots (CCDs)-reinforced polyelectrolyte hydrogel engineered through synergistic electrostatic assembly and salting-out strategies is developed. The polyacrylic acid/sodium hyaluronate/cationic carbon point glycerol-water binary solvent fluorescent organohydrogel (PAH-CG) is fabricated. The resulting organohydrogel PAH-CG successfully overcame the plasticizing effect of glycerol, resulting in a significant enhancement of mechanical properties, with a 149-fold increase in Young's modulus compared to the control hydrogel. Specifically, the PAH-CG hydrogel exhibited high tensile strain (1200%-2734%), tensile strength (234 kPa), and modulus (275 kPa), alongside excellent elasticity, fluorescence, and dehydration resistance. The improvement in mechanical properties leads to excellent performance in flexible sensor applications. Concurrently, glycerol incorporation not only amplifies fluorescence intensity but also improves dehydration resistance and moisture absorption. Applications for encrypted transmission of information and anti-counterfeiting have been developed based on these properties, making PAH-CG hydrogels a promising platform for advanced smart devices.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Rulong Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
2
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Shoukat H, Maqbool I, Ashraf MA, Mahmood H. Novel thiol-functionalized hyaluronic acid-based pH-responsive hydrogel: A promising mucoadhesive drug delivery approach toward the treatment of colorectal cancer. Colloids Surf B Biointerfaces 2025; 254:114805. [PMID: 40412287 DOI: 10.1016/j.colsurfb.2025.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/14/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
The synthesis of thiolated polymer-based smart hydrogels with desired pH responsiveness is essential for numerous biological and pharmaceutical applications. This study aims to develop chemically crosslinked interpenetrating network (IPN) pH-sensitive thiolated hydrogels for the targeted delivery of 5-fluorouracil (5-FU) to colorectal cancer (CRC) and to evaluate their mucoadhesive properties by measuring mucosal residence time on rabbit colonic mucosa. Thiolated hyaluronic acid (HA-SH) was synthesized by oxidation and reductive amination using cysteamine conjugation. Hydrogels were examined regarding textural properties, swelling behavior, mucoadhesive properties, surface morphology, and drug release characteristics. The physical interaction and biocompatibility of HA-SH hydrogels were assessed by FT-IR spectroscopy, hemolysis tests, cytocompatibility, and histopathology analyses. The configuration of HA-SH was validated using IR and 1HNMR spectroscopy. Thiolation resulted in a 2.4-fold viscosity improvement (viscosity of the mucus-HA-SH mixture) compared to the native HA-SH mixture. Swelling and drug release were diminished in simulated gastric fluid (SGF), whereas a sustained release pattern was noted in simulated colonic fluid (SCF), demonstrating significant pH sensitivity. In vitro anticancer assays showed a ∼3.0-fold greater cellular uptake of HA-SH versus native HA as determined on the HT29 cancer cell line using flow cytometry, leading to slightly reduced cell viability. In vivo, organ distribution experiments and histopathological analysis showed a high concentration of 5-FU in the colon. By these results, HA-SH-based hydrogels are potential agents for sustained and localized delivery of 5-FU.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Ijaz
- Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria; Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Azeem Ashraf
- Department of Supply Chain, University of Management and Technology Lahore, Lahore, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Hao LT, Lee S, Hwang DS, Jeon H, Park J, Kim HJ, Oh DX. Self-Healing Scaffolding Technology with Strong, Reversible Interactions under Physiological Conditions for Engineering Marbled Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40317268 DOI: 10.1021/acsami.5c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cultured meat offers a sustainable alternative to animal farming, with the potential to reduce environmental impacts and improve food security. However, recapitulating natural meat marbling remains a significant challenge. This study presents a straightforward technology for achieving precise marbling patterns in large-scale cultured meat using self-healing hydrogels containing boronic acid-conjugated chitosan. Unlike conventional hydrogels, which require nonphysiological conditions for strong, reversible bonding, our system achieves robust reversible bonding at neutral pH through a unique mechanism: the nucleophilic groups of chitosan facilitate boronic acid-diol bond formation, exhibiting half the strength of a typical covalent bond, as demonstrated by nanomechanics analysis. The hydrogels form dual reversible networks of boronic acid-diol and hydrogen bonds, enabling self-healing and tunable stiffness. Biocompatibility studies confirm that they support the growth of mouse-derived cells and bovine-derived primary muscle cells. Each hydrogel variant optimizes mechanotransduction for the distinct requirements of fat or muscle cell culture and differentiation. This self-healing scaffolding technology enables the seamless assembly of muscle and fat monocultures into centimeter-thick meat with micrometer-scale marbling patterns, tailoring organoleptic properties and nutritional profiles without the need for meat glues or processing equipment.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seunghyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Adel Rashiq S, Abd El-Sattar NEA, abd Elhamid HAE, El-Sayyad GS, Bassioni G, Ghobashy MM. Enhanced Bioadhesive and Antimicrobial Properties of PVA/Ascorbic Acid Composite with Tannic Acid Synthesized by Gamma Irradiation for Biomedical Applications. ACS OMEGA 2025; 10:13839-13853. [PMID: 40256521 PMCID: PMC12004146 DOI: 10.1021/acsomega.4c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 04/22/2025]
Abstract
Bioadhesive hydrogels play a crucial role in biomedical applications due to their capacity to adhere to biological surfaces. This study investigates a novel bioadhesive hydrogel system developed from poly(vinyl alcohol) (PVA) and ascorbic acid (AS), cross-linked through gamma irradiation at 7 kGy, and modified with 5 wt % tannic acid (TA). The primary objective was to enhance the hydrogel's bioadhesive, mechanical, and antimicrobial properties. Mechanical testing revealed that the (PVA/AS)/TA hydrogel exhibited significant improvements, with a lap shear strength of 92 kPa, a tensile strength of 0.57 MPa, and an elongation at break of 180%, compared to the unmodified variant. Antimicrobial efficacy was assessed against bacterial strains, including Staphylococcus aureus and Escherichia coli, showing potent inhibitory effects with minimum inhibitory concentration (MIC) values of 25 μg/mL and 30 μg/mL, respectively. The findings indicate that the (PVA/AS)/TA hydrogel is a promising candidate for wound healing, drug delivery, and tissue engineering applications. It showcases its novelty in improving bioadhesive properties while providing antimicrobial functionality, thus addressing critical challenges in biomedical material design.
Collapse
Affiliation(s)
- Shreen Adel Rashiq
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo, Abbassiya 11566, Egypt
| | - Nour E. A. Abd El-Sattar
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo, Abbassiya 11566, Egypt
- Basic
& Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat City 32897, Egypt
| | | | - Gharieb S. El-Sayyad
- Drug
Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology
(NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 2980, Egypt
- Medical
Laboratory Technology Department, Faculty of Applied Health Sciences
Technology, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ghada Bassioni
- Chemistry
Department, Faculty of Engineering, Ain
Shams University, Cairo 11517, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation
Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian
Atomic Energy Authority, Cairo, Nasr City 2980, Egypt
| |
Collapse
|
6
|
Sapkota A, Shome A, Crutchfield N, Moses JC, Martinez I, Handa H, Brisbois EJ. Catalyst-Free Synthesis of a Mechanically Tailorable, Nitric-Oxide-Releasing Organohydrogel and Its Derived Underwater Superoleophobic Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19335-19347. [PMID: 40108889 PMCID: PMC11969437 DOI: 10.1021/acsami.4c21695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Organohydrogels are an emerging class of soft materials that mimick the mechanical durability and organic solvent affinity of organogels and the biocompatibility and water swelling ability characteristics of hydrogels for prospective biomedical applications. This work introduces a facile, catalyst-free one-step chemical approach to develop an organohydrogel with impeccable antibiofouling properties following the epoxy-amine ring-opening reaction under ambient conditions. The mechanical properties of the as-fabricated organohydrogel can be tailored depending on the concentration of the epoxy-based cross-linker, from 0.10 to 1.12 MPa (compressive modulus). The affinity of the as-developed organohydrogel to both organic solvents and water was exploited to incorporate the antimicrobial nitric oxide donor (NO) molecule, S-nitroso-N-acetylpenicillamine (SNAP) from ethanol, and subsequently, the water-sensitive NO-releasing behavior of the organohydrogels was analyzed. The SNAP-incorporated organohydrogels release physiologically active levels of NO with 3.13 ± 0.27 × 10-10 and 0.36 ± 0.14 × 10-10 mol cm-2 min-1 flux of NO release observed at 0 and 24 h, respectively. The as-reported organohydrogel demonstrated excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with >99% and >87% reduction, respectively, without eliciting any cytotoxicity concerns. Moreover, the organohydrogel with remarkable water uptake capacity was extended as a coating on different medically relevant polymers to demonstrate transparent underwater superoleophobicity. Thus, the facile synthesis of the reported organohydrogel and its derived underwater antifouling coating can open avenues for utility in biomedical, energy, and environmental applications.
Collapse
Affiliation(s)
- Aasma Sapkota
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Arpita Shome
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Natalie Crutchfield
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Joseph Christakiran Moses
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Isabel Martinez
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials, & Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
7
|
Parvin N, Joo SW, Jung JH, Mandal TK. Innovative Micro- and Nano-Architectures in Biomedical Engineering for Therapeutic and Diagnostic Applications. MICROMACHINES 2025; 16:419. [PMID: 40283294 PMCID: PMC12029970 DOI: 10.3390/mi16040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
The rapid evolution of micro- and nano-architectures is revolutionizing biomedical engineering, particularly in the fields of therapeutic and diagnostic micromechanics. This review explores the recent innovations in micro- and nanostructured materials and their transformative impact on healthcare applications, ranging from drug delivery and tissue engineering to biosensing and diagnostics. Key advances in fabrication techniques, such as lithography, 3D printing, and self-assembly, have enabled unprecedented control over material properties and functionalities at microscopic scales. These engineered architectures offer enhanced precision in targeting and controlled release in drug delivery, foster cellular interactions in tissue engineering, and improve sensitivity and specificity in diagnostic devices. We examine critical design parameters, including biocompatibility, mechanical resilience, and scalability, which influence their clinical efficacy and long-term stability. This review also highlights the translational potential and current limitations in bringing these materials from the laboratory research to practical applications. By providing a comprehensive overview of the current trends, challenges, and future perspectives, this article aims to inform and inspire further development in micro- and nano-architectures that hold promise for advancing personalized and precision medicine.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas K. Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (S.W.J.)
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, Peluso G, Conte R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025; 11:198. [PMID: 40136903 PMCID: PMC11942403 DOI: 10.3390/gels11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
9
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
10
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
11
|
Hong S, Lee J, Park T, Jeong J, Lee J, Joo H, Mesa JC, Alston CB, Ji Y, Vega SR, Barinaga C, Yi J, Lee Y, Kim J, Won KJ, Solorio L, Kim YL, Lee H, Kim DR, Lee CH. Spider Silk-Inspired Conductive Hydrogels for Enhanced Toughness and Environmental Resilience via Dense Hierarchical Structuring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500397. [PMID: 39905746 PMCID: PMC11948067 DOI: 10.1002/advs.202500397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Conductive hydrogels, known for their biocompatibility and responsiveness to external stimuli, hold promise for biomedical applications like wearable sensors, soft robotics, and implantable electronics. However, their broader use is often constrained by limited toughness and environmental resilience, particularly under mechanical stress or extreme conditions. Inspired by the hierarchical structures of natural materials like spider silk, a strategy is developed to enhance both toughness and environmental tolerance in conductive hydrogels. By leveraging multiscale dynamics including pores, crystallization, and intermolecular interactions, a dense hierarchical structure is created that significantly improves toughness, reaching ≈90 MJ m⁻3. This hydrogel withstands temperatures from -150 to 70 °C, pressure of 12 psi, and one-month storage under ambient conditions, while maintaining a lightweight profile of 0.25 g cm⁻3. Additionally, its tunable rheological properties allow for high-resolution printing of desired shapes down to 220 µm, capable of supporting loads exceeding 164 kg m⁻2. This study offers a versatile framework for designing durable materials for various applications.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jiwon Lee
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Taewoong Park
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jinheon Jeong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Junsang Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Hyeonseo Joo
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Juan C. Mesa
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | | | - Yuhyun Ji
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Sergio Ruiz Vega
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | - Cristian Barinaga
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jonghun Yi
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Youngjun Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jun Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Kate J. Won
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Luis Solorio
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Young L. Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Hyowon Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | - Dong Rip Kim
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
12
|
Cao Y, Liu C, Ye W, Zhao T, Fu F. Functional Hydrogel Interfaces for Cartilage and Bone Regeneration. Adv Healthc Mater 2025; 14:e2403079. [PMID: 39791312 DOI: 10.1002/adhm.202403079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.g., biological activity, controllable biodegradability, mechanical strength, excellent cell/tissue adhesion, and controllable release properties) for their clinical applications in complex bone repair processes. In this review, we will highlight recent advances in developing functional interface hydrogels. We then discuss the barriers to producing of functional hydrogel materials without sacrificing their inherent properties, and potential applications in cartilage and bone repair are discussed. Multifunctional hydrogel interface materials can serve as a fundamental building block for bone tissue engineering.
Collapse
Affiliation(s)
- Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Ye
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tianrui Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
13
|
Du L, Xiao YY, Jiang ZC, Xu H, Zeng H, Li H. A high temperature-resistant, strong, and self-healing double-network hydrogel for profile control in oil recovery. J Colloid Interface Sci 2025; 679:490-502. [PMID: 39490267 DOI: 10.1016/j.jcis.2024.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Hydrogels are widely used in profile control to plug high-permeability zones in oil recovery. In this study, a novel double-network (DN) hydrogel is developed for profile control. The two networks of the prepared hydrogel are polyacrylamide (PAAm) crosslinked by N,N'-Methylenebisacrylamide (MBAA) and konjac glucomannan (KGM) crosslinked by borax (B), respectively. The two networks are interconnected by their interpenetrating structures and hydrogen bonds. Based on the results of a series of evaluation experiments, the AAm/KGM DN hydrogels developed in this study exhibit a strong mechanical strength with their fracture stresses exceeding 0.137 MPa. Meanwhile, the AAm/KGM DN hydrogels can remain thermally stable after being heated at 130 °C for 24 h, indicating the good high-temperature resistance of the new sample. Moreover, the prepared AAm/KGM DN hydrogels present excellent self-healing performance due to the abundant hydrogen bonds in their structures, which helps form stable and long-term plugging in porous media. In addition, the pure PAAm hydrogel and the AAm/KGM DN hydrogel are sheared into two dispersed particle gel (DPG) suspensions to investigate their plugging performances. The results demonstrate that the AAm/KGM DN DPG can effectively plug a high-permeability sandpack with a plugging efficiency of 93.2 %, while the pure AAm DPG can only provide a much lower plugging efficiency of 60.5 %. The AAm/KGM DN hydrogel developed in this study, with its high mechanical strength, high-temperature resistance, and self-healing capability, offers a promising new candidate for profile control in oil recovery.
Collapse
Affiliation(s)
- Lin Du
- School of Mining and Petroleum Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada T6G 1H9
| | - Yao-Yu Xiao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Canada T6G 1H9
| | - Zhi-Chao Jiang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Canada T6G 1H9
| | - Hongzhi Xu
- Engineering Technology Research Institute of China National Petroleum Corporation, Binhai District, Tianjin, China 300451
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Canada T6G 1H9.
| | - Huazhou Li
- School of Mining and Petroleum Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada T6G 1H9.
| |
Collapse
|
14
|
Wallace EJ, O'Dwyer J, Dolan EB, Burke LP, Wylie R, Bellavia G, Straino S, Cianfarani F, Ciotti G, Serini S, Calviello G, Roche ET, Mitra T, Duffy GP. Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401744. [PMID: 39692747 PMCID: PMC11831469 DOI: 10.1002/advs.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Indexed: 12/19/2024]
Abstract
Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device. In a step-change from previously reported systems, pneumatic actuation of this system releases the cationic therapeutic protein Vascular Endothelial Growth Factor (VEGF) in a bioactive form which is required for therapeutic angiogenesis, the growth of new blood vessels, in numerous clinical conditions. The ability of the SRDD device to release bioactive VEGF in a spatiotemporal manner from the hydrogel is tested in diabetic rats - a model in which angiogenesis is difficult to stimulate. Daily actuation of the SRDD device in the diabetic rat model significantly increased cluster of differentiation 31+ (CD31+) blood vessel number (p = 0.0335) and the diameter of alpha-smooth muscle actin+ (α-SMA+) blood vessels (p = 0.0025) compared to passive release of VEGF from non-actuated devices. The SRDD device combined with the mechanoresponsive hydrogel offers the potential to deliver an array of bioactive therapeutics in a spatiotemporal manner to mimic their natural release in vivo.
Collapse
Affiliation(s)
- Eimear J. Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Explora‐Bioscience SrlG. Peroni 386Rome00131Italy
| | - Joanne O'Dwyer
- Pharmacology and TherapeuticsSchool of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | - Eimear B. Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- Biomedical EngineeringSchool of EngineeringUniversity of GalwayGalwayH91 HX31Ireland
| | - Liam P. Burke
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Antimicrobial Resistance and Microbial Ecology GroupSchool of Medicine, College of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 DK59Ireland
- Centre for One HealthRyan InstituteUniversity of GalwayGalwayH91 DK59Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | | | | | | | | | - Simona Serini
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Gabriella Calviello
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA 01239USA
- Harvard‐MIT Program in Health Sciences and TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Tapas Mitra
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 W9K7Ireland
| |
Collapse
|
15
|
Ghosh S, Kumar N, Chattopadhyay S. Electrically conductive "SMART" hydrogels for on-demand drug delivery. Asian J Pharm Sci 2025; 20:101007. [PMID: 39935975 PMCID: PMC11810714 DOI: 10.1016/j.ajps.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the current transformative era of biomedicine, hydrogels have established their presence in biomaterials due to their superior biocompatibility, tuneability and resemblance with native tissue. However, hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure. Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering. Consequently, researchers are developing combinatorial strategies to develop electrically responsive "SMART" systems to improve the therapeutic efficacy of biomolecules. Electrically conductive hydrogels have been explored for various drug delivery applications, enabling higher loading of therapeutic cargo with on-demand delivery. This review emphasizes the properties, mechanisms, fabrication techniques and recent advancements of electrically responsive "SMART" systems aiding on-site drug delivery applications. Additionally, it covers prospects for the successful translation of these systems into clinical research.
Collapse
Affiliation(s)
- Soumajyoti Ghosh
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil Kumar
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
16
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
17
|
Chen S, Lee CJM, Tan GSX, Ng PR, Zhang P, Zhao J, Novoselov KS, Andreeva DV. Ultra-Tough Graphene Oxide/DNA 2D Hydrogel with Intrinsic Sensing and Actuation Functions. Macromol Rapid Commun 2025; 46:e2400518. [PMID: 39101702 DOI: 10.1002/marc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.
Collapse
Affiliation(s)
- Siyu Chen
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Gladys Shi Xuan Tan
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pengxiang Zhang
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Jinpei Zhao
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| |
Collapse
|
18
|
Li F, Gan L, Yang X, Tan Z, Shi H, Lai C, Zhang D. Progress of AI assisted synthesis of polysaccharides-based hydrogel and their applications in biomedical field. Int J Biol Macromol 2025; 287:138643. [PMID: 39667472 DOI: 10.1016/j.ijbiomac.2024.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Polymeric hydrogels, characterized by their highly hydrophilic three-dimensional network structures, boast exceptional physical and chemical properties alongside high biocompatibility and biodegradability. These attributes make them indispensable in various biomedical applications such as drug delivery, tissue engineering, wound dressings and sensor technologies. With the integration of artificial intelligence (AI), hydrogels are undergoing significant transformations in design, leveraging human-machine interaction, machine learning, neural networks, and 3D/4D printing technology. This article provides a concise yet comprehensive overview of polysaccharide-based hydrogels, exploring their intrinsic properties, functionalities, preparation techniques, and classifications, alongside their progress in biomedical research. Special emphasis is placed on AI-enhanced hydrogels, underscoring their transformative potential in redefining hydrogel performance and functionality. By integrating AI technologies, these intelligent hydrogels open unprecedented opportunities in precision medicine, adaptive biomaterials, and smart healthcare systems, highlighting promising directions for future research.
Collapse
Affiliation(s)
- Fangyu Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Lu Gan
- College of Traditional Chinese Medicine, Xinjaing Medical University, Urumqi, Xinjiang 830017, China
| | - Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China.
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| |
Collapse
|
19
|
Guo X, Dong Y, Qin J, Zhang Q, Zhu H, Zhu S. Fracture-Resistant Stretchable Materials: An Overview from Methodology to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312816. [PMID: 38445902 DOI: 10.1002/adma.202312816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.
Collapse
Affiliation(s)
- Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Jianliang Qin
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
20
|
Rumon MM, Akib AA, Sarkar SD, Khan MAR, Uddin MM, Nasrin D, Roy CK. Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications. ACS POLYMERS AU 2024; 4:463-486. [PMID: 39679058 PMCID: PMC11638789 DOI: 10.1021/acspolymersau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, numerous applications of hydrogels using polysaccharides have evolved, benefiting from their widespread availability, excellent biodegradability, biocompatibility, and nonpoisonous nature. These natural polymers are typically sourced from renewable materials or from manufacturing processes, contributing collaboratively to waste management and demonstrating the potential for enhanced and enduring sustainability. In the field of novel bioactive molecule carriers for biotherapeutics, natural polymers are attracting attention due to their inherent properties and adaptable chemical structures. These polymers offer versatile matrices with a range of architectures and mechanical properties, while retaining the bioactivity of incorporated biomolecules. However, conventional polysaccharide-based hydrogels suffer from inadequate mechanical toughness with large swelling properties, which prohibit their efficacy in real-world applications. This review offers insights into the latest advancements in the development of diverse polysaccharide-based hydrogels for biotherapeutic administrations, either standalone or in conjunction with other polymers or drug delivery systems, in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Md. Mahamudul
Hasan Rumon
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Anwarul Azim Akib
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Stephen Don Sarkar
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | | | - Md. Mosfeq Uddin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Victoria, Victoria 3800, Canada
| | - Dina Nasrin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
21
|
Liu C, Sha D, Zhao L, Zhou C, Sun L, Liu C, Yuan Y. Design and Improvement of Bone Adhesive in response to Clinical Needs. Adv Healthc Mater 2024; 13:e2401687. [PMID: 39375984 DOI: 10.1002/adhm.202401687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Indexed: 10/09/2024]
Abstract
Fracture represents one of the most common diagnoses in contemporary medical practice, with the majority of cases traditionally addressed through metallic device fixation. However, this approach is marred by several drawbacks, including prolonged operative durations, considerable expenses, suboptimal applicability to comminuted fractures, increased infection risks, and the inevitable requirement for secondary surgery. The inherent advantages of bone adhesives in these fields have garnered the attention of orthopedic surgeons, who have commenced utilizing biocompatible and biodegradable bone adhesives to bond and stabilize bone fragments. Regrettably, the current bone adhesives generally exhibit insufficient adhesive strength in vivo environments, and it is desirable for them to possess effective osteogenesis to facilitate fracture healing. Consequently, aligning bone adhesives with practical clinical demands remains a significant hurdle, which has catalyzed a surge in research endeavors. Within this review, the conceptual framework, characteristics, and design ideas of bone adhesives based on clinical needs are delineated. Recent advancements in this domain, specifically focusing on the enhancement of two pivotal characteristics-adhesive strength and osteogenic potential are also reviewed. Finally, a prospective analysis of the future advancements in bone adhesives, offering new insights into solutions for diverse clinical problems is presented.
Collapse
Affiliation(s)
- Chenyu Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lingfei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chuanwei Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
22
|
Al‐Azzawi HMA, Paolini R, Celentano A. Is Hydrogel an Appropriate Bioadhesive Material for Sutureless Oral Wound Closure? Health Sci Rep 2024; 7:e70249. [PMID: 39659817 PMCID: PMC11628734 DOI: 10.1002/hsr2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Background and Aims An effective surgical adhesive must possess strength, biodegradability, flexibility, non-toxicity, and the ability to accommodate to tissue movement. However, existing adhesives in the market lack some of these crucial properties. Both synthetic cyanoacrylate and natural fibrin glue have been explored for sutureless oral surgery, but they come with specific limitations. This perspective review aims to explore the novel potential of hydrogels as bioadhesives for wound closure in the oral cavity. Methods This review thoroughly examines the properties, applications, and limitations of hydrogels as bioadhesive materials for wound closure within the human body. Results We first provide a comprehensive description of materials used for sutureless oral surgery. Next, drawing on our expertise in the field of oral surgery, we propose novel potential applications for hydrogels in oral wound closure. We showed that Hydrogels represent promising bioadhesives in medical field and are undergoing continuous enhancement to expand their applications in wound closure. Conclusion Although hydrogels have been utilized in various dental conditions, their potential for closing wounds in the oral cavity remains unexplored.
Collapse
Affiliation(s)
| | - Rita Paolini
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Antonio Celentano
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| |
Collapse
|
23
|
Madhusudhan A, Suhagia TA, Sharma C, Jaganathan SK, Purohit SD. Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review. Polymers (Basel) 2024; 16:3318. [PMID: 39684062 DOI: 10.3390/polym16233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems. CNTs, with their exceptional mechanical strength and conductivity, enhance rheological properties, facilitating their use as bioinks in supporting complex 3D bioprinting tasks for neural, bone, and cardiac tissues by mimicking the natural structure of tissues. CDs offer fluorescence capabilities for theranostic applications, integrating imaging and therapeutic functions. AC enhances mechanical strength, biocompatibility, and antibacterial effectiveness, making it suitable for wound healing and electroactive scaffolds. Despite these promising features, challenges remain, such as optimizing nanoparticle concentrations, ensuring biocompatibility, achieving uniform dispersion, scaling up production, and integrating multiple functionalities. Addressing these challenges through continued research and development is crucial for advancing the clinical and industrial applications of these innovative hydrogels.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN67TS, UK
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
24
|
Ruiz-Fresneda MA, González-Morales E, Gila-Vilchez C, Leon-Cecilla A, Merroun ML, Medina-Castillo AL, Lopez-Lopez MT. Clay-polymer hybrid hydrogels in the vanguard of technological innovations for bioremediation, metal biorecovery, and diverse applications. MATERIALS HORIZONS 2024; 11:5533-5549. [PMID: 39145624 DOI: 10.1039/d4mh00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels. Nanoclays can contribute to the physical cross-linking of polymers, enhancing their mechanical strength and their swelling and biocompatibility properties. Nowadays, they are being investigated for their potential use in a wide range of applications, including medicine, industry, and environmental decontamination. The use of microorganisms for the decontamination of environments impacted by toxic compounds, known as bioremediation, represents one of the most promising approaches to address global pollution. The immobilization of microorganisms in polymeric hydrogel matrices is an attractive procedure that can offer several advantages, such as improving the preservation of cellular integrity, and facilitating cell separation, recovery, and transport. Cell immobilization also facilitates the biorecovery of critical materials from wastes within the framework of the circular economy. The present work aims to present an up-to-date overview on the different "hybrid hydrogels" used to date for bioremediation of toxic metals and recovery of critical materials, among other applications, highlighting possible drawbacks and gaps in research. This will provide the latest trends and advancements in the field and contribute to search for effective bioremediation strategies and critical materials recovery technologies.
Collapse
Affiliation(s)
| | | | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Mohamed L Merroun
- Universidad de Granada, Departamento de Microbiología, E-18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
- Universidad de Granada, Departamento de Química Analítica, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| |
Collapse
|
25
|
Kim J, Choi YJ, Gal CW, Sung A, Utami SS, Park H, Yun HS. Enhanced Osteogenesis in 2D and 3D Culture Systems Using RGD Peptide and α-TCP Phase Transition within Alginate-Based Hydrogel. Macromol Biosci 2024; 24:e2400190. [PMID: 39116430 DOI: 10.1002/mabi.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Cell-laden hydrogels have been extensively investigated in various tissue engineering fields by their potential capacity to deposit numerous types of cells in a specific area. They are largely used in soft-tissue engineering applications because of their low mechanical strength. In addition, sodium alginate is well-known for its encapsulation, loading capacity and for being easily controllable; however, it lacks cell-binding ligands and hence the ability to adhere cells. In this study, it is aimed to enhance osteogenesis in cells encapsulated in alginate and improve its mechanical properties by introducing a synthetic peptide and calcium phosphate phase transition. To increase cell-hydrogel interactions and increasing cell viability, an RGD peptide is added to a photocrosslinkable methacrylate-modified alginate, and alpha-tricalcium phosphate (α-TCP) is added to the hydrogel to increase its mechanical strength via phase transition. Cell proliferation, growth, and differentiation are assessed in both 2D and 3D cell cultures. The addition of α-TCP significantly improved the mechanical properties of the hydrogel. Moreover, the RGD peptide and α-TCP showed a synergistic effect with significantly improved cell adhesion and osteogenesis in both 2D and 3D cell cultures. Therefore, the functional hydrogel developed in this study can potentially be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Chang-Woo Gal
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Aram Sung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Siwi Setya Utami
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| | - Honghyun Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Hui-Suk Yun
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Cometa S, Busto F, Scalia AC, Castellaneta A, Gentile P, Cochis A, Manfredi M, Borrini V, Rimondini L, De Giglio E. Effectiveness of gellan gum scaffolds loaded with Boswellia serrata extract for in-situ modulation of pro-inflammatory pathways affecting cartilage healing. Int J Biol Macromol 2024; 277:134079. [PMID: 39038574 DOI: 10.1016/j.ijbiomac.2024.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/09/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
In this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel's mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1β. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing.
Collapse
Affiliation(s)
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| | - Alessandro C Scalia
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Andrea Castellaneta
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Vittoria Borrini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| |
Collapse
|
27
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
28
|
Ran P, Qiu B, Zheng H, Xie S, Zhang G, Cao W, Li X. On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters. Acta Biomater 2024; 186:215-228. [PMID: 39111681 DOI: 10.1016/j.actbio.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Catheter-related infections are one of the most common nosocomial infections with increasing morbidity and mortality, and robust antibacterial or antifouling catheter coatings remain great challenges for long-term implantation. Herein, multifunctional hydrogel coatings were developed to provide persistent and self-adaptive antifouling and antibacterial effects with self-healing and lubricant capabilities. Polyvinyl alcohol (PVA) with β-cyclodextrin (β-CD) grafts (PVA-Cd) and 4-arm polyethylene glycol (PEG) with adamantane and quaternary ammonium compound (QAC) terminals (QA-PEG-Ad) were crosslinked through host-guest recognitions between adamantane and β-CD moieties to acquire PVEQ coatings. In response to bacterial infections, QACs exhibit reversible transformation between zwitterions (pH 7.4) and cationic lactones (pH 5.5) to generate on-demand bactericidal effect. Highly hydrophilic PEG/PVA backbones and zwitterionic QACs build a lubricate surface and decrease the friction coefficient 10 times compared with that of bare catheters. The antifouling hydrated layer significantly inhibits blood protein adsorption and platelet activation and reveals negligible hemolysis and cytotoxicity. The dynamic host-guest crosslinking achieves full self-healing of cracks in PVEQ hydrogels, and the mechanical profiles were recovered to over 90 % after rejuvenating the broken hydrogels, exhibiting a long-term stability after mechanical stretching, twisting, knotting and compression. After subcutaneous implantation and local bacterial infection, the retrieved PVEQ-coated catheters display no tissue adhesion and 3 log folds lower bacterial number than that of bare catheters. PVEQ coatings effectively prevent the repeated bacterial infections and there are few inflammatory reactions in the surrounding tissue, while substantial lymphoid infiltration and inflammatory cell aggregation occur in muscle tissues around the bare catheter. Thus, this study demonstrates a catheter coating strategy by on-demand bactericidal, self-adaptive antifouling, self-healing and lubricant hydrogels to address medical devices-related infections. STATEMENT OF SIGNIFICANCE: It is estimated over two billion peripheral intravenous catheters are annually used in hospitals around the world, and catheter-associated infection has become a great clinical challenge with rapidly rising morbidity and mortality. Surface coating is considered a promising approach, but substantial challenges remain in the development of coatings that simultaneously satisfy both anti-fouling and antibacterial attributes. Even more, few attempts have been made to design mechanically robust coatings and reversible antibacterial or antifouling capabilities, which are critical for long-term medical implants. To address these challenges, we propose a concise strategy to develop hydrogel coatings from commercially available poly(ethylene glycol) and polyvinyl alcohol. In addition to self-healing and lubricant capabilities, the reversible conversion between zwitterionic and cationic lactones of quaternary ammonium compounds enables on-demand bactericidal and self-adaptive antifouling effects.
Collapse
Affiliation(s)
- Pan Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610051, PR China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Huan Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guiyuan Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
29
|
Roy A, Zenker S, Jain S, Afshari R, Oz Y, Zheng Y, Annabi N. A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404225. [PMID: 38970527 PMCID: PMC11407428 DOI: 10.1002/adma.202404225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), β-cyclodextrin (β-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with β-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shea Zenker
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Ghosh A, Kumar S, Singh PP, Nandi S, Mandal M, Pradhan D, Khatua BB, Das RK. Dynamic Metal-Coordinated Adhesive and Self-Healable Antifreezing Hydrogels for Strain Sensing, Flexible Supercapacitors, and EMI Shielding Applications. ACS OMEGA 2024; 9:33204-33223. [PMID: 39100348 PMCID: PMC11292641 DOI: 10.1021/acsomega.4c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Dynamic metal-coordinated adhesive and self-healable hydrogel materials have garnered significant attention in recent years due to their potential applications in various fields. These hydrogels can form reversible metal-ligand bonds, resulting in a network structure that can be easily broken and reformed, leading to self-healing capabilities. In addition, these hydrogels possess excellent mechanical strength and flexibility, making them suitable for strain-sensing applications. In this work, we have developed a mechanically robust, highly stretchable, self-healing, and adhesive hydrogel by incorporating Ca2+-dicarboxylate dynamic metal-ligand cross-links in combination with low density chemical cross-links into a poly(acrylamide-co-maleic acid) copolymer structure. Utilizing the reversible nature of the Ca2+-dicarboxylate bond, the hydrogel exhibited a tensile strength of up to ∼250 kPa and was able to stretch to 15-16 times its original length. The hydrogel exhibited a high fracture energy of ∼1500 J m-2, similar to that of cartilage. Furthermore, the hydrogel showed good recovery, fatigue resistance, and fast self-healing properties due to the reversible Ca2+-dicarboxylate cross-links. The presence of Ca2+ resulted in a highly conductive hydrogel, which was utilized to design a flexible resistive strain sensor. This hydrogel can strongly adhere to different substrates, making it advantageous for applications in flexible electronic devices. When adhered to human body parts, the hydrogel can efficiently detect limb movements. The hydrogel also exhibited excellent performance as a solid electrolyte for flexible supercapacitors, with a capacitance of ∼260 F/g at 0.5 A/g current density. Due to its antifreezing and antidehydration properties, this hydrogel retains its flexibility at subzero temperatures for an extended period. Additionally, the porous network and high water content of the hydrogel impart remarkable electromagnetic attenuation properties, with a value of ∼38 dB in the 14.5-20.5 GHz frequency range, which is higher than any other hydrogel without conducting fillers. Overall, the hydrogel reported in this study exhibits diverse applications as a strain sensor, solid electrolyte for flexible supercapacitors, and efficient material for electromagnetic attenuation. Its multifunctional properties make it a promising candidate for use in various fields as a state-of-the-art material.
Collapse
Affiliation(s)
- Ashis Ghosh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sudhir Kumar
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Prem Pal Singh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debabrata Pradhan
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Bhanu Bhusan Khatua
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Rajat Kumar Das
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| |
Collapse
|
31
|
Puertas-Segura A, Ivanova K, Ivanova A, Ivanov I, Todorova K, Dimitrov P, Ciardelli G, Tzanov T. Mussel-Inspired Sonochemical Nanocomposite Coating on Catheters for Prevention of Urinary Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34656-34668. [PMID: 38916599 PMCID: PMC11247429 DOI: 10.1021/acsami.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.
Collapse
Affiliation(s)
- Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Aleksandra Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Petar Dimitrov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
32
|
Condò I, Giannitelli SM, Lo Presti D, Cortese B, Ursini O. Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes. Gels 2024; 10:442. [PMID: 39057465 PMCID: PMC11275299 DOI: 10.3390/gels10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Polymeric hydrogels are soft materials with a three-dimensional (3D) hydrophilic network capable of retaining and absorbing large amounts of water or biological fluids. Due to their customizable properties, these materials are extensively studied for developing matrices for 3D cell culture scaffolds, drug delivery systems, and tissue engineering. However, conventional hydrogels still exhibit many drawbacks; thus, significant efforts have been directed towards developing dynamic hydrogels that draw inspiration from organisms' natural self-repair abilities after injury. The self-healing properties of these hydrogels are closely associated with their ability to form, break, and heal dynamic bonds in response to various stimuli. The primary objective of this review is to provide a comprehensive overview of dynamic hydrogels by examining the types of chemical bonds associated with them and the biopolymers utilized, and to elucidate the chemical nature of dynamic bonds that enable the modulation of hydrogels' properties. While dynamic bonds ensure the self-healing behavior of hydrogels, they do not inherently confer adhesive properties. Therefore, we also highlight emerging approaches that enable dynamic hydrogels to acquire adhesive properties.
Collapse
Affiliation(s)
- Ilaria Condò
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Barbara Cortese
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ornella Ursini
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
33
|
Ugrinovic V, Markovic M, Bozic B, Panic V, Veljovic D. Physically Crosslinked Poly(methacrylic acid)/Gelatin Hydrogels with Excellent Fatigue Resistance and Shape Memory Properties. Gels 2024; 10:444. [PMID: 39057467 PMCID: PMC11276459 DOI: 10.3390/gels10070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels endure various dynamic stresses, demanding robust mechanical properties. Despite significant advancements, matching hydrogels' strength to biological tissues and plastics is often challenging without applying potentially harmful crosslinkers. Using hydrogen bonds as sacrificial bonds offers a promising strategy to produce tough, versatile hydrogels for biomedical and industrial applications. Poly(methacrylic acid) (PMA)/gelatin hydrogels were synthesized by thermally induced free-radical polymerization and crosslinked only by physical bonds, without adding any chemical crosslinker. The addition of gelatin increased the formation of hydrophobic domains in the structure of the hydrogels, which acted as permanent crosslinking points. The increase in PMA and gelatin contents generally led to a lower equilibrium water content (WC), higher thermal stability and better mechanical properties. The values of tensile strength and toughness reached up to 1.44 ± 0.17 MPa and 4.91 ± 0.51 MJ m-3, respectively, while the compressive modulus and strength reached up to 0.75 ± 0.06 MPa and 24.81 ± 5.85 MPa, respectively, with the WC being higher than 50 wt.%. The obtained values for compressive mechanical properties are comparable with super-strong hydrogels reported in the literature. In addition, hydrogels exhibited excellent fatigue resistance and biocompatibility, as well as great shape memory properties, which make them prominent candidates for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Vukasin Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Maja Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Bojan Bozic
- Institute of Physiology and Biochemistry “Ivan Đaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Djordje Veljovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Wancura M, Nkansah A, Robinson A, Toubbeh S, Talanker M, Jones S, Cosgriff-Hernandez E. PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications. Ann Biomed Eng 2024; 52:1804-1815. [PMID: 36774427 DOI: 10.1007/s10439-023-03154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/13/2023]
Abstract
Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices-enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors. Herein, we report a systematic investigation of two coating methods: (1) traditional photoinitiated hydrogel coatings; (2) diffusion-mediated, redox-initiated hydrogel coatings. The effects of method, substrate, and compositional variables on the resulting hydrogel coating thickness are presented. To expand the redox-based method to include high molecular weight macromers, a mechanistic investigation of the role of cure rate and macromer viscosity was necessary to balance solution infiltration and gelation. Overall, these structure-property relationships provide users with a toolbox for hydrogel coating design for a broad range of medical devices.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shireen Toubbeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Talanker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, BME Building, Room 3.503D, Austin, TX, 78712, USA.
| |
Collapse
|
35
|
Du X, Zhou Y, Schümperlin D, Laganenka L, Lee SS, Blugan G, Hardt WD, Persson C, Ferguson SJ. Fabrication and characterization of sodium alginate-silicon nitride-PVA composite biomaterials with damping properties. J Mech Behav Biomed Mater 2024; 155:106579. [PMID: 38749266 DOI: 10.1016/j.jmbbm.2024.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoyu Du
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| | - Yijun Zhou
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | | - Leanid Laganenka
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Seunghun S Lee
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Biomedical Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Gurdial Blugan
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cecilia Persson
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Fu J, Wang D, Tang Z, Xu Y, Xie J, Chen R, Wang P, Zhong Q, Ning Y, Lei M, Mai H, Li H, Liu H, Wang J, Cheng H. NIR-responsive electrospun nanofiber dressing promotes diabetic-infected wound healing with programmed combined temperature-coordinated photothermal therapy. J Nanobiotechnology 2024; 22:384. [PMID: 38951903 PMCID: PMC11218286 DOI: 10.1186/s12951-024-02621-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Diabetic wounds present significant challenges, specifically in terms of bacterial infection and delayed healing. Therefore, it is crucial to address local bacterial issues and promote accelerated wound healing. In this investigation, we utilized electrospinning to fabricate microgel/nanofiber membranes encapsulating MXene-encapsulated microgels and chitosan/gelatin polymers. RESULTS The film dressing facilitates programmed photothermal therapy (PPT) and mild photothermal therapy (MPTT) under near-infrared (NIR), showcasing swift and extensive antibacterial and biofilm-disrupting capabilities. The PPT effect achieves prompt sterilization within 5 min at 52 °C and disperses mature biofilm within 10 min. Concurrently, by adjusting the NIR power to induce local mild heating (42 °C), the dressing stimulates fibroblast proliferation and migration, significantly enhancing vascularization. Moreover, in vivo experimentation successfully validates the film dressing, underscoring its immense potential in addressing the intricacies of diabetic wounds. CONCLUSIONS The MXene microgel-loaded nanofiber dressing employs temperature-coordinated photothermal therapy, effectively amalgamating the advantageous features of high-temperature sterilization and low-temperature promotion of wound healing. It exhibits rapid, broad-spectrum antibacterial and biofilm-disrupting capabilities, exceptional biocompatibility, and noteworthy effects on promoting cell proliferation and vascularization. These results affirm the efficacy of our nanofiber dressing, highlighting its significant potential in addressing the challenge of diabetic wounds struggling to heal due to infection.
Collapse
Affiliation(s)
- Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yixin Xu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajun Xie
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haibing Liu
- Department of Orthopaedic, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan, 421001, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
37
|
Fuchs S, Caserto JS, Liu Q, Wang K, Shariati K, Hartquist CM, Zhao X, Ma M. A Glucose-Responsive Cannula for Automated and Electronics-Free Insulin Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403594. [PMID: 38639424 PMCID: PMC11223976 DOI: 10.1002/adma.202403594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Julia S. Caserto
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kecheng Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chase M. Hartquist
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
38
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
39
|
Lu P, Liao X, Guo X, Cai C, Liu Y, Chi M, Du G, Wei Z, Meng X, Nie S. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:206. [PMID: 38819527 PMCID: PMC11143175 DOI: 10.1007/s40820-024-01432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human-machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.
Collapse
Affiliation(s)
- Peng Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Xiaofang Liao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiaoyao Guo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
40
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
41
|
Ferreira LMDMC, Modesto YY, de Souza PDQ, Nascimento FCDA, Pereira RR, Converti A, Lynch DG, Brasil DDSB, da Silva EO, Silva-Júnior JOC, Ribeiro-Costa RM. Characterization, Biocompatibility and Antioxidant Activity of Hydrogels Containing Propolis Extract as an Alternative Treatment in Wound Healing. Pharmaceuticals (Basel) 2024; 17:575. [PMID: 38794145 PMCID: PMC11123975 DOI: 10.3390/ph17050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a polyacrylamide/methylcellulose hydrogel containing propolis as an active ingredient, to serve as a wound dressing alternative, for the treatment of skin lesions. The hydrogels were prepared using free radical polymerization, and were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, swelling capacity, mechanical and rheological properties, UV-Vis spectroscopy, antioxidant activity by the DPPH, ABTS and FRAP assays and biocompatibility determined in Vero cells and J774 macrophages by the MTT assay. Hydrogels showed a porous and foliaceous structure with a well-defined network, a good ability to absorb water and aqueous solutions simulating body fluids as well as desirable mechanical properties and pseudoplastic behavior. In hydrogels containing 1.0 and 2.5% propolis, the contents of total polyphenols were 24.74 ± 1.71 mg GAE/g and 32.10 ± 1.01 mg GAE/g and those of total flavonoids 8.01 ± 0.99 mg QE/g and 13.81 ± 0.71 mg QE/g, respectively, in addition to good antioxidant activity determined with all three methods used. Therefore, hydrogels containing propolis extract, may serve as a promising alternative wound dressing for the treatment of skin lesions, due to their anti-oxidant properties, low cost and availability.
Collapse
Affiliation(s)
| | - Yuri Yoshioka Modesto
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| | | | | | - Rayanne Rocha Pereira
- Institute of Collective Health, Federal University of Western Pará, Santarém 68035-110, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, via Opera Pia 15, 16145 Genoa, Italy;
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Edilene Oliveira da Silva
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (P.D.Q.d.S.); (E.O.d.S.)
| | | | - Roseane Maria Ribeiro-Costa
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| |
Collapse
|
42
|
Wang J, Li XY, Qian HL, Wang XW, Wang YX, Ren KF, Ji J. Robust, Sprayable, and Multifunctional Hydrogel Coating through a Polycation Reinforced (PCR) Surface Bridging Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310216. [PMID: 38237136 DOI: 10.1002/adma.202310216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| | - Xin-Yi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
43
|
Azam F, Ahmad F, Ahmad S, Zafar MS. Impact of cotton fiber percentage and length on mechanical behavior of cotton/alginate composite hydrogel fiber. Polym Bull (Berl) 2024; 81:5517-5531. [DOI: 10.1007/s00289-023-04977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 01/06/2025]
|
44
|
Karamzadeh V, Shen ML, Ravanbakhsh H, Sohrabi‐Kashani A, Okhovatian S, Savoji H, Radisic M, Juncker D. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Adv Healthc Mater 2024; 13:e2303708. [PMID: 37990819 PMCID: PMC11468968 DOI: 10.1002/adhm.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Molly L. Shen
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Hossein Ravanbakhsh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
- Department of Biomedical EngineeringThe University of AkronAkronOH44325USA
| | - Ahmad Sohrabi‐Kashani
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Sargol Okhovatian
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3C 3J7Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3C 3A7Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - David Juncker
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| |
Collapse
|
45
|
Ohya Y, Dohi R, Seko F, Nakazawa Y, Mizuguchi KI, Shinzaki K, Yasui T, Ogawa H, Kato S, Yoshizaki Y, Murase N, Kuzuya A. Synthesis of Topological Gels by Penetrating Polymerization Using a Molecular Net. Angew Chem Int Ed Engl 2024; 63:e202317045. [PMID: 38191829 DOI: 10.1002/anie.202317045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Topological gels possess structures that are cross-linked only via physical constraints; ideally, no attractive intermolecular interactions act between their components, which yields interesting physical properties. However, most reported previous topological gels were synthesized based on supramolecular interlocked structures such as polyrotaxane, for which attractive intermolecular interactions are essential. Here, we synthesize a water-soluble "molecular net" (MN) with a large molecular weight and three-dimensional network structure using poly(ethylene glycol). When a water-soluble monomer (N-isopropylacrylamide) is polymerized in the presence of the MNs, the extending polymer chains penetrates the MNs to form an ideal topological MN gel with no specific attractive interactions between its components. The MN gels show unique physical properties as well a significantly high degree of swelling and high extensibility due to slipping of the physical cross-linking. We postulate this method to yield a new paradigm in gel science with unprecedented physical properties.
Collapse
Affiliation(s)
- Yuichi Ohya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ryota Dohi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Fumika Seko
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuto Nakazawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Ken-Ichiro Mizuguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Kosei Shinzaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Takahiko Yasui
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Hiroaki Ogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Shizuka Kato
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Yuta Yoshizaki
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Nobuo Murase
- Organization for Research & Development of Innovative Science & Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
- Kansai University Medical Polymer Research Center, Kansai University, 3-3-35 Yamate, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
46
|
Nepal S, Si J, Ishikawa S, Nishikawa M, Sakai Y, Akimoto AM, Okada H, Ohba S, Chung UI, Sakai T, Hojo H. Injectable phase-separated tetra-armed poly(ethylene glycol) hydrogel scaffold allows sustained release of growth factors to enhance the repair of critical bone defects. Regen Ther 2024; 25:24-34. [PMID: 38108043 PMCID: PMC10724494 DOI: 10.1016/j.reth.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
With the rising prevalence of bone-related injuries, it is crucial to improve treatments for fractures and defects. Tissue engineering offers a promising solution in the form of injectable hydrogel scaffolds that can sustain the release of growth factors like bone morphogenetic protein-2 (BMP-2) for bone repair. Recently, we discovered that tetra-PEG hydrogels (Tetra gels) undergo gel-gel phase separation (GGPS) at low polymer content, resulting in hydrophobicity and tissue affinity. In this work, we examined the potential of a newer class of gel, the oligo-tetra-PEG gel (Oligo gel), as a growth factor-releasing scaffold. We investigated the extent of GGPS occurring in the two gels and assessed their ability to sustain BMP-2 release and osteogenic potential in a mouse calvarial defect model. The Oligo gel underwent a greater degree of GGPS than the Tetra gel, exhibiting higher turbidity, hydrophobicity, and pore formation. The Oligo gel demonstrated sustained protein or growth factor release over a 21-day period from protein release kinetics and osteogenic cell differentiation studies. Finally, BMP-2-loaded Oligo gels achieved complete regeneration of critical-sized calvarial defects within 28 days, significantly outperforming Tetra gels. The easy formulation, injectability, and capacity for sustained release makes the Oligo gel a promising candidate therapeutic biomaterial.
Collapse
Affiliation(s)
- Shant Nepal
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jinyan Si
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shohei Ishikawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masaki Nishikawa
- Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Chemical Systems Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Aya M. Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hironori Hojo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
47
|
Wang Z, Cai W, Ning F, Sun W, Du J, Long S, Fan J, Chen X, Peng X. Dipicolylamine-Zn Induced Targeting and Photo-Eliminating of Pseudomonas aeruginosa and Drug-Resistance Gram-Positive Bacteria. Adv Healthc Mater 2024; 13:e2302490. [PMID: 37909241 DOI: 10.1002/adhm.202302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Indexed: 11/02/2023]
Abstract
The emergence of drug-resistant bacteria, particularly resistant strains of Gram-negative bacteria, such as Pseudomonas aeruginosa, poses a significant threat to public health. Although antibacterial photodynamic therapy (APDT) is a promising strategy for combating drug-resistant bacteria, actively targeted photosensitizers (PSs) remain unknown. In this study, a PS based on dipicolylamine (DPA), known as WZK-DPA-Zn, is designed for the selective identification of P. aeruginosa and drug-resistant Gram-positive bacteria. WZK-DPA-Zn exploits the synergistic effects of DPA-Zn2+ coordination and cellular uptake, which could effectively anchor P. aeruginosa within a brief period (10 min) without interference from other Gram-negative bacteria. Simultaneously, the cationic nature of WZK-DPA-Zn enhances its interaction with Gram-positive bacteria via electrostatic forces. Compared to traditional clinical antibiotics, WZK-DPA-Zn shows exceptional antibacterial activity without inducing drug resistance. This effectiveness is achieved using the APDT strategy when irradiated with white light or sunlight. The combination of WZK-DPA-Zn with Pluronic-based thermosensitive hydrogel dressings (WZK-DPA-Zn@Gel) effectively eliminates mixed bacterial infections and accelerates wound healing, thereby achieving a synergistic effect where "1+1>2." In summary, this study proposes a precise strategy employing DPA-Zn as the targeting moiety of a PS, facilitating the rapid elimination of P. aeruginosa and drug-resistant Gram-positive bacteria using APDT.
Collapse
Affiliation(s)
- Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fangrui Ning
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
48
|
Proietto Salanitri G, Luzzi E, Caretti D, Mecca T, Carroccio SC, Scamporrino AA. How the Crosslinker Amount Influences the Final Properties of Hydroxyethyl Methacrylate Cryogels. Gels 2024; 10:163. [PMID: 38534581 DOI: 10.3390/gels10030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The investigation of the mechanical, thermal, and adsorption properties of hydroxyethyl methacrylate (HEMA) cryogels as a function of a reactant ratio is herein reported to better address materials for specific applications. To this aim, cryogels have been synthesized using different monomer/crosslinker (N,N'-methylene-bisacrylamide-MBAA) ratios. The study of SEM images made it possible to identify the trend in the material's macroporosity. As would be expected, the average measured pore width decreased as the amount of MBAA increased while the number of pores grew. Swelling capacity ranges from 8.7 gW/ggel (grams of water per gram of gel) to 9.3 gW/ggel. These values are strictly connected with the pore's size and distribution, revealing that the water uptake for the most crosslinked sample is inferior to other samples. The equilibrium-adsorption capacity (Qe) towards the methylene violet (MV) was also assessed, revealing no remarkable differences after 24 h of a batch test. As expected, thermogravimetric analysis (TGA) also showed no significant changes in stability that ranged from a maximum weight loss temperature (T Max) of 420 °C to 425 °C, which increased as a function of crosslinker content. Conversely, compression strength measurements showed a notable difference of about 50% in modulus (Ec), moving from the higher to the lower HEMA/MBAA ratio. These new comparative results indicate how slight variations in the reactant's ratio can steadily improve the mechanical properties of the HEMA cryogel without affecting its adsorption efficiency. This can be helpful in the design of materials for water and energy purposes. Since swelling properties are needed in the case of biomedical applications, the HEMA/MBAA ratio should be tuned versus high values.
Collapse
Affiliation(s)
- Giuseppe Proietto Salanitri
- CNR-Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Enrica Luzzi
- Department of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, DICMaPI-P. le Tecchio 80, 80125 Naples, Italy
| | - Daniele Caretti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | | | - Sabrina C Carroccio
- CNR-Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Andrea A Scamporrino
- CNR-Institute for Polymers, Composites and Biomaterials, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
49
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
50
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|