1
|
Samadi Pakchin P, Fathi F, Samadi H, Adibkia K. Recent advances in receptor-based optical biosensors for the detection of multiplex biomarkers. Talanta 2025; 281:126852. [PMID: 39321560 DOI: 10.1016/j.talanta.2024.126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Multiplex biosensors are highly sought-after tools in disease diagnosis. This technique involves the simultaneous sensing of multiple biomarkers, whose levels and ratios can provide a more comprehensive assessment of disease conditions compared to single biomarker detection. In most diseases like cancer due to its complexity, several biomarkers are involved in their occurrence. On the other hand, a single biomarker may be implicated in various diseases. Multiplex sensing employs various techniques, such as optical, electrochemical, and electrochemiluminescence methods. This comprehensive review focuses on optical multiplex sensing techniques, including surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, chemiluminescence, surface-enhanced Raman spectroscopy, and photonic crystal sensors. The review delves into their mechanisms, materials utilized, and strategies for biomarker detection.
Collapse
Affiliation(s)
- Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamed Samadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Peng W, Zhang Y, Yi C, Liao Q. Polyethylene imine-modified photonic crystal microfluidic chip for highly sensitive detection of microbial spores. Food Chem 2024; 459:140366. [PMID: 38991440 DOI: 10.1016/j.foodchem.2024.140366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
To address the lengthy cycles, complex operations, high costs, and insufficient sensitivity of biomarker detection in traditional biological control agents, photonic crystal treated with PEI was developed for highly sensitive detection of Sclerotinia sclerotiorum microbial spores. By incorporating gelatin molecules, photonic crystal is endowed with excellent photothermal stability and high stability in aqueous solutions. The photonic crystal surface is conferred a positive charge by PEI, which can be used to enhance the adsorption of spores. Efficient enrichment of Sclerotinia sclerotiorum and Purpureocillium lilacinum spores is achieved, with coefficients of determination 0.963 and 0.971, respectively. The detection range is from 102 to 106 spores/ml, and the photonic crystal exhibited good reusability. The prepared photonic crystal enables rapid, non-destructive, and accurate quantitative detection of microbial spores.
Collapse
Affiliation(s)
- Wang Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Yuankai Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yi
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxi Liao
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
3
|
Du X, Li C, Wang J, Li Z, Zhu J, Yang Y, Hu Y. Multifunctional photonic microobjects with asymmetric response in radial direction and their anticounterfeiting performance. J Colloid Interface Sci 2024; 671:457-468. [PMID: 38815381 DOI: 10.1016/j.jcis.2024.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
There are few explorations that have integrated multiple properties into photonic microobjects in a facile and controlled manner. In this work, we present a straightforward method to integrate different functions into individual photonic microobject. Droplet-based microfluidics was used to produce uniform droplets of an aqueous dispersion of monodispersed SiO2 nanoparticles (NPs). The droplets evolved into opal-structured photonic microballs upon complete evaporation of water. After infiltration of an aqueous solution of acrylamide (AAm) and acrylic acid (AAc) monomers into the interstices among SiO2 NPs, opal-structured SiO2 NPs/pAAm-co-AAc hydrogel composite photonic microballs were obtained upon UV irradiation. Afterwards, a wet etching process was introduced to etch the microballs in a controlled manner, yielding individual photonic microball composed of an SiO2 NPs/pAAm-co-AAc composite opal core and a neat pAAm-co-AAc shell. The pendant carboxylic acid groups in the skeleton of the hydrogel matrix were further utilized to react with positively charged compounds, such as Ruthenium compound containing fluorescent polymers. The resulting photonic microobjects eventually featured with localized stimulus-responsive properties and multiple colors under different modes. The multifunctional photonic microobjects were discovered to have fivefold of anticounterfeiting properties when used as building blocks for anticounterfeiting structures and may have other potential applications.
Collapse
Affiliation(s)
- Xiaoyang Du
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chengnian Li
- Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianying Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhi Li
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jintao Zhu
- Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yajiang Yang
- Hubei Key Lab of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China.
| |
Collapse
|
4
|
Wang Y, Wang Z, Gao Y, Yan J, Chen Y, Yang L. Three-dimensional photonic crystal optical gas sensor for trace detection and ultrafast response of chemical warfare agent in atmospheric humidity. Talanta 2024; 277:126383. [PMID: 38852345 DOI: 10.1016/j.talanta.2024.126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Chemical warfare agents (CWAs) are toxic that pose a threat to the environment and human health, even trace amounts of CWAs can be fatal. In view of this, there is an urgent need to develop gas sensors for trace detection and ultrafast response of CWAs. Herein, an optical gas sensor has been proposed based on metal-organic frameworks (MOFs) three-dimensional (3D) photonic crystal to detect trace CWAs' simulant (dimethyl methylphosphonate, DMMP) in different atmospheric humidity (RH 20 %, RH 40 %, RH 60 %, RH 80 %). At relative humidity (RH) of 20 %, the sensor shows excellent selectivity of DMMP due to the specific interactions of van der Waals force between UiO-67 and phosphoryl oxygen (OP) group of DMMP (C3H9O3P), the ultrahigh sensitivity (42.7 ppb), ultrafast response (0.5 s) are profit from the ordered superstructure of 3D photonic crystal and its complete photonic bandgap. At higher humidity (RH 40%-80 %), the sensor shows excellent stability, long-term repeatability, and it still keeps ultrahigh sensitivity (12.1 ppb), ultrafast response (0.49 s) for DMMP at RH 80 %. Moreover, an optical gas sensor array has been prepared to solve the problem of cross-sensitive between DMMP and other CWAs at highest humidity (RH ≥ 80 %), the average classification accuracy can reach 98.6 %.
Collapse
Affiliation(s)
- Yaru Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhaolong Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yangfan Gao
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jun Yan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yunlin Chen
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| |
Collapse
|
5
|
Nam SK, Amstad E, Kim SH. Hydrogel-Encased Photonic Microspheres with Enhanced Color Saturation and High Suspension Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58761-58769. [PMID: 38084724 DOI: 10.1021/acsami.3c14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Regular arrays of colloidal particles can produce striking structural colors without the need for any chemical pigments. Regular arrays of colloidal particles can be processed into microparticles via emulsion templates for use as structural colorants. Photonic microparticles, however, suffer from intense incoherent scattering and lack of suspension stability. We propose a microfluidic technique to generate hydrogel-shelled photonic microspheres that display enhanced color saturation and suspension stability. We created these microspheres using oil-in-water-in-oil (O/W/O) double-emulsion droplets with well-defined dimensions with a capillary microfluidic device. The inner oil droplet contains silica particles in a photocurable monomer, while the middle water droplet carries the hydrogel precursor. Within the inner oil droplet, silica particles arrange into crystalline arrays due to solvation-layer-induced interparticle repulsion. UV irradiation solidifies the inner photonic core and the outer hydrogel shell. The hydrogel shell reduces white scattering and enhances the suspension stability in water. Notably, the hydrogel precursor in the water droplet aids in maintaining the solvation layer, resulting in enhanced crystallinity and richer colors compared with microspheres from O/W single-emulsion droplets. These hydrogel-encased photonic microspheres show promise as structural colorants in water-based inks and polymer composites.
Collapse
Affiliation(s)
- Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Yang S, Kim YG, Park S, Kim SH. Structural Color Mixing in Microcapsules through Exclusive Crystallization of Binary and Ternary Colloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302750. [PMID: 37319336 DOI: 10.1002/adma.202302750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Colloidal crystals are designed as photonic microparticles for various applications. However, conventional microparticles generally have only one stopband from a single lattice constant, which restricts the range of colors and optical codes available. Here, photonic microcapsules are created that contain two or three distinct crystalline grains, resulting in dual or triple stopbands that offer a wider range of colors through structural color mixing. To produce distinct colloidal crystallites from binary or ternary colloidal mixtures, the interparticle interaction is manipulated using depletion forces in double-emulsion droplets. Aqueous dispersions of binary or ternary colloidal mixtures in the innermost droplet are gently concentrated in the presence of a depletant and salt by imposing hypertonic conditions. Different-sized particles crystallize into their own crystals rather than forming random glassy alloys to minimize free energy. The average size of the crystalline grains can be adjusted with osmotic pressure, and the relative ratio of distinct grains can be controlled with the mixing ratio of particles. The resulting microcapsules with small grains and high surface coverage are almost optically isotropic and exhibit highly-saturated mixed structural colors and multiple reflectance peaks. The mixed color and reflectance spectrum are controllable with the selection of particle sizes and mixing ratios.
Collapse
Affiliation(s)
- Sehee Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Xu C, Ma B, Dong X, Lei L, Hao Q, Zhao C, Liu H. Assembly of Reusable DNA Blocks for Data Storage Using the Principle of Movable Type Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24097-24108. [PMID: 37184884 DOI: 10.1021/acsami.3c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to its high coding density and longevity, DNA is a compelling data storage alternative. However, current DNA data storage systems rely on the de novo synthesis of enormous DNA molecules, resulting in low data editability, high synthesis costs, and restrictions on further applications. Here, we demonstrate the programmable assembly of reusable DNA blocks for versatile data storage using the ancient movable type printing principle. Digital data are first encoded into nucleotide sequences in DNA hairpins, which are then synthesized and immobilized on solid beads as modular DNA blocks. Using DNA polymerase-catalyzed primer exchange reaction, data can be continuously replicated from hairpins on DNA blocks and attached to a primer in tandem to produce new information. The assembly of DNA blocks is highly programmable, producing various data by reusing a finite number of DNA blocks and reducing synthesis costs (∼1718 versus 3000 to 30,000 US$ per megabyte using conventional methods). We demonstrate the flexible assembly of texts, images, and random numbers using DNA blocks and the integration with DNA logic circuits to manipulate data synthesis. This work suggests a flexible paradigm by recombining already synthesized DNA to build cost-effective and intelligent DNA data storage systems.
Collapse
Affiliation(s)
- Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Institution, 2# Sipailou, Nanjing, Jiangsu 210096, China
| |
Collapse
|
8
|
Zhang Z, Wei B, Yang D, Ma D, Huang S. Precisely sensing hydrofluoric acid by photonic crystal hydrogels. J Colloid Interface Sci 2023; 634:314-322. [PMID: 36535167 DOI: 10.1016/j.jcis.2022.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022]
Abstract
It is a great challenge to detect hydrofluoric acid (HF) with high precision, good selectivity, and visual readouts characteristics. Herein, a new photonic crystal (PC) hydrogel HF sensor based on the "selective etching-induced swelling" mechanism has been developed. This HF sensor consisting of silica/water/hydroxyethyl acrylate and non-closely packed structures was fabricated through simple non-close-assembling, photopolymerization, and water swelling processes. Silica slightly etched by HF induces the swelling of PC hydrogel, leading to the variation of reflection wavelength and structural colors, thereby realizing visually and spectrally sensing HF (0-10 mM). The unique structure and compositions of PC hydrogel are the keys to the high sensing precision, outstanding selectivity, and low detection limit (0.1 mM). Furthermore, the sensor possesses tailorable, portable, easy-to-operation, and low-cost (<0.01 $/sensor) advantages. This work provides an efficient and convenient tool for sensing and recognizing HF in the aqueous solution for practical applications and upgrades the basic understanding of the photonic sensing mechanism.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Boru Wei
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongpeng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, PR China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nat Commun 2023; 14:793. [PMID: 36774360 PMCID: PMC9922275 DOI: 10.1038/s41467-023-36482-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Structural colors provide a promising visualization with high color saturation, iridescent characteristics, and fade resistance. However, pragmatic uses are frequently impeded by complex manufacturing processes for sophisticated nanostructures. Here, we report a facile emulsion-templating strategy to produce crescent-shaped microparticles as structural color pigments. The micro-crescents exhibit brilliant colors under directional light originating from total internal reflections and optical interferences in the absence of periodic nanostructures while being transparent under ambient light. The colors are finely tunable by adjusting the size of the micro-crescents, which can be further mixed to enrich the variety. Importantly, the pre-defined convex surface secures high stability of colors and enables structural coloration on target surfaces through direct deposition as inks. We anticipate this class of nanostructure-free structural colorants is pragmatic as invisible inks in particular for anti-counterfeiting patches and color cosmetics with distinctive impressions due to low-cost, scalable manufacturing, unique optical properties, and versatility.
Collapse
|
10
|
Recent advances in photonic crystal-based sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Microfluidics-Assisted Fabrication of Dual Stopband Photonic Microcapsules and Their Applications for Anticounterfeiting. Polymers (Basel) 2022; 14:polym14193954. [PMID: 36235902 PMCID: PMC9572925 DOI: 10.3390/polym14193954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
The assembly of two different kinds of colloidal particle-based photonic structures into an individual micro-object can achieve multifunctionality. In this study, core–shell photonic microcapsules with dual structural colors and photonic stop bands were prepared through a standard microfluidic technique. Photocurable resin suspension of silica nanoparticles and an aqueous suspension of nanogels were used as shell and core parts of microcapsules, respectively. The structural colors of shells and cores can be tuned by adjusting the concentrations of silica nanoparticles and soft nanogels in their corresponding suspensions. The individual microcapsules possess two distinct stop bands when the two suspensions are combined appropriately. Remarkably, the color information of the core part cannot be directly viewed at a macroscopic level (such as visual inspection) but can be detected at a microscopic scale (such as optical microscopy observation). The color information hidden enables the capability for information encryption and has potentially critical applications in anti-counterfeiting, display, and other fields.
Collapse
|
12
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Liu K, Ding H, Li S, Niu Y, Zeng Y, Zhang J, Du X, Gu Z. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nat Commun 2022; 13:4563. [PMID: 35931721 PMCID: PMC9355982 DOI: 10.1038/s41467-022-32317-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
The orderly arrangement of nanomaterials’ tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect for various novel applications. In this paper, we developed a sacrificial-scaffold-mediated two-photon lithography (TPL) strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly-arranged nanoparticles inside. We show that, with the help of a degradable hydrogel scaffold, the disturbance effect of the femtosecond laser to the nanoparticle self-assembling could be overcome. Therefore, hydrogel-state and solid-state colloidal crystal microstructures with diverse compositions, free-designed geometries and variable structural colors could be easily fabricated. This enables the possibility to create novel colloidal crystal microsensing systems that have not been achieved before. Colloidal crystals are widely applied in the fabrication of optoelectronic devices, but realizing freedom of design, such as in 3D printing, in colloidal crystal fabrication remains challenging. Here, the authors demonstrate a sacrificial-scaffold-mediated two-photon lithography strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly arranged nanoparticles in the bulk.
Collapse
Affiliation(s)
- Keliang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yanfang Niu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Zeng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
14
|
Li C, Yu Y, Li H, Tian J, Guo W, Shen Y, Cui H, Pan Y, Song Y, Shum HC. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. NANO LETTERS 2022; 22:5236-5243. [PMID: 35731830 DOI: 10.1021/acs.nanolett.2c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors. In drying poly(ethylene glycol)-dextran-based (PEG-DEX) droplets, monosized nanoparticles distribute nonuniformly in two compartments due to the droplet inner flow and different nanoparticle compatibility with the two phases. The dome colors are derived from the self-assembled nanoparticles and are programmable by regulating the assembly conditions. The one-pot strategy enables the preparation of multicolor using only one type of building block. With the dual-color domes, encrypted patterns with a high volume of contents are designed, showing promising applications in information delivery.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanting Shen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huanqing Cui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
15
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
16
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
17
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
19
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
20
|
Liu P, Mu Z, Ji M, Liu X, Gu H, Peng Y, Yang J, Xie Z, Zheng F. Robust Carbonated Structural Color Barcodes with Ultralow Ontology Fluorescence as Biomimic Culture Platform. RESEARCH 2021; 2021:9851609. [PMID: 34036265 PMCID: PMC8118130 DOI: 10.34133/2021/9851609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
Photonic crystal (PC) barcodes are a new type of spectrum-encoding microcarriers used in multiplex high-throughput bioassays, such as broad analysis of biomarkers for clinical diagnosis, gene expression, and cell culture. Unfortunately, most of these existing PC barcodes suffered from undesired features, including difficult spectrum-signal acquisition, weak mechanical strength, and high ontology fluorescence, which limited their development to real applications. To address these limitations, we report a new type of structural color-encoded PC barcodes. The barcodes are fabricated by the assembly of monodisperse polydopamine- (PDA-) coated silica (PDA@SiO2) nanoparticles using a droplet-based microfluidic technique and followed by pyrolysis of PDA@SiO2 (C@SiO2) barcodes. Because of the templated carbonization of adhesive PDA, the prepared C@SiO2 PC beads were endowed with simultaneous easy-to-identify structural color, high mechanical strength, and ultralow ontology fluorescence. We demonstrated that the structural colored C@SiO2 barcodes not only maintained a high structural stability and good biocompatibility during the coculturing with fibroblasts and tumor cells capture but also achieved an enhanced fluorescent-reading signal-to-noise ratio in the fluorescence-reading detection. These features make the C@SiO2 PC barcodes versatile for expansive application in fluorescence-reading-based multibioassays.
Collapse
Affiliation(s)
- Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Zhongde Mu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China 210096
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Yi Peng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China 450052
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China 210096
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
21
|
Liu H, Li Z, Shen R, Li Z, Yang Y, Yuan Q. Point-of-Care Pathogen Testing Using Photonic Crystals and Machine Vision for Diagnosis of Urinary Tract Infections. NANO LETTERS 2021; 21:2854-2860. [PMID: 33769062 DOI: 10.1021/acs.nanolett.0c04942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urinary tract infections (UTIs) caused by bacterial invasion can lead to life-threatening complications, posing a significant health threat to more than 150 million people worldwide. As a result, there is need for accurate and rapid diagnosis of UTIs to enable more effective treatment. Described here is an intelligent diagnostic system constructed for bacterial detection using an immunobiosensor, signal-amplification biochip, and image processing algorithm based on machine vision. This prototype can quickly detect bacteria by collection of enhanced luminescence enabled by the photonic crystals integrated into the biochip. By use of a machine vision algorithm, the very small luminescence signals are analyzed to provide a low detection limit and wide dynamic range. This sensor system can offer an affordable, accessible, and user-friendly digital diagnostic solution, possibly suitable for wearable technology, that could improve treatment of this challenging disease.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhiheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Yanbing Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Ma Y, He P, Xie W, Zhang Q, Yin W, Pan J, Wang M, Zhao X, Pan G. Dynamic Colloidal Photonic Crystal Hydrogels with Self-Recovery and Injectability. RESEARCH 2021; 2021:9565402. [PMID: 33870200 PMCID: PMC8028842 DOI: 10.34133/2021/9565402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
Simulation of self-recovery and diversity of natural photonic crystal (PC) structures remain great challenges for artificial PC materials. Motivated by the dynamic characteristics of PC nanostructures, here, we present a new strategy for the design of hydrogel-based artificial PC materials with reversible interactions in the periodic nanostructures. The dynamic PC hydrogels, derived from self-assembled microgel colloidal crystals, were tactfully constructed by reversible crosslinking of adjacent microgels in the ordered structure via phenylboronate covalent chemistry. As proof of concept, three types of dynamic colloidal PC hydrogels with different structural colors were prepared. All the hydrogels showed perfect self-healing ability against physical damage. Moreover, dynamic crosslinking within the microgel crystals enabled shear-thinning injection of the PC hydrogels through a syringe (indicating injectability or printability), followed by rapid recovery of the structural colors. In short, in addition to the great significance in biomimicry of self-healing function of natural PC materials, our work provides a facile strategy for the construction of diversified artificial PC materials for different applications such as chem-/biosensing, counterfeit prevention, optical display, and energy conversion.
Collapse
Affiliation(s)
- Yue Ma
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,Jiangsu Agrochem Laboratory, Changzhou, Jiangsu 213022, China
| | - Peiyan He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanli Xie
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
23
|
Gao N, Zhou K, Feng K, Zhang W, Cui J, Wang P, Tian L, Jenkinson-Finch M, Li G. Facile fabrication of self-reporting micellar and vesicular structures based on an etching-ion exchange strategy of photonic composite spheres of poly(ionic liquid). NANOSCALE 2021; 13:1927-1937. [PMID: 33439197 DOI: 10.1039/d0nr07268k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micellar and vesicular structures capable of sensing and reporting the chemical environment as well as facilely introducing user-defined functions make a vital contribution to constructing versatile compartmentalized systems. Herein, by combining poly(ionic liquid)-based photonic spheres and an etching-ion exchange strategy we fabricate micellar and vesicular photonic compartments that can not only mimic the structure and function of conventional micelles and vesicles, but also sense and report the chemical environment as well as introducing user-defined functions. Photonic composite spheres composed of a SiO2 template and poly(ionic liquid) are employed to selectively etch outer-shell SiO2 followed by ion exchange and removal of the residual SiO2 to afford micellar photonic compartments (MPCs). The MPCs can selectively absorb solvents from the oil/water mixtures together with sensing and reporting the adsorbed solvents by the self-reporting optical signal associated with the uniform porous structure of photonic spheres. Vesicular photonic compartments (VPCs) are fabricated via selective infiltration and polymerization of ionic liquids followed by etching of the SiO2 template. Subsequent ion exchange introduces desirable functions to the VPCs. Furthermore, we demonstrate that the thickness and the anisotropic functions of VPCs can be facilely modulated. Overall, we anticipate that the micellar and vesicular photonic compartments with self-reporting optical signals and user-defined functions could serve as novel platforms towards multifunctional compartmentalized systems.
Collapse
Affiliation(s)
- Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu LZ, Sun XY, Yan ZY, Ye BF. NIR responsive AuNR/pNIPAM/PEGDA inverse opal hydrogel microcarriers for controllable drug delivery. NEW J CHEM 2021. [DOI: 10.1039/d0nj06289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel inverse opal microcarrier with both NIR-controlled release and visual color changes for drug delivery.
Collapse
Affiliation(s)
- L. Z. Liu
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - X. Y. Sun
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Z. Y. Yan
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - B. F. Ye
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
25
|
Chen K, Han H, Tuguntaev RG, Wang P, Guo W, Huang J, Gong X, Liang X. Applications and regulatory of nanotechnology‐based innovative
in vitro
diagnostics. VIEW 2020. [DOI: 10.1002/viw.20200091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kuan Chen
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Houyu Han
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Ruslan G. Tuguntaev
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Peirong Wang
- Center for Medical Device Evaluation National Medical Products Administration Beijing China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Jiayu Huang
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xiaoqun Gong
- School of Life Sciences Tianjin University and Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures Tianjin China
| | - Xing‐Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology of China Beijing China
- College of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
26
|
Yang Y, Chen Y, Hou Z, Li F, Xu M, Liu Y, Tian D, Zhang L, Xu J, Zhu J. Responsive Photonic Crystal Microcapsules of Block Copolymers with Enhanced Monochromaticity. ACS NANO 2020; 14:16057-16064. [PMID: 33191731 DOI: 10.1021/acsnano.0c07898] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of block copolymers (BCPs) has been developed as a promising approach for constructing photonic crystal (PC) microspheres for dynamic optical modulation. However, high curvature in the center of microspheres usually distorts the periodic core structure, leading to an inconsistency of photonic bandgap and poor monochromaticity of structural color. Herein, we report a simple yet robust strategy for fabricating responsive PC microcapsules of polystyrene-b-poly(2-vinylpyridine) through self-emulsification strategy. Interestingly, the microcapsules exhibit bright structural color with significantly enhanced monochromaticity, compared to their solid counterpart, since the microcapsules have no irregular cores. The structural colors of the PC microcapsules not only exhibit a variability through binary mixing of BCPs but also show a responsiveness to pH value. As a colored microcarrier, the PC microcapsules show a potential for visualizing the pH-dependent release behavior of encapsulated hydrophilic cargos on account of pH-responsive structural color.
Collapse
Affiliation(s)
- Yi Yang
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yu Chen
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zaiyan Hou
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Fan Li
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mengjun Xu
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuanyuan Liu
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Di Tian
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- State Key Lab of Materials Processing and Die and Mould Technology and Key Lab of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
27
|
Hu Y, Zhang Y, Chen T, Yang D, Ma D, Huang S. Highly Efficient Detection of Homologues and Isomers by the Dynamic Swelling Reflection Spectrum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45174-45183. [PMID: 32935966 DOI: 10.1021/acsami.0c12229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise and efficient detection of solvents with similar refractive index is highly desired but remains a big challenge for the conventional opal because the shift of its reflection wavelength only depends on the refractive index of the solvent to be detected. Here, homologues (alcohols, acids, alkalis, esters, and aromatic hydrocarbons), isomers, and other solvents with similar refractive index and structures were precisely distinguished through the dynamic swelling reflection spectrum (DSRS) pattern based on the different swelling behavior of swellable photonic paper in solvents. The one reflection signal of photonic paper will split into two reflection peaks, which then tend to merge together during the swelling process. The variation of the reflection signals and merging time are highly sensitive to the polarity and refractive index of the solvent, and the differences can be significantly amplified in DSRS, resulting in the distinction of the solvent from its unique geometric pattern. Moreover, the variation tendency of the reflectance provides an additional parameter in recognition of the solvent, which can be explained by calculation and comparison of the practical volume ratio of the solvent swelled into the photonic paper and the corresponding critical volume ratio of the solvent determined by its refractive index.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yuqi Zhang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Tong Chen
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Park S, Hwang H, Kim M, Moon JH, Kim SH. Colloidal assembly in droplets: structures and optical properties. NANOSCALE 2020; 12:18576-18594. [PMID: 32909568 DOI: 10.1039/d0nr04608f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Colloidal assembly in emulsion drops provides fundamental tools for studying optimum particle arrangement under spherical confinement and practical means for producing photonic microparticles. Recent progress has revealed that energetically favored cluster configurations are different from conventional supraballs, which could enhance optical performance. This paper reviews state-of-the-art emulsion-templated colloidal clusters, and particularly focuses on recently reported novel structures such as icosahedral, decahedral, and single-crystalline face-centered cubic (fcc) clusters. We classify the clusters according to the number of component particles as small (N < O(102)), medium (O(102) ≤N≤O(104)), and large (N≥O(105)). For each size of clusters, we discuss the detailed structures, mechanisms of cluster formation, and optical properties and potential applications. Finally, we outline current challenges and questions that require further investigation.
Collapse
Affiliation(s)
- Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
29
|
Roh YH, Lee HJ, Kim JY, Kim HU, Kim SM, Bong KW. Precipitation-based colorimetric multiplex immunoassay in hydrogel particles. LAB ON A CHIP 2020; 20:2841-2850. [PMID: 32614938 DOI: 10.1039/d0lc00325e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite a growing demand for more accessible diagnostic technologies, current methods struggle to simultaneously detect multiple analytes with acceptable sensitivity and portability. Colorimetric assays have been widely used due to their simplicity of signal readout, but the lack of multiplexibility has been a perpetual constraint. Meanwhile, particle-based assays offer multiplex detection by assigning an identity code to each analyte, but they often require lab-based equipment unsuitable for portable diagnostics. Here, by merging the two approaches, this paper reports a colorimetric multiplex immunoassay based on hydrogel microparticles that achieves the best of both worlds. The low-cost portable multiplex assay demonstrates sensitivities as high as and dynamic ranges greater than the lab-based enzyme-linked immunosorbent assay (ELISA). These critical advances are made possible by local precipitation and amplification of insoluble colour dyes inside the hydrogel networks. For the first time, enzymatic accumulation of colour dyes in hydrogel particles is reported and the kinetics of colour development is characterized in this work. By taking advantage of the colour signals in the visible spectrum, the hydrogel microparticles were imaged and analysed using low-cost portable devices. The colorimetric multiplex immunoassay was used to successfully detect three target biomarkers of preeclampsia and validated clinically using healthy and patient-derived plasma samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
30
|
Su Q, Xu P, Zhou L, Wu F, Dong A, Wan Y, Qian W. Real-Time and Label-Free Monitoring of Biomolecular Interactions within Complex Biological Media Using a Silica Colloidal Crystal Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35950-35957. [PMID: 32693572 DOI: 10.1021/acsami.0c10926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A method capable of real-time and label-free monitoring of biomolecular interactions within whole blood, without any sample separation and label process, is described. This was accomplished using silica colloidal crystal (SCC) films, three-dimensionally ordered silica particle arrays whose interference effect is a function of their optical thickness, as interference-sensitive substrates. Interactions between immunoglobulin G (IgG) and protein A from Staphylococcus aureus (SPA) conjugates with changes in the optical thickness of SCC films were monitored spectroscopically. Successful detection of IgG was achieved in the buffer and whole blood. This system constitutes a simple label-free analysis showing great potential in monitoring interactions between biomolecules in complex biological media.
Collapse
Affiliation(s)
- Qianqian Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pengfei Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Feng Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ao Dong
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
31
|
Liu Y, Zhong Y, Wang C. Recent advances in self-actuation and self-sensing materials: State of the art and future perspectives. Talanta 2020; 212:120808. [PMID: 32113569 DOI: 10.1016/j.talanta.2020.120808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
The contradiction between human's strong demand of fossil fuels and their limited reserves becomes increasingly severe. Without external power input, intelligent materials responding sharply and reversibly to various external stimuli are the topic of intense research these years, especially the self-actuation and self-sensing materials. The promising family of these materials will play a significant role in energy-saving, low-cost and environment-friendly intelligent systems in the future. This review summarizes the latest advances in self-actuation and self-sensing materials. The synthetic strategies, morphologies and performance of these materials are introduced, as well as their applications in energy harvest, self-powering sensors, wearable devices, etc. Finally, tentative conclusions and assessments regarding the opportunities and challenges for the future development of these materials are presented.
Collapse
Affiliation(s)
- Yushu Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China; School of Computer Science and Technology, Harbin Institute of Technology, Weihai, Shandong Province, 264209, China
| | - Yunhao Zhong
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China.
| |
Collapse
|
32
|
Shang L, Wang Y, Cai L, Shu Y, Zhao Y. Structural color barcodes for biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luoran Shang
- Zhongshan∼Xuhui Hospital, Institutes of Biomedical SciencesFudan University Shanghai China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuetong Wang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Lijun Cai
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
33
|
Luo W, Cui Q, Fang K, Chen K, Ma H, Guan J. Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. NANO LETTERS 2020; 20:803-811. [PMID: 29323918 DOI: 10.1021/acs.nanolett.7b04218] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qian Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Kai Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Ke Chen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
34
|
Hu Y, Yang D, Huang S. Amorphous Photonic Structures with Brilliant and Noniridescent Colors via Polymer-Assisted Colloidal Assembly. ACS OMEGA 2019; 4:18771-18779. [PMID: 31737838 PMCID: PMC6854835 DOI: 10.1021/acsomega.9b02734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Efficient and large area fabrication of amorphous photonic crystals (APCs) with multicolor, angle independency, and fine resolution is always desired owing to their application in color displays, sensors, and pigments. Here, we report a polymer-assisted colloidal assembly (PACA) method to fabricate APCs with brilliant structural colors by the co-assembly of silica colloidal particles, polyvinylpyrrolidone (PVP), and carbon black (CB). PVP is the key to enable the amorphous aggregations of the particles, the uniform and noniridescent structural colors of the APCs. Moreover, multicolor and high-resolution patterns can be prepared through the mask-based brush printing with colloids-PVP-CB precursor solution as ink (named as APCs-ink). The developed printing method can be applied to various substrates with different roughness, curvature, and flexibility such as papers, metals, plastic films, stones, and even curved glasses. PACA is efficient and straightforward for the fabrication of APCs and high-resolution patterns with large area, low cost, and easy operation, which will facilitate their practical applications in the fields of color-related display, green painting, anticounterfeiting, and so on.
Collapse
|
35
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
36
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
37
|
Wu S, Liu T, Tang B, Li L, Zhang S. Different Structural Colors or Patterns on the Front and Back Sides of a Multilayer Photonic Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27210-27215. [PMID: 31282635 DOI: 10.1021/acsami.9b07823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The application of photonic crystals in the field of color display and anticounterfeiting has been widely studied because of their brilliant and angle-dependent structural colors. Most of the research is focused on structural colors on the front side of photonic crystals, and both sides of the crystals usually display the same or similar optical properties. Here, multilayer photonic crystals with different structural colors or different patterns on the front and back sides were designed. In a trilayer photonic structure, an amorphous SiO2 layer with a thickness of about 10 μm was inserted into two layers of highly ordered photonic crystals with band gaps of 625 and 470 nm. The amorphous SiO2 layer acts as a gate to prohibit light transmission, and thereby, the structural colors of the two photonic crystals were separated. Hence, the trilayer structure shows red and blue colors on each side. Then, a light window was opened in the disordered layer using a patterned mask; thus, a pattern with a mixed color of both ordered layers was observed on each side in the window field, which was obviously different from the background color. Finally, completely different patterns on each side were also realized by building a multilayer structure. The different structural colors or patterns on each side of the photonic structures provide them with enriched color range and enhanced display or anticounterfeiting ability.
Collapse
Affiliation(s)
- Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2# Linggong Road , Dalian 116024 , China
| | - Tengfei Liu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2# Linggong Road , Dalian 116024 , China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2# Linggong Road , Dalian 116024 , China
| | - Lu Li
- Qingdao University of Science and Technology , Qingdao 266000 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2# Linggong Road , Dalian 116024 , China
| |
Collapse
|
38
|
Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, Zhao Y. Porous Hydrogel-Encapsulated Photonic Barcodes for Multiplex Detection of Cardiovascular Biomarkers. ACS Sens 2019; 4:1384-1390. [PMID: 30985109 DOI: 10.1021/acssensors.9b00352] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early detection of cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), and myoglobin (Myo) is essential for the diagnosis of acute myocardial infarction (AMI) and heart failure (HF). We designed a porous hydrogel-encapsulated photonic crystal (PhC) barcode-based suspension array for multiple cardiovascular marker detection. The hybrid hydrogel was composed of polyethylene glycol diacrylate (PEGDA) and gelatin, resulting in a porous and hydrophilic scaffold which ensured stability of the PhC in aqueous solutions. The encapsulated PhC barcodes had stable diffraction peaks for the corresponding markers. Using a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of cardiovascular biomarkers in a single tube. The immunoassay results we tested on cTnI, BNP, and Myo could be assayed in the ranges of 0.01 to 1000 ng/mL, 0.1 to 10 000 pg/mL, and 1 to 10 000 ng/mL with limits of detection of 0.009 ng/mL, 0.084 pg/mL, and 0.68 ng/mL at 3σ, respectively. This method also showed acceptable accuracy and repeated detection, and the results were consistent with the results of conventional clinical methods for detecting actual clinical samples. Therefore, suspension arrays based on hydrogel-encapsulated PhC barcodes are highly promising for AMI diagnosis.
Collapse
Affiliation(s)
- JingJing Ji
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Huidan Zhang
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuanjin Zhao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
39
|
Li L, Yan Z, Jin M, You X, Xie S, Liu Z, van den Berg A, Eijkel JCT, Shui L. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16934-16943. [PMID: 30983312 DOI: 10.1021/acsami.9b03160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on a simple approach for in-channel functionalization of a polydimethylsiloxane (PDMS) surface to obtain a switchable and reversible wettability change between hydrophilic and hydrophobic states. The thermally responsive polymer, poly( N-Isopropylacrylamide) (PNIPAAm), was grafted on the surface of PDMS channels by UV-induced surface grafting. PNIPAAm-grafted PDMS (PNIPAAm-g-PDMS) surface wettability can be thermally tuned to obtain water contact angles varying in the range of 24.3 to 106.1° by varying temperature at 25-38 °C. By selectively modifying the functionalized area in the microfluidic channels, multiform emulsion droplets of oil-in-water (O/W), water-in-oil (W/O), oil-in-water-in-oil (O/W/O), and water-in-oil-in-water (W/O/W) could be created on-demand. Combining solid surface wettability and liquid-liquid interfacial properties, tunable generation of O/W and W/O droplet and stratified flows were enabled in the same microfluidic device with either different or the same two-phase fluidic systems, by properly heating/cooling thermal-responsive microfluidic channels and choosing suitable surfactants. Controllable creation of O/W/O and W/O/W droplets was also achieved in the same microfluidic device, by locally heating or cooling the droplet generation areas with integrated electric heaters to achieve opposite surface wettability. Hollow microcapsules were prepared using double emulsion droplets as templates in the microfluidic device with sequential hydrophobic and hydrophilic channel segments, demonstrating the strength of the proposed approach in practical applications.
Collapse
Affiliation(s)
- Lanhui Li
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | | | | | | | | | | | - Albert van den Berg
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | - Jan C T Eijkel
- BIOS/Lab on a Chip Group, MESA+ Institute for Nanotechnology , University of Twente , Enschede 7500AE , The Netherlands
| | | |
Collapse
|
40
|
Bae J, Lee J, Zhou Q, Kim T. Micro-/Nanofluidics for Liquid-Mediated Patterning of Hybrid-Scale Material Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804953. [PMID: 30600554 DOI: 10.1002/adma.201804953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Various materials are fabricated to form specific structures/patterns at the micro-/nanoscale, which exhibit additional functions and performance. Recent liquid-mediated fabrication methods utilizing bottom-up approaches benefit from micro-/nanofluidic technologies that provide a high controllability for manipulating fluids containing various solutes, suspensions, and building blocks at the microscale and/or nanoscale. Here, the state-of-the-art micro-/nanofluidic approaches are discussed, which facilitate the liquid-mediated patterning of various hybrid-scale material structures, thereby showing many additional advantages in cost, labor, resolution, and throughput. Such systems are categorized here according to three representative forms defined by the degree of the free-fluid-fluid interface: free, semiconfined, and fully confined forms. The micro-/nanofluidic methods for each form are discussed, followed by recent examples of their applications. To close, the remaining issues and potential applications are summarized.
Collapse
Affiliation(s)
- Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jongwan Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Qitao Zhou
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
41
|
Li Z, Yin Y. Stimuli-Responsive Optical Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807061. [PMID: 30773717 DOI: 10.1002/adma.201807061] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Indexed: 05/24/2023]
Abstract
Responsive optical nanomaterials that can sense and translate various external stimuli into optical signals, in the forms of observable changes in appearance and variations in spectral line shapes, are among the most active research topics in nanooptics. They are intensively exploited within the regimes of the four classic optical phenomena-diffraction in photonic crystals, absorption of plasmonic nanostructures, as well as color-switching systems, refraction of assembled birefringent nanostructures, and emission of photoluminescent nanomaterials and molecules. Herein, a comprehensive review of these research activities regarding the fundamental principles and practical strategies is provided. Starting with an overview of their substantial developments during the latest three decades, each subtopic discussion is led with fundamental theories that delineate the correlation between nanostructures and optical properties and the delicate research strategies are elaborated with specific attention focused on working principles and optical performances. The unique advantages and inherent limitations of each responsive optical nanoscale platform are summarized, accompanied by empirical criteria that should be met and perspectives on research opportunities where the developments of next-generation responsive optical nanomaterials might be directed.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
42
|
Wang Y, Shang L, Bian F, Zhang X, Wang S, Zhou M, Zhao Y. Hollow Colloid Assembled Photonic Crystal Clusters as Suspension Barcodes for Multiplex Bioassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900056. [PMID: 30828983 DOI: 10.1002/smll.201900056] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/15/2019] [Indexed: 05/25/2023]
Abstract
Barcode particles have a demonstrated value for multiplexed high-throughput bioassays. Here, a novel photonic crystal (PhC) barcode is presented that consists of hollow colloidal nanospheres assembled through microfluidic droplet templates. Due to their gas-filled core, the resultant barcode particles not only show increased refractive index contrast, but also remain in suspension by adjusting the overall density of the PhC to match that of a detection solution. In addition, magnetic nanoparticles can be integrated to give the barcodes a magnetically controllable motion ability. The encoding ability of the barcodes is demonstrated in microRNA detection with high specificity and sensitivity, and the excellent features of the barcodes make them potentially very useful for biomedical applications.
Collapse
Affiliation(s)
- Yu Wang
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- School of Engineering and Applied Sciences, Harvard University Cambridge, MA, 02138, USA
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Mengtao Zhou
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
43
|
Liu P, Sheng T, Xie Z, Chen J, Gu Z. Robust, Highly Visible, and Facile Bioconjugation Colloidal Crystal Beads for Bioassay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29378-29384. [PMID: 30094987 DOI: 10.1021/acsami.8b11472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High mechanical strength, highly visible, and admirable grafting molecular ability is the key challenge for colloidal photonic crystal (CPC) barcode beads in multiplex analysis fields. To achieve this goal, we proposed self-adhesion particles, polydopamine-coated SiO2 nanoparticles (PDA@SiO2), to construct CPC barcode beads by droplet-based microfluidic approach. Because of the adhesion, broad absorption of light, and "active" functional groups of PDA, the beads are endowed with high robustness, visibility, and excellent biomolecule immobilization. Ultrasonic treatment and compression experiments demonstrated that PDA@SiO2 CPC barcode beads have a high mechanical strength. Color analysis illustrated that PDA@SiO2 CPC beads exhibited a high visibility in color. The verification of fluorescent-tagged biomolecule conjugation together with the antigen detection stated that PDA@SiO2 CPC beads are capable of immobilizing biomolecule by covalent binding. With a sandwich format, the beads were applied to analyze the tumor makers including alpha fetal protein, carcinoembryonic antigen, and prostate specific antigen from practical clinical serum. The proposed suspension arrays using PDA@SiO2 CPC beads as a barcode showed acceptable accuracy and detection reproducibility.
Collapse
|
44
|
Li L, Pan L, Ma Z, Yan K, Cheng W, Shi Y, Yu G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. NANO LETTERS 2018; 18:3322-3327. [PMID: 29419302 DOI: 10.1021/acs.nanolett.8b00003] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.
Collapse
Affiliation(s)
- Lanlan Li
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Lijia Pan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Zhong Ma
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Ke Yan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Wen Cheng
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Yi Shi
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
45
|
Ren W, Qin M, Hu X, Li F, Wang Y, Huang Y, Su M, Li W, Qian X, Tang KL, Song Y. Bioinspired Synergy Sensor Chip of Photonic Crystals-Graphene Oxide for Multiamines Recognition. Anal Chem 2018; 90:6371-6375. [DOI: 10.1021/acs.analchem.8b01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wanjie Ren
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Qin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Xiaotian Hu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Yuanfeng Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, 100088, China
| | - Yu Huang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| | - Xin Qian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang-lai Tang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China
| |
Collapse
|
46
|
Shrivastava VP, Kumar J, Sivakumar S. Enhanced Green Upconversion Emission From α-NaYF4
:Yb, Er Nanoparticles Embedded Silica Inverse Opal Heterostructure. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vishnu Prasad Shrivastava
- Dr. Vishnu Prasad Shrivastava, Prof. Jitendra Kumar and Prof. Sri Sivakumar; Materials Science Programme; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Jitendra Kumar
- Dr. Vishnu Prasad Shrivastava, Prof. Jitendra Kumar and Prof. Sri Sivakumar; Materials Science Programme; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Sri Sivakumar
- Dr. Vishnu Prasad Shrivastava, Prof. Jitendra Kumar and Prof. Sri Sivakumar; Materials Science Programme; Indian Institute of Technology Kanpur; Kanpur- 208016 India
- Prof. Sri Sivakumar; Department of Chemical Engineering; Centre for Environmental Science and Engineering; Thematic Unit of Excellence on Soft Nanofabrication; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
47
|
Qin M, Sun M, Bai R, Mao Y, Qian X, Sikka D, Zhao Y, Qi HJ, Suo Z, He X. Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800468. [PMID: 29638026 DOI: 10.1002/adma.201800468] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Living organisms ubiquitously display colors that adapt to environmental changes, relying on the soft layer of cells or proteins. Adoption of soft materials into an artificial adaptive color system has promoted the development of material systems for environmental and health monitoring, anti-counterfeiting, and stealth technologies. Here, a hydrogel interferometer based on a single hydrogel thin film covalently bonded to a reflective substrate is reported as a simple and universal adaptive color platform. Similar to the cell or protein soft layer of color-changing animals, the soft hydrogel layer rapidly changes its thickness in response to external stimuli, resulting in instant color change. Such interference colors provide a visual and quantifiable means of revealing rich environmental metrics. Computational model is established and captures the key features of hydrogel stimuli-responsive swelling, which elucidates the mechanism and design principle for the broad-based platform. The single material-based platform has advantages of remarkable color uniformity, fast response, high robustness, and facile fabrication. Its versatility is demonstrated by diverse applications: a volatile-vapor sensor with highly accurate quantitative detection, a colorimetric sensor array for multianalyte recognition, breath-controlled information encryption, and a colorimetric humidity indicator. Portable and easy-to-use sensing systems are demonstrated with smartphone-based colorimetric analysis.
Collapse
Affiliation(s)
- Meng Qin
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mo Sun
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ruobing Bai
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Yiqi Mao
- The George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaoshi Qian
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dipika Sikka
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuan Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hang Jerry Qi
- The George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
48
|
Wang T, Liu J, Nie F. Non-dye cell viability monitoring by using pH-responsive inverse opal hydrogels. J Mater Chem B 2018; 6:1055-1065. [PMID: 32254293 DOI: 10.1039/c7tb02631e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of drug screening focus on accurate, rapid and high-throughput screening methods. In our work, hydrogel inverse opal photonic crystal microspheres (HPCMs) were fabricated through a templating method and exhibited a robust and reversible response to temperature and pH. The response performance was tested under various temperature (25-55 °C) and pH (1.5-7.5) conditions and the reflective peak shifted noticeably within the visible wavelength range. Furthermore, HPCMs were used as drug delivery carriers and not only displayed high doxorubicin (DOX) drug loading but also presented thermo/pH-induced drug release properties. More importantly, these carriers were shown to be good reporters for monitoring cell viability due to their tunable colour variation. This capability was applied to H460 cell cultures with or without DOX. The structure colour of HPCMs varied in different cell culture microenvironments, and cell apoptosis was able to be distinguished. In this way, this fast, non-dyeing method for reporting cell viability in tumour cytotoxicity assays has potential in the field of drug screening and may give new insights into the use of structural colour to report results in drug screening systems.
Collapse
Affiliation(s)
- Tengfei Wang
- Division of Nanobionic Research, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, P. R. China.
| | | | | |
Collapse
|
49
|
Zhang D, Ma B, Tang L, Liu H. Toward Quantitative Chemical Analysis Using a Ruler on Paper: An Approach to Transduce Color to Length Based on Coffee-Ring Effect. Anal Chem 2018; 90:1482-1486. [DOI: 10.1021/acs.analchem.7b03790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dagan Zhang
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Litianyi Tang
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
50
|
Hou J, Li M, Song Y. Patterned Colloidal Photonic Crystals. Angew Chem Int Ed Engl 2017; 57:2544-2553. [PMID: 28891204 DOI: 10.1002/anie.201704752] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Indexed: 11/07/2022]
Abstract
Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented.
Collapse
Affiliation(s)
- Jue Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|