1
|
Guo H, Wang X, Zhang M, Pullerits T, Song P. Regulation of organic solar cells performance through external electric field: From charge transfer mechanisms to photovoltaic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125058. [PMID: 39226669 DOI: 10.1016/j.saa.2024.125058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
In organic solar cells (OSCs), comprehending the charge transfer mechanism at D/A interfaces is crucial for photoinduced charge generation and enhancing power conversion efficiency (PCE). The charge transfer mechanism and photovoltaic performance of the parallel stacking interface configuration of the PTQ10 polymer donor and T2EH non-fullerene acceptor (NFA) are systematically studied at the microscopic scale. The analysis of the electron-hole distribution of the PTQ10/T2EH excited states revealed the presence of multiple charge excitation modes and charge transfer pathways. Using Marcus theory, we examine the charge separation rate (KCS) of PTQ10/T2EH under external electric field (Fext) modulation, and it is clarified that reorganization energy (λ) is the main factor that affects the KCS. Our results show that Fext has a positive impact on the photovoltaic properties of PTQ10/T2EH thin films, as evidenced by the modulation of the open circuit voltage (VOC), voltage loss (VLOSS) and fill factor (FF). Overall, this study provides valuable theoretical insights for Fext to accelerate the charge separation process and enhance photovoltaic efficiency.
Collapse
Affiliation(s)
- Huijie Guo
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Xinyue Wang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Meixia Zhang
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, Box 124, Lund 22100, Sweden.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Sasitharan K, Frisch J, Kuliček J, Iraqi A, Lidzey DG, Bär M, Rezek B, Foster JA. Tuning the morphology and energy levels in organic solar cells with metal-organic framework nanosheets. Sci Rep 2024; 14:29559. [PMID: 39609514 PMCID: PMC11605120 DOI: 10.1038/s41598-024-80007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Metal-organic framework nanosheets (MONs) have proved themselves to be useful additives for enhancing the performance of a variety of thin film solar cell devices. However, to date only isolated examples have been reported. In this work we take advantage of the modular structure of MONs in order to resolve the effect of their different structural and optoelectronic features on the performance of organic photovoltaic (OPV) devices. Three different MONs were synthesized using different combinations of two porphyrin-based ligands meso-tetracarboxyphenyl porphyrin (TCPP) or tetrapyridyl-porphyrin (TPyP) with either zinc and/or copper ions and the effect of their addition to polythiophene-fullerene (P3HT-PC71BM) OPV devices was investigated. The power conversion efficiency (PCE) of devices was found to approximately double with the addition of MONs of Zn2(ZnTCPP) -4.7% PCE, 10.45 mA/cm2 short-circuit current density (JSC), 0.69 open-circuit voltage (VOC), 64.20% fill-factor (FF), but was unchanged with the addition of Cu2(ZnTPyP) (2.6% PCE, 3.68 mA/cm2 JSC, 0.59 VOC, 46.27% FF) and halved upon the addition of Cu2(CuTCPP) (1.24% PCE, 6.72 mA/cm2 JSC, 0.59 VOC, 56.24% FF) compared to devices without nanosheets (2.6% PCE, 6.61 mA/cm2 JSC, 0.58 VOC, 56.64% FF). Our analysis indicates that there are three different mechanisms by which MONs can influence the photoactive layer - light absorption, energy level alignment, and morphological changes. Analysis of external quantum efficiency, UV-vis and photoelectron spectroscopy data found that MONs have similar effects on light absorption and energy level alignment. However, atomic force and Raman microscopy studies revealed that the nanosheet thickness and lateral size are crucial parameters in enabling the MONs to act as beneficial additives resulting in an improvement of the OPV device performance. We anticipate this study will aid in the design of MONs and other 2D materials for future use in other light harvesting and emitting devices.
Collapse
Affiliation(s)
- Kezia Sasitharan
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
- Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, Czech Technical University in Prague, 16000, Prague, Czech Republic.
| | - Johannes Frisch
- Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489, Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, 12489, Berlin, Germany
| | - Jaroslav Kuliček
- Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, Czech Technical University in Prague, 16000, Prague, Czech Republic
| | - Ahmed Iraqi
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - David G Lidzey
- Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Marcus Bär
- Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489, Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, 12489, Berlin, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Department X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 12489, Berlin, Germany
| | - Bohuslav Rezek
- Centre for Advanced Photovoltaics, Faculty of Electrical Engineering, Czech Technical University in Prague, 16000, Prague, Czech Republic
| | - Jonathan A Foster
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
3
|
Sattar F, Zhou X, Ullah Z. High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach. Molecules 2024; 29:5370. [PMID: 39598758 PMCID: PMC11596838 DOI: 10.3390/molecules29225370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
This study presents the theoretical design and evaluation of a triple-junction polymer solar cell architecture, incorporating oligomers of PDCBT, PPDT2FBT, and PDPP3T as donor materials and PC71BM as the electron acceptor. Using density functional theory (DFT) simulations and time-dependent DFT (TD-DFT) methods, the investigation covers essential photovoltaic parameters, including molecular geometries, UV-Vis spectra, and charge transport properties. The device is structured to maximize solar energy absorption across the spectrum, featuring front, middle, and back junctions with band gaps of 1.9 eV, 1.63 eV, and 1.33 eV, respectively. Each layer targets different regions of the solar spectrum, optimizing light harvesting and charge separation. This innovative multi-junction design offers a promising pathway to enhanced power conversion efficiencies in polymer solar cells, advancing the integration of renewable energy technologies.
Collapse
Affiliation(s)
- Fazli Sattar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Xiaozhuang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Zakir Ullah
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Consejo Superior de Investigaciones Científicas, Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Wang K, Gao J, Wang H, Guo Q, Zhang J, Guo X, Zhang M. Enhanced Fill Factor and Efficiency of Ternary Organic Solar Cells by a New Asymmetric Non-Fullerene Small Molecule Acceptor. CHEMSUSCHEM 2024; 17:e202400691. [PMID: 38805339 DOI: 10.1002/cssc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Asymmetric non-fullerene small molecules acceptor (as-NF-SMAs) exhibit greater vitality in photovoltaic materials compared to their symmetric counterparts due to their larger dipole moments and stronger intermolecular interactions, which facilitate exciton dissociation and charge transmission in organic solar cells (OSCs). Here, we introduced a new as-NF-SMAs, named IDT-TNIC, as the third component in ternary organic solar cells (TOSCs). The asymmetric IDT-TNIC used indacenodithiophene (IDT) as the central core, alkylthio-thiophene as a unilateral π-bridge and extended end groups as electron-withdrawing. Due to the non-covalent conformational lock (NCL) established between O⋅⋅⋅S and S⋅⋅⋅S, the IDT-TNIC molecule preserves its coplanar structure effectively. Furthermore, IDT-TNIC exhibits complementary absorption and excellent compatibility with donor and acceptor materials, as well as optimized ladder energy level arrangement, resulting in a higher and more balanced μh/μe value, more homogeneous and suitable phase separation morphology in TOSCs. Thus, the PCE of the TOSCs reached 17 % when the weight ratio of PM6 : Y6 : IDT-TNIC was 1 : 1.1 : 0.1, and it is noteworthy that when the device area was increased to 1 cm2, the PCE could still be maintained at over 14 %. Detailed studies and analysis indicate that IDT-TNIC has great potential as a third component in OSCs and for large-scale printing in the future.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Jingshun Gao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Huiyan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 451191, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xia Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
5
|
Omidvar A, Fazeli F, Ghaed-Sharaf T, Keshavarzi R. Fine structural tuning of diphenylaniline-based dyes for designing semiconductors relevant to dye-sensitized solar cells. Sci Rep 2024; 14:26231. [PMID: 39482468 PMCID: PMC11528015 DOI: 10.1038/s41598-024-77953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Motivated by recent study on synthesized N, N-diphenylaniline (DPA)-based dyes [DOI: https://doi.org/10.1016/j.solener.2022.01.062 ] for use in dye-sensitized solar cells (DSSCs), we theoretically design several dyes and explore their potential for enhancing the efficiency of DSSCs. Our designed dyes are based on the molecular structure of synthesized DPA-azo-A and DPA-azo-N dyes with a donor-π-bridge-acceptor (D-π-A) framework. In this research, we aim to develop the power conversion efficiency (PCE) of DSSCs by fine-tuning the molecular structure of the synthesized dyes. To this end, we focus on designing dyes by replacing the units of DPA-azo-A and DPA-azo-N with a variety of donor, π-bridge, and acceptor. Hence the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations are done to explore their structure, electronic, optical, charge transport, and photovoltaic properties. Among all newly designed and reference dyes, the D3-azo-N and DPA-π3-N dyes which are designed by substituting the donor (DPA) and π-bridge (azo) units of DPA-azo-N with D3 and π3, respectively exhibit the highest PCE of 45.46% (for D3-azo-N) and 43.20% (for DPA-π3-N) and can be favorable dyes for improving the efficiency of DSSCs. Therefore, the dyes that are designed by substituting the donor and π-bridge units of synthesized dyes have more impact on improving the efficiency of DSSCs than those that involve replacing the acceptor units. Consequently, our theoretical findings will provide valuable insights for the experimentalists to employ these novel effective dyes and boost the performance of DSSCs.
Collapse
Affiliation(s)
- Akbar Omidvar
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Fatemeh Fazeli
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Tahereh Ghaed-Sharaf
- Department of Physical Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Reza Keshavarzi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
6
|
Chen BW, Cao K, Wang X, Chen ZC, Jeong SY, Qiu ZL, Dai LS, Li YF, Yang KY, Yun DQ, Woo HY, Deng LL, Xie SY, Zheng LS. Design and Performance of Small-Molecule Donors with Donor-π-Acceptor Architecture Toward Vacuum-Deposited Organic Photovoltaics Having Heretofore Highest Short-Circuit Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403486. [PMID: 39031678 DOI: 10.1002/smll.202403486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Indexed: 07/22/2024]
Abstract
The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures. DTICPF with a furan π-conjugated linker exhibits stronger and broader optical absorption, deeper highest occupied molecular orbital (HOMO) energy levels, and better charge transport, compared to its thiophene analog DTICPT. As a result, vacuum-deposited OSCs based on DTICPF: C70 show an impressive power conversion efficiency (PCE) of 9.36% (certified 9.15%) with short-circuit current density (Jsc) up to 17.49 mA cm-2 (certified 17.56 mA cm-2), which is the highest Jsc reported so far for vacuum-deposited OSCs. Besides, devices based on DTICPT: C70 and DTICPF: C70 exhibit excellent long-term stability under different aging conditions. This work offers important insights into the rational design of D-π-A configured small-molecule donors for high efficient and stable vacuum-deposited OSCs.
Collapse
Affiliation(s)
- Bin-Wen Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Kun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Xu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zuo-Chang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Zhen-Lin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Le-Shan Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun-Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Ke-Yue Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Da-Qin Yun
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Lin-Long Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Sharma NK, Rana A, Panwar O, Rana AS. Nanomechanical inhomogeneities in CVA-deposited titanium nitride thin films: Nanoindentation and finite element method investigations. Heliyon 2024; 10:e33239. [PMID: 39022080 PMCID: PMC11252795 DOI: 10.1016/j.heliyon.2024.e33239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Refractory metals that can withstand at high temperatures and harsh conditions are of utmost importance for solar-thermal and energy storage applications. Thin films of TiN have been deposited using cathodic vacuum arc deposition at relatively low temperatures ∼300 °C using the substrate bias ∼ -60 V. The nanomechanical properties of these films were investigated using nanoindentation and the spatial fluctuations were observed. The nanoindentation results were simulated using finite element method through Johnson-Cook model. A parametric study was conducted, and 16 different models were simulated to predict the hardening modulus, hardening exponent, and yield stress of the deposited film. The predicted values of elastic modulus, yield stress, hardening modulus and hardening exponent as 246 GPa, 2500 MPa, 25000 MPa and 0.1 respectively are found to satisfactorily explain the experimental load-indentation curves. We have found the local nitridation plays an important role on nanomechanical properties of TiN thin films and confirms that the nitrogen deficient regions are ductile with low yield stress and hardening modulus. This study further opens the opportunities of modelling the nanoscale system using FEM analysis.
Collapse
Affiliation(s)
- Neeraj Kumar Sharma
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - Anchal Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - O.S. Panwar
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| | - Abhimanyu Singh Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurugram, 122413, Haryana, India
| |
Collapse
|
8
|
Xie Q, Deng X, Zhao C, Fang J, Xia D, Zhang Y, Ding F, Wang J, Li M, Zhang Z, Xiao C, Liao X, Jiang L, Huang B, Dai R, Li W. Ethylenedioxythiophene-Based Small Molecular Donor with Multiple Conformation Locks for Organic Solar Cells with Efficiency of 19.3 . Angew Chem Int Ed Engl 2024; 63:e202403015. [PMID: 38623043 DOI: 10.1002/anie.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Feng Ding
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiali Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Runying Dai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Shokrollahi Z, Piralaee M, Asgari A. Performance and optimization study of selected 4-terminal tandem solar cells. Sci Rep 2024; 14:11515. [PMID: 38769326 PMCID: PMC11106283 DOI: 10.1038/s41598-024-62085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Tandem solar cells owing to their layered structure in which each sub-cell utilizes a certain part of the solar spectrum with reduced thermal losses, are promising applicants to promote the power conversion efficiency beyond the Shockley-Queisser limit of single-junction solar cells. This study delves into the performance and optimization of 4-terminal organic/silicon tandem solar cells through numerical simulations using SCAPS-1D software. The tandem architecture combining organic, perovskite, and silicon materials, shows potential in enhancing light absorption across the solar spectrum with complementary absorption spectra. Through innovative material exploration, optimization techniques are explored to advance the performance boundaries of organic/silicon tandem solar cells. The study employs the Beer-Lambert law to assess the impact of varied physical parameters on tandem solar cell efficiency, aiming to propose optimal configurations. Results indicate a maximum efficiency of 25.86% with P3HT:PC70BM organic active layer (150 nm thickness) and 36.8% with Cs2AgBi0.75Sb0.25Br6 active layer (400 nm thickness) in the studied 4-terminal tandem structures. These findings offer valuable insights into the complex physics of these tandem solar cells, for developing high-performance and commercially practical photovoltaic devices.
Collapse
Affiliation(s)
| | - Mina Piralaee
- Faculty of Physics, University of Tabriz, Tabriz, Iran.
- Photonic Devices Research Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran.
| | - Asghar Asgari
- Faculty of Physics, University of Tabriz, Tabriz, Iran
- Photonic Devices Research Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
- School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Li H, Tan J, Yang S, Sun Y, Yu H. p-Toluenesulfonic Acid Modified Two-Dimensional ZrSe 2 as a Hole Transport Layer for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624163 DOI: 10.1021/acsami.4c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two-dimensional (2D) materials have attracted attention due to their excellent optoelectronic properties, but their applications are limited by their defects and vacancies. Surface modification is an effective method to restore their performance. Here, ZrSe2 is modified with conductive polymer p-toluenesulfonic acid (PTSA). It is found that PTSA can obtain electrons of ZrSe2 through the combination of -SO3H and ZrSe2, thus forming interfacial dipoles, which improve the work function of ZrSe2. In addition, -OH in PTSA can effectively fill the Se vacancy in ZrSe2 to form P-type doping, thereby improving its conductivity. ZrSe2 modified by the PTSA material is first used as a hole transport layer (HTL) in organic solar cells (OSCs). The efficiency of OSCs based on the PBDB-T:ITIC and PM6:L8-BO binary active layer with ZrSe2:PTSA as the novel HTL reaches 10.66 and 18.14%, which are obviously higher than the efficiency of OSCs with pure ZrSe2 as the HTL (8.48 and 15.64%). More interestingly, the stability of the device with ZrSe2:PTSA as HTL is significantly better than that of PEDOT:PSS. This study shows that the modification of the organic material can effectively improve the photoelectric performance of ZrSe2 and explores the physical mechanism of the interaction between the organic modifier and 2D materials.
Collapse
Affiliation(s)
- Hongye Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Jingyu Tan
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Song Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Yang H, Che Y, Cooper AI, Chen L, Li X. Machine Learning Accelerated Exploration of Ternary Organic Heterojunction Photocatalysts for Sacrificial Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 38040666 DOI: 10.1021/jacs.3c10586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Donor-acceptor heterojunctions in organic photocatalysts can provide enhanced exciton dissociation and charge separation, thereby improving the photocatalytic activity. However, the wide choice of possible donors and acceptors poses a challenge for the rational design of organic heterojunction photocatalysts, particularly for large ternary phase spaces. We accelerated the exploration of ternary organic heterojunction photocatalysts (TOHP) by using a combination of machine learning and high-throughput experimental screening. This involved 736 experiments in all, out of possible 4320 ternary combinations. The top ten most active TOHPs discovered using this strategy showed outstanding sacrificial hydrogen production rates of more than 500 mmol g-1 h-1, with the most active ternary material reaching a rate of 749.8 mmol g-1 h-1 under 1 sun illumination. These rates of photocatalytic hydrogen generation are among the highest reported for organic photocatalysts in the literature.
Collapse
Affiliation(s)
- Haofan Yang
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Yu Che
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K
| | - Xiaobo Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
12
|
Li S, Wang Z, Li Y, Su CJ, Fu Y, Wang Y, Lu X. Fostering the Dense Packing of Halide Perovskite Quantum Dots through Binary-Disperse Mixing. ACS NANO 2023; 17:20634-20642. [PMID: 37787473 PMCID: PMC10604077 DOI: 10.1021/acsnano.3c07688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Due to their versatile applications, perovskite quantum dot (PQD)-based optoelectrical devices have garnered significant research attention. However, the fundamental packing behavior of PQDs in thin films and its impact on the device performance remain relatively unexplored. Drawing inspiration from theoretical models concerning packing density with size mixtures, this study presents an effective strategy, namely, binary-disperse mixing, aimed at enhancing the packing density of PQD films. Comprehensive grazing-incidence small-angle X-ray characterization suggested that the PQD film consists of three phases: two monosize phases and one binary mixing phase. The volume fraction and population of the binary-size phase can be tuned by mixing an appropriate amount of large and small PQDs. Furthermore, we performed multi-length-scale all-atom and coarse-grained molecular dynamics simulations to elucidate the distribution and conformation of organic surface ligands, highlighting their influence on PQD packing. Notably, the mixing of two PQDs of different sizes promotes closer face-to-face contact. The densely packed binary-disperse film exhibited largely suppressed trap-assisted recombination, much longer carrier lifetime, and thereby improved power conversion efficiency. Hence, this study provides fundamental understanding of the packing mechanism of perovskite quantum dots and highlights the significance of packing density for PQD-based solar cells.
Collapse
Affiliation(s)
- Shiang Li
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
| | - Ziqi Wang
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
| | - Yuhao Li
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
- Spallation
Neutron Source Science Center, Institute
of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, China
| | - Chun-Jen Su
- National
Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Yuang Fu
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
| | - Yi Wang
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Vasilopoulou M, Mohd Yusoff ARB, Nazeeruddin MK. Background and Basic Knowledge of Perovskite Solar Cells. PRINTABLE MESOSCOPIC PEROVSKITE SOLAR CELLS 2023:1-18. [DOI: 10.1002/9783527834297.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Yadav S, Shivanna R, Mohapatra AA, Sawhney N, Gangadharappa C, Swaraj S, Rao A, Friend RH, Patil S. Resonant Energy Transfer-Mediated Efficient Hole Transfer in the Ternary Blend Organic Solar Cells. J Phys Chem Lett 2023; 14:6601-6609. [PMID: 37459166 DOI: 10.1021/acs.jpclett.3c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The ternary blend approach accomplished improved spectral coverage and enhanced the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the role of the third component in improving the photovoltaic parameters needs critical analysis. Here, we introduced a wide band gap n-type twisted perylene diimide (TPDI) into the PM6:Y6 blend as a third component that improves spectral coverage and morphology, resulting in an overall increase in the efficiency of the OSCs. TPDI acts as an antenna for efficient energy- and charge-transfer processes. A systematic study compared charge- and energy-transfer dynamics and the orientational dependence nanomorphology of ternary blends with those of their binary counterparts. Femtosecond transient absorption measurements reveal enhanced hole-transfer efficiency in finely tuned ternary mixtures. This study provides a rational approach to identifying a third component to improve light management and morphology. These parameters enhance the energy and charge-transfer processes, improving the PCE of OSCs.
Collapse
Affiliation(s)
- Suraj Yadav
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ravichandran Shivanna
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Nipun Sawhney
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Sufal Swaraj
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Akshay Rao
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Richard H Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Chen XZ, Luo Q, Ma CQ. Inkjet-Printed Organic Solar Cells and Perovskite Solar Cells: Progress, Challenges, and Prospect. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Nagarjuna P, Gupta V, Bagui A, Singh SP. Molecular engineering of new electron acceptor for highly efficient solution processable organic solar cells using state-of-the-art polymer donor PffBT4T-2OD. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Pudza I, Pudzs K, Tokmakovs A, Strautnieks NR, Kalinko A, Kuzmin A. Nanocrystalline CaWO 4 and ZnWO 4 Tungstates for Hybrid Organic-Inorganic X-ray Detectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:667. [PMID: 36676403 PMCID: PMC9865442 DOI: 10.3390/ma16020667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Hybrid materials combining an organic matrix and high-Z nanomaterials show potential for applications in radiation detection, allowing unprecedented device architectures and functionality. Herein, novel hybrid organic-inorganic systems were produced using a mixture of tungstate (CaWO4 or ZnWO4) nanoparticles with a P3HT:PCBM blend. The nano-tungstates with a crystallite size of 43 nm for CaWO4 and 30 nm for ZnWO4 were synthesized by the hydrothermal method. Their structure and morphology were characterized by X-ray diffraction and scanning electron microscopy. The hybrid systems were used to fabricate direct conversion X-ray detectors able to operate with zero bias voltage. The detector performance was tested in a wide energy range using monochromatic synchrotron radiation. The addition of nanoparticles with high-Z elements improved the detector response to X-ray radiation compared with that of a pure organic P3HT:PCBM bulk heterojunction cell. The high dynamic range of our detector allows for recording X-ray absorption spectra, including the fine X-ray absorption structure located beyond the absorption edge. The obtained results suggest that nanocrystalline tungstates are promising candidates for application in direct organic-inorganic X-ray detectors.
Collapse
Affiliation(s)
- Inga Pudza
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Kaspars Pudzs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Andrejs Tokmakovs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | | | - Aleksandr Kalinko
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Alexei Kuzmin
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| |
Collapse
|
18
|
Yue Y, Zheng B, Ni J, Yang W, Huo L, Wang J, Jiang L. All-Polymer Solar Cells with 17% Efficiency Enabled by the "End-Capped" Ternary Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204030. [PMID: 36192161 PMCID: PMC9661854 DOI: 10.1002/advs.202204030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Indexed: 05/21/2023]
Abstract
Recently, all-polymer solar cells (all-PSCs) have received increasing attention and made tremendous progress. However, the power conversion efficiency (PCE) of all-PSCs still lags behind the polymer-donor-small-molecule-acceptor based organic solar cells, owing to the excessive phase separation with poor miscibility between polymer donor and acceptor. In this research, an "end-capped" ternary strategy is proposed by introducing PM6TPO as a third component to fabricate highly efficient all-PSCs. The PM6:PM6TPO:PY-IT based ternary devices exhibit impressive PCE of 17.0% with enhanced light absorption and optimal morphology, and the introduction of PM6TPO significantly reduces the phase separation. The ternary devices also exhibit improved stability, outstanding tolerance of active layer thickness, and high performance of 1 cm2 unit cells. More importantly, the "end-capped" ternary strategy enables efficient and facile improvement of all-PSCs performance without additional selection and complicated synthesis for the third component.
Collapse
Affiliation(s)
- Yuchen Yue
- (CAS) Key Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of Sciences (UCAS)Beijing100049P. R. China
| | - Bing Zheng
- School of Future TechnologyUniversity of Chinese Academy of Sciences (UCAS)Beijing100049P. R. China
| | - Jianling Ni
- School of ChemistryBeihang UniversityBeijing100190P. R. China
| | - Wenjie Yang
- (CAS) Key Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of Sciences (UCAS)Beijing100049P. R. China
| | - Lijun Huo
- School of ChemistryBeihang UniversityBeijing100190P. R. China
| | - Jingxia Wang
- (CAS) Key Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of Sciences (UCAS)Beijing100049P. R. China
| | - Lei Jiang
- (CAS) Key Laboratory of Bioinspired Smart Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of ChemistryBeihang UniversityBeijing100190P. R. China
- School of Future TechnologyUniversity of Chinese Academy of Sciences (UCAS)Beijing100049P. R. China
- Ji Hua LaboratoryFoshanGuangdong528000P. R. China
| |
Collapse
|
19
|
Unraveling the Effect of Solvent Additive and Fullerene Component on Morphological Control in Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Liu Y, Zhang D, Yang G, Wang R, Yu J. High Performance and Stable Organic Solar Cells Fabricated by Y-Series Small Molecular Materials as the Interfacial Modified Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36910-36917. [PMID: 35925803 DOI: 10.1021/acsami.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organic solar cell (OSC) has received tremendous consideration for the impressive increased power conversion efficiency (PCE) from 11% to over 18% in the last decade, but another main parameter, the stability, still needs further study to meet the requirements of commercialization. Generally, the inverted structure device shows more stability than the conventional one owing to the structure characteristics, but even so, the performance and stability of the OSC device still need further improvement because of some undesirable contact between the electron transport layer (typically transition metal oxide like ZnO) and the active layer. Here, three Y-series small molecular acceptor materials (Y6, BTP-eC9, and L8-BO) are used as an interfacial modified layer (IML), which could optimize the interfacial characterization of the devices and thus enhance both the performance and stability. As a result, the insertion of the IML improved the interlayer charge transport capacity by passivating the surface of ZnO, leading to the enhancement of short circuit current density (JSC), fill factor, and PCE of the OSCs. Furthermore, because of the protection of the IML, the OSCs show outstanding stability compared to the control device (without IML), which could maintain 80% performance of the device over 150 h.
Collapse
Affiliation(s)
- Yuzhe Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Dayong Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Genjie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China
| |
Collapse
|
21
|
Nugraha DF, Son DH, Wardani RP, Lee SW, Whang DR, Kim JH, Chang DW. Strategic structural evolution for enhancing the photovoltaic performance of quinoxaline-based polymers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ali U, Etabti H, Muhammad Rizwan Ahmad H, Uz Zafar S. The conformational control of small D-A-D organic solar cells for large power conversion efficiency: A deep quantum chemistry analysis. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110147. [PMID: 35438225 DOI: 10.1002/adma.202110147] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The ternary strategy has been widely identified as an effective approach to obtain high-efficiency organic solar cells (OSCs). However, for most ternary OSCs, the nonradiative voltage loss lies between those of the two binary devices, which limits further efficiency improvements. Herein, an asymmetric guest acceptor BTP-2F2Cl is designed and incorporated into a PM1:L8-BO host blend. Compared with the L8-BO neat film, the L8-BO:BTP-2F2Cl blend film shows higher photoluminescence quantum yield and larger exciton diffusion length. Introducing BTP-2F2Cl into the host blend extends its absorption spectrum, improves the molecular packing of host materials, and suppresses the nonradiative charge recombination of the ternary OSCs. Consequently, the power conversion efficiency is improved up to 19.17% (certified value 18.7%), which represents the highest efficiency value reported for single-junction OSCs so far. The results show that improving the exciton behaviors is a promising approach to reducing the nonradiative voltage loss and realizing high-performance OSCs.
Collapse
Affiliation(s)
- Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yao Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Li
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tao Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jing Guo
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
24
|
Simulation of Amorphous Silicon Carbide Photonic Crystal Absorption Layer for Solar Cells. CRYSTALS 2022. [DOI: 10.3390/cryst12050665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, the amorphous silicon carbide (a-SiC) with low cost and high extinction coefficient was used as the light absorption layer of solar cells, and the photonic crystal (PC) structure and defect structure were introduced. By optimizing the scatterer shape, structural parameters and defect types of photonic crystal, the absorption efficiency of the light absorption layer was further improved. The results show that the photonic crystal absorption layer with vacancy line defect is better than the perfect photonic crystal absorption layer. Meanwhile, the absorption efficiency of the photonic crystal absorption layer significantly improves in the case that the scatterer is an elliptical cylindrical air hole scatterer. When the incident light is in the wavelength range of 0.30~0.80 μm and the absorption layer height is 0.60 μm, the absorption efficiency of the absorption layer can reach 95.60%. Compared with the absorption layer without photonic crystal structure, the absorption layer is increased by 43.24%. At the same time, the absorption layer has little dependence on the incidence angle of sunlight. When the incidence angle is 65°, the absorption efficiency is still higher than 80%.
Collapse
|
25
|
Sundaresan C, Josse P, Vebber MC, Brusso J, Lu J, Tao Y, Alem S, Lessard BH. Design of ternary additive for organic photovoltaics: a cautionary tale. RSC Adv 2022; 12:10029-10036. [PMID: 35424912 PMCID: PMC8965687 DOI: 10.1039/d2ra00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9′-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650–730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices. Silicon phthalocyanines with carbazole axial functional groups were synthesized to improve the miscibility in PCDTBT and for use as ternary additives in organic photovoltaics.![]()
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Pierre Josse
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Mário C Vebber
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada
| | - Jaclyn Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Jianping Lu
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Ye Tao
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Salima Alem
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa ON K1N 6N5 Canada
| |
Collapse
|
26
|
Abstract
The thin-film organic solar cells (OSCs) are currently one of the most promising photovoltaic technologies to effectively harvest the solar energy due to their attractive features of mechanical flexibility, light weight, low-cost manufacturing, and solution-processed large-scale fabrication, etc. However, the relative insufficient light absorption, short exciton diffusion distance, and low carrier mobility of the OSCs determine the power conversion efficiency (PCE) of the devices are relatively lower than their inorganic photovoltaic counterparts. To conquer the challenges, the two-dimensional (2D) nanomaterials, which have excellent photoelectric properties, tunable energy band structure, and solvent compatibility etc., exhibit the great potential to enhance the performance of the OSCs. In this review, we summarize the most recent successful applications of the 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, and g-C3N4, etc., adapted in the charge transporting layer, the active layer, and the electrode of the OSCs, respectively, for boosting the PCE and stability of the devices. The strengths and weaknesses of the 2D materials in the application of OSCs are also reviewed in details. Additionally, the challenges, commercialization potentials, and prospects for the further development of 2D materials-based OSCs are outlined in the end.
Collapse
|
27
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
28
|
Li C, Li W, Sun X, Wang J, Tao J, Zou Z, Liao G, Zou X, Ni J, Zhang J. Nanoscale Phase Separation in Ternary Organic Solar Cells Based on PTB7:PC 70BM:IC 70BA. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5749-5755. [PMID: 33980389 DOI: 10.1166/jnn.2021.19493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a fullerene derivative, IC70BA is widely used in the ternary organic solar cells (TOSCs) to increase the open circuit voltage (Voc) of the devices. Unfortunately, most of the literature shows that IC70BA will lead to a reduction in the short-circuit current density (Jsc) and fill factor (FF). In this work, IC70BA is added to the PTB7:PC70BM binary system to form the ternary system, which is composed of one donor and two fullerene acceptors. Surprisingly, the addition of IC70BA does not immediately lead to a decrease in Jsc and FF. In fact, the appropriate weight ratio of IC70BA in fullerenes can simultaneously increase the Voc, Jsc, and FF of the TOSCs. The synergistic optimization of the surface and bulk morphology of the ternary active layer suppresses the attenuation of Jsc and FF. The smooth surface and suitable phase separation size effectively guarantee the separation, transport and extraction of the charge. Moreover, the addition of IC70BA can significantly improve the hole transport capacity of the active layer, and the optimal hole mobility is 5.13 - 10"4 cm²V-1S-1. Finally, the TOSCs with 10% weight ratio of IC70BA gives the optimal PCE of 9.24% and ideality factor of 2.3.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Wei Li
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Xiaoxiang Sun
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Jifei Wang
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Jiayou Tao
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Zhijun Zou
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Gaohua Liao
- Key Laboratory of Hunan Province on Information Photonics and Frees pace Optical Communications, College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China
| | - Xinchang Zou
- Yueyang DALU Laser Technology Co. Ltd., Yueyang 414000, People's Republic of China
| | - Jian Ni
- College of Electronic Information and Optical Engineering, Nan kai University, Tianjin 300071, People's Republic of China
| | - Jianjun Zhang
- College of Electronic Information and Optical Engineering, Nan kai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
29
|
Sperlich A, Auth M, Dyakonov V. Charge Transfer in Ternary Solar Cells Employing Two Fullerene Derivatives: Where do Electrons Go? Isr J Chem 2021. [DOI: 10.1002/ijch.202100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Sperlich
- Experimental Physics 6 Julius Maximilian University of Würzburg Würzburg Germany
| | - Michael Auth
- Experimental Physics 6 Julius Maximilian University of Würzburg Würzburg Germany
| | - Vladimir Dyakonov
- Experimental Physics 6 Julius Maximilian University of Würzburg Würzburg Germany
| |
Collapse
|
30
|
Bary G, Ghani L, Jamil MI, Arslan M, Ahmed W, Ahmad A, Sajid M, Ahmad R, Huang D. Designing small organic non-fullerene acceptor molecules with diflorobenzene or quinoline core and dithiophene donor moiety through density functional theory. Sci Rep 2021; 11:19683. [PMID: 34608168 PMCID: PMC8490382 DOI: 10.1038/s41598-021-97662-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
The non-fullerene acceptors A1-A5 with diflourobenzene or quinoline core (bridge) unit, donor cyclopenta[1,2-b:3,4-b']dithiophene unit and 2-(2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile as acceptor unit with additional phenyl, fulvene or thieno[3,2-d]pyrimidinyl 5-oxide groups have been designed through DFT calculations. The optimization of molecular geometries were performed with density functional theory (DFT) at B3LYP 6-31G (d,p) level of theory. The frontier molecular orbital (FMO) energies, band gap energies and dipole moments (ground and excited state) have been calculated to probe the photovoltaic properties. The band gap (1.42-2.01 eV) and dipole moment values (5.5-18. Debye) showed that these designed acceptors are good candidates for organic solar cells. Time-Dependent Density Functional Theory (TD-DFT) results showed λmax (wave length at maximum absorption) value (611-837 nm), oscillator strength (f) and excitation energies (1.50-2.02 eV) in gas phase and in CHCl3 solvent (1.48-1.89 eV) using integral equation formalism variant (IEFPCM) model. The λmax in CHCl3 showed marginal red shift for all designed acceptors compared with gas phase absorption. The partial density of states (PDOS) has been plotted by using multiwfn which showed that all the designed molecules have more electronic distribution at the donor moiety and lowest at the central bridge. The reorganization energies of electron (λe) (0.0007 eV to 0.017 eV), and the hole reorganization energy values (0.0003 eV to - 0.0403 eV) were smaller which suggested that higher charged motilities. The blends of acceptors A1-A5 with donor polymer D1 provided open circuit voltage (Voc) and ∆HOMO off-set of the HOMO of donor and acceptors. These blends showed 1.04 to 1.5 eV values of Voc and 0 to 0.38 eV ∆HOMO off set values of the donor-acceptor bends which indicate improved performance of the cell. Finally, the blend of D1-A4 was used for the study of distribution of HOMO and LUMO. The HOMO were found distributed on the donor polymer (D1) while the A4 acceptor was found with LUMO distribution. Based on λmax values, and band gap energies (Eg), excitation energies (Ex), reorganization energies; the A3 and A4 will prove good acceptor molecules for the development of organic solar cells.
Collapse
Affiliation(s)
- Ghulam Bary
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China.
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Muhammad Imran Jamil
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Arslan
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Waqar Ahmed
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea.
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Anees Ahmad
- Chemistry Department, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Riaz Ahmad
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China
| | - Duohui Huang
- Faculty of Science, Yibin University, Yibin, 644000, Sichuan, China
| |
Collapse
|
31
|
Li MY, Pan YQ, Sun GY, Geng Y. Charge Transfer Mechanisms Regulated by the Third Component in Ternary Organic Solar Cells. J Phys Chem Lett 2021; 12:8982-8990. [PMID: 34506716 DOI: 10.1021/acs.jpclett.1c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For ternary organic solar cells (T-OSCs), introducing the third component (D2) can significantly enhance the efficiency of cell while still maintaining easy fabrication. However, it brings difficulty in physical understanding of the fundamental mechanism because of the more complicated photophysical processes in T-OSCs. Accordingly, how the guest donor D2 regulates the charge transfer mechanism was explored in theory using three T-OSCs containing two donors and an acceptor. The results point out that larger differences in molecular weight and/or backbone between D2 and the host donor D1 cause different charge transfer mechanisms, which hardly provide a coexisting charge transfer path. Besides, strong absorption capacity of D2 with a high oscillator strength would produce favorable regulation of the charge transfer mechanism. Therefore, this work clarifies the influence of D2 on the charge transfer mechanism in T-OSCs, which suggests that the method of improving the power conversion efficiency cannot be generalized but rather must be tailored to specific conditions.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
| | - Yi-Qi Pan
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
| | - Guang-Yan Sun
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
- Faculty of Chemical Engineering and New Energy Materials, Zhuhai College of Science and Technology, Zhuhai, Guangdong 519041, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
32
|
Kurley JM, Pan JA, Wang Y, Zhang H, Russell JC, Pach GF, To B, Luther JM, Talapin DV. Roll-To-Roll Friendly Solution-Processing of Ultrathin, Sintered CdTe Nanocrystal Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44165-44173. [PMID: 34494421 PMCID: PMC8461606 DOI: 10.1021/acsami.1c08325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Roll-to-roll (R2R) device fabrication using solution-processed materials is a cheap and versatile approach that has attracted widespread interest over the past 2 decades. Here, we systematically introduce and investigate R2R-friendly modifications in the fabrication of ultrathin, sintered CdTe nanocrystal (NC) solar cells. These include (1) scalable deposition techniques such as spray-coating and doctor-blading, (2) a bath-free, controllable sintering of CdTe NCs by quantitative addition of a sintering agent, and (3) radiative heating with an infrared lamp. The impact of each modification on the CdTe nanostructure and solar cell performance was first independently studied and compared to the standard, non-R2R-friendly procedure involving spin-coating the NCs, soaking in a CdCl2 bath, and annealing on a hot plate. The R2R-friendly techniques were then combined into a single, integrated process, yielding devices that reach 10.4% power conversion efficiency with a Voc, Jsc, and FF of 697 mV, 22.2 mA/cm2, and 67%, respectively, after current/light soaking. These advances reduce the barrier for large-scale manufacturing of solution-processed, ultralow-cost solar cells on flexible or curved substrates.
Collapse
Affiliation(s)
- J. Matthew Kurley
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jia-Ahn Pan
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuanyuan Wang
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Hao Zhang
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jake C. Russell
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory F. Pach
- Department
of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Bobby To
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Dmitri V. Talapin
- Department
of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| |
Collapse
|
33
|
Capture the high-efficiency non-fullerene ternary organic solar cells formula by machine-learning-assisted energy-level alignment optimization. PATTERNS 2021; 2:100333. [PMID: 34553173 PMCID: PMC8441578 DOI: 10.1016/j.patter.2021.100333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Appropriate energy-level alignment in non-fullerene ternary organic solar cells (OSCs) can enhance the power conversion efficiencies (PCEs), due to the simultaneous improvement in charge generation/transportation and reduction in voltage loss. Seven machine-learning (ML) algorithms were used to build the regression and classification models based on energy-level parameters to predict PCE and capture high-performance material combinations, and random forest showed the best predictive capability. Furthermore, two sets of verification experiments were designed to compare the experimental and predicted results. The outcome elucidated that a deep lowest unoccupied molecular orbital (LUMO) of the non-fullerene acceptors can slightly reduce the open-circuit voltage (VOC) but significantly improve short-circuit current density (JSC), and, to a certain extent, the VOC could be optimized by the slightly up-shifted LUMO of the third component in non-fullerene ternary OSCs. Consequently, random forest can provide an effective global optimization scheme and capture multi-component combinations for high-efficiency ternary OSCs. ML assists in analyzing energy-level alignment of non-fullerene ternary blends Random forest approach provides the best predictive capability The effective global optimization scheme in material selection is provided
Introducing a third component into a binary blend to fabricate the ternary organic solar cells (OSCs) is a common practice to enhance light harvest and reduce energy loss of the photoactive blends, especially the non-fullerene ternary OSCs, which showed thrilling power conversion efficiencies improvement. A proper energy-level alignment in ternary blends, promoting the device charge generation, transport, and extraction, is of importance to maximize the short-circuit current and open-circuit voltage simultaneously. The machine-learning (ML) technique is a powerful tool for processing complex data from previous research to find the underlying mechanisms. In this work, we built regression and classification models, aiming to find the relationship between molecular energy levels and device performances. The results demonstrated that random forest is an effective method to assess the energy-level alignment, providing guidelines for the design of high-performance non-fullerene ternary OSCs.
Collapse
|
34
|
|
35
|
Akutagawa T, Takeda T, Hoshino N. Dynamics of proton, ion, molecule, and crystal lattice in functional molecular assemblies. Chem Commun (Camb) 2021; 57:8378-8401. [PMID: 34369489 DOI: 10.1039/d1cc01586a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic molecular processes, such as short- or long-range proton (H+) and ion (M+) motions, and molecular rotations in electrical conducting and magnetic molecular assemblies enable the fabrication of electron-H+ (or M+) coupling systems, while crystal lattice dynamics and molecular conformation changes in hydrogen-bonded molecular crystals have been utilised in external stimuli responsive reversible gas-induced gate opening and molecular adsorption/desorption behavior. These dynamics of the polar structural units are responsible for the dielectric measurements. The H+ dynamics are formed from ferroelectrics and H+ conductors, while the dynamic M+ motions of Li+ and Na+ involve ionic conductors and coupling to the conduction electrons. In n-type organic semiconductors, the crystal lattices are modulated by replacing M+ cations, with cations such as Li+, Na+, K+, Rb+, and Cs+. The use of polar rotator or inversion structures such as alkyl amides, m-fluoroanilinium cations, and bowl-shaped trithiasumanene π-cores enables the formation of ferroelectric molecular assemblies. The host-guest molecular systems of ESIPT fluorescent chromic molecules showed interesting molecular sensing properties using various bases, where the dynamic transformation of the crystal lattice and the molecular conformational change were coupled to each other.
Collapse
Affiliation(s)
- Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
36
|
Liu H, Hussain S, Lee J, Vikraman D, Kang J. Ultrasonically Processed WSe 2 Nanosheets Blended Bulk Heterojunction Active Layer for High-Performance Polymer Solar Cells and X-ray Detectors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3206. [PMID: 34200810 PMCID: PMC8230459 DOI: 10.3390/ma14123206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) tungsten diselenide (WSe2) has attracted considerable attention in the field of photovoltaic devices owing to its excellent structure and photoelectric properties, such as ordered 2D network structure, high electrical conductivity, and high mobility. For this test, we firstly prepared different sizes (NS1-NS3) of WSe2 nanosheets (NSs) through the ultrasonication method and characterized their structures using the field emission scanning electron microscope (FE-SEM), Raman spectroscopy, and X-ray powder diffraction. Moreover, we investigated the photovoltaic performance of polymer solar cells based on 5,7-Bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione(PBDB-T):(6,6)-phenyl-C71 butyric acid methyl ester (PCBM) with different WSe2 NSs as the active layer. The fabricated PBDB-T:PCBM active layer with the addition of NS2 WSe2 NSs (1.5 wt%) exhibited an improved power conversion efficiency (PCE) of 9.2%, which is higher than the pure and NS1 and NS3 WSe2 blended active layer-encompassing devices. The improved PCE is attributed to the synergic enhancement of exciton dissociation and an improvement in the charge mobility through the modified active layer for polymer solar cells. Furthermore, the highest sensitivity of 2.97 mA/Gy·cm2 was achieved for the NS2 WSe2 NSs blended active layer detected by X-ray exposure over the pure polymer, and with the NS1 and NS2 WSe2 blended active layer. These results led to the use of transition metal dichalcogenide materials in polymer solar cells and X-ray detectors.
Collapse
Affiliation(s)
- Hailiang Liu
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea; (H.L.); (J.L.)
| | - Sajjad Hussain
- Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea;
| | - Jehoon Lee
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea; (H.L.); (J.L.)
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Jungwon Kang
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea; (H.L.); (J.L.)
| |
Collapse
|
37
|
On the Use of PEDOT as a Catalytic Counter Electrode Material in Dye-Sensitized Solar Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dye-sensitized solar cells (DSSCs) emerged in the early 1990s as a promising alternative to the classic silicon-based solar cell due to their unique combination of low cost, ease of fabrication, color palette for building integration, and high efficiency in indoor applications. This review article describes the fabrication and the properties of poly (3,4-ethylenedioxythiophene) (PEDOT)-based catalytic counter electrodes (CEs) for DSSCs. In particular, the electrochemical reactivity PEDOT CEs used in conjunction with alternative redox mediators for DSSCs is outlined. Among alternative redox shuttles, cobalt and copper complexes, as well as totally organic thiolate/disulfide, have been considered. Finally, PEDOT can also be used as a hole conductor material in electrolyte-free solid-state dye-sensitized solar cells. This review clearly shows that the progress in DSSCs development is strongly linked to the introduction of PEDOT as a new counter electrode material.
Collapse
|
38
|
Amin PO, Ketuly KA, Saeed SR, Muhammadsharif FF, Symes MD, Paul A, Sulaiman K. Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chem 2021; 15:25. [PMID: 33883016 PMCID: PMC8061061 DOI: 10.1186/s13065-021-00751-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The design of new polymers able to filter the electromagnetic spectrum and absorb distinctly in the UV and high-energy part of visible spectrum is crucial for the development of semi-transparent solar cells. Herein, we report on the synthesis and spectroscopic, electrochemical, and photophysical characteristics of three new polymers, namely (i) Poly(triamterene-co-terephthalate), (ii) Poly[triamterene-co- 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p'-disulfonamide], and (iii) Poly(5-hydroxyindole-2-carboxylate) that might show promise as materials for semi-transparent solar cells. RESULTS The energy band gap, refractive index, dielectric constant, and optical conductivity of the electron donor polymer, poly(triamterene-co-terephthalate), were determined to be 2.92 eV, 1.56, 2.44 and 2.43 × 104 S cm-1, respectively. The synthesized electron acceptor polymers showed a relatively high refractive index, dielectric constant, and optical conductivity. The presence of a direct allowed transition was confirmed between intermolecular energy bands of the polymers. CONCLUSIONS The polymers showed relatively high energy gap and deep HOMO levels, making them strong absorbers of photons in the UV region and high energy part of the visible region. The synthesized donor and acceptors performed well relative to P3HT and fullerenes due to the close match of the HOMO and LUMO levels. With further development, the polymers could be viable for use as the active layers of semi-transparent solar cells.
Collapse
Affiliation(s)
- Peshawa O Amin
- Charmo Center for Research, Training and Consultancy, Charmo University, 46023, Chamchamal, Kurdistan Region, Iraq
| | - Kamal Aziz Ketuly
- Department of Medical Chemistry, College of Medicine, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Salah Raza Saeed
- Charmo Center for Research, Training and Consultancy, Charmo University, 46023, Chamchamal, Kurdistan Region, Iraq
| | - Fahmi F Muhammadsharif
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Physics, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region, F.R., Iraq.
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G128QQ, Scotland, UK
| | - Avishek Paul
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G128QQ, Scotland, UK
| | - Khaulah Sulaiman
- Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Alexandre RAF, de Oliveira OV, dos Santos JD. Theoretical studies of new PCPDTBT derivatives as possible electron donor on polymer solar cells. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Zhao C, Wang J, Zhao X, Du Z, Yang R, Tang J. Recent advances, challenges and prospects in ternary organic solar cells. NANOSCALE 2021; 13:2181-2208. [PMID: 33480942 DOI: 10.1039/d0nr07788g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The past decade has seen a tremendous development of organic solar cells (OSCs). To date, high-performance OSCs have boosted power conversion efficiencies (PCEs) over 17%, showing bright prospects toward commercial applications. Compared with binary OSCs, ternary OSCs, by introducing a third component as a second donor or acceptor into the active layer, have great potential in realizing outstanding photovoltaic performance. Herein, a comprehensive review of the recent advances of ternary solar cells is presented. According to the chemical components of active layer materials, we classify the ternary systems into four categories, including polymer/small molecule/small molecule, polymer/polymer/small molecule, all-polymer and all-small-molecule types. The relationships among the photovoltaic materials structure and weight ratio, active layer morphology and photovoltaic performance are systematically analyzed and summarized. The features and design strategies of each category are also discussed and summarized. Key issues and challenges faced in ternary OSCs are pointed out, and potential strategies and solutions are proposed. This review may provide guidance for the field of ternary OSCs.
Collapse
Affiliation(s)
- Congcong Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jiuxing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuanyi Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
41
|
Aitchison CM, Sprick RS. Conjugated nanomaterials for solar fuel production. NANOSCALE 2021; 13:634-646. [PMID: 33393561 DOI: 10.1039/d0nr07533g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalytic hydrogen production from water has the potential to fulfil future energy needs by producing a clean and storable fuel. In recent years polymer photocatalysts have attracted significant interest in an attempt to address these challenges. One reason organic photocatalysts have been considered an attractive target is their synthetic modularity, therefore, the ability to tune their opto-electronic properties by incorporating different building blocks. A wide range of factors has been investigated and in particular nano-sized particles have found to be highly efficient due to the size effect resulting from the ability of these to increase the number of charges reaching catalytic sites.
Collapse
Affiliation(s)
- Catherine M Aitchison
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK.
| |
Collapse
|
42
|
Takahashi Y, Ishida K, Matsuno S, Kurokawa M, Shimada T, Harada J, Inabe T. Charge injection phenomena at the contact interface between (5,10,15,20-tetramethylporphyrinato)cobalt( ii) and 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane single crystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer phenomena occurring at the contact interface of heterogeneous organic crystals are investigated. About 10% more charge was injected into the crystal interface by the contact, which largely increased the surface conductivity.
Collapse
Affiliation(s)
- Yukihiro Takahashi
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| | - Kenshiro Ishida
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Sarasa Matsuno
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Masashi Kurokawa
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Takuro Shimada
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Jun Harada
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| | - Tamotsu Inabe
- Department of Chemistry
- Faculty of Science
- Hokkaido University and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-0810
| |
Collapse
|
43
|
de Sousa LE, de Paiva LSR, da Silva Filho DA, Sini G, de Oliveira Neto PH. Assessing the effects of increasing conjugation length on exciton diffusion: from small molecules to the polymeric limit. Phys Chem Chem Phys 2021; 23:15635-15644. [PMID: 34268543 DOI: 10.1039/d1cp01263k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic solar cells (OSC) generally contain long-chain π-conjugated polymers as donor materials, but, more recently, small-molecule donors have also attracted considerable attention. The nature of these compounds is of crucial importance concerning the various processes that determine device performance, among which singlet exciton diffusion is one of the most relevant. The efficiency of the diffusion mechanism depends on several aspects, from system morphology to electronic structure properties, which vary importantly with molecular size. In this work, we investigated the effects of conjugation length on the exciton diffusion length through electronic structure calculations and an exciton diffusion model. By applying extrapolation procedures to thiophene and phenylene vinylene oligomer series, we investigate their electronic and optical properties from the small-molecule point of view to the polymeric limit. Several properties are calculated as a function of oligomer size, including transition energies, absorption and emission spectra, reorganization energies, exciton coupling and Förster radii. Finally, an exciton diffusion model is used to estimate diffusion lengths as a function of oligomer size and for the polymeric limit showing agreement with experimental data. Results also show that longer conjugation lengths correlate with longer exciton diffusion lengths in spite of also being associated with shorter exciton lifetimes.
Collapse
Affiliation(s)
- Leonardo Evaristo de Sousa
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
| | | | - Demétrio Antônio da Silva Filho
- Institute of Physics, University of Brasilia, 70919-970, Brasilia, Brazil. and Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France and Institute for Advanced Studies, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Gjergji Sini
- Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | | |
Collapse
|
44
|
Jewłoszewicz B, Bogdanowicz KA, Przybył W, Dysz K, Dylong A, Gonciarz A, Pich R, Mech W, Korona KP, Kamińska M, Zarębska K, Skompska M, Kaim A, Ciesielski A, Iwan A. A comprehensive optical and electrical study of unsymmetrical imine with four thiophene rings and their binary and ternary compositions with PTB7 and PC 70BM towards organic photovoltaics. RSC Adv 2020; 10:44958-44972. [PMID: 35516284 PMCID: PMC9058665 DOI: 10.1039/d0ra08330e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
A new unsymmetrical imine with four thiophene rings was synthesized in a one-step reaction, starting from the commercially available and relatively inexpensive reagents. The obtained imine in the form of thin films exhibited photoluminescence properties in the 1.8-2.4 eV energy range and a photoluminescence lifetime of about 0.3 ns. The HOMO and LUMO levels of the imine determined by cyclic voltammetry were at about -5.19 eV and -3.05 eV, respectively. The density functional theory was applied to calculate the geometric and electronic structure of the imine. The UV-Vis spectra showed that the absorption range of the imine overlaps with that of PC70BM, and the absorption peak at the maximum of the imine at 424 nm is located between the two maxima at 404 nm and 461 nm of the fullerene derivative. The electron acceptor and donor activity of the imine was tested in the solar cell architecture: glass/ITO/PEDOT:PSS/active layer/In/Al. The best photovoltaic parameters, with very good reproducibility for each 8 pixels in the cell, were found for the active layer based on ternary mixture PTB7:PC70BM:imine at a weight ratio 8 : 13 : 1, with the power conversion efficiency of about 4%. The external quantum efficiency of devices with the imine was found to be about 40% at 3.3 eV. The thermal imaging together with the recorded current response at increasing potential showed that the presence of imine in the composition has a beneficial impact in terms of current flow stability at temperatures above 200 °C, compared to two component layers with the same imine as an additive.
Collapse
Affiliation(s)
- Beata Jewłoszewicz
- Military Institute of Engineer Technology Obornicka 136 Str. 50-961 Wroclaw Poland
| | | | - Wojciech Przybył
- Military Institute of Engineer Technology Obornicka 136 Str. 50-961 Wroclaw Poland
| | - Karolina Dysz
- Military Institute of Engineer Technology Obornicka 136 Str. 50-961 Wroclaw Poland
| | - Agnieszka Dylong
- Military Institute of Engineer Technology Obornicka 136 Str. 50-961 Wroclaw Poland
| | - Agnieszka Gonciarz
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces Czajkowskiego 109 Str. 51-147 Wroclaw Poland
| | - Robert Pich
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces Czajkowskiego 109 Str. 51-147 Wroclaw Poland
| | - Wojciech Mech
- Faculty of Physics, University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Krzysztof P Korona
- Faculty of Physics, University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Maria Kamińska
- Faculty of Physics, University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Kamila Zarębska
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Magdalena Skompska
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Andrzej Kaim
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Agnieszka Iwan
- Military Institute of Engineer Technology Obornicka 136 Str. 50-961 Wroclaw Poland
| |
Collapse
|
45
|
Zheng B, Huo L. Recent advances of dithienobenzodithiophene-based organic semiconductors for organic electronics. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9876-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Saito M, Tamai Y, Ichikawa H, Yoshida H, Yokoyama D, Ohkita H, Osaka I. Significantly Sensitized Ternary Blend Polymer Solar Cells with a Very Small Content of the Narrow-Band Gap Third Component That Utilizes Optical Interference. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yasunari Tamai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Hiroyuki Ichikawa
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
| | - Hiroyuki Yoshida
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
| | - Daisuke Yokoyama
- Department of Organic Materials Science and Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
47
|
Ha JW, Song CE, Kim HS, Ryu DH, Shin WS, Hwang DH. Highly Efficient and Photostable Ternary Organic Solar Cells Enabled by the Combination of Non-Fullerene and Fullerene Acceptors with Thienopyrrolodione-based Polymer Donors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51699-51708. [PMID: 33140971 DOI: 10.1021/acsami.0c14367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two polymer donors, PFBDT-8ttTPD and PClBDT-8ttTPD, consisting of halogenated thiophene-substituted benzo[1,2-b:4,5-b']dithiophene and alkyl-substituted thieno[3,2-b]thiophene linked thieno[3,4-c]pyrrole-4,6(5H)-dione, were designed and synthesized for the evaluation of photovoltaic performances. The fabricated IT-4F-based organic solar cells (OSCs) exhibited maximum power conversion efficiency (PCE) values of 12.81 and 11.12% for PFBDT-8ttTPD and PClBDT-8ttTPD, respectively. Furthermore, PFBDT-8ttTPD:Y6 showed significantly improved PCE (15.05%) due to the extended light harvesting in the broad solar spectrum, whereas the PClBDT-8ttTPD:Y6 displayed relatively low PCE (10.02%). A ternary system incorporating PC71BM as the third component into bulk-heterojuction composites (PFBDT-8ttPTD:non-fullerene) was investigated with the aim of utilizing the advantages of PC71BM. As a result, PFBDT-8ttTPD:IT-4F:PC71BM exhibited an improved PCE (13.67%) compared to that of the corresponding binary OSC. In particular, ternary OSC of PFBDT-8ttTPD:Y6:PC71BM showed outstanding photovoltaic performance (PCE = 16.43%) as well as photostability, retaining approximately 80% of the initial PCE after 500 h under continuous illumination. The introduction of a small amount of PC71BM resulted in favorable and dense molecular packing with improved crystallinity as well as enhanced charge carrier mobility for efficient OSC.
Collapse
Affiliation(s)
- Jong-Woon Ha
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Chang Eun Song
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Hee Su Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeon Ryu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Won Suk Shin
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
48
|
Preparation and Characterization of Quinoxaline-Pyrene-Based Conjugated Copolymers for Organic Photovoltaic Devices. COATINGS 2020. [DOI: 10.3390/coatings10111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, two novel conjugated polymers, poly(4,5,9,10-tetrakis((2-ethylhexyl)oxy]pyrene-alt-2,3-bis(3-(octyloxy)phenyl)-5,8-di(2-thienyl)-6,7-difluoroquinoxaline) (PPyQxff) and poly(4,5,9,10-tetrakis((2-ethylhexyl)oxy)pyren-alt-2,3-bis(3-(octyloxy)phenyl)-5,8-di(2-thienyl)quinoxaline) (PPyQx), consisting of quinoxaline units with and without fluorine substituents, as electron-accepting moieties and pyrene flanked with dithienyl units as electron-donating moieties were prepared via Stille polymerization reactions for use as electron donor materials in bulk heterojunction (BHJ) solar cells. PPyQxff and PPyQx were characterized by X-ray powder diffraction (XRD), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), cyclic voltammetry (CV), UV−VIS absorption, and nuclear magnetic resonance (NMR) spectroscopy. PPyQxff and PPyQx revealed excellent solution processability in common organic solvents. PPyQxff and PPyQx presented decomposition temperatures above 300 °C. The inclusion of F atoms to the quinoxaline moiety made a slight reduction in the highest occupied molecular orbital (HOMO) level, relative to the unfluorinated polymer, but had no impact on the lowest unoccupied molecular orbital (LUMO) level. PPyQxff and PPyQx exhibited similar physical properties with strong and broad absorbance from 400 to 700 nm and an optical band-gap energy of 1.77 eV. The X-ray powder diffraction study indicated that PPyQxff possessed a reduced π–π stacking distance relative to PPyQx.
Collapse
|
49
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Brunner PLM, Beaudoin D, Heskia A, Maris T, Dubois MA, Wuest JD. Low-bandgap push–pull molecules in polymer matrices for use in thin-film organic photovoltaic devices. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conjugated polymers are widely used in thin-film organic photovoltaic devices to absorb light and serve as electron donors or acceptors. Small molecular analogues are attractive substitutes because they have fully defined structures, can be purified rigorously, and are typically more soluble and volatile. However, producing active films composed primarily of small molecules remains challenging. We have devised bulk heterojunction solar cells in which poly(3-hexylthiophene-2,5-diyl) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] are used as matrices to prepare films containing low-bandgap push–pull molecules as electron donors and (6,6)-phenyl-C61-butyric acid methyl ester or (6,6)-phenyl-C71-butyric acid methyl ester as electron acceptors. Compared with reference devices devoid of push–pull molecular additives, increases in power conversion efficiencies up to 30.4% were measured.
Collapse
Affiliation(s)
- Pierre-Louis M. Brunner
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Daniel Beaudoin
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Alice Heskia
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marc-André Dubois
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James D. Wuest
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|