1
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
2
|
Kholuiskaya SN, Siracusa V, Mukhametova GM, Wasserman LA, Kovalenko VV, Iordanskii AL. An Approach to a Silver Conductive Ink for Inkjet Printer Technology. Polymers (Basel) 2024; 16:1731. [PMID: 38932081 PMCID: PMC11207476 DOI: 10.3390/polym16121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Silver-based metal-organic decomposition inks composed of silver salts, complexing agents and volatile solvents are now the subject of much research due to the simplicity and variability of their preparation, their high stability and their relatively low sintering temperature. The use of this type of ink in inkjet printing allows for improved cost-effective and environmentally friendly technology for the production of electrical devices, including flexible electronics. An approach to producing a silver salt-based reactive ink for jet printing has been developed. The test images were printed with an inkjet printer onto polyimide substrates, and two-stage thermal sintering was carried out at temperatures of 60 °C and 100-180 °C. The structure and electrical properties of the obtained conductive lines were investigated. As a result, under optimal conditions an electrically conductive film with low surface resistance of approximately 3 Ω/square can be formed.
Collapse
Affiliation(s)
- Svetlana N. Kholuiskaya
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gulnaz M. Mukhametova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Luybov A. Wasserman
- Emanuel Institute of Biochemical Physics, RAS, 4 Kosygina St., 119334 Moscow, Russia;
| | - Vladislav V. Kovalenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| |
Collapse
|
3
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
4
|
Nakagawa D, Hanasaki I. Adaptive plasticity of auxetic Kirigami hydrogel fabricated from anisotropic swelling of cellulose nanofiber film. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2331959. [PMID: 38572411 PMCID: PMC10989208 DOI: 10.1080/14686996.2024.2331959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Hydrogels are flexible materials that typically accommodate elongation with positive Poisson's ratios. Auxetic property, i.e., the negative Poisson's ratio, of elastic materials can be macroscopically implemented by the structural design of the continuum. We realize it without mold for hydrogel made of cellulose nanofibers (CNFs). The complex structural design of auxetic Kirigami is first implemented on the dry CNF film, i.e., so-called nanopaper, by laser processing, and the CNF hydrogel is formed by dipping the film in liquid water. The CNF films show anisotropic swelling where drastic volumetric change mainly originates from increase in the thickness. This anisotropy makes the design and fabrication of the emergent Kirigami hydrogel straightforward. We characterize the flexibility of this mechanical metamaterial made of hydrogel by cyclic tensile loading starting from the initial end-to-end distance of dry sample. The tensile load at the maximum strain decreases with the increasing number of cycles. Furthermore, the necessary work up to the maximum strain even decreases to the negative value, while the work of restoration to the original end-to-end distance increases from the negative value to the positive. The equilibrium strain where the force changes the sign increases to reach a plateau. This plastic deformation due to the cyclic loading can be regarded as the adaptive response without fracture to the applied dynamic loading input.
Collapse
Affiliation(s)
- Daisuke Nakagawa
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| | - Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Japan
| |
Collapse
|
5
|
Park TW, Kang YL, Kang EB, Jung H, Lee S, Hwang G, Lee JW, Choi S, Nahm S, Kwon S, kim KH, Park WI. Direct Printing of Ultrathin Block Copolymer Film with Nano-in-Micro Pattern Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303412. [PMID: 37607117 PMCID: PMC10582423 DOI: 10.1002/advs.202303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Nanotransfer printing (nTP) is one of the most promising nanopatterning methods given that it can be used to produce nano-to-micro patterns effectively with functionalities for electronic device applications. However, the nTP process is hindered by several critical obstacles, such as sub-20 nm mold technology, reliable large-area replication, and uniform transfer-printing of functional materials. Here, for the first time, a dual nanopatterning process is demonstrated that creates periodic sub-20 nm structures on the eight-inch wafer by the transfer-printing of patterned ultra-thin (<50 nm) block copolymer (BCP) film onto desired substrates. This study shows how to transfer self-assembled BCP patterns from the Si mold onto rigid and/or flexible substrates through a nanopatterning method of thermally assisted nTP (T-nTP) and directed self-assembly (DSA) of Si-containing BCPs. In particular, the successful microscale patternization of well-ordered sub-20 nm SiOx patterns is systematically presented by controlling the self-assembly conditions of BCP and printing temperature. In addition, various complex pattern geometries of nano-in-micro structures are displayed over a large patterning area by T-nTP, such as angular line, wave line, ring, dot-in-hole, and dot-in-honeycomb structures. This advanced BCP-replicated nanopatterning technology is expected to be widely applicable to nanofabrication of nano-to-micro electronic devices with complex circuits.
Collapse
Affiliation(s)
- Tae Wan Park
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Young Lim Kang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Eun Bin Kang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Hyunsung Jung
- Nano Convergence Materials CenterKorea Institute of Ceramic Engineering & Technology (KICET)Jinju52851Republic of Korea
| | - Seoung‐Ki Lee
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Geon‐Tae Hwang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Jung Woo Lee
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Si‐Young Choi
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Sahn Nahm
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Se‐Hun Kwon
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Kwang Ho kim
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
- Global Frontier R&D Center for Hybrid Interface Materials (HIM)Pusan National UniversityBusan46241Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| |
Collapse
|
6
|
Honarbari A, Cataldi P, Zych A, Merino D, Paknezhad N, Ceseracciu L, Perotto G, Crepaldi M, Athanassiou A. A Green Conformable Thermoformed Printed Circuit Board Sourced from Renewable Materials. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:5050-5060. [PMID: 37779887 PMCID: PMC10537457 DOI: 10.1021/acsaelm.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Printed circuit boards (PCBs) physically support and connect electronic components to the implementation of complex circuits. The most widespread insulating substrate that also acts as a mechanical support in PCBs is commercially known as FR4, and it is a glass-fiber-reinforced epoxy resin laminate. FR4 has exceptional dielectric, mechanical, and thermal properties. However, it was designed without considering sustainability and end-of-life aspects, heavily contributing to the accumulation of electronic waste in the environment. Thus, greener alternatives that can be reprocessed, reused, biodegraded, or composted at the end of their function are needed. This work presents the development and characterization of a PCB substrate based on poly(lactic acid) and cotton fabric, a compostable alternative to the conventional FR4. The substrate has been developed by compression molding, a process compatible with the polymer industry. We demonstrate that conductive silver ink can be additively printed on the substrate's surface, as its morphology and wettability are similar to those of FR4. For example, the compostable PCB's water contact angle is 72°, close to FR4's contact angle of 64°. The developed substrate can be thermoformed to curved surfaces at low temperatures while preserving the conductivity of the silver tracks. The green substrate has a dielectric constant comparable to that of the standard FR4, showing a value of 5.6 and 4.6 at 10 and 100 kHz, respectively, which is close to the constant value of 4.6 of FR4. The substrate is suitable for microdrilling, a fundamental process for integrating electronic components to the PCB. We implemented a proof-of-principle circuit to control the blinking of LEDs on top of the PCB, comprising resistors, capacitors, LEDs, and a dual in-line package circuit timer. The developed PCB substrate represents a sustainable alternative to standard FR4 and could contribute to the reduction of the overwhelming load of electronic waste in landfills.
Collapse
Affiliation(s)
- Amirsoheil Honarbari
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Dipartimento
di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genoa, Via all’Opera Pia 13, Genova 16145, Italy
| | - Pietro Cataldi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Arkadiusz Zych
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Danila Merino
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Niloofar Paknezhad
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Biology, University of Rome “Tor
Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Luca Ceseracciu
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Genova 16163, Italy
| | - Giovanni Perotto
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Marco Crepaldi
- Electronic
Design Laboratory, Istituto Italiano di
Tecnologia, Via Enrico
Melen, Genova 16152, Italy
| | | |
Collapse
|
7
|
Arya N, Chandran Y, Singh A, Sharma R, Halder A, Balakrishnan V. Substrate Versatile Roller Ball Pen Writing of Nanoporous MoS 2 for Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41447-41456. [PMID: 37615402 DOI: 10.1021/acsami.3c05536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Low-cost fabrication of customizable supercapacitors and batteries to power up portable electronic devices is a much-needed step in advancing energy storage devices. The processing methods and techniques involved in developing small-sized entities in complex patterns are expensive, tedious, and time-consuming. Here, we demonstrate the fabrication of customizable electrochemical supercapacitors and batteries by simply employing the universal and conventional paradigm of direct pen writing with hands and evaluating their energy storage performance. The fabrication technique involves the refilling of MoS2 ink into the pen and then scripting of MoS2 nanostructures onto various substrates. The electrode material employed here consists of nanoporous microspheres of MoS2 synthesized by a simple one-step hydrothermal method. Direct pen writing with porous MoS2 in complex patterns enables easy, affordable, and simple fabrication of energy storage devices as and when required based on user choice toward distributed manufacturing and sustainability.
Collapse
Affiliation(s)
- Nitika Arya
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Yadu Chandran
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Arkaj Singh
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Ravinder Sharma
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Aditi Halder
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Viswanath Balakrishnan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
8
|
Song SW, Lee S, Choe JK, Lee AC, Shin K, Kang J, Kim G, Yeom H, Choi Y, Kwon S, Kim J. Pen-drawn Marangoni swimmer. Nat Commun 2023; 14:3597. [PMID: 37328461 DOI: 10.1038/s41467-023-39186-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Pen-drawing is an intuitive, convenient, and creative fabrication method for delivering emergent and adaptive design to real devices. To demonstrate the application of pen-drawing to robot construction, we developed pen-drawn Marangoni swimmers that perform complex programmed tasks using a simple and accessible manufacturing process. By simply drawing on substrates using ink-based Marangoni fuel, the swimmers demonstrate advanced robotic motions such as polygon and star-shaped trajectories, and navigate through maze. The versatility of pen-drawing allows the integration of the swimmers with time-varying substrates, enabling multi-step motion tasks such as cargo delivery and return to the original place. We believe that our pen-based approach will significantly expand the potential applications of miniaturized swimming robots and provide new opportunities for simple robotic implementations.
Collapse
Affiliation(s)
- Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Basic Science and Engineering Initiative, Children's Heart Center, Stanford University, Stanford, CA, USA.
| | - Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
- Meteor Biotech, Co. Ltd., Seoul, South Korea
| | - Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Meteor Biotech, Co. Ltd., Seoul, South Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Junwon Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Gyeongjun Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Huiran Yeom
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, South Korea
| | - Yeongjae Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
- Inter-University Semiconductor Research Center, Seoul, 08826, South Korea.
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| |
Collapse
|
9
|
Wan C, Wu Z, Ren M, Tang M, Gao Y, Shang X, Li T, Xia Z, Yang Z, Mao S, Zhou M, Ling W, Li J, Huo W, Huang X. In Situ Formation of Conductive Epidermal Electrodes Using a Fully Integrated Flexible System and Injectable Photocurable Ink. ACS NANO 2023. [PMID: 37191638 DOI: 10.1021/acsnano.3c01902] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In situ fabrication of wearable devices through coating approaches is a promising solution for the fast deployment of wearable devices and more adaptable devices for different sensing demands. However, heat, solvent, and mechanical sensitivity of biological tissues, along with personal compliance, pose strict requirements for coating materials and methods. To address this, a biocompatible and biodegradable light-curable conductive ink and an all-in-one flexible system that conducts in situ injection and photonic curing of the ink as well as monitoring of biophysiological information have been developed. The ink can be solidified through spontaneous phase changes and photonic cured to achieve a high mechanical strength of 7.48 MPa and an excellent electrical conductivity of 3.57 × 105 S/m. The flexible system contains elastic injection chambers embedded with specially designed optical waveguides to uniformly dissipate visible LED light throughout the chambers and rapidly cure the ink in 5 min. The resulting conductive electrodes offer intimate skin contact even with the existence of hair and work stably even under an acceleration of 8 g, leading to a robust wearable system capable of working under intense motion, heavy sweating, and varied surface morphology. Similar concepts may lead to various rapidly deployable wearable systems that offer excellent adaptability to different monitoring demands for the health tracking of large populations.
Collapse
Affiliation(s)
- Chunxue Wan
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Miaoning Ren
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Mingchao Tang
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
| | - Yu Gao
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Tianyu Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiqiang Xia
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhen Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sui Mao
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Mingxing Zhou
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiameng Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenxing Huo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China
| |
Collapse
|
10
|
Dudek KK, Iglesias Martínez JA, Ulliac G, Hirsinger L, Wang L, Laude V, Kadic M. Micro-Scale Mechanical Metamaterial with a Controllable Transition in the Poisson's Ratio and Band Gap Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210993. [PMID: 36863399 DOI: 10.1002/adma.202210993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Indexed: 05/19/2023]
Abstract
The ability to significantly change the mechanical and wave propagation properties of a structure without rebuilding it is currently one of the main challenges in the field of mechanical metamaterials. This stems from the enormous appeal that such tunable behavior may offer from the perspective of applications ranging from biomedical to protective devices, particularly in the case of micro-scale systems. In this work, a novel micro-scale mechanical metamaterial is proposed that can undergo a transition from one type of configuration to another, with one configuration having a very negative Poisson's ratio, corresponding to strong auxeticity, and the other having a highly positive Poisson's ratio. The formation of phononic band gaps can also be controlled concurrently which can be very useful for the design of vibration dampers and sensors. Finally, it is experimentally shown that the reconfiguration process can be induced and controlled remotely through application of a magnetic field by using appropriately distributed magnetic inclusions.
Collapse
Affiliation(s)
- Krzysztof K Dudek
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
- Institute of Physics, University of Zielona Gora, ul. Szafrana 4a, 65-069 Zielona, Gora, Poland
| | | | - Gwenn Ulliac
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Laurent Hirsinger
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Lianchao Wang
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Vincent Laude
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Muamer Kadic
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25030 Besançon, France
| |
Collapse
|
11
|
Shang J, Yu W, Wang L, Xie C, Xu H, Wang W, Huang Q, Zheng Z. Metallic Glass-Fiber Fabrics: A New Type of Flexible, Super-Lightweight, and 3D Current Collector for Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211748. [PMID: 36994791 DOI: 10.1002/adma.202211748] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 05/30/2023]
Abstract
Current collectors are indispensable parts that provide electron transport and mechanical support of electrode materials in a battery. Nowadays, thin metal foils made of Cu and Al are used as current collectors of lithium batteries, but they do not contribute to the storage capacity. Therefore, decreasing the weight of current collectors can directly enhance the energy density of a battery. However, limited by the requirements of mechanical strength, it is difficult to reduce the weight of metal foils any further. Herein, a new type of current collectors made of 3D metallic glass-fiber fabrics (MGFs), which shows advantages of super-lightweight (2.9-3.2 mg cm⁻2 ), outstanding electrochemical stability for cathodes and anodes of lithium-ion and lithium-metal batteries (LMBs), fire resistance, high strength, and flexibility suitable for roll-to-roll electrode fabrication is reported. The gravimetric energy densities of lithium batteries exhibit improvements of 9-18% by only replacing the metal foils with the MGFs. In addition, MGFs are suitable for the fabrication of flexible batteries. A high-energy-density flexible lithium battery with an outstanding figure of merit of flexible battery (fbFOM ) and flexing stability is demonstrated.
Collapse
Affiliation(s)
- Jian Shang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wancheng Yu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chuan Xie
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hailong Xu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wenshuo Wang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
12
|
Chang X. A wearable electronic based on flexible pressure sensor for running motion monitoring. NANOSCALE RESEARCH LETTERS 2023; 18:28. [PMID: 36856874 DOI: 10.1186/s11671-023-03788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
The flexible pressure sensor is expected to be applied in the new generation of sports wearable electronic devices. Developing flexible pressure sensors with a wide linear range and great sensitivity, however, remains a significant barrier. In this work, we propose a hybrid conductive elastomeric film oxide-based material with a concave-shape micro-patterned array (P-HCF) on the surface that sustainably shows the necessary sensing qualities. To enhance sensing range and sensitivity, one-dimensional carbon fibers and two-dimensional MXene are incorporated into the polydimethylsiloxane matrix to form a three-dimensional conductive network. Micro-patterns with a curved shape in P-HCFs can be able to linear sensitivity across the sensing range by controlling the pressure distribution inside the material. Besides, the sensitivity of P-HCF pressure sensor can reach 31.92 kPa-1, and meanwhile, the linear band of P-HCF pressure sensor can arrive at 24 Pa-720 kPa, which makes it a good choice for sports monitoring. The designed pressure sensor can be used to monitor the foot pressure during running. By analyzing the gait information during running, it can provide data support and strategy improvement for running. This new dual working mode pressure P-HCF sensor will provide a new way for the development of intelligent sports.
Collapse
Affiliation(s)
- Xiaoming Chang
- Physical Education College, Harbin Normal University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
13
|
Chamatam Kasi Reddy A, Gurulakshmi M, Muni Mounika P, Meenakshamma A, Venkateswarlu K, Pedda Venkata Subbaiah Y, Raghavender M. Cost effective lithography based PEDOT: PSS, platinum counter electrodes for dye sensitized solar cells. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
14
|
Zhang H, Du X, Liu J, Bai Y, Nie J, Tan J, He Z, Zhang M, Li J, Ni Y. oA Novel and Effective Approach to Enhance the Interfacial Interactions of meta-Aramid Fibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
16
|
Yentes JM, Liu WY, Zhang K, Markvicka E, Rennard SI. Updated Perspectives on the Role of Biomechanics in COPD: Considerations for the Clinician. Int J Chron Obstruct Pulmon Dis 2022; 17:2653-2675. [PMID: 36274993 PMCID: PMC9585958 DOI: 10.2147/copd.s339195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) demonstrate extra-pulmonary functional decline such as an increased prevalence of falls. Biomechanics offers insight into functional decline by examining mechanics of abnormal movement patterns. This review discusses biomechanics of functional outcomes, muscle mechanics, and breathing mechanics in patients with COPD as well as future directions and clinical perspectives. Patients with COPD demonstrate changes in their postural sway during quiet standing compared to controls, and these deficits are exacerbated when sensory information (eg, eyes closed) is manipulated. If standing balance is disrupted with a perturbation, patients with COPD are slower to return to baseline and their muscle activity is differential from controls. When walking, patients with COPD appear to adopt a gait pattern that may increase stability (eg, shorter and wider steps, decreased gait speed) in addition to altered gait variability. Biomechanical muscle mechanics (ie, tension, extensibility, elasticity, and irritability) alterations with COPD are not well documented, with relatively few articles investigating these properties. On the other hand, dyssynchronous motion of the abdomen and rib cage while breathing is well documented in patients with COPD. Newer biomechanical technologies have allowed for estimation of regional, compartmental, lung volumes during activity such as exercise, as well as respiratory muscle activation during breathing. Future directions of biomechanical analyses in COPD are trending toward wearable sensors, big data, and cloud computing. Each of these offers unique opportunities as well as challenges. Advanced analytics of sensor data can offer insight into the health of a system by quantifying complexity or fluctuations in patterns of movement, as healthy systems demonstrate flexibility and are thus adaptable to changing conditions. Biomechanics may offer clinical utility in prediction of 30-day readmissions, identifying disease severity, and patient monitoring. Biomechanics is complementary to other assessments, capturing what patients do, as well as their capability.
Collapse
Affiliation(s)
- Jennifer M Yentes
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, USA
| | - Wai-Yan Liu
- Department of Orthopaedic Surgery & Trauma, Máxima MC, Eindhoven, the Netherlands
- Department of Orthopaedic Surgery & Trauma, Catharina Hospital, Eindhoven, the Netherlands
| | - Kuan Zhang
- Department of Electrical & Computer Engineering, University of Nebraska at Lincoln, Lincoln, NE, USA
| | - Eric Markvicka
- Department of Electrical & Computer Engineering, University of Nebraska at Lincoln, Lincoln, NE, USA
- Department of Mechanical & Materials Engineering, University of Nebraska at Lincoln, Lincoln, NE, USA
| | - Stephen I Rennard
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Magdaleno AJ, Frisenda R, Prins F, Castellanos-Gomez A. Broadband-tunable spectral response of perovskite-on-paper photodetectors using halide mixing. NANOSCALE 2022; 14:14057-14063. [PMID: 36129322 PMCID: PMC9536486 DOI: 10.1039/d2nr02963d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Paper offers a low-cost and widely available substrate for electronics. It possesses alternative characteristics to silicon, as it shows low density and high flexibility, together with biodegradability. Solution processable materials, such as hybrid perovskites, also present light and flexible features, together with a huge tunability of the material composition with varying optical properties. In this study, we combine paper substrates with halide-mixed perovskites for the creation of low-cost and easy-to-prepare perovskite-on-paper photodetectors with a broadband-tunable spectral response. From the bandgap tunability of halide-mixed perovskites we create photodetectors with a cut-off spectral onset that ranges from the NIR to the green region, by increasing the bromide content on MAPb(I1-xBrx)3 perovskite alloys. The devices show a fast and efficient response. The best performances are observed for pure I and Br perovskite compositions, with a maximum responsivity of ∼400 mA W-1 on the MAPbBr3 device. This study provides an example of the wide range of possibilities that the combination of solution processable materials with paper substrates offers for the development of low-cost, biodegradable and easy-to-prepare devices.
Collapse
Affiliation(s)
- Alvaro J Magdaleno
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Riccardo Frisenda
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain.
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Ferry Prins
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
18
|
Singh G. Single shot polarimetric characterization of the polymer based flexible polyethylene terephthalate substrate. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gyanendra Singh
- Department of Electrical and Instrumentation Engineering Thapar Institute of Engineering and Technology Patiala India
| |
Collapse
|
19
|
Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A. Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam- ternary nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Kang W, Zeng L, Liu X, He H, Li X, Zhang W, Lee PS, Wang Q, Zhang C. Insight into Cellulose Nanosizing for Advanced Electrochemical Energy Storage and Conversion: A Review. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Mazur E, Shishkovsky I. Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165600. [PMID: 36013736 PMCID: PMC9413695 DOI: 10.3390/ma15165600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 05/25/2023]
Abstract
Due to the ability to create structures with complex geometry at micro- and nanoscales, modern additive technologies make it possible to produce artificial materials (metamaterials) with properties different from those of conventional materials found in nature. One of the classes with special properties is auxetic materials-materials with a negative Poisson's ratio. In the review, we collect research results on the properties of auxetics, based on analytical, experimental and numerical methods. Special attention of this review is paid to the consideration of the results obtained in studies of hierarchical auxetic materials. The wide interest in the hierarchical subclass of auxetics is explained by the additional advantages of structures, such as more flexible adjustment of the desired mechanical characteristics (the porosity, stiffness, specific energy absorption, degree of material release, etc.). Possibilities of biomedical applications of hierarchical auxetic materials, such as coronary stents, filtration and drug delivery systems, implants and many others, where the ability for high-precision tuning is required, are underlined.
Collapse
|
22
|
Gao C, Yu W, Du M, Zhu B, Wu W, Liang Y, Wu D, Wang B, Wang M, Zhang J. Facile Synthesis of Ag/Carbon Quantum Dots/Graphene Composites for Highly Conductive Water-Based Inks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33694-33702. [PMID: 35819868 DOI: 10.1021/acsami.2c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of graphene conductive inks with a high conductivity and dispersion stability in water poses considerable challenges. Herein, a highly conductive Ag/carbon quantum dots (CQDs)/graphene (G) composite with good dispersity and stability in water was prepared for the first time through the in situ photoreduction of AgNO3 and deposition of Ag onto graphene nanosheets obtained via CQD-assisted liquid-phase exfoliation. Ag nanoparticles with an average size of ∼1.88 nm were uniformly dispersed on graphene nanosheets. The Ag/CQDs/G composite exhibited good dispersity and stability in water for 30 days. The formation mechanism of the Ag/CQDs/G composites was also discussed. CQDs played a vital role in coordinating with Ag+ and reducing it under visible light conditions. The addition of only 1.58 wt % of Ag NPs to the CQDs/G film resulted in a significant decrease in the electrical resistivity by approximately 89.5%, reaching a value of 0.054 Ω cm for a 40 μm thick Ag/CQDs/G film. A low resistivity of 2.15 × 10-3 Ω cm for the Ag/CQDs/G film was achieved after rolling compression with a compression ratio of 78%. The Ag/CQDs/G film exhibited good conductivity and durability when bent, rolled, or twisted. Moreover, the resistivity of the film displayed a slight deviation after 5000 bending cycles, indicating its outstanding stability. This study provides an efficient strategy for preparing graphene-based conductive composites with good dispersibility and stability in water as well as novel high-performance conductive inks for application in flexible printed electronics.
Collapse
Affiliation(s)
- Chaochao Gao
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Wen Yu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Minghao Du
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Bingxuan Zhu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Wanbao Wu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Yihong Liang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Dong Wu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Baoyu Wang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Mi Wang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| | - Jiaheng Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China
| |
Collapse
|
23
|
Construction of a Low-Cost Layered Interactive Dashboard with Capacitive Sensing. INFORMATION 2022. [DOI: 10.3390/info13060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present work, a methodology for the low-cost crafting of an interactive layered dashboard is proposed. Our aim is that the tangible surface be constructed using domestic materials that are easily available in every household. Several tests were performed on different capacitive materials before the selection of the most suitable one for use as a capacitive touch sensor. Various calibration methods were evaluated so that the behavior of the constructed capacitive touch sensors is smooth and reliable. The layered approach is achieved by a menu of few touch buttons on the left side of the dashboard. Thus, various different layers of content can be projected over the same construction, offering extendibility and ease of use to the users. For demonstration purposes, we developed an entertaining plus an educational application of projection mapping for the pervasive and interactive projection of multimedia content to the users of the presented tangible interface. The whole design and implementation approach are thoroughly analyzed in the paper and are presented through the illustration and application of various multimedia layers over the dashboard. An evaluation of the final construction proves the feasibility of the proposed work.
Collapse
|
24
|
Tissue Adhesive, Conductive, and Injectable Cellulose Hydrogel Ink for On-Skin Direct Writing of Electronics. Gels 2022; 8:gels8060336. [PMID: 35735680 PMCID: PMC9222510 DOI: 10.3390/gels8060336] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Flexible and soft bioelectronics used on skin tissue have attracted attention for the monitoring of human health. In addition to typical metal-based rigid electronics, soft polymeric materials, particularly conductive hydrogels, have been actively developed to fabricate biocompatible electrical circuits with a mechanical modulus similar to biological tissues. Although such conductive hydrogels can be wearable or implantable in vivo without any tissue damage, there are still challenges to directly writing complex circuits on the skin due to its low tissue adhesion and heterogeneous mechanical properties. Herein, we report cellulose-based conductive hydrogel inks exhibiting strong tissue adhesion and injectability for further on-skin direct printing. The hydrogels consisting of carboxymethyl cellulose, tannic acid, and metal ions (e.g., HAuCl4) were crosslinked via multiple hydrogen bonds between the cellulose backbone and tannic acid and metal-phenol coordinate network. Owing to this reversible non-covalent crosslinking, the hydrogels showed self-healing properties and reversible conductivity under cyclic strain from 0 to 400%, as well as printability on the skin tissue. In particular, the on-skin electronic circuit printed using the hydrogel ink maintained a continuous electrical flow under skin deformation, such as bending and twisting, and at high relative humidity of 90%. These printable and conductive hydrogels are promising for implementing structurally complicated bioelectronics and wearable textiles.
Collapse
|
25
|
Ferreira de Oliveira AE, César Pereira A, Ferreira LF. Fully handwritten electrodes on paper substrate using rollerball pen with silver nanoparticle ink, marker pen with carbon nanotube ink and graphite pencil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1880-1888. [PMID: 35506547 DOI: 10.1039/d2ay00373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a so-called carbon nanotube (CNT) electrode was printed in on a paper substrate using the handwriting technique and carbon nanotube ink in a marker pen to print the working electrode, graphite pencil to print the counter electrode and graphite/silver nanoparticle (AgNP) ink in a rollerball pen to print the quasi-reference electrode. The carbon nanotube electrode was characterized via scanning electron microscopy. The electrode was optimized based on the type of paper, hydrophobic barrier and number of layers. In summary, the optimized parameters included the use of matte paper with a mineral spirit layer. The number of carbon nanotube layers to achieve the best electrochemical performance was 25. The final graphite electrode was a miniaturized and flexible paper-based electrochemical electrode. To evaluate the electrical properties of the electrodes, the ohmic resistance of each ink was tested using a multimeter and the obtained values were 18.62 kΩ for the CNT ink, 1.53 Ω for the AgNP ink and 3.53 kΩ for the graphite trace. These results indicate the good conductivity of each synthesized ink used in the fabrication of the CNT electrode. Finally, the electrode was used to measure the electrochemical response of different concentrations of K4[Fe(CN)6]. Then, a calibration curve was obtained from the voltammograms and linearity was observed in the range of 0.5-3.5 mM. This suggests that the CNT electrode has the potential to be used as an amperometric electrode.
Collapse
Affiliation(s)
- Ana Elisa Ferreira de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, UFSJ, São João del-Rei, MG, CEP 36307-352, Brazil.
| | - Arnaldo César Pereira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, UFSJ, São João del-Rei, MG, CEP 36307-352, Brazil.
| | - Lucas Franco Ferreira
- Laboratório de Eletroquímica e Nanotecnologia Aplicada, Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, Km 583, 5000, Alto da Jacuba, Diamantina, MG 39100-000, Brazil
| |
Collapse
|
26
|
Effect of Spray Parameters on Electrical Characteristics of Printed Layer by Morphological Study. Processes (Basel) 2022. [DOI: 10.3390/pr10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Products are manufactured as printed electronics through electro-conductive ink having properties suitable for flexible substrates. As printing process conditions affect the quality of the electronic properties of the final devices, it is essential to understand how the parameters of each process affect print quality. Spray printing, one of several printing processes, suits flexible large-area substrates and continuous processes with a uniform layer for electro-conductive aqueous ink. This study adopted the spray printing process for cellulose nanofiber (CNF)/carbon nanotube (CNT) composite conductive printing. Five spray parameters (nozzle diameter, spray speed, amount of sprayed ink, distance of nozzle to substrate, and nozzle pressure) were chosen to investigate the effects between process parameters and electrical properties relating to the morphology of the printing products. This study observed the controlling morphology through parameter adjustment and confirmed how it affects the final electrical conductivity. It means that the quality of the electronic properties can be modified by adjusting several spray process parameters.
Collapse
|
27
|
Kong N, Zhang J, Hegh D, Usman KAS, Qin S, Lynch PA, Yang W, Razal JM. Environmentally stable MXene ink for direct writing flexible electronics. NANOSCALE 2022; 14:6299-6304. [PMID: 35420082 DOI: 10.1039/d1nr07387g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXene inks are promising candidates for fabricating conductive circuits and flexible devices. Here, MXene inks prepared from solvent mixtures demonstrate long-term stability and can be employed in commercial rollerball pens to write electronic circuits on flexible substrates. Such circuits exhibit a fast and accurate capacitive response for touch-boards and water level measurement, indicating the excellent potential of these MXene inks in electrical device fabrication.
Collapse
Affiliation(s)
- Na Kong
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Peter A Lynch
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Wenrong Yang
- School of Life & Env. Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
28
|
Matatagui D, Cruz C, Carrascoso F, Al-Enizi AM, Nafady A, Castellanos-Gomez A, Horrillo MDC. Eco-Friendly Disposable WS 2 Paper Sensor for Sub-ppm NO 2 Detection at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1213. [PMID: 35407331 PMCID: PMC9000778 DOI: 10.3390/nano12071213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
We developed inexpensive and disposable gas sensors with a low environmental footprint. This approach is based on a biodegradable substrate, paper, and features safe and nontoxic electronic materials. We show that abrasion-induced deposited WS2 nanoplatelets on paper can be employed as a successful sensing layer to develop high-sensitivity and selective sensors, which operate even at room temperature. Its performance is investigated, at room temperature, against NO2 exposure, finding that the electrical resistance of the device drops dramatically upon NO2 adsorption, decreasing by ~42% (~31% half a year later) for 0.8 ppm concentration, and establishing a detection limit around~2 ppb (~3 ppb half a year later). The sensor is highly selective towards NO2 gas with respect to the interferents NH3 and CO, whose responses were only 1.8% (obtained for 30 ppm) and 1.5% (obtained for 8 ppm), respectively. Interestingly, an improved response of the developed sensor under humid conditions was observed (tested for 25% relative humidity at 23 °C). The high-performance, in conjunction with its small dimensions, low cost, operation at room temperature, and the possibility of using it as a portable system, makes this sensor a promising candidate for continuous monitoring of NO2 on-site.
Collapse
Affiliation(s)
- Daniel Matatagui
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| | - Carlos Cruz
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| | - Felix Carrascoso
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - Abdullah M. Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.N.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.N.)
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - María del Carmen Horrillo
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| |
Collapse
|
29
|
Dudek KK, Martínez JAI, Ulliac G, Kadic M. Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110115. [PMID: 35170092 DOI: 10.1002/adma.202110115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Shape morphing and the possibility of having control over mechanical properties via designed deformations have attracted a lot of attention in the materials community and led to a variety of applications with an emphasis on the space industry. However, current materials normally do not allow to have a full control over the deformation pattern and often fail to replicate such behavior at low scales which is essential in flexible electronics. Thus, in this paper, novel 2D and 3D microscopic hierarchical mechanical metamaterials using mutually-competing substructures within the system that are capable of exhibiting a broad range of the highly unusual auxetic behavior are proposed. Using experiments (3D microprinted polymers) supported by computer simulations, it is shown that such ability can be controlled through geometric design parameters. Finally it is demonstrated that the considered structure can form a composite capable of shape morphing allowing it to deform to a predefined shape.
Collapse
Affiliation(s)
- Krzysztof K Dudek
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, Besançon, 25030, France
- Institute of Physics, University of Zielona Gora, ul. Szafrana 4a, Zielona Gora, 65-069, Poland
| | | | - Gwenn Ulliac
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, Besançon, 25030, France
| | - Muamer Kadic
- Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, Besançon, 25030, France
| |
Collapse
|
30
|
Li T, Chen T, Shen X, Shi HH, Jabari E, Naguib HE. A binder jet 3D printed MXene composite for strain sensing and energy storage application. NANOSCALE ADVANCES 2022; 4:916-925. [PMID: 36131835 PMCID: PMC9419545 DOI: 10.1039/d1na00698c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Polymer composite materials have been proven to have numerous electrical related applications ranging from energy storage to sensing, and 3D printing is a promising technique to fabricate such materials with a high degree of freedom and low lead up time. Compared to the existing 3D printing technique for polymer materials, binder jet (BJ) printing offers unique advantages such as a fast production rate, room temperature printing of large volume objects, and the ability to print complex geometries without additional support materials. However, there is a serious lack of research in BJ printing of polymer materials. In this work we introduce a strategy to print poly(vinyl alcohol) composites with MXene-surfactant ink. By ejecting highly conductive MXene particles onto a PVOH matrix, the resulting sample achieved conductive behaviour in the order of mS m-1 with demonstrated potential for strain sensing and energy storage. This work demonstrates that BJ printing has the potential to directly fabricate polymer composite materials with different end applications.
Collapse
Affiliation(s)
- Terek Li
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| | - Tianhao Chen
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| | - Xuechen Shen
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| | - HaoTian Harvey Shi
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| | - Elahe Jabari
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| | - Hani E Naguib
- Faculty of Applied Science and Engineering, University of Toronto Toronto Ontario Canada M5S 3G8
| |
Collapse
|
31
|
Liang S, Chen X, Li F, Song N. Laser-Engraved Liquid Metal Circuit for Wearable Electronics. Bioengineering (Basel) 2022; 9:bioengineering9020059. [PMID: 35200412 PMCID: PMC8869208 DOI: 10.3390/bioengineering9020059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Conventional patterning methods for producing liquid metal (LM) electronic circuits, such as the template method, use chemical etching, which requires long cycle times, high costs, and multiple-step operations. In this study, a novel and reliable laser engraving micro-fabrication technology was introduced, which was used to fabricate personalized patterns of LM electronic circuits. First, by digitizing the pattern, a laser printing technology was used to burn a polyethylene (PE) film, where a polydimethylsiloxane (PDMS) or paper substrate was used to produce grooves. Then, the grooves were filled with LM and the PE film was removed; finally, the metal was packaged with PDMS film. The experimental results showed that the prepared LM could fabricate precise patterned electronic circuits, such as golden serpentine curves and Peano curves. The minimum width and height of the LM circuit were 253 μm and 200 μm, respectively, whereas the printed LM circuit on paper reached a minimum height of 26 μm. This LM flexible circuit could also be adapted to various sensor devices and was successfully applied to heart rate detection. Laser engraving micro-processing technologies could be used to customize various high-resolution LM circuit patterns in a short time, and have broad prospects in the manufacture of flexible electronic equipment.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China;
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Correspondence: ; Tel.: +86-023-61162815
| | - Xingyan Chen
- College of Chemical and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| | - Fengjiao Li
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518118, China;
| | - Na Song
- Department of Oncology, Chongqing Municipal Chinese Medicine Hospital, Chongqing 400021, China;
| |
Collapse
|
32
|
Le TT, Bui HHT, Dinh AKP, Van DV, Ho QD, Thi HAN, Nguyen DH, La DD. Room Temperature‐Sintering Conductive Ink Fabricated from Oleic‐Modified Graphene for the Flexible Electronic Devices. ChemistrySelect 2022. [DOI: 10.1002/slct.202104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tam The Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | | | - An Khang Phung Dinh
- Phan Boi Chau Specialized High School 119 Le Hong Phong Street Vinh City 460000 Vietnam
| | - Duc Vu Van
- Applied Nano Technology Jsc, Xuan La, Tay Ho Hanoi 100000 Vietnam
| | - Quang Dinh Ho
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | | | - Du Hoa Nguyen
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Duong Duc La
- Institute of Chemistry and Materials, Hoang Sam road, Nghia Do Hanoi 100000 Vietnam
| |
Collapse
|
33
|
Hong J, Gong J, Li Q, Deng Z, Gui L. A handy reversible bonding technology and its application on fabrication of an on-chip liquid metal micro-thermocouple. LAB ON A CHIP 2021; 21:4566-4573. [PMID: 34679158 DOI: 10.1039/d1lc00726b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a novel reversible bonding technique for liquid metal (LM) microelectrode fabrication in this study. This technique greatly simplifies the process of LM micro-electrode fabrication and can be used to achieve the rapid fabrication of LM blind-end electrodes. Three kinds of treatments, including heat treatment, plasma treatment and heat/plasma treatment, were tested for bonding strength. The experimental results showed that the heat/plasma treatment has the strongest bonding strength. All the three treatments can be completely released by simple water treatment. This handy fabrication method can help to integrate micro-liquid metal electrodes vertically in a microchannel. At the end of this work, this fabrication method was used to integrate liquid metal thermocouples in a microchannel, which greatly shortened the fabrication time and lowered the cost compared with traditional deposition or sputtering methods.
Collapse
Affiliation(s)
- Jie Hong
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jiahao Gong
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qian Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongshan Deng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Gui
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
34
|
Kordasht HK, Saadati A, Hasanzadeh M. A flexible paper based electrochemical portable biosensor towards recognition of ractopamine as animal feed additive: Low cost diagnostic tool towards food analysis using aptasensor technology. Food Chem 2021; 373:131411. [PMID: 34715634 DOI: 10.1016/j.foodchem.2021.131411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023]
Abstract
Due to the costly and time-consuming traditional techniques, providing a low-cost, portability and flexibility diagnostic tool with the ability to monitor and detect various animal feed additive is highly demanded. Over the years, paper-based biosensors have emerged as point of care (POC) diagnostic, easy-to-use and miniaturized tools. However, they have been suffered from low sensitivity. Aptamer as appropriate bioreceptor can overcome the most common disadvantage of paper based sensor by increasing selectivity and sensitivity. In this study, a novel paper-based electrochemical aptasensor was successfully developed to detection of ractopamine (RAC). RAC concentration was evaluated using a designed three-electrode paper based biodevice system. Under the optimal experimental conditions, the engineered aptasensor provided good sensitivity and selectivity for the detection of RAC. Using proposed flexible sensor RAC was determined in the range of 0.001 µM to 100 mM which the lower limit of quantitation (LLOQ) was obtained as 0.01 µM. Finally, aptasensor was used to the monitoring of RAC in untreated human plasma specimens which LLOQ and linear range were 0.01 µM and 0.01 µM to 10 mM, respectively. We hope that the exploitation of aptamer in electrochemical paper based sensor will be able to broaden our understanding for developing the application of low-cost and portable biodevices for the sensitive and selective paper-based sensor to identify other chemical and biological compounds.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Additive Manufacturing and Characterization of Metal Particulate Reinforced Polylactic Acid (PLA) Polymer Composites. Polymers (Basel) 2021; 13:polym13203545. [PMID: 34685302 PMCID: PMC8537213 DOI: 10.3390/polym13203545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Affordable commercial desktop 3-D printers and filaments have introduced additive manufacturing to all disciplines of science and engineering. With rapid innovations in 3-D printing technology and new filament materials, material vendors are offering specialty multifunctional metal-reinforced polymers with unique properties. Studies are necessary to understand the effects of filament composition, metal reinforcements, and print parameters on microstructure and mechanical behavior. In this study, densities, metal vol%, metal cross-sectional area %, and microstructure of various metal-reinforced Polylactic Acid (PLA) filaments were characterized by multiple methods. Comparisons are made between polymer microstructures before and after printing, and the effect of printing on the metal-polymer interface adhesion has been demonstrated. Tensile response and fracture toughness as a function of metal vol% and print height was determined. Tensile and fracture toughness tests show that PLA filaments containing approximately 36 vol% of bronze or copper particles significantly reduce mechanical properties. The mechanical response of PLA with 12 and 18 vol% of magnetic iron and stainless steel particles, respectively, is similar to that of pure PLA with a slight decrease in ultimate tensile strength and fracture toughness. These results show the potential for tailoring the concentration of metal reinforcements to provide multi-functionality without sacrificing mechanical properties.
Collapse
|
36
|
Rawal G, Ghatak A. Effect of roughness on the conductivity of vacuum coated flexible paper electrodes. NANO SELECT 2021. [DOI: 10.1002/nano.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gaurav Rawal
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| | - Animangsu Ghatak
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
- Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| |
Collapse
|
37
|
Pan H, Lee TW. Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. Adv Healthc Mater 2021; 10:e2100460. [PMID: 34050624 DOI: 10.1002/adhm.202100460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/17/2021] [Indexed: 12/21/2022]
Abstract
This review summarizes recent progress in the use of biological materials (biomaterials) in wearable pressure sensors. Biomaterials are abundant, sustainable, biocompatible, and biodegradable. Especially, many have sophisticated hierarchical structure and biological characteristics, which are attractive candidates for facile and ecologically-benign fabrication of wearable pressure sensors that are biocompatible, biodegradable, and highly sensitivity. The biomaterials and structures that use them in wearable pressure sensors that exploit sensing mechanisms such as piezoelectric, triboelectric, piezoresistive and capacitive effects are present. Finally, remaining impediments are discussed to use of biomaterials in wearable pressure sensors.
Collapse
Affiliation(s)
- Hong Pan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R China
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Engineering Research, Research Institute of Advanced Materials (RIAM), Nano Systems Institute (NSI), Seoul, 08826, Republic of Korea
| |
Collapse
|
38
|
UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fabrication of low-cost, flexible, and recyclable electronic devices has been the focus of many research groups, particularly for integration in wearable technology and the Internet of Things (IoT). In this work, porous zinc oxide (ZnO) nanostructures are incorporated as a UV sensing material into the composition of a sustainable water-based screen-printable ink composed of carboxymethyl cellulose (CMC). The formulated ink is used to fabricate flexible and foldable UV sensors on ubiquitous office paper. The screen-printed CMC/ZnO UV sensors operate under low voltage (≤2 V) and reveal a stable response over several on/off cycles of UV light exposure. The devices reach a response current of 1.34 ± 0.15 mA and a rise and fall time of 8.2 ± 1.0 and 22.0 ± 2.3 s, respectively. The responsivity of the sensor is 432 ± 48 mA W−1, which is the highest value reported in the literature for ZnO-based UV sensors on paper substrates. The UV-responsive devices display impressive mechanical endurance under folding, showing a decrease in responsivity of only 21% after being folded 1000 times. Their low-voltage operation and extreme folding stability indicate a bright future for low-cost and sustainable flexible electronics, showing potential for low-power wearable applications and smart packaging.
Collapse
|
39
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
40
|
Rich SI, Jiang Z, Fukuda K, Someya T. Well-rounded devices: the fabrication of electronics on curved surfaces - a review. MATERIALS HORIZONS 2021; 8:1926-1958. [PMID: 34846471 DOI: 10.1039/d1mh00143d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the arrival of the internet of things and the rise of wearable computing, electronics are playing an increasingly important role in our everyday lives. Until recently, however, the rigid angular nature of traditional electronics has prevented them from being integrated into many of the organic, curved shapes that interface with our bodies (such as ergonomic equipment or medical devices) or the natural world (such as aerodynamic or optical components). In the past few years, many groups working in advanced manufacturing and soft robotics have endeavored to develop strategies for fabricating electronics on these curved surfaces. This is their story. In this work, we describe the motivations, challenges, methodologies, and applications of curved electronics, and provide a outlook for this promising field.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
41
|
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000619. [PMID: 32310313 DOI: 10.1002/adma.202000619] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/19/2023]
Abstract
There is currently enormous and growing demand for flexible electronics for personalized mobile equipment, human-machine interface units, wearable medical-healthcare systems, and bionic intelligent robots. Cellulose is a well-known natural biopolymer that has multiple advantages including low cost, renewability, easy processability, and biodegradability, as well as appealing mechanical performance, dielectricity, piezoelectricity, and convertibility. Because of its multiple merits, cellulose is frequently used as a substrate, binder, dielectric layer, gel electrolyte, and derived carbon material for flexible electronic devices. Leveraging the advantages of cellulose to design advanced functional materials will have a significant impact on portable intelligent electronics. Herein, the unique molecular structure and nanostructures (nanocrystals, nanofibers, nanosheets, etc.) of cellulose are briefly introduced, the structure-property-application relationships of cellulosic materials summarized, and the processing technologies for fabricating cellulose-based flexible electronics considered. The focus then turns to the recent advances of cellulose-based functional materials toward emerging intelligent electronic devices including flexible sensors, optoelectronic devices, field-effect transistors, nanogenerators, electrochemical energy storage devices, biomimetic electronic skins, and biological detection devices. Finally, an outlook of the potential challenges and future prospects for developing cellulose-based wearable devices and bioelectronic systems is presented.
Collapse
Affiliation(s)
- Dawei Zhao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
42
|
Kim SH, Kim Y, Choi H, Park J, Song JH, Baac HW, Shin M, Kwak J, Son D. Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics. RSC Adv 2021; 11:22327-22333. [PMID: 35480785 PMCID: PMC9034242 DOI: 10.1039/d1ra03392a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 12/31/2022] Open
Abstract
A monolithic integration of high-performance soft electronic modules into various fabric materials has enabled a paradigm shift in wearable textile electronics. However, the current textile electronics have struggled against fatigue under repetitive deformation due to the absence of materials and structural design strategies for imparting electrical and mechanical robustness to individual fibers. Here, we report a mechanically and electrically durable, stretchable electronic textile (MED-ET) enabled by a precisely controlled diffusion of tough self-healing stretchable inks into fibers and an adoption of the kirigami-inspired design. Remarkably, the conductive percolative pathways in the fabric of MED-ET even under a harshly deformed environment were stably maintained due to an electrical recovery phenomenon which originates from the spontaneous rearrangement of Ag flakes in the self-healing polymer matrix. Specifically, such a unique property enabled damage-resistant performance when repetitive deformation and scratch were applied. In addition, the kirigami-inspired design was capable of efficiently dissipating the accumulated stress in the conductive fabric during stretching, thereby providing high stretchability (a tensile strain of 300%) without any mechanical fracture or electrical malfunction. Finally, we successfully demonstrate various electronic textile applications such as stretchable micro-light-emitting diodes (Micro-LED), electromyogram (EMG) monitoring and all-fabric thermoelectric devices (F-TEG). Stretchable MED-ET was fabricated by a soaking process of self-healing stretchable Ag ink. Conductive pathways in MED-ET under a damaged environment were stably maintained due to an electrical recovery phenomenon which enables a robust device system.![]()
Collapse
Affiliation(s)
- Sun Hong Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University Seoul 08826 Republic of Korea
| | - Yewon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Heewon Choi
- Department of Electrical and Computer Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Juhyung Park
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University Seoul 08826 Republic of Korea
| | - Jeong Han Song
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University Seoul 08826 Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU) Seobu-ro 2066, Jangan-gu Suwon 16419 Gyeonggi-do Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU) Seobu-ro 2066, Jangan-gu Suwon 16419 Gyeonggi-do Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University Seoul 08826 Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University Suwon 16419 Republic of Korea .,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea.,Department of Superintelligence Engineering, Sungkyunkwan University (SKKU) Suwon 16419 Republic of Korea
| |
Collapse
|
43
|
Abstract
Skin-interfaced wearable electronics can find a broad spectrum of applications in healthcare, human-machine interface, robotics, and others. The state-of-the-art wearable electronics usually suffer from costly and complex fabrication procedures and nonbiodegradable polymer substrates. Paper, comprising entangled micro- or nano-scale cellulose fibers, is compatible with scalable fabrication techniques and emerges as a sustainable, inexpensive, disposable, and biocompatible substrate for wearable electronics. Given various attractive properties (e.g., breathability, flexibility, biocompatibility, and biodegradability) and rich tunability of surface chemistry and porous structures, paper offers many exciting opportunities for wearable electronics. In this review, we first introduce the intriguing properties of paper-based wearable electronics and strategies for cellulose modifications to satisfy specific demands. We then overview the applications of paper-based devices in biosensing, energy storage and generation, optoelectronics, soft actuators, and several others. Finally, we discuss some challenges that need to be addressed before practical uses and wide implementation of paper-based wearable electronics.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Samuel B Stoll
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA.,Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
44
|
Li Z, Chang S, Khuje S, Ren S. Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics. ACS NANO 2021; 15:6211-6232. [PMID: 33834763 DOI: 10.1021/acsnano.1c02209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Printed copper materials have been attracting significant attention prominently due to their electric, mechanical, and thermal properties. The emerging copper-based flexible electronics and energy-critical applications rely on the control of electric conductivity, current-carrying capacity, and reliability of copper nanostructures and their printable ink materials. In this review, we describe the growth of copper nanostructures as the building blocks for printable ink materials on which a variety of conductive features can be additively manufactured to achieve high electric conductivity and stability. Accordingly, the copper-based flexible hybrid electronics and energy-critical devices printed by different printing techniques are reviewed for emerging applications.
Collapse
Affiliation(s)
- Zheng Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Shuquan Chang
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Saurabh Khuje
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
45
|
Shabanov NS, Rabadanov KS, Suleymanov SI, Amirov AM, Isaev AB, Sobola DS, Murliev EK, Asvarova GA. Water-Soluble Copper Ink for the Inkjet Fabrication of Flexible Electronic Components. MATERIALS 2021; 14:ma14092218. [PMID: 33925841 PMCID: PMC8123473 DOI: 10.3390/ma14092218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023]
Abstract
The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.
Collapse
Affiliation(s)
- Nabi S. Shabanov
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a, Dagestan Republic, 367015 Makhachkala, Russia;
| | - Kamil Sh. Rabadanov
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
| | - Sagim I. Suleymanov
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
| | - Akhmed M. Amirov
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
| | - Abdulgalim B. Isaev
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a, Dagestan Republic, 367015 Makhachkala, Russia;
| | - Dinara S. Sobola
- Department of Inorganic Chemistry and Chemical Ecology, Dagestan State University, St. M. Gadjieva 43-a, Dagestan Republic, 367015 Makhachkala, Russia;
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic
- Correspondence:
| | - Eldar K. Murliev
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
| | - Gulnara A. Asvarova
- Analytical Center for Collective Use, Dagestan Federal Research Centre of the Russian Academy of Sciences, 367001 Makhachkala, Russia; (N.S.S.); (K.S.R.); (S.I.S.); (A.M.A.); (E.K.M.); (G.A.A.)
| |
Collapse
|
46
|
Hu F, Zhao H, Pan Y, Yang D, Sha J, Gao Y. Fabricating patterned polyelectrolyte brushes by dynamic microprojection lithography for selective electroless metal deposition. J Appl Polym Sci 2021. [DOI: 10.1002/app.50249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fenghuai Hu
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Haili Zhao
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Yunfei Pan
- R&D Department SKF (Shanghai) Automotive Technology Co., Ltd Shanghai China
| | - Dasheng Yang
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Jin Sha
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| | - Yang Gao
- School of Mechanical and Power Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
47
|
Azpeitia J, Frisenda R, Lee M, Bouwmeester D, Zhang W, Mompean F, van der Zant HSJ, García-Hernández M, Castellanos-Gomez A. Integrating superconducting van der Waals materials on paper substrates. MATERIALS ADVANCES 2021; 2:3274-3281. [PMID: 34124682 PMCID: PMC8142649 DOI: 10.1039/d1ma00118c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different electronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.
Collapse
Affiliation(s)
- Jon Azpeitia
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Riccardo Frisenda
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Martin Lee
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Damian Bouwmeester
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Wenliang Zhang
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Federico Mompean
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Mar García-Hernández
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Andres Castellanos-Gomez
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| |
Collapse
|
48
|
Chen FF, Dai ZH, Feng YN, Xiong ZC, Zhu YJ, Yu Y. Customized Cellulose Fiber Paper Enabled by an In Situ Growth of Ultralong Hydroxyapatite Nanowires. ACS NANO 2021; 15:5355-5365. [PMID: 33631928 DOI: 10.1021/acsnano.0c10903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose fiber (CF) paper is a low-cost, sustainable, and flexible substrate, which has gained increasing interest recently. Before practical usage, the functionalization of the pristine CF paper is indispensable to meet requirements of specific applications. Different from conventional surface modification or physical mixing methods, we report in situ growth of ultralong hydroxyapatite nanowires (HAPNWs) with lengths larger than 10 μm on the CF paper. HAPNWs are radially aligned on the surface of CFs, creating a micro/nanoscale hierarchical structure. By means of the excellent ion exchange ability of HAP and the hierarchical structure, the functions of the CF paper can be easily customized. As a proof-of-concept, we demonstrate two kinds of functional CF paper: (1) the photoluminescent CF paper by doping Eu3+ and Tb3+ ions into the crystal lattice of HAPNWs and (2) the superhydrophobic CF paper by coating poly(dimethylsiloxane) on the HAPNW hierarchical structure, which can be applied for self-cleaning and oil/water separation. It is expected that an in situ growth of ultralong HAPNWs will provide an instructive guideline for designing a CF paper with specific functions.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zi-Hao Dai
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ya-Nan Feng
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
49
|
Kusaka Y, Kawamura T, Nakagawa M, Okamoto K, Tanaka K, Fukuda N. Fabrication of extremely conductive high-aspect silver traces buried in hot-embossed polycarbonate films via the direct gravure doctoring method. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Song SW, Lee S, Choe JK, Kim NH, Kang J, Lee AC, Choi Y, Choi A, Jeong Y, Lee W, Kim JY, Kwon S, Kim J. Direct 2D-to-3D transformation of pen drawings. SCIENCE ADVANCES 2021; 7:7/13/eabf3804. [PMID: 33762344 PMCID: PMC7990349 DOI: 10.1126/sciadv.abf3804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Pen drawing is a method that allows simple, inexpensive, and intuitive two-dimensional (2D) fabrication. To integrate such advantages of pen drawing in fabricating 3D objects, we developed a 3D fabrication technology that can directly transform pen-drawn 2D precursors into 3D geometries. 2D-to-3D transformation of pen drawings is facilitated by surface tension-driven capillary peeling and floating of dried ink film when the drawing is dipped into an aqueous monomer solution. Selective control of the floating and anchoring parts of a 2D precursor allowed the 2D drawing to transform into the designed 3D structure. The transformed 3D geometry can then be fixed by structural reinforcement using surface-initiated polymerization. By transforming simple pen-drawn 2D structures into complex 3D structures, our approach enables freestyle rapid prototyping via pen drawing, as well as mass production of 3D objects via roll-to-roll processing.
Collapse
Affiliation(s)
- Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea
| | - Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Na-Hyang Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Junwon Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, South Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea
| | - Yeongjae Choi
- Nano Systems Institute, Seoul National University, Seoul National University, Seoul 08826, South Korea
| | - Ahyoun Choi
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, South Korea
| | - Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea
| | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, South Korea
- Nano Systems Institute, Seoul National University, Seoul National University, Seoul 08826, South Korea
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|