1
|
Cuttaz EA, Bailey ZK, Chapman CAR, Goding JA, Green RA. Polymer Bioelectronics: A Solution for Both Stimulating and Recording Electrodes. Adv Healthc Mater 2024; 13:e2304447. [PMID: 38775757 DOI: 10.1002/adhm.202304447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The advent of closed-loop bionics has created a demand for electrode materials that are ideal for both stimulating and recording applications. The growing complexity and diminishing size of implantable devices for neural interfaces have moved beyond what can be achieved with conventional metallic electrode materials. Polymeric electrode materials are a recent development based on polymer composites of organic conductors such as conductive polymers. These materials present exciting new opportunities in the design and fabrication of next-generation electrode arrays which can overcome the electrochemical and mechanical limitations of conventional electrode materials. This review will examine the recent developments in polymeric electrode materials, their application as stimulating and recording electrodes in bionic devices, and their impact on the development of soft, conformal, and high-density neural interfaces.
Collapse
Affiliation(s)
- Estelle A Cuttaz
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Zachary K Bailey
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Christopher A R Chapman
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Josef A Goding
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK
| |
Collapse
|
2
|
Ryu J, Qiang Y, Chen L, Li G, Han X, Woon E, Bai T, Qi Y, Zhang S, Liou JY, Seo KJ, Feng B, Fang H. Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403141. [PMID: 39011796 PMCID: PMC11410539 DOI: 10.1002/adma.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.
Collapse
Affiliation(s)
- Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xun Han
- Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, China
| | - Eric Woon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jyun-You Liou
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Science Corporation, 300 Wind River Way, Alameda, CA, 94501, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
4
|
Lysak A, Farnebo S, Geuna S, Dahlin LB. Muscle preservation in proximal nerve injuries: a current update. J Hand Surg Eur Vol 2024; 49:773-782. [PMID: 38819009 DOI: 10.1177/17531934231216646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.
Collapse
Affiliation(s)
- Andrii Lysak
- Institute of Traumatology and Orthopedics of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Lars B Dahlin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
5
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
6
|
Jiao Y, Lei M, Zhu J, Chang R, Qu X. Advances in electrode interface materials and modification technologies for brain-computer interfaces. BIOMATERIALS TRANSLATIONAL 2023; 4:213-233. [PMID: 38282708 PMCID: PMC10817795 DOI: 10.12336/biomatertransl.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.
Collapse
Affiliation(s)
- Yunke Jiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jianwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang Province, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| |
Collapse
|
7
|
Chen Y, Ma B, Chen G, Zhang J, Feng D, Tian W, Zhang T, Zhao C, Rong F, Liu H. Breakup-Free and Colorful Liquid Metal Thin Films via Electrochemical Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874892 DOI: 10.1021/acsami.3c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Thin-film metal conductors featuring high conductivity and stretchability are basic building blocks for high-performance conformable electronics. Gallium-based liquid metals are attractive candidates for thin-film conductors due to their intrinsic stretchability and ease of processing. Moreover, the phase change nature of liquid metal provides an opportunity to create conformal electronics in a substrate-free manner. However, thin liquid metal films tend to break during the solid-to-liquid transition due to the high surface tension of liquid metal. Here, we created breakup-free liquid metal thin films by the electrochemical oxidation of solid gallium films. We show that electrochemical oxidation can enhance the mechanical strength of the gallium oxide layer and its interfacial adhesion to the gallium core. When heated to the liquid state, the oxidized gallium films can maintain their structural integrity on various solid substrates, hydrogels, and even the water surface. The solid-liquid phase change-induced stiffness decrease allowed the gallium films to be conformably attached to various nonplanar surfaces upon heating or water transfer printing. Moreover, we also found that enhanced electrochemical oxidation can result in the formation of structure color due to nanoporous structures on the film surface. We also demonstrate the applications of oxidized liquid metal films in functional electronics, electrophysiological monitoring, and tattoo art.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dezhi Feng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Tian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Taiming Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fei Rong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Fallegger F, Trouillet A, Coen FV, Schiavone G, Lacour SP. A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces. APL Bioeng 2023; 7:036109. [PMID: 37600068 PMCID: PMC10439817 DOI: 10.1063/5.0152509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Interfacing the human body with the next generation of electronics requires technological advancement in designing and producing bioelectronic circuits. These circuits must integrate electrical functionality while simultaneously addressing limitations in mechanical compliance and dynamics, biocompatibility, and consistent, scalable manufacturing. The combination of mechanically disparate materials ranging from elastomers to inorganic crystalline semiconductors calls for modular designs with reliable and scalable electromechanical connectors. Here, we report on a novel interconnection solution for soft-to-flexible bioelectronic interfaces using a patterned and machined flexible printed circuit board, which we term FlexComb, interfaced with soft transducing systems. Using a simple assembly process, arrays of protruding "fingers" bearing individual electrical terminals are laser-machined on a standard flexible printed circuit board to create a comb-like structure, namely, the FlexComb. A matching pattern is also machined in the soft system to host and interlock electromechanically the FlexComb connections via a soft electrically conducting composite. We examine the electrical and electromechanical properties of the interconnection and demonstrate the versatility and scalability of the method through various customized submillimetric designs. In a pilot in vivo study, we validate the stability and compatibility of the FlexComb technology in a subdural electrocorticography system implanted for 6 months on the auditory cortex of a minipig. The FlexComb provides a reliable and simple technique to bond and connect soft transducing systems with flexible or rigid electronic boards, which should find many implementations in soft robotics and wearable and implantable bioelectronics.
Collapse
Affiliation(s)
- Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | | | - Stéphanie P. Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
9
|
Zhao Q, Zhu M, Tian G, Liang C, Liu Z, Huang J, Yu QY, Tang S, Chen J, Zhao X, Zeng Q, Guo C, Qi D. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv Healthc Mater 2023; 12:e2203344. [PMID: 36974567 DOI: 10.1002/adhm.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Flexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced. Micropyramid-nanowire composite structures are constructed to increase the effective surface area of PEA, achieving an exponential reduction in impedance compared with gold (Au) and flat polypyrrole electrodes. Moreover, for the first time, a suspended umbrella structure to enable PEA with omnidirectional stretchability of up to ≈20% is designed. The PEA can withstand 1000 cycles of mechanical loads without decrease in performance. As a proof of concept, PEA is conformally attached to a rat heart and tibialis anterior muscle, and electrophysiological signals (electrocardiogram and electromyogram) of the rat are successfully recorded. This strategy provides a new perspective toward highly sensitive and omnidirectionally stretchable PEA that can facilitate the practical application of neural electrodes.
Collapse
Affiliation(s)
- Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Ming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qianheng Yuan Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xizheng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Qi Zeng
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Chongshen Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Abstract
Advances in bioelectronic implants have been offering valuable chances to interface and modulate neural systems. Potential mismatches between bioelectronics and targeted neural tissues require devices to exhibit "tissue-like" properties for better implant-bio integration. In particular, mechanical mismatches pose a significant challenge. In the past years, efforts were made in both materials synthesis and device design to achieve bioelectronics mechanically and biochemically mimicking biological tissues. In this perspective, we mainly summarized recent progress of developing "tissue-like" bioelectronics and categorized them into different strategies. We also discussed how these "tissue-like" bioelectronics were utilized for modulating in vivo nervous systems and neural organoids. We concluded the perspective by proposing further directions including personalized bioelectronics, novel materials design and the involvement of artificial intelligence and robotic techniques.
Collapse
Affiliation(s)
- Changxu Sun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhe Cheng
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jj Abu-Halimah
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Yu M, Wang C, Cui H, Huang J, Yu Q, Wang P, Huang C, Li G, Zhao Y, Du X, Liu Z. Self-Closing Stretchable Cuff Electrodes for Peripheral Nerve Stimulation and Electromyographic Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7663-7672. [PMID: 36734973 DOI: 10.1021/acsami.2c15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The cuff electrode can be wrapped in the columnar or tubular biological tissue for physiological signal detection or stimulation regulation. The reliable and non-excessive interfaces between the electrode and complex tissue are critical. Here, we propose a self-closing stretchable cuff electrode, which is able to self-close onto the bundles of tissues after dropping water. The curliness is realized by the mechanical stress mismatch between different layers of the elastic substrate. The material of the substrate can be selected to match the modulus of the target tissue to achieve minimal constraint on the tissue. Moreover, the self-closing structure keeps the cuff electrode free from any extra mechanical locking structure. For in vivo testing, both sciatic nerve stimulation to drive muscles and electromyographic signal monitoring around a rat's extensor digitorum longus for 1 month prove that our proposed electrode conforms well to the curved surface of biological tissue.
Collapse
Affiliation(s)
- Mei Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changxian Wang
- School of Mechanics and Construction Engineering, Jinan University, 601 Huangpu Road West, Guangzhou 510632, China
| | - Huanqing Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jianping Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qianhengyuan Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Chao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xuemin Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
12
|
Shan Y, Cui X, Chen X, Li Z. Recent progress of electroactive interface in neural engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e01827. [PMID: 35715994 DOI: 10.1002/wnan.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023]
Abstract
Neural tissue is an electrical responsible organ. The electricity plays a vital role in the growth and development of nerve tissue, as well as the repairing after diseases. The interface between the nervous system and external device for information transmission is called neural electroactive interface. With the development of new materials and fabrication technologies, more and more new types of neural interfaces are developed and the interfaces can play crucial roles in treating many debilitating diseases such as paralysis, blindness, deafness, epilepsy, and Parkinson's disease. Neural interfaces are developing toward flexibility, miniaturization, biocompatibility, and multifunctionality. This review presents the development of neural electrodes in terms of different materials for constructing electroactive neural interfaces, especially focus on the piezoelectric materials-based indirect neuromodulation due to their features of wireless control, excellent effect, and good biocompatibility. We discussed the challenges we need to consider before the application of these new interfaces in clinical practice. The perspectives about future directions for developing more practical electroactive interface in neural engineering are also discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China.,Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Dong M, Coleman HA, Tonta MA, Xiong Z, Li D, Thomas S, Liu M, Fallon JB, Parkington HC, Forsythe JS. Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. NANOSCALE 2022; 14:15845-15858. [PMID: 36259692 DOI: 10.1039/d2nr04421h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.
Collapse
Affiliation(s)
- Miheng Dong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Dan Li
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Sebastian Thomas
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Minsu Liu
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 250000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria 3002, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
14
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
15
|
Jiang Y, Zhang Z, Wang YX, Li D, Coen CT, Hwaun E, Chen G, Wu HC, Zhong D, Niu S, Wang W, Saberi A, Lai JC, Wu Y, Wang Y, Trotsyuk AA, Loh KY, Shih CC, Xu W, Liang K, Zhang K, Bai Y, Gurusankar G, Hu W, Jia W, Cheng Z, Dauskardt RH, Gurtner GC, Tok JBH, Deisseroth K, Soltesz I, Bao Z. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022; 375:1411-1417. [PMID: 35324282 DOI: 10.1126/science.abj7564] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. A remaining challenge is to combine high mechanical robustness with good electrical conduction, especially when patterned at small feature sizes. We develop a molecular engineering strategy based on a topological supramolecular network, which allows for the decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We obtained simultaneously high conductivity and crack-onset strain in a physiological environment, with direct photopatternability down to the cellular scale. We further collected stable electromyography signals on soft and malleable octopus and performed localized neuromodulation down to single-nucleus precision for controlling organ-specific activities through the delicate brainstem.
Collapse
Affiliation(s)
- Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhitao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yi-Xuan Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Deling Li
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA 94305, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | | | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gan Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hung-Chin Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aref Saberi
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Artem A Trotsyuk
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Kang Yong Loh
- Department of Chemistry, Stanford Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Chien-Chung Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Wenhui Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kui Liang
- BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China
| | - Kailiang Zhang
- BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China
| | - Yihong Bai
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | | | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA 94305, USA
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Liang C, Liu Y, Lu W, Tian G, Zhao Q, Yang D, Sun J, Qi D. Strategies for interface issues and challenges of neural electrodes. NANOSCALE 2022; 14:3346-3366. [PMID: 35179152 DOI: 10.1039/d1nr07226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural electrodes, as a bridge for bidirectional communication between the body and external devices, are crucial means for detecting and controlling nerve activity. The electrodes play a vital role in monitoring the state of neural systems or influencing it to treat disease or restore functions. To achieve high-resolution, safe and long-term stable nerve recording and stimulation, a neural electrode with excellent electrochemical performance (e.g., impedance, charge storage capacity, charge injection limit), and good biocompatibility and stability is required. Here, the charge transfer process in the tissues, the electrode-tissue interfaces and the electrode materials are discussed respectively. Subsequently, the latest research methods and strategies for improving the electrochemical performance and biocompatibility of neural electrodes are reviewed. Finally, the challenges in the development of neural electrodes are proposed. It is expected that the development of neural electrodes will offer new opportunities for the evolution of neural prosthesis, bioelectronic medicine, brain science, and so on.
Collapse
Affiliation(s)
- Cuiyuan Liang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Yan Liu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gongwei Tian
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Qinyi Zhao
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dan Yang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jing Sun
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dianpeng Qi
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
17
|
Cuttaz EA, Chapman CAR, Goding JA, Vallejo-Giraldo C, Syed O, Green RA. Flexible Nanowire Conductive Elastomers for Applications in Fully Polymeric Bioelectronic Devices . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5872-5875. [PMID: 34892455 DOI: 10.1109/embc46164.2021.9629903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft, flexible polymer-based bioelectronics are a promising approach to minimize the chronic inflammatory reactions associated with metallic devices, impairing long-term device reliability and functionality. This work demonstrates the fabrication of conductive elastomers (CEs) consisting of chemically synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires embedded within a polyurethane (PU) elastomeric matrix, resulting in soft and flexible, fully polymeric electrode materials. Increasing PEDOT nanowire loadings resulted in an improvement in electrochemical properties and conductivity, an increased Young's modulus and reduced strain at failure. Nanowire CEs were also found to have significantly improved electrochemical performance compared to one of the standard electrode materials, platinum (Pt). Indirect in vitro cytocompatibility test was carried out to investigate the effect of leachable substances from the CE on primary rodent cells. Nanowire CEs provide a promising alternative to metals for the fabrication of soft bioelectronics.
Collapse
|
18
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
19
|
Gori M, Vadalà G, Giannitelli SM, Denaro V, Di Pino G. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Front Bioeng Biotechnol 2021; 9:659033. [PMID: 34113605 PMCID: PMC8185207 DOI: 10.3389/fbioe.2021.659033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neural-interfaced prostheses aim to restore sensorimotor limb functions in amputees. They rely on bidirectional neural interfaces, which represent the communication bridge between nervous system and neuroprosthetic device by controlling its movements and evoking sensory feedback. Compared to extraneural electrodes (i.e., epineural and perineural implants), intraneural electrodes, implanted within peripheral nerves, have higher selectivity and specificity of neural signal recording and nerve stimulation. However, being implanted in the nerve, their main limitation is represented by the significant inflammatory response that the body mounts around the probe, known as Foreign Body Reaction (FBR), which may hinder their rapid clinical translation. Furthermore, the mechanical mismatch between the consistency of the device and the surrounding neural tissue may contribute to exacerbate the inflammatory state. The FBR is a non-specific reaction of the host immune system to a foreign material. It is characterized by an early inflammatory phase eventually leading to the formation of a fibrotic capsule around intraneural interfaces, which increases the electrical impedance over time and reduces the chronic interface biocompatibility and functionality. Thus, the future in the reduction and control of the FBR relies on innovative biomedical strategies for the fabrication of next-generation neural interfaces, such as the development of more suitable designs of the device with smaller size, appropriate stiffness and novel conductive and biomimetic coatings for improving their long-term stability and performance. Here, we present and critically discuss the latest biomedical approaches from material chemistry and tissue engineering for controlling and mitigating the FBR in chronic neural implants.
Collapse
Affiliation(s)
- Manuele Gori
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sara Maria Giannitelli
- Laboratory of Tissue Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Denaro
- Laboratory for Regenerative Orthopaedics, Department of Orthopaedic Surgery and Traumatology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
20
|
Cuttaz EA, Chapman CAR, Syed O, Goding JA, Green RA. Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004033. [PMID: 33898185 PMCID: PMC8061359 DOI: 10.1002/advs.202004033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Indexed: 05/08/2023]
Abstract
There is a critical need to transition research level flexible polymer bioelectronics toward the clinic by demonstrating both reliability in fabrication and stable device performance. Conductive elastomers (CEs) are composites of conductive polymers in elastomeric matrices that provide both flexibility and enhanced electrochemical properties compared to conventional metallic electrodes. This work focuses on the development of nerve cuff devices and the assessment of the device functionality at each development stage, from CE material to fully polymeric electrode arrays. Two device types are fabricated by laser machining of a thick and thin CE sheet variant on an insulative polydimethylsiloxane substrate and lamination into tubing to produce pre-curled cuffs. Device performance and stability following sterilization and mechanical loading are compared to a state-of-the-art stretchable metallic nerve cuff. The CE cuffs are found to be electrically and mechanically stable with improved charge transfer properties compared to the commercial cuff. All devices are applied to an ex vivo whole sciatic nerve and shown to be functional, with the CE cuffs demonstrating superior charge transfer and electrochemical safety in the biological environment.
Collapse
Affiliation(s)
- Estelle A. Cuttaz
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | | | - Omaer Syed
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Josef A. Goding
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Rylie A. Green
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| |
Collapse
|
21
|
Star-hyperbranched waterborne polyurethane based on D-glucose-poly(ε-caprolactone) core as a biomaterial candidate. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
23
|
Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable Electronics Based on PDMS Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003155. [PMID: 32830370 DOI: 10.1002/adma.202003155] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Indexed: 05/27/2023]
Abstract
Stretchable electronics, which can retain their functions under stretching, have attracted great interest in recent decades. Elastic substrates, which bear the applied strain and regulate the strain distribution in circuits, are indispensable components in stretchable electronics. Moreover, the self-healing property of the substrate is a premise to endow stretchable electronics with the same characteristics, so the device may recover from failure resulting from large and frequent deformations. Therefore, the properties of the elastic substrate are crucial to the overall performance of stretchable devices. Poly(dimethylsiloxane) (PDMS) is widely used as the substrate material for stretchable electronics, not only because of its advantages, which include stable chemical properties, good thermal stability, transparency, and biological compatibility, but also because of its capability of attaining designer functionalities via surface modification and bulk property tailoring. Herein, the strategies for fabricating stretchable electronics on PDMS substrates are summarized, and the influence of the physical and chemical properties of PDMS, including surface chemical status, physical modulus, geometric structures, and self-healing properties, on the performance of stretchable electronics is discussed. Finally, the challenges and future opportunities of stretchable electronics based on PDMS substrates are considered.
Collapse
Affiliation(s)
- Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
24
|
Schiavone G, Kang X, Fallegger F, Gandar J, Courtine G, Lacour SP. Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation. Neuron 2020; 108:238-258. [PMID: 33120021 DOI: 10.1016/j.neuron.2020.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Electrical stimulation of nervous structures is a widely used experimental and clinical method to probe neural circuits, perform diagnostics, or treat neurological disorders. The recent introduction of soft materials to design electrodes that conform to and mimic neural tissue led to neural interfaces with improved functionality and biointegration. The shift from stiff to soft electrode materials requires adaptation of the models and characterization methods to understand and predict electrode performance. This guideline aims at providing (1) an overview of the most common techniques to test soft electrodes in vitro and in vivo; (2) a step-by-step design of a complete study protocol, from the lab bench to in vivo experiments; (3) a case study illustrating the characterization of soft spinal electrodes in rodents; and (4) examples of how interpreting characterization data can inform experimental decisions. Comprehensive characterization is paramount to advancing soft neurotechnology that meets the requisites for long-term functionality in vivo.
Collapse
Affiliation(s)
- Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Xiaoyang Kang
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jérôme Gandar
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland.
| |
Collapse
|
25
|
He L, Xiao Q, Zhao Y, Li J, Reddy S, Shi X, Su X, Chiu K, Ramakrishna S. Engineering an Injectable Electroactive Nanohybrid Hydrogel for Boosting Peripheral Nerve Growth and Myelination in Combination with Electrical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53150-53163. [PMID: 33179500 DOI: 10.1021/acsami.0c16885] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical stimulation (ES) can be used to manipulate recovery after peripheral nerve injuries. Although biomaterial-based strategies have already been implemented to gain momentum for ES and engineer permissive microenvironments for neural regeneration, the development of biomaterials for specific stimuli-responsive modulation of neural cell properties remains a challenge. Herein, we homogeneously incorporate pristine carbon nanotubes into a functional self-assembling peptide to prepare a hybrid hydrogel with good injectability and conductivity. Two-dimensional (on the surface) and three-dimensional (within the hybrid hydrogel) culturing experiments demonstrate that ES promotes axon outgrowth and Schwann cell (SC) migration away from dorsal root ganglia spheres, further revealing that ES-enhanced interactions between SCs and axons result in improved myelination. Thus, our study not only advances the development of tailor-made materials but also provides useful insights into comprehensive approaches for promoting nerve growth and presents a practical strategy of repairing peripheral nerve injuries.
Collapse
Affiliation(s)
- Liumin He
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yuyuan Zhao
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Sathish Reddy
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xueshuang Shi
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xin Su
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kin Chiu
- Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hongkong, China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
26
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
27
|
Kuhn B, Picollo F, Carabelli V, Rispoli G. Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes. Pflugers Arch 2020; 473:15-36. [PMID: 33047171 PMCID: PMC7782438 DOI: 10.1007/s00424-020-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/03/2022]
Abstract
To understand the working principles of the nervous system is key to figure out its electrical activity and how this activity spreads along the neuronal network. It is therefore crucial to develop advanced techniques aimed to record in real time the electrical activity, from compartments of single neurons to populations of neurons, to understand how higher functions emerge from coordinated activity. To record from single neurons, a technique will be presented to fabricate patch pipettes able to seal on any membrane with a single glass type and whose shanks can be widened as desired. This dramatically reduces access resistance during whole-cell recording allowing fast intracellular and, if required, extracellular perfusion. To simultaneously record from many neurons, biocompatible probes will be described employing multi-electrodes made with novel technologies, based on diamond substrates. These probes also allow to synchronously record exocytosis and neuronal excitability and to stimulate neurons. Finally, to achieve even higher spatial resolution, it will be shown how voltage imaging, employing fast voltage-sensitive dyes and two-photon microscopy, is able to sample voltage oscillations in the brain spatially resolved and voltage changes in dendrites of single neurons at millisecond and micrometre resolution in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Optical Neuroimaging Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125, Torino, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Giorgio Rispoli
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
28
|
Shi W, Han G, Chang Y, Song H, Hou W, Chen Q. Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute Motion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45373-45382. [PMID: 32926611 DOI: 10.1021/acsami.0c14503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the rapid development of flexible and wearable electronic devices, research on high-sensitivity strain sensors has been attracting much attention. Here, glutaraldehyde is used as a cross-linking reagent to precross-link poly(vinyl alcohol); then FeCl3·6H2O is added into the precross-linked poly(vinyl alcohol) to obtain composite films of FeCl3@PVA after gelatinization and freeze drying. Elastic conductive films of polypyrrole@poly(vinyl alcohol) (PPy@PVA) are prepared by immersing FeCl3@PVA into a solution of pyrrole in acetonitrile and water to complete the polymerization in situ. The effects of the concentrations of glutaraldehyde and FeCl3·6H2O on the film's structure and properties have been studied in detail; the results show that the strain sensor prepared from the optimized film has excellent stretchability (strain up to 309.5%), mechanical property (tensile strength of 32.8 MPa), and relatively high sensitivity (gauge factor can reach 5.07 under 1.0% strain). It can be used to detect various tiny physiological signals, for example, detecting the number of pulse beats, bending of the knuckles at different frequencies, and recognizing the pronunciation of different words by vocal cord vibration. These good properties mean that this kind of PPy@PVA strain sensor has great application prospects in physiological monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, BIT, Beijing 100081, P. R. China
| |
Collapse
|
29
|
McAvoy M, Doloff JC, Khan OF, Rosen J, Langer R, Anderson DG. Vascularized Muscle Flap to Reduce Wound Breakdown During Flexible Electrode-Mediated Functional Electrical Stimulation After Peripheral Nerve Injury. Front Neurol 2020; 11:644. [PMID: 32793094 PMCID: PMC7385241 DOI: 10.3389/fneur.2020.00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022] Open
Abstract
The success of devices delivering functional electrical stimulation (FES) has been hindered by complications related to implants including skin breakdown and subsequent wound dehiscence. Our hypothesis was that a vascularized muscle flap along the dorsal surface of an epimysial electrode would prevent skin breakdown during FES therapy to treat atrophy of the gastrocnemius muscle during peripheral nerve injury. Resection of a tibial nerve segment with subsequent electrode implantation on the dorsal surfaces of the gastrocnemius muscle was performed on ten Lewis rats. In five rats, the biceps femoris (BF) muscle was dissected and placed along the dorsal surface of the electrode (Flap group). The other five animals did not undergo flap placement (No Flap group). All animals were treated with daily FES therapy for 2 weeks and degree of immune response and skin breakdown were evaluated. The postoperative course of one animal in the No Flap group was complicated by complete wound dehiscence requiring euthanasia of the animal on postoperative day 4. The remaining 4 No Flap animals showed evidence of ulceration at the implant by postoperative day 7. The 5 animals in the Flap group did not have ulcerative lesions. Excised tissue at postoperative day 14 examined by histology and in vivo Imaging System (IVIS) showed decreased implant-induced inflammation in the Flap group. Expression of specific markers for local foreign body response were also decreased in the Flap group.
Collapse
Affiliation(s)
- Malia McAvoy
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA, United States
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Materials Science and Engineering, Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Omar F Khan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Joseph Rosen
- Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Lebanon, NH, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Das R, Moradi F, Heidari H. Biointegrated and Wirelessly Powered Implantable Brain Devices: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:343-358. [PMID: 31944987 DOI: 10.1109/tbcas.2020.2966920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
31
|
Guo L. Perspectives on electrical neural recording: a revisit to the fundamental concepts. J Neural Eng 2020; 17:013001. [PMID: 31986493 DOI: 10.1088/1741-2552/ab702f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This paper aims to promote understanding on the fundamental concepts and mechanisms of extracellular electrical neural recording. APPROACH First, the electrode-electrolyte interface is reviewed to clarify some of the frequent misunderstandings. Second, analytical solutions to the extracellular field potential and recorded signal are derived based on equivalent electrical circuit models, using a planar substrate microelectrode as a particular example. And third, factors affecting the recording quality are thoroughly assessed. MAIN RESULTS Passive neural recording electrodes function as a pure capacitor. The extracellular field potential has two phases, with its subthreshold depolarization phase proportional to the first time derivative of the membrane depolarization and its action potential phase proportional to the negative first time derivative of the intracellular action potential. The recorded signal represents a portion of the extracellular field potential with both amplitude attenuation and phase distortion according to a voltage-divider circuit formed between the recording electrode and amplifier. A larger cell, a larger cell-substrate junctional membrane area, and a tighter membrane-substrate seal all help to improve the recording quality, while the effective electrode impedance should be minimized and the effective amplifier's input impedance maximized. SIGNIFICANCE This paper develops in-depth insights to offer a clear image on the recording mechanism, nature of the signal, and interplays between key interface parameters. This work will make a foundational contribution to the field by providing such an in-depth understanding on this topic to clear the widespread ambiguities and confusions and inform rational neural electrode designs and proper interpretations of neural recordings.
Collapse
Affiliation(s)
- Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States of America. Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
32
|
Yan B, Wang Y, Wu Y, Prox JD, Yang H, Guo L. Fast Electrochemical Netting of Composite Chains for Transferable Highly Conductive Polymeric Nanofilms. J Phys Chem B 2019; 123:8580-8589. [PMID: 31532678 DOI: 10.1021/acs.jpcb.9b07120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Broad applications of electropolymerized conducting polymers (CPs) often prefer thinner soft electrodes to comply with downscaling of the fabrication resolution. However, high conductivity of existing CP films vanishes as thickness decreases to the nanoscale (i.e., below 100 nm), with an unclear mechanism so far. In this study, with an unprecedented family of polypyrrole (PPy) nanofilms that can be easily transferred in a fast and contamination-free manner, we are able to trace the initial development of electrical conductance along with chains' arrangement starting from the very early electrochemical deposition. Our results evidence that the classical nodular polymeric aggregation fundamentally accounts for the persistent losses of interchain connectivity and macroscopic conductivity at a limited thickness. Surprisingly, this seemingly disadvantageous structure can be altered into a large conjugated network to robustly restore the conductivity back to over 80 S cm-1 even below 100 nm, while the controllable formation, growth, and collapse of such networks radically vary the conductivity over a range of 3 orders of magnitude (0.8-129 S cm-1). These observations depict the first physical picture detailing how the long-range conductivity builds up in a growing conjugated network, which opens a route to fast synthesis and diverse applications of such highly conductive CP nanofilms.
Collapse
|
33
|
McAvoy M, Tsosie JK, Vyas KN, Khan OF, Sadtler K, Langer R, Anderson DG. Flexible Multielectrode Array for Skeletal Muscle Conditioning, Acetylcholine Receptor Stabilization and Epimysial Recording After Critical Peripheral Nerve Injury. Am J Cancer Res 2019; 9:7099-7107. [PMID: 31660089 PMCID: PMC6815960 DOI: 10.7150/thno.35436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023] Open
Abstract
Complete re-innervation after a traumatic injury severing a muscle's peripheral nerve may take years. During this time, the denervated muscle atrophies and loses acetylcholine receptors, a vital component of the neuromuscular junction, limiting functional recovery. One common clinical treatment for atrophy is electrical stimulation; however, epimysial electrodes currently used are bulky and often fail due to an excessive inflammatory response. Additionally, there remains a need for a device providing in vivo monitoring of neuromuscular regeneration and the maintenance of acetylcholine receptors. Here, an implantable, flexible microelectrode array (MEA) was developed that provides surface neuromuscular stimulation and recording during long-term denervation. Methods: The MEA uses a flexible polyimide elastomer and an array of gold-based microelectrodes featuring Peano curve motifs, which together maintain electrode flexibility. The devices were implanted along the denervated gastrocnemius muscles of 5 rats. These rats underwent therapeutic stimulation using the MEA daily beginning on post-operative day 2. Another 5 rats underwent tibial nerve resection without implantation of MEA. Tissues were harvested on post-operative day 14 and evaluated for quantification of acetylcholine receptors and muscle fiber area using immunofluorescence and histological staining. Results: The Young's modulus was 1.67 GPa, which is comparable to native tendon and muscle. The devices successfully recorded electromyogram data when implanted in rats. When compared to untreated denervated muscles, MEA therapy attenuated atrophy by maintaining larger muscle fiber cross-sectional areas (p < 0.05). Furthermore, the acetylcholine receptor areas were markedly larger with MEA treatment (p < 0.05). Conclusions: This proof-of-concept work successfully demonstrates the ability to combine conformability, tensile strength-enhancing metal micropatterning, electrical stimulation and recording into a functional implant for both epimysial stimulation and recording.
Collapse
|
34
|
Liu Z, Wang H, Huang P, Huang J, Zhang Y, Wang Y, Yu M, Chen S, Qi D, Wang T, Jiang Y, Chen G, Hu G, Li W, Yu J, Luo Y, Loh XJ, Liedberg B, Li G, Chen X. Highly Stable and Stretchable Conductive Films through Thermal-Radiation-Assisted Metal Encapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901360. [PMID: 31282042 DOI: 10.1002/adma.201901360] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pingao Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianping Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yu Zhang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Mei Yu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Dianpeng Qi
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Geng Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guoyu Hu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiancan Yu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Bo Liedberg
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
35
|
Jung YH, Park B, Kim JU, Kim TI. Bioinspired Electronics for Artificial Sensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803637. [PMID: 30345558 DOI: 10.1002/adma.201803637] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
36
|
Decataldo F, Cramer T, Martelli D, Gualandi I, Korim WS, Yao ST, Tessarolo M, Murgia M, Scavetta E, Amici R, Fraboni B. Stretchable Low Impedance Electrodes for Bioelectronic Recording from Small Peripheral Nerves. Sci Rep 2019; 9:10598. [PMID: 31332219 PMCID: PMC6646361 DOI: 10.1038/s41598-019-46967-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Monitoring of bioelectric signals in peripheral sympathetic nerves of small animal models is crucial to gain understanding of how the autonomic nervous system controls specific body functions related to disease states. Advances in minimally-invasive electrodes for such recordings in chronic conditions rely on electrode materials that show low-impedance ionic/electronic interfaces and elastic mechanical properties compliant with the soft and fragile nerve strands. Here we report a highly stretchable low-impedance electrode realized by microcracked gold films as metallic conductors covered with stretchable conducting polymer composite to facilitate ion-to-electron exchange. The conducting polymer composite based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) obtains its adhesive, low-impedance properties by controlling thickness, plasticizer content and deposition conditions. Atomic Force Microscopy measurements under strain show that the optimized conducting polymer coating is compliant with the micro-crack mechanics of the underlying Au-layer, necessary to absorb the tensile deformation when the electrodes are stretched. We demonstrate functionality of the stretchable electrodes by performing high quality recordings of renal sympathetic nerve activity under chronic conditions in rats.
Collapse
Affiliation(s)
| | - Tobias Cramer
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences - Physiology, University of Bologna, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Mauro Murgia
- Instituto per lo Studio dei Materiali Nanostrutturati (ISMN), Centro Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, University of Bologna, Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Recent Progress on Graphene/Polyaniline Composites for High-performance Supercapacitors. MATERIALS 2019; 12:ma12091451. [PMID: 31060284 PMCID: PMC6540261 DOI: 10.3390/ma12091451] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
Electrode materials are crucial for the electrochemical performance of supercapacitors. In view of the high specific surface area, high conductivity of graphene nanosheets and the high pseudocapacitance of polyaniline (PANI), the combination of graphene with PANI has become a research hotspot. In this work, we summarize the recent advance on the synthesis of PANI and graphene/PANI composites, and their application in supercapacitors. The synthesis of PANI is the basis of preparing graphene/PANI composites, so we first introduce the synthesis methods of PANI. Then, the advances of two dimensional (2D) and three dimensional (3D) graphene/PANI composites are summarized according to the inherent feature of graphene. The 2D composites of pristine graphene and functionalized graphene with PANI are introduced separately; furthermore, the 3D composites are classified into three sections, including flexible graphene/PANI composites, graphene framework based composites, and printable graphene/PANI composites. At last, aiming at solving the current challenges of graphene/PANI composites, we put forward some strategies for preparing high performance graphene/PANI composite electrodes.
Collapse
|
38
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
39
|
Kim K, Park YG, Hyun BG, Choi M, Park JU. Recent Advances in Transparent Electronics with Stretchable Forms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804690. [PMID: 30556173 DOI: 10.1002/adma.201804690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Advances in materials science and the desire for next-generation electronics have driven the development of stretchable and transparent electronics in the past decade. Novel applications, such as smart contact lenses and wearable sensors, have been introduced with stretchable and transparent form factors, requiring a deeper and wider exploration of materials and fabrication processes. In this regard, many research efforts have been dedicated to the development of mechanically stretchable, optically transparent materials and devices. Recent advances in stretchable and transparent electronics are discussed herein, with special emphasis on the development of stretchable and transparent materials, including substrates and electrodes. Several representative examples of applications enabled by stretchable and transparent electronics are presented, including sensors, smart contact lenses, heaters, and neural interfaces. The current challenges and opportunities for each type of stretchable and transparent electronics are also discussed.
Collapse
Affiliation(s)
- Kukjoo Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byung Gwan Hyun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minjae Choi
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
40
|
Srinivasan S, Vyas K, McAvoy M, Calvaresi P, Khan OF, Langer R, Anderson DG, Herr H. Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Front Neurol 2019; 10:252. [PMID: 30967830 PMCID: PMC6438882 DOI: 10.3389/fneur.2019.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
Given the increasing use of regenerative free muscle flaps for various reconstructive procedures and neuroprosthetic applications, there is great interest and value in their enhanced regeneration, revascularization, and reinnervation for improved functional recovery. Here, we implant polyimide-based mircroelectrodes on free flap grafts and perform electrical stimulation for 6 weeks in a murine model. Using electrophysiological and histological assessments, we compare outcomes of stimulated grafts with unstimulated control grafts. We find delayed reinnervation and abnormal electromyographic (EMG) signals, with significantly more polyphasia, lower compound muscle action potentials and higher fatigability in stimulated animals. These metrics are suggestive of myopathy in the free flap grafts stimulated with the electrode. Additionally, active inflammatory processes and partial necrosis are observed in grafts stimulated with the implanted electrode. The results suggest that under this treatment protocol, implanted epimysial electrodes and electrical stimulation to deinnervated, and devascularized flaps during the early recovery phase may be detrimental to regeneration. Future work should determine the optimal implantation and stimulation window for accelerating free muscle graft regeneration.
Collapse
Affiliation(s)
- Shriya Srinivasan
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Malia McAvoy
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Calvaresi
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel G. Anderson
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hugh Herr
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
41
|
Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019; 48:1566-1595. [PMID: 30519703 DOI: 10.1039/c8cs00706c] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conductive and intrinsically stretchable electrodes are vital components of soft electronics such as stretchable transistors and circuits, sensors and actuators, light-emitting diode arrays, and energy harvesting devices. Many kinds of conducting nanomaterials with outstanding electrical and mechanical properties have been integrated with elastomers to produce stretchable conductive nanocomposites. Understanding the characteristics of these nanocomposites and assessing the feasibility of their fabrication are therefore critical for the development of high-performance stretchable conductors and electronic devices. We herein summarise the recent advances in stretchable conductors based on the percolation networks of nanoscale conductive fillers in elastomeric media. After discussing the material-, dimension-, and size-dependent properties of conductive fillers and their implications, we highlight various techniques that are used to reduce the contact resistance between the conductive filler materials. Furthermore, we categorize elastomer matrices with different stretchabilities and mechanical properties based on their polymeric chain structures. Then, we discuss the fabrication techniques of stretchable conductive nanocomposites toward their use in soft electronics. Finally, we provide representative examples of stretchable device applications and conclude the review with a brief outlook for future research.
Collapse
Affiliation(s)
- Suji Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Ecker M, Joshi-Imre A, Modi R, Frewin CL, Garcia-Sandoval A, Maeng J, Gutierrez-Heredia G, Pancrazio JJ, Voit WE. From softening polymers to multimaterial based bioelectronic devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/2399-7532/aaed58] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33049-33059. [PMID: 30208275 DOI: 10.1021/acsami.8b12083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biocompatible neural interfaces hold great promise for treating neurological disorders and enhancing the mental and physical ability of human beings. Most of the currently available neural interfaces are made from rigid, dense inorganic materials that cause tissue damage. We present supersoft multichannel electrodes by depositing gold layers on thin bacterial cellulose (BC) (Au-BC electrodes). The Young's modulus of BC ( EBC = 120 kPa) is between those of the brain tissue ( Ebrain = 2.7-3.1 kPa) and the peripheral neural tissues ( Eperipheral nerve = 580-840 kPa). The bending stiffness of the Au-BC electrodes corresponds to 1/5200 of Au-polyimide electrodes with the same layout. Furthermore, the Au-BC electrodes are highly durable (conductivity >95% after 100 cycles of 180° bending). In vivo recording of brain electric activity demonstrates the great potential of the Au-BC electrodes for neural interfacing applications.
Collapse
Affiliation(s)
- Junchuan Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Mingde Du
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Le Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Sixiang Li
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Guorui Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Xinglong Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Lijuan Zhang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Ying Fang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Guang Yang
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
44
|
Kim S, Jang LK, Jang M, Lee S, Hardy JG, Lee JY. Electrically Conductive Polydopamine-Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33032-33042. [PMID: 30192136 DOI: 10.1021/acsami.8b11546] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conductive polymers (CPs) such as polypyrrole (PPY) are emerging biomaterials for use as scaffolds and bioelectrodes which interact with biological systems electrically. Still, more electrically conductive and biologically interactive CPs are required to develop high performance biomaterials and medical devices. In this study, in situ electrochemical copolymerization of polydopamine (PDA) and PPY were performed for electrode modification. Their material and biological properties were characterized using multiple techniques. The electrical properties of electrodes coated with PDA/PPY were superior to electrodes coated with PPY alone. The growth and differentiation of C2C12 myoblasts and PC12 neuronal cells on PDA/PPY was enhanced compared to PPY. Electrical stimulation of PC12 cells on PDA/PPY further promoted neuritogenesis. In vivo electromyography signal measurements demonstrated more sensitive signals from tibia muscles when using PDA/PPY-coated electrodes than bare or PPY-coated electrodes, revealing PDA/PPY to be a high-performance biomaterial with potential for various biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - John George Hardy
- Department of Chemistry and Materials Science Institute , Lancaster University , Lancaster , Lancashire LA1 4YB , U.K
| | | |
Collapse
|
45
|
Agcayazi T, Chatterjee K, Bozkurt A, Ghosh TK. Flexible Interconnects for Electronic Textiles. ADVANCED MATERIALS TECHNOLOGIES 2018; 3:1700277. [DOI: 10.1002/admt.201700277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Talha Agcayazi
- Department of Electrical and Computer Engineering North Carolina State University Raleigh NC 27695 USA
| | - Kony Chatterjee
- Department of Textile Engineering Chemistry & Science North Carolina State University Raleigh NC 27695 USA
- Fiber and Polymer Science Program North Carolina State University Raleigh NC 27695 USA
| | - Alper Bozkurt
- Department of Electrical and Computer Engineering North Carolina State University Raleigh NC 27695 USA
| | - Tushar K. Ghosh
- Department of Textile Engineering Chemistry & Science North Carolina State University Raleigh NC 27695 USA
- Fiber and Polymer Science Program North Carolina State University Raleigh NC 27695 USA
| |
Collapse
|
46
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
47
|
Feron K, Lim R, Sherwood C, Keynes A, Brichta A, Dastoor PC. Organic Bioelectronics: Materials and Biocompatibility. Int J Mol Sci 2018; 19:E2382. [PMID: 30104515 PMCID: PMC6121695 DOI: 10.3390/ijms19082382] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Organic electronic materials have been considered for a wide-range of technological applications. More recently these organic (semi)conductors (encompassing both conducting and semi-conducting organic electronic materials) have received increasing attention as materials for bioelectronic applications. Biological tissues typically comprise soft, elastic, carbon-based macromolecules and polymers, and communication in these biological systems is usually mediated via mixed electronic and ionic conduction. In contrast to hard inorganic semiconductors, whose primary charge carriers are electrons and holes, organic (semi)conductors uniquely match the mechanical and conduction properties of biotic tissue. Here, we review the biocompatibility of organic electronic materials and their implementation in bioelectronic applications.
Collapse
Affiliation(s)
- Krishna Feron
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Rebecca Lim
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Connor Sherwood
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Angela Keynes
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Alan Brichta
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| | - Paul C Dastoor
- Centre for Organic Electronics, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.
| |
Collapse
|
48
|
|
49
|
|
50
|
Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF, Buzsáki G, Vörös J. High-Density Stretchable Electrode Grids for Chronic Neural Recording. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706520. [PMID: 29488263 PMCID: PMC5948103 DOI: 10.1002/adma.201706520] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/19/2018] [Indexed: 05/18/2023]
Abstract
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications.
Collapse
Affiliation(s)
- Klas Tybrandt
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
| | - Bernd Dielacher
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Flurin Stauffer
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Aline F. Renz
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
| | - János Vörös
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|