1
|
Chen X, Zhi C, Zhou X, Li F, Ye Y, Sun B, Zhao D, Liu Z, Zhang X, Zhang K, Liu B, Zhang X. A novel biomimetic strategy for mimicking amelogenesis to repair enamel. Dent Mater 2025:S0109-5641(25)00283-0. [PMID: 40037980 DOI: 10.1016/j.dental.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
According to the principle of minimal invasiveness in modern dentistry, biomimetic remineralization therapy constitutes a significant strategy for the prevention and treatment of early enamel caries. Based on the three "key events" of amelogenesis in vivo, silk fibroin (SF) combined with carboxymethyl chitosan (CMC) successfully formed an SF/CMC composite, and amorphous calcium phosphate (ACP) was then used to form an SF/CMC-ACP nanocomposite with remineralization properties. In our study, SF was used as a template protein for biomimetic amelogenin, ACP was stabilized with CMC and the remineralization was guided using NaClO to simulate the action of proteolytic enzymes. The SF/CMC-ACP nanocomposite demonstrated excellent biocompatibility and enamel remineralization effects in both in vitro/in vivo experiments; thus, a theoretical basis for biomimetic enamel remineralization studies was provided.
Collapse
Affiliation(s)
- Xu Chen
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Cheng Zhi
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Xinye Zhou
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Fan Li
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yangyang Ye
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Bing Sun
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Dongping Zhao
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Zongren Liu
- Binhai Hospital of Tianjin Medical University General Hospital, China
| | - Xiangyu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Kai Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Xu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
2
|
López
Barreiro D, Houben K, Schouten O, Koenderink GH, Thies JC, Sagt CMJ. Order-Disorder Balance in Silk-Elastin-like Polypeptides Determines Their Self-Assembly into Hydrogel Networks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:650-662. [PMID: 39681513 PMCID: PMC11783522 DOI: 10.1021/acsami.4c17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
The biofabrication of recombinant structural proteins with a range of mechanical or structural features usually relies on the generation of protein libraries displaying variations in terms of amino acid composition, block structure, molecular weight, or physical/chemical cross-linking sites. This approach, while highly successful in generating a wealth of knowledge regarding the links between design features and material properties, has some inherent limitations related to its low throughput. This slows down the pace of the development of de novo recombinant structural proteins. Here, we propose an approach to tune the viscoelastic properties of temperature-responsive hydrogels made of silk-elastin-like polypeptides (SELPs) without modifying their sequence. To do so, we subject purified SELPs to two different postprocessing methods─water annealing or EtOH annealing─that alter the topology of highly disordered SELP networks via the formation of ordered intermolecular β-sheet physical cross-links. Combining different analytical techniques, we connect the order/disorder balance in SELPs with their gelling behavior. Furthermore, we show that introducing a functional block (in this case, a biomineralizing peptide) in the sequence of SELPs can disrupt its self-assembly and that such disruption can only be overcome by EtOH annealing. Our results suggest that postprocessing of as-purified SELPs might be a simple approach to tune the self-assembly of SELPs into biomaterials with bespoke viscoelastic properties beyond the traditional approach of developing SELP libraries via genetic engineering.
Collapse
Affiliation(s)
- Diego López
Barreiro
- Manufacturing
Futures Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- Centre for
Nature-Inspired Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- dsm-firmenich
Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Klaartje Houben
- dsm-firmenich
Science & Research, Analytical Sciences, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Olaf Schouten
- dsm-firmenich
Science & Research, Analytical Sciences, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jens C. Thies
- DSM Biomedical, Urmonderbaan 22, Geleen 6160 BB, The Netherlands
| | - Cees M. J. Sagt
- dsm-firmenich
Science & Research, Biotechnology, Alexander Fleminglaan 1, Delft 2613 AX, The Netherlands
| |
Collapse
|
3
|
Hu Y, Li J, Zhang J, Zhang W, Fan Y. Self-assembly driven regulation of 3d brush-/flower-like silk nanostructures with robust structural effects on composites construction. Int J Biol Macromol 2024; 285:138245. [PMID: 39631589 DOI: 10.1016/j.ijbiomac.2024.138245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Natural designs provide abundant inspirations for constructing structure regulated, performance enhanced and function enriched materials. An impressive 3D brush-like silk nanostructure (SNB) was designed and regulated via template-guided self-assembly approach in our previous work. While fundamental issues on template-guided self-assembly process to construct SNBs and followed by regulating flower-like silk nanostructure (SNF) mineralization have not been studied in detail yet. Robust structural effects and additional functionalities on composites construction remain hazy. Herein, current works concentrate on issues related to assembly dynamics, structural features, characteristic parameters and assembly simulation during template-guided self-assembly process. Morphologies change, transmittance, pH value, zeta-potential, ThT-induced fluorescence emission and MD simulation are measured to monitor SNBs formation, proving it's a nucleus reliance and conformation transition process. Structural superiorities of SNBs and SNFs are proved by constructing composited materials (such as membranes, hydrogels or aerogels) with cellulose or chitin derivatives, and enhanced mechanical performance, excellent viscoelastic behavior or highly porous network can be found therewith. In addition, additional functionalities such as Ag nanoparticle reducing property and anti-bacteria application are evaluated as well. This work is expected to provide guidelines and inspirations for tailoring versatile structures in controlled manners and exploiting functional features to expand silk utilization scopes.
Collapse
Affiliation(s)
- Yanlei Hu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, College of Marine and Bioengineering, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Juan Li
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, College of Marine and Bioengineering, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiamin Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, College of Marine and Bioengineering, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wenwen Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, College of Marine and Bioengineering, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Wang Y, Yang Z, Jia B, Chen L, Yan C, Peng F, Mu T, Xue Z. Natural Deep Eutectic Solvent-Assisted Construction of Silk Nanofibrils/Boron Nitride Nanosheets Membranes with Enhanced Heat-Dissipating Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403724. [PMID: 39054638 PMCID: PMC11529046 DOI: 10.1002/advs.202403724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Natural polymer-derived nanofibrils have gained significant interest in diverse fields. However, production of bio-nanofibrils with the hierarchical structures such as fibrillar structures and crystalline features remains a great challenge. Herein, an all-natural strategy for simple, green, and scalable top-down exfoliation silk nanofibrils (SNFs) in novel renewable deep eutectic solvent (DES) composed by amino acids and D-sorbitol is innovatively developed. The DES-exfoliated SNFs with a controllable fibrillar structures and intact crystalline features, novelty preserving the hierarchical structure of natural silk fibers. Owing to the amphiphilic nature, the DES-exfoliated SNFs show excellent capacity of assisting the exfoliation of several 2D-layered materials, i.e., h-BN, MoS2, and WS2. More importantly, the SNFs-assisted dispersion of BNNSs with a concentration of 59.3% can be employed to construct SNFs/BNNSs nanocomposite membranes with excellent mechanical properties (tensile strength of 416.7 MPa, tensile modulus of 3.86 GPa and toughness of 1295.4 KJ·m-3) and thermal conductivity (in-plane thermal conductivity coefficient of 3.84 W·m-1·K-1), enabling it to possess superior cooling efficiency compared with the commercial silicone pad.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Zhaohui Yang
- School of Chemistry and Life ResourcesRenmin University of ChinaBeijing100872China
| | - Bingzheng Jia
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Lan Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Chuanyu Yan
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| | - Tiancheng Mu
- School of Chemistry and Life ResourcesRenmin University of ChinaBeijing100872China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic ChemistryState Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
5
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
6
|
Ma X, Neek-Amal M, Sun C. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. ACS NANO 2024; 18:12610-12638. [PMID: 38733357 DOI: 10.1021/acsnano.3c11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Salinity gradient energy, often referred to as the Gibbs free energy difference between saltwater and freshwater, is recognized as "blue energy" due to its inherent cleanliness, renewability, and continuous availability. Reverse electrodialysis (RED), relying on ion-selective membranes, stands as one of the most prevalent and promising methods for harnessing salinity gradient energy to generate electricity. Nevertheless, conventional RED membranes face challenges such as insufficient ion selectivity and transport rates and the difficulty of achieving the minimum commercial energy density threshold of 5 W/m2. In contrast, two-dimensional nanostructured materials, featuring nanoscale channels and abundant functional groups, offer a breakthrough by facilitating rapid ion transport and heightened selectivity. This comprehensive review delves into the mechanisms of osmotic power generation within a single nanopore and nanochannel, exploring optimal nanopore dimensions and nanochannel lengths. We subsequently examine the current landscape of power generation using two-dimensional nanostructured materials in laboratory-scale settings across various test areas. Furthermore, we address the notable decline in power density observed as test areas expand and propose essential criteria for the industrialization of two-dimensional ion-selective membranes. The review concludes with a forward-looking perspective, outlining future research directions, including scalable membrane fabrication, enhanced environmental adaptability, and integration into multiple industries. This review aims to bridge the gap between previous laboratory-scale investigations of two-dimensional ion-selective membranes in salinity gradient energy conversion and their potential large-scale industrial applications.
Collapse
Affiliation(s)
- Xinyi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
7
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
8
|
Han Q, Tao F, Yang P. Amyloid-Like Assembly to Form Film at Interfaces: Structural Transformation and Application. Macromol Biosci 2023; 23:e2300172. [PMID: 37257459 DOI: 10.1002/mabi.202300172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Protein-based biomaterials are attracting broad interest for their remarkable structural and functional properties. Disturbing the native protein's three-dimensional structural stability in vitro and controlling subsequent aggregation is an effective strategy to design and construct protein-based biomaterials. One of the recent developments in regulating protein structural transformation to ordered aggregation is amyloid assembly, which generates fibril-based 1D to 3D nanostructures as functional materials. Especially, the amyloid-like assembly to form films at interfaces has been reported, which is induced by the effective reduction of the intramolecular disulfide bond. The main contribution of this amyloid-like assembly is the large-scale formation of protein films at interfaces and excellent adhesion to target substrates. This review presents the research progress of the amyloid-like assembly to form films and related applications and thereby provides a guide to exploiting protein-based biomaterials.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
9
|
Yang S, Zhao C, Yang Y, Ren J, Ling S. The Fractal Network Structure of Silk Fibroin Molecules and Its Effect on Spinning of Silkworm Silk. ACS NANO 2023; 17:7662-7673. [PMID: 37042465 DOI: 10.1021/acsnano.3c00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Animal silk is usually considered to exist as a solid fiber with a highly ordered structure, formed by the hierarchical assembly starting from a single silk fibroin (SF) chain. However, this study showed that silk protein molecules existed in the form of a fractal network structure in aqueous solution, rather than as a single chain. This type of network was relatively rigid with low fractal dimension. Finite element analysis revealed that this network structure significantly helped in the stable storage of SF prior to the spinning process and in the rapid formation of a β-sheeted nanocrystalline and nematic texture during spinning. Further, the strong but brittle mechanical properties of Bombyx mori silk could also be well-explained through the fractal network model of silk fibroin. The strength was mainly derived from the dual network structure, consisting of nodes and β-sheet cross-links, whereas the brittleness could be attributed to the rigidity of the SF chains between these nodes and cross-links. In summary, this study presents insights from network topology for understanding the spinning process of natural silk and the structure-property relationship in silk materials.
Collapse
Affiliation(s)
- Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yunhao Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, People's Republic of China
| |
Collapse
|
10
|
Zhang N, Yan C, Yin C, Hu X, Guan P, Cheng Y. Structural Remodeling Mechanism of the Toxic Amyloid Fibrillary Mediated by Epigallocatechin-3-gallate. ACS OMEGA 2022; 7:48047-48058. [PMID: 36591187 PMCID: PMC9798747 DOI: 10.1021/acsomega.2c05995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Numerous therapeutic agents and strategies were designed targeting the therapies of Alzheimer's disease, but many have been suspended due to their severe clinical side effects (such as encephalopathy) on patients. The attractiveness for small molecules with good biocompatibility is therefore restarted. Epigallocatechin-3-gallate (EGCG), extracted from green tea, is expected to be a promising small-molecule drug candidate, which can remodel the structure of preformed β-sheet-rich oligomers/fibrils and then effectively interfere with neurodegenerative processes. However, as the structure of non-fibrillary aggregates cannot be directly characterized, the atomic details of the underlying inhibitory and destructive mechanisms still remain elusive to date. Here, all-atom molecular dynamics simulations and experiments were carried out to elucidate the EGCG-induced remodeling mechanism of amyloid β (Aβ) fibrils. We showed that EGCG was indeed an effective Aβ fibril inhibitor. EGCG was capable of mediating conformational rearrangement of Aβ1-42 fibrils (from a β-sheet to a random coil structure) and triggering the disintegration of fibrils in a dose-dependent manner. EGCG redirected the structure of Aβ by breaking the β-sheet structure and hydrogen bonds between peptide chains within the Aβ protofibrils, especially the parallel β-strand (L17VFFAEDVGS26). Moreover, reduced solvent exposure and multisite binding patterns all tended to induce the conformation conversion of Aβ17-42 pentameric protofibrils, destroying pre-formed fibrils and inhibiting continued fibril growth. Detailed data analysis revealed that structural features of EGCG with abundant benzene ring and phenolic hydroxyl moieties preferentially interact with the parallel β-strands to effectually hinder the interaction of the interpeptide chain and the growth of the ordered β-sheet structure. Furthermore, experimental studies confirmed that EGCG was able to disaggregate the preformed fibrils and alter the protein structure. This study will enable a deeper understanding of fundamental principles for design of structural-based inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- School
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Chaoren Yan
- School
of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention
Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, China
| | - Changji Yin
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| | - Xiaoling Hu
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Ping Guan
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Yuan Cheng
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
11
|
Shi M, Hu Y, Luo X, Liu L, Yu J, Fan Y. Tiny NaOH Assisted Facile Preparation of Silk Nanofibers and Their Nanotube-Compositing Strong, Flexible, and Conductive Films. ACS Biomater Sci Eng 2022; 8:4014-4023. [PMID: 35985039 DOI: 10.1021/acsbiomaterials.2c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural silk nanofibers (SNFs) can not only be used as good building blocks for two- or three-dimensional biomaterials but also provide a clue for understanding the theory of structure-function relationships. Nevertheless, it is still difficult to directly extract SNFs from natural silk fibers due to their high crystallinity and recalcitrant complex structures. In the present study, a dilute alkali-assisted separation of high-yield SNFs is proposed. The degummed silk was first treated with a tiny amount of alkali at a mild temperature, followed by high-pressure homogenization. Under the optimized conditions (2% sodium hydroxide, 0 °C, 48 h), SNFs with diameters of 8-42 nm and lengths of 0.9 ± 0.3 μm were prepared with yields higher than 75%, which retained the natural structures at the nanoscale and some inherent properties of silk fibers. Interestingly, SNFs can be used as a stabilizing matrix to assist carbon nanotubes (CNTs) to disperse, aiming to form a uniform and stable CNT/SNF dispersion. Thereafter, a strong and flexible conductive composite film was fabricated with good mechanical properties. The composite film showed good piezoelectric properties and electric thermal response, which has promising application prospects for SNFs, such as in optical devices, nanoelectronics, and biosensors.
Collapse
Affiliation(s)
- Mengyue Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yanlei Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xin Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| |
Collapse
|
12
|
Cao Y, Olsen BD. Strengthening and Toughening of Protein-Based Thermosets via Intermolecular Self-Assembly. Biomacromolecules 2022; 23:3286-3295. [PMID: 35834611 DOI: 10.1021/acs.biomac.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As proteins are abundant polymers in biomass sources such as agricultural feedstocks and byproducts, leveraging them to develop alternatives to synthetic polymers is of great interest. However, the mechanical performance of protein materials is not suitable for most target applications. Constructing copolymers with proteins as hard domains and rubbery polymers as soft domains has been shown to be a promising strategy for improving mechanical properties. Herein, it is demonstrated that toughening and strengthening of protein copolymers can be advanced further by thermal treatment, leading to mechanical enhancements that generalize across a variety of different protein feedstocks, including whey, serum, soy, and pea proteins. The thermal treatment induces a rearrangement of protein structure, leading to the formation of intermolecular β-sheets. The ordered intermolecular structures in the hard domains of thermosets greatly improve their mechanical properties, providing simultaneous increases in strength, toughness, and modulus, with little sacrifice in fracture strain. Analogous to crystalline structures, the formation of intermolecular β-sheet structures also leads to reduced hygroscopicity. This is a valuable contribution, as practical applications of natural polymer-based plastics are frequently hindered by the materials' humidity sensitivity. Therefore, this work demonstrates a simple yet versatile strategy to improve the materials' performance from a wide range of protein feedstocks, as well as signifies the implications of protein structural assembly in materials design.
Collapse
Affiliation(s)
- Yiping Cao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Kamada A, Herneke A, Lopez-Sanchez P, Harder C, Ornithopoulou E, Wu Q, Wei X, Schwartzkopf M, Müller-Buschbaum P, Roth SV, Hedenqvist MS, Langton M, Lendel C. Hierarchical propagation of structural features in protein nanomaterials. NANOSCALE 2022; 14:2502-2510. [PMID: 35103743 DOI: 10.1039/d1nr05571b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Anja Herneke
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Patricia Lopez-Sanchez
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Eirini Ornithopoulou
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| | - Qiong Wu
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | | | - Peter Müller-Buschbaum
- Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße. 1, D-85748 Garching, Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron, Notkestr. 85, D-22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Maud Langton
- Department of Molecular Sciences, SLU, Swedish University of Agricultural Sciences, BioCentrum, Almas allé 5, SE-756 61, Uppsala, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
14
|
Cianci C, Chelazzi D, Poggi G, Modi F, Giorgi R, Laurati M. Hybrid fibroin-nanocellulose composites for the consolidation of aged and historical silk. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Zhou J, Li T, Peydayesh M, Usuelli M, Lutz‐Bueno V, Teng J, Wang L, Mezzenga R. Oat Plant Amyloids for Sustainable Functional Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104445. [PMID: 34931493 PMCID: PMC8811842 DOI: 10.1002/advs.202104445] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Amyloid functional materials from amyloid fibril building blocks, produced in vitro from amyloidogenic natural proteins or synthetic peptides, show diverse functionalities ranging from environmental science and biomedicine, to nanotechnology and biomaterials. However, sustainable and affordable sources of amyloidogenic proteins remain the bottleneck for large-scale applications, and to date, interest remains essentially limited to fundamental studies. Plant-derived proteins would be an ideal source due to their natural abundance and low environmental impact. Hereby oat globulin, the primary protein of oat plant (Avena sativa), is utilized to yield high-quality amyloid fibrils and functional materials based thereof. These fibrils show a rich multistranded ribbon-like polymorphism and a fibrillization process with both irreversible and reversible pathways. The authors furthermore fabricate oat-amyloid aerogels, films, and membranes for possible use in water purification, sensors, and patterned electrodes. The sustainability footprint of oat-amyloids against other protein sources is demonstrated, anticipating an environmentally-efficient platform for advanced materials and technologies.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Ting Li
- School of Food Science and TechnologyNational Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityLihu Road 1800Wuxi214122China
| | - Mohammad Peydayesh
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Jie Teng
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Li Wang
- School of Food Science and TechnologyNational Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityLihu Road 1800Wuxi214122China
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
16
|
Gelation Methods to Assemble Fibrous Proteins. Methods Mol Biol 2022; 2347:149-165. [PMID: 34472063 DOI: 10.1007/978-1-0716-1574-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gelation is an efficient way to fabricate fibrous protein materials. Briefly, it is an aggregation process where protein molecules assembly from a random structure into an organized structure such as nanofibrillar networks. According to their mechanisms, the fibrous proteins gelation can be classified into physical gelation and chemical gelation. The physical gelation is formed by the conformational transformation of fibroin proteins, which can be triggered by temperature, concentration, pH, or shear force. On the other hand, the chemical gelation is to cross-link fibrous proteins through chemical and/or enzymatic reactions. In this chapter, we summarize the protocols for preparing fibrous protein hydrogels, including both physical and chemical methods. The mechanisms of these gelation methods are also highlighted.
Collapse
|
17
|
Aye SSS, Zhang ZH, Yu X, Ma WD, Yang K, Yuan B, Liu X, Li JL. Antimicrobial and Bioactive Silk Peptide Hybrid Hydrogel with a Heterogeneous Double Network Formed by Orthogonal Assembly. ACS Biomater Sci Eng 2021; 8:89-99. [PMID: 34859992 DOI: 10.1021/acsbiomaterials.1c01228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrogels mimic the natural extracellular matrix in terms of their nanofibrous structure and large water content. However, the lack of a combination of properties including sufficient heterogeneity in the gel structure, intrinsic antimicrobial activity, and bioactivity limits the efficiency of hydrogels for tissue engineering applications. In this work, a hydrogel with a combination of these properties was fabricated by hybridizing silk fibroin with a low-molecular-weight peptide gelator. It was observed that silk fibroin and the peptide gelator assembled orthogonally in sequence. While the morphology of silk fibroin nanofibrils was not affected by the peptide gelator, silk fibroin promoted the formation of wider nanoribbons of the peptide gelator by modulating its nucleation and growth. Orthogonal assembly maintained the antimicrobial activity of the peptide gelator and the excellent biocompatibility of silk fibroin in the hybrid gel. The hybrid gel also demonstrated improved interactions with cells, an indicator of a higher bioactivity, possibly due to the heterogeneous double network structure.
Collapse
Affiliation(s)
- San Seint Seint Aye
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Zhi-Hong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xin Yu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Wen-Dong Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xin Liu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| |
Collapse
|
18
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
19
|
Chen M, Yang F, Chen X, Qin R, Pi H, Zhou G, Yang P. Crack Suppression in Conductive Film by Amyloid-Like Protein Aggregation toward Flexible Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104187. [PMID: 34510560 DOI: 10.1002/adma.202104187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
A fatal weakness in flexible electronics is the mechanical fracture that occurs during repetitive fatigue deformation; thus, controlling the crack development of the conductive layer is of prime importance and has remained a great challenge until now. Herein, this issue is tackled by utilizing an amyloid/polysaccharide molecular composite as an interfacial binder. Sodium alginate (SA) can take part in amyloid-like aggregation of the lysozyme, leading to the facile synthesis of a 2D protein/saccharide hybrid nanofilm over an ultralarge area (e.g., >400 cm2 ). The introduction of SA into amyloid-like aggregates significantly enhances the mechanical strength of the hybrid nanofilm, which, with the help of amyloid-mediated interfacial adhesion, effectively diminishes the microcracks in the hybrid nanofilm coating after repetitive bending or stretching. The microcrack-free hybrid nanofilm then shows high interfacial activity to induce electroless deposition of metal in a Kelvin model on a substrate, which noticeably suppresses the formation of microcracks and consequent conductivity loss during the bending and stretching of the metal-coated flexible substrates. This work underlines the significance of amyloid/polysaccharide nanocomposites in the design of interfacial binders for reliable flexible electronic devices and represents an important contribution to mimicking amyloid and polysaccharide-based adhesive cements created by organisms.
Collapse
Affiliation(s)
- Mengmeng Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Xi Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710119, China
| | - Rongrong Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hemu Pi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guijiang Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
20
|
Gasymov OK, Mammedzade AM, Bakhishova MJ, Guliyeva AJ, Ragona L, Molinari H. Sodium fusidate prevents protein aggregation of silk fibroin and offers new perspectives for human lens material disaggregation. Biophys Chem 2021; 279:106680. [PMID: 34537590 DOI: 10.1016/j.bpc.2021.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/30/2023]
Abstract
Silk fibroin (SF) is a non-pathological amyloidogenic protein prone, in solution, to the formation of amyloid-like aggregated species, displaying similarities in fibrillation kinetics with pathological amyloids, as widely reported in the literature. We show here, on the basis of different biophysical approaches (turbidity, Congo Red assays, CD, DLS and fluorescence), that fusidic acid (FA), a well-known antibiotic, acts on SF as an anti-aggregating agent in a dose-dependent manner, being also able to revert SF aggregation. FA binds to SF inducing changes in the environment of SF aromatic residues. We further provide the proof of principle that FA, already approved as drug on humans and used in ophthalmic preparations, displays its anti-aggregation properties also on lens material derived from cataract surgery and is capable of reducing aggregation. Thus it is suggested that FA can be foreseen as a therapeutic treatment for cataract and other protein aggregation disorders.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Institute of Biophysics of ANAS, 117 Z. Khalilov, AZ-1141 Baku, Azerbaijan.
| | - Aida M Mammedzade
- Institute of Biophysics of ANAS, 117 Z. Khalilov, AZ-1141 Baku, Azerbaijan
| | | | - Aytaj J Guliyeva
- Institute of Biophysics of ANAS, 117 Z. Khalilov, AZ-1141 Baku, Azerbaijan
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), CNR, via Corti 12, 20133 Milano, Italy.
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), CNR, via Corti 12, 20133 Milano, Italy
| |
Collapse
|
21
|
Secondary Structure Analysis of Single Silk Nanofibril through Infrared Nanospectroscopy. Methods Mol Biol 2021. [PMID: 34472068 DOI: 10.1007/978-1-0716-1574-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Infrared nanospectroscopy (NanoIR) is a new experimental technique to research the secondary structure of protein-based nanoarchitectures in recent years. Compared with the conventional IR, NanoIR reveals to be an exquisite, sensitive, and accurate tool to analyze and image the single molecule secondary structure, which can reach up to high spatial resolution (10 nm). Here we present a detailed protocol to introduce how to study single silk nanofibril (SNF) and process the results by this routine. This protocol provides a useful method to demonstrate the microstructure of nanomaterials by NanoIR, displaying the potential application in analytical chemistry, biomaterials, and nanotechnologies.
Collapse
|
22
|
Gowda V, Biler M, Filippov A, Mantonico MV, Ornithopoulou E, Linares M, Antzutkin ON, Lendel C. Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of β-lactoglobulin. RSC Adv 2021; 11:27868-27879. [PMID: 35480736 PMCID: PMC9037834 DOI: 10.1039/d1ra03575d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure–function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11–20 of the protein β-lactoglobulin (β-LG11–20), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of 13C and 15N resonances in the solid-state NMR spectra for the β-LG11–20 fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the β-LG11–20 fibrils were probed using NMR experiments of the peptide with 13C- and 15N-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel β-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel β-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible. A 10-residue peptide segment of β-lactoglobulin (β-LG11–20) forms amyloid-like fibrils as revealed by AFM, NMR, and MD simulations.![]()
Collapse
Affiliation(s)
- Vasantha Gowda
- Dept. of Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| | - Michal Biler
- Dept. of Theoretical Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology Sweden.,Dept. Medical and Biological Physics, Kazan State Medical University 420012 Kazan Russia
| | | | | | - Mathieu Linares
- Dept. of Theoretical Chemistry, KTH Royal Institute of Technology Stockholm Sweden.,Laboratory of Organic Electronics and Group of Scientific Visualization, ITN, Linköping University 60174 Norrköping Sweden.,Swedish e-Science Research Centre (SeRC), Linköping University 60174 Norrköping Sweden
| | - Oleg N Antzutkin
- Chemistry of Interfaces, Luleå University of Technology Sweden.,Dept. of Physics, University of Warwick Coventry UK
| | - Christofer Lendel
- Dept. of Chemistry, KTH Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
23
|
Peydayesh M, Mezzenga R. Protein nanofibrils for next generation sustainable water purification. Nat Commun 2021; 12:3248. [PMID: 34059677 PMCID: PMC8166862 DOI: 10.1038/s41467-021-23388-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Water scarcity is rapidly spreading across the planet, threatening the population across the five continents and calling for global sustainable solutions. Water reclamation is the most ecological approach for supplying clean drinking water. However, current water purification technologies are seldom sustainable, due to high-energy consumption and negative environmental footprint. Here, we review the cutting-edge technologies based on protein nanofibrils as water purification agents and we highlight the benefits of this green, efficient and affordable solution to alleviate the global water crisis. We discuss the different protein nanofibrils agents available and analyze them in terms of performance, range of applicability and sustainability. We underline the unique opportunity of designing protein nanofibrils for efficient water purification starting from food waste, as well as cattle, agricultural or dairy industry byproducts, allowing simultaneous environmental, economic and social benefits and we present a case analysis, including a detailed life cycle assessment, to establish their sustainable footprint against other common natural-based adsorbents, anticipating a bright future for this water purification approach.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland.
- ETH Zurich, Department of Materials, Zurich, Switzerland.
| |
Collapse
|
24
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
25
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
26
|
Yang K, Zhou Y, Wang Z, Li M, Shi D, Wang X, Jiang T, Zhang Q, Ding B, You J. Pseudosolvent Intercalator of Chitin: Self-Exfoliating into Sub-1 nm Thick Nanofibrils for Multifunctional Chitinous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007596. [PMID: 33538009 DOI: 10.1002/adma.202007596] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Traditionally, energy-intensive and time-consuming postmechanical disintegration processes are inevitable in extracting biopolymer nanofibrils from natural materials and thereby hinder their practical applications. Herein, a new, convenient, scalable, and energy-efficient method for exfoliating nanofibrils (ChNFs) from various chitin sources via pseudosolvent-assisted intercalation process is proposed. These self-exfoliated ChNFs possess controllable thickness from 2.2 to 0.8 nm, average diameter of 4-5 nm, high aspect ratio up to 103 and customized surface chemistries. Particularly, compared with elementary nanofibrils, ChNFs with few molecular layers thick exhibit greater potential to construct high-performance structural materials, e.g., ductile nanopapers with large elongation up to 70.1% and toughness as high as 30.2 MJ m-3 , as well as soft hydrogels with typical nonlinear elasticity mimicking that of human-skin. The proposed self-exfoliation concept with unique advantages in the combination of high yield, energy efficiency, scalable productivity, less equipment requirements, and mild conditions opens up a door to extract biopolymer nanofibrils on an industrial scale. Moreover, the present modular ChNFs exfoliation will facilitate researchers to study the effect of thickness on the properties of nanofibrils and provide more insight into the structure-function relationship of biopolymer-based materials.
Collapse
Affiliation(s)
- Kaihua Yang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Youshuang Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Zengbing Wang
- CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Mingjie Li
- CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Dean Shi
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Tao Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Qunchao Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| | - Beibei Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jun You
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, China
| |
Collapse
|
27
|
Liu Y, Ren J, Pei Y, Qi Z, Chen M, Ling S. Structural information of biopolymer nanofibrils by infrared nanospectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ethanol-induced coacervation in aqueous gelatin solution for constructing nanospheres and networks: Morphology, dynamics and thermal sensitivity. J Colloid Interface Sci 2021; 582:610-618. [PMID: 32911409 DOI: 10.1016/j.jcis.2020.08.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
Ethanol was used to induce coacervation in aqueous solutions of gelatin. Coacervation resulted from phase separation driven by ethanol as a poor solvent for gelatin, impacting aggregation of gelatin chains. Static coacervation was performed to investigate coacervate morphology, and gelatin concentration and ethanol temperature influenced the morphologies of the gelatin coacervates. High-concentration gelatin solutions (>4.8 wt%) treated with lower temperature ethanol (<25 °C) formed network morphologies, while low-concentration gelatin solution (<4.8 wt%) treated with ethanol near room temperature formed nanosphere assemblies. Dispersive nanospheres were obtained after treatment with higher temperature ethanol (~45 °C). Stirring the mixture of gelatin solution and ethanol resulted in dispersed nanospheres where the size was adjusted by changing the volume ratio of aqueous gelatin solution and ethanol (VGel:VEtOH) and the gelatin concentration. Turbidity and absorbance measurements were carried out to further investigate coacervation dynamics. The cocervation system reached dynamic equilibrium according to the VGel:VEtOH, suggesting phase separation and molecular arrangements were key. DLS results showed that reversible changes in coacervate radius could be attained by periodic heating and cooling cycles (25-60 °C). This work provides useful information for constructing gelatin-based materials using a facile coacervation method.
Collapse
|
29
|
Abstract
Silk fibroin from Bombyx mori (silkworm) distinguishes for its unique mechanical performance, controllable degradation rates, and easily large-scale production, making it attractive models for a variety of biomaterial design. These outstanding properties of silk fibroin originate from its unique modular composition of silk proteins. To exploit the structure-function relationship and fabricate silk fibroin-based biomaterials, comprehensive strategies to uncover assembly behaviors of fibrous proteins are necessary. This chapter describes methods to produce regenerated silk fibroin protein from Bombyx mori silk and their self-assembly strategies. This could provide insight into the fabrication of various silk fibroin-based biomaterials, such as hydrogels, tubes, sponges, fibers, microspheres, and diverse thin film patterns, which can be used for textiles, electronics and optics, environmental engineering, and biomedical applications.
Collapse
Affiliation(s)
- Na Kong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
30
|
Zhang W, Fan Y. Preparation of Amyloid Fibrils Using Recombinant Technology. Methods Mol Biol 2021; 2347:113-121. [PMID: 34472060 DOI: 10.1007/978-1-0716-1574-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amyloid fibrils are widely investigated as they are directly associated with various neurodegenerative diseases. For example, a vast of experimental results have shown that the oligomeric and fibrillar aggregates of the amyloid β-peptide (Aβ) play a critical role in the pathogenesis of Alzheimer's disease (AD). Therefore, the accessibility of certain amounts of pure Aβ peptide is necessary for the studies of the mechanism of neurotoxicity. In this regard, recombinant methods provide the possibility to synthesize the Aβ peptide in vitro and thus promote the investigation of the relationship between peptide structure and pathogenic mechanism. These investigations further provide the fundamental supports for developing potential drugs for AD treatment. In addition to providing support for the study of pathogenic mechanisms, the recombination of Aβ peptides also offers the possibility to utilize these unique protein nanomaterials. For example, Aβ peptides tend to assemble into chiral amyloid fibrils with an ultra-high aspect ratio. These unique nano features, together with the inherent protein characteristics, of amyloid fibrils, allow them to be used in biomedical and environmental fields. Accordingly, herein, we aim to introduce the recombinant protocols for the synthesis of Aβ peptides. The experimental route to assemble these peptides to amyloid fibrils is also summarized in this chapter.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
31
|
Xiao Y, Liu Y, Zhang W, Qi P, Ren J, Pei Y, Ling S. Formation, Structure, and Mechanical Performance of Silk Nanofibrils Produced by Heat-Induced Self-Assembly. Macromol Rapid Commun 2020; 42:e2000435. [PMID: 33196127 DOI: 10.1002/marc.202000435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Indexed: 12/25/2022]
Abstract
The heat-induced self-assembly of silk fibroin (SF) is studied by combing fluorescence assessment, infrared nanospectroscopy, wide-angle X-ray scattering, and Derjaguin-Muller-Toporov coupled with atomic force microscopy. Several fundamental issues regarding the formation, structure, and mechanical performance of silk nanofibrils (SNFs) under heat-induced self-assembly are discussed. Accordingly, SF in aqueous solution is rod-like in shape and not micellar. The formation of SNFs occurs through nucleation-dependent aggregation, but the assembly period is variable and irregular. SF shows inherent fractal growth, and this trend is critical for the short-term assembly. The long-term assembly of SF, however, mainly involves an elongation growth process. SNFs produced by different methods, such as ethanol treatment and heat incubation, have similar secondary structure and mechanical properties. These investigations improve the in-depth understanding of fundamental issues related to self-assembly of SNFs, and thus provide inspiration and guidance in designing of silk nanomaterials.
Collapse
Affiliation(s)
- Yuelong Xiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yawen Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wenwen Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| |
Collapse
|
32
|
Yang W, Lv L, Li X, Han X, Li M, Li C. Quaternized Silk Nanofibrils for Electricity Generation from Moisture and Ion Rectification. ACS NANO 2020; 14:10600-10607. [PMID: 32806080 DOI: 10.1021/acsnano.0c04686] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein nanostructures in living organisms have attracted intense interests in biology and material science owing to their intriguing abilities to harness ion transportation for matter/signal transduction and bioelectricity generation. Silk nanofibrils, serving as the fundamental building blocks for silk, not only have the advantages of natural abundance, low cost, biocompatibility, sustainability, and degradability but also play a key role in mechanical toughness and biological functions of silk fibers. Herein, cationic silk nanofibrils (SilkNFs), with an ultrathin thickness of ∼4 nm and a high aspect ratio up to 500, were successfully exfoliated from natural cocoon fibers via quaternization followed by mechanical homogenization. Being positively charged in a wide pH range of 2-12, these cationic SilkNFs could combine with different types of negatively charged biological nanofibrils to produce asymmetric ionic membranes and aerogels that have the ability to tune ion translocation. The asymmetric ionic aerogels could create an electric potential as high as 120 mV in humid ambient air, whereas asymmetric ionic membranes could be used in ionic rectification with a rectification ratio of 5.2. Therefore, this green exfoliation of cationic SilkNFs may provide a biological platform of nanomaterials for applications as diverse as ion electronics, renewable energy, and sustainable nanotechnology.
Collapse
Affiliation(s)
- Weiqing Yang
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, P.R. China
| | - Lili Lv
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Xiankai Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Xiao Han
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| |
Collapse
|
33
|
Sivakumar M, Liu DK, Chiao YH, Hung WS. Synergistic effect of one-dimensional silk nanofiber and two-dimensional graphene oxide composite membrane for enhanced water purification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Sviben S, Spaeker O, Bennet M, Albéric M, Dirks JH, Moussian B, Fratzl P, Bertinetti L, Politi Y. Epidermal Cell Surface Structure and Chitin-Protein Co-assembly Determine Fiber Architecture in the Locust Cuticle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25581-25590. [PMID: 32343541 PMCID: PMC7304823 DOI: 10.1021/acsami.0c04572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The geometrical similarity of helicoidal fiber arrangement in many biological fibrous extracellular matrices, such as bone, plant cell wall, or arthropod cuticle, to that of cholesteric liquid mesophases has led to the hypothesis that they may form passively through a mesophase precursor rather than by direct cellular control. In search of direct evidence to support or refute this hypothesis, here, we studied the process of cuticle formation in the tibia of the migratory locust, Locusta migratoria, where daily growth layers arise by the deposition of fiber arrangements alternating between unidirectional and helicoidal structures. Using focused ion beam/scanning electron microscopy (FIB/SEM) volume imaging and scanning X-ray scattering, we show that the epidermal cells determine an initial fiber orientation, from which the final architecture emerges by the self-organized co-assembly of chitin and proteins. Fiber orientation in the locust cuticle is therefore determined by both active and passive processes.
Collapse
Affiliation(s)
- Sanja Sviben
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Oliver Spaeker
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Mathieu Bennet
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Marie Albéric
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
- Laboratoire
Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR CNRS 7574, 75005 Paris, France
| | - Jan-Henning Dirks
- Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Biomimetics-Innovation-Centre, Hochschule Bremen—City University of Applied
Sciences, 28199 Bremen, Germany
| | - Bernard Moussian
- Institute
of Biology Valrose, Université Côte
d’Azur, CNRS, Inserm, Parc Valrose, 06108 Nice Cedex 2, France
| | - Peter Fratzl
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Luca Bertinetti
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Yael Politi
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Chen D, Narayanan N, Federici E, Yang Z, Zuo X, Gao J, Fang F, Deng M, Campanella OH, Jones OG. Electrospinning Induced Orientation of Protein Fibrils. Biomacromolecules 2020; 21:2772-2785. [DOI: 10.1021/acs.biomac.0c00500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | | | - Zhi Yang
- School of Food & Advanced Technology, Massey University, Albany, Auckland 0632, New Zealand
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Jinling Gao
- School of Aeronautics and Astronautics, Purdue University, 701 W Stadium Ave., West Lafayette, Indiana 47907, United States
| | | | - Meng Deng
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, Ohio 43210, United States
| | | |
Collapse
|
36
|
Hu Y, Liu L, Yu J, Wang Z, Fan Y. Preparation of Silk Nanowhisker-Composited Amphoteric Cellulose/Chitin Nanofiber Membranes. Biomacromolecules 2020; 21:1625-1635. [DOI: 10.1021/acs.biomac.0c00223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanlei Hu
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, 210037, Jiangsu China
| | - Liang Liu
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, 210037, Jiangsu China
| | - Juan Yu
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, 210037, Jiangsu China
| | - Zhiguo Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, 210037, Jiangsu China
| | - Yimin Fan
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, No.159 Lonpan Road, Nanjing, 210037, Jiangsu China
| |
Collapse
|
37
|
Kamada A, Levin A, Toprakcioglu Z, Shen Y, Lutz-Bueno V, Baumann KN, Mohammadi P, Linder MB, Mezzenga R, Knowles TPJ. Modulating the Mechanical Performance of Macroscale Fibers through Shear-Induced Alignment and Assembly of Protein Nanofibrils. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904190. [PMID: 31595701 DOI: 10.1002/smll.201904190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Indexed: 05/09/2023]
Abstract
Protein-based fibers are used by nature as high-performance materials in a wide range of applications, including providing structural support, creating thermal insulation, and generating underwater adhesives. Such fibers are commonly generated through a hierarchical self-assembly process, where the molecular building blocks are geometrically confined and aligned along the fiber axis to provide a high level of structural robustness. Here, this approach is mimicked by using a microfluidic spinning method to enable precise control over multiscale order during the assembly process of nanoscale protein nanofibrils into micro- and macroscale fibers. By varying the flow rates on chip, the degree of nanofibril alignment can be tuned, leading to an orientation index comparable to that of native silk. It is found that the Young's modulus of the resulting fibers increases with an increasing level of nanoscale alignment of the building blocks, suggesting that the mechanical properties of macroscopic fibers can be controlled through varying the level of ordering of the nanoscale building blocks. Capitalizing on strategies evolved by nature, the fabrication method allows for the controlled formation of macroscopic fibers and offers the potential to be applied for the generation of further novel bioinspired materials.
Collapse
Affiliation(s)
- Ayaka Kamada
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aviad Levin
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Viviane Lutz-Bueno
- Laboratory of Food and Soft Materials Science, ETH Zurich, Schmelzbergstrasse, 9, 8092, Zurich, Switzerland
| | - Kevin N Baumann
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076, Aalto, Espoo, Finland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials Science, ETH Zurich, Schmelzbergstrasse, 9, 8092, Zurich, Switzerland
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
38
|
Zhu Y, Yu X, Zhang T, Li P, Wang X. Biomimetic sulfated silk nanofibrils for constructing rapid mid-molecule toxins removal nanochannels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Jian M, Zhang Y, Liu Z. Natural Biopolymers for Flexible Sensing and Energy Devices. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2379-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Tan X, Wang Y, Du W, Mu T. Top-Down Extraction of Silk Protein Nanofibers by Natural Deep Eutectic Solvents and Application in Dispersion of Multiwalled Carbon Nanotubes for Wearable Sensing. CHEMSUSCHEM 2020; 13:321-327. [PMID: 31729788 DOI: 10.1002/cssc.201902979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 06/10/2023]
Abstract
With typical nanofibrous structure, silks spun by silkworms and spiders are the representative fibrous proteins that embody excellent mechanical properties and biological functions. However, it is still a challenge to directly extract silk nanofibers (SNFs) from natural silk fibers, to retain their nanostructures and properties, by a human- and environment-friendly approach for practical applications. Here, an all-natural strategy for simple, green, and scalable extraction of silkworm and spider silk protein nanofibers in natural deep eutectic solvents has been developed. The liquid-exfoliated SNFs have adjustable diameters from 20 nm (at the single SNF scale) to 100 nm and could be dispersed in water and organic solvents, enabling the production of useful macroscopic biomaterials. The free-standing SNF membranes made from silkworm silk nanofibers (SSNFs) exhibited cytocompatibility, flexibility, and excellent mechanical performance, providing the ability to fabricate sustainable materials for tissue engineering and green electronics. Moreover, the SSNF could be used as a green and efficient dispersant of multiwalled carbon nanotubes (MWCNTs), and the SSNFs/MWCNTs nanocomposite membranes could be used in wearable devices to monitor human activities.
Collapse
Affiliation(s)
- Xingxing Tan
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Yaqing Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| |
Collapse
|
41
|
Kaewpirom S, Boonsang S. Influence of alcohol treatments on properties of silk-fibroin-based films for highly optically transparent coating applications. RSC Adv 2020; 10:15913-15923. [PMID: 35493649 PMCID: PMC9052366 DOI: 10.1039/d0ra02634d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Thin films of silk fibroin were prepared by solvent evaporation from calcium chloride/ethanol aqueous solution. The influence of alcohol treatments on thermal, mechanical and optical properties of silk-fibroin-based film is presented. To understand the conformal structure of the alcohol-treated silk fibroin film, the IR spectral decomposition method is employed. The optical properties especially the optical transparency, haze and fluorescence emission of alcohol-treated silk fibroin film is systematically investigated together with the conformal structure to understand the effect of the fibril such as the beta-sheet influencing the optical properties. Monohydric alcohol treatment increased beta-turn content in the regenerated silk fibroin structure. These affected the amount of light diffusion and scattering within silk-fibroin films. With alcohol-treatment, all the silk-fibroin films exhibit exceptional optical transparency (>90%) with different levels of optical haze (2.56–14.17%). In particular, ethanol-treated silk-fibroin films contain the highest content of beta-turns (22.8%). The ethanol-treated silk-fibroin films displayed a distinct interference of oscillating crests and troughs in the UV-Vis transmittance spectra, thereby showing the lowest optical haze of 2.56%. In contrast, the silk-fibroin films treated with methanol and propanol exhibit the highest (14.17%) and second-highest (10.29%) optical transmittance haze, respectively. The beta-turn content of the silk-fibroin films treated with methanol is the lowest (20.5%). These results show the relationship between the beta-turn content and optical haze properties. The results manifestly provide a method to manufacture exceptional optically transparent silk-fibroin films with adjustable light diffusion and scattering which can be designed to meet specific applications with the potential to provide UV-shielding protection via monohydric alcohol treatment. This research presents a method to manufacture optically transparent silk-fibroin films with adjustable light diffusion and scattering via alcohol treatment.![]()
Collapse
Affiliation(s)
- Supranee Kaewpirom
- Department of Chemistry
- Faculty of Science
- Burapha University
- Chonburi 20131
- Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering
- Faculty of Engineering
- King Mongkut's Institute of Technology Ladkrabang
- Bangkok 10520
- Thailand
| |
Collapse
|
42
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
43
|
Zhong J, Liu Y, Ren J, Tang Y, Qi Z, Zhou X, Chen X, Shao Z, Chen M, Kaplan DL, Ling S. Understanding Secondary Structures of Silk Materials via Micro- and Nano-Infrared Spectroscopies. ACS Biomater Sci Eng 2019; 5:3161-3183. [PMID: 33405510 DOI: 10.1021/acsbiomaterials.9b00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary structures (also termed conformations) of silk fibroin (SF) in animal silk fibers and regenerated SF materials are critical in determining mechanical performance and function of the materials. In order to understand the structure-mechanics-function relationships of silk materials, a variety of advanced infrared spectroscopic techniques, such as micro-infrared spectroscopies (micro-IR spectroscopies for short), synchrotron micro-IR spectroscopy, and nano-infrared spectroscopies (nano-IR spectroscopies for short), have been used to determine the conformations of SF in silk materials. These IR spectroscopic methods provide a useful toolkit to understand conformations and conformational transitions of SF in various silk materials with spatial resolution from the nano-scale to the micro-scale. In this Review, we first summarize progress in understanding the structure and structure-mechanics relationships of silk materials. We then discuss the state-of-the-art micro- and nano-IR spectroscopic techniques used for silk materials characterization. We also provide a systematic discussion of the strategies to collect high-quality spectra and the methods to analyze these spectra. Finally, we demonstrate the challenges and directions for future exploration of silk-based materials with IR spectroscopies.
Collapse
Affiliation(s)
- Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yawen Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yuzhao Tang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaojie Zhou
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Min Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
44
|
Baer A, Horbelt N, Nijemeisland M, Garcia SJ, Fratzl P, Schmidt S, Mayer G, Harrington MJ. Shear-Induced β-Crystallite Unfolding in Condensed Phase Nanodroplets Promotes Fiber Formation in a Biological Adhesive. ACS NANO 2019; 13:4992-5001. [PMID: 30933471 DOI: 10.1021/acsnano.9b00857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Natural materials provide an increasingly important role model for the development and processing of next-generation polymers. The velvet worm Euperipatoides rowelli hunts using a projectile, mechanoresponsive adhesive slime that rapidly and reversibly transitions into stiff glassy polymer fibers following shearing and drying. However, the molecular mechanism underlying this mechanoresponsive behavior is still unclear. Previous work showed the slime to be an emulsion of nanoscale charge-stabilized condensed droplets comprised primarily of large phosphorylated proteins, which under mechanical shear coalesce and self-organize into nano- and microfibrils that can be drawn into macroscopic fibers. Here, we utilize wide-angle X-ray diffraction and vibrational spectroscopy coupled with in situ shear deformation to explore the contribution of protein conformation and mechanical forces to the fiber formation process. Although previously believed to be unstructured, our findings indicate that the main phosphorylated protein component possesses a significant β-crystalline structure in the storage phase and that shear-induced partial unfolding of the protein is a key first step in the rapid self-organization of nanodroplets into fibers. The insights gained here have relevance for sustainable production of advanced polymeric materials.
Collapse
Affiliation(s)
- Alexander Baer
- Department of Zoology, Institute of Biology , University of Kassel , Heinrich-Plett-Str. 40 , D-34132 Kassel , Germany
| | - Nils Horbelt
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
| | - Marlies Nijemeisland
- Novel Aerospace Materials group, Faculty of Aerospace Engineering , Delft University of Technology , Kluyverweg 1 , 2629 HS Delft , The Netherlands
| | - Santiago J Garcia
- Novel Aerospace Materials group, Faculty of Aerospace Engineering , Delft University of Technology , Kluyverweg 1 , 2629 HS Delft , The Netherlands
| | - Peter Fratzl
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
| | - Stephan Schmidt
- Preparative Polymer Chemistry , Heinrich-Heine-Universität , Universitätsstraße 1 , D-40225 Düsseldorf , Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology , University of Kassel , Heinrich-Plett-Str. 40 , D-34132 Kassel , Germany
| | - Matthew J Harrington
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
45
|
Inhibiting and catalysing amyloid fibrillation at dynamic lipid interfaces. J Colloid Interface Sci 2019; 543:256-262. [PMID: 30818141 DOI: 10.1016/j.jcis.2019.02.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Proteins are naturally exposed to diverse interfaces in living organisms, from static solid to dynamic fluid. Solid interfaces can enrich proteins as corona, and then catalyze, retard or hinder amyloid fibrillation. But fluid interfaces abundant in biology have rarely been studied for their correlation with protein fibrillation. Unsaturated fatty acids own growing essential roles in diet, whose fluid interfaces are found in vitro to catalyze amyloid fibrillation under certain physiologic conditions. It is determined by the location of double bonds within alkyl chains as well as the presence of physical shear. Docosahexaenoic acid (DHA) shows low catalysis because its unique alkyl chain does not favor to stabilize cross-β nucleus. Mixtures of different fatty acids also decelerate their catalytic activity. High catalysis poses an unprecedented approach to synthesize biologic nanofibrils as one-dimensional (1D) building blocks of functional hybrids. Fibrillation inhibition implied that appropriate diet would be a preventive strategy for amyloid-related diseases. Thus these results may find their significances in diverse fields of science as chemistry, biotechnology, nanotechnology, nutrition, amyloid pathobiology and nanomedicine.
Collapse
|
46
|
Dai B, Sargent CJ, Gui X, Liu C, Zhang F. Fibril Self-Assembly of Amyloid–Spider Silk Block Polypeptides. Biomacromolecules 2019; 20:2015-2023. [DOI: 10.1021/acs.biomac.9b00218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Xinrui Gui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | | |
Collapse
|
47
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa−16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| |
Collapse
|
48
|
Liu X, Toprakcioglu Z, Dear AJ, Levin A, Ruggeri FS, Taylor CG, Hu M, Kumita JR, Andreasen M, Dobson CM, Shimanovich U, Knowles TPJ. Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromol Rapid Commun 2019; 40:e1800898. [DOI: 10.1002/marc.201800898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Xizhou Liu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zenon Toprakcioglu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alexander J. Dear
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Aviad Levin
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Francesco Simone Ruggeri
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher G. Taylor
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Mengsha Hu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Janet R. Kumita
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Maria Andreasen
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Dr. M. AndreasenAarhus University Wilhelm Meyer's Allé 3 8000 Aarhus Denmark
| | - Christopher M. Dobson
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Tuomas P. J. Knowles
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Prof. T. P. J. KnowlesDepartment of Physics J J Thomson Avenue Cambridge CB3 0HE UK
| |
Collapse
|
49
|
Modulation of aggregation of silk fibroin by synergistic effect of the complex of curcumin and β-cyclodextrin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:416-425. [PMID: 30677520 DOI: 10.1016/j.bbapap.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Amyloid aggregation has been associated with numerous human pathological diseases. A recent study has demonstrated that silk fibroin intermittently endorses amyloidogenesis in vivo. In the current study, we explored the propensity of silk fibroin to undergo amyloid-like aggregation and its prevention using an optimized concoction of curcumin with β-cyclodextrin. Aggregation of silk fibroin resulted in the formation of fibrils with a diameter of ~3.2 nm. However, addition of the optimized concentration of curcumin and β-cyclodextrin to silk fibroin inhibited aggregation and preserved the random coil conformation even under aggregation inducing conditions, as demonstrated by CD and FTIR spectroscopy. Benzene rings of curcumin interact with the aromatic residues of fibroin via hydrophobic interactions. However, β-cyclodextrin preferentially interacts with the non-polar residues, which are the core components for nucleation dependent protein aggregation. The present study demonstrates the ability of the concoction of curcumin and β-cyclodextrin in tuning the self assembly process of fibroin. It also provides a platform to explore the assembly process of nano-fibril and hierarchical structures in vitro along with a novel insight for designing clinically relevant silk-based functional biomaterials.
Collapse
|
50
|
Hu Y, Yu J, Liu L, Fan Y. Preparation of natural amphoteric silk nanofibers by acid hydrolysis. J Mater Chem B 2019; 7:1450-1459. [DOI: 10.1039/c8tb03005g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct extraction of silk nanofibers (SNs) from natural silk fibers was developed via a low-intensity ultrasonic-assisted sulfuric acid hydrolysis process.
Collapse
Affiliation(s)
- Yanlei Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
| |
Collapse
|