1
|
Choi W, Kim YE, Yoo H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers (Basel) 2024; 16:2613. [PMID: 39339077 PMCID: PMC11435555 DOI: 10.3390/polym16182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of organic semiconductors in electronic devices, including transistors, sensors, and memories, unlocks innovative possibilities such as streamlined fabrication processes, enhanced mechanical flexibility, and potential new applications. Nevertheless, the increasing technical demand for patterning organic semiconductors requires greater integration and functional implementation. This paper overviews recent efforts to pattern organic semiconductors compatible with electronic devices. The review categorizes the contributions of organic semiconductor patterning approaches, such as surface-grafting polymers, capillary force lithography, wettability, evaporation, and diffusion in organic semiconductor-based transistors and sensors, offering a timely perspective on unconventional approaches to enable the patterning of organic semiconductors with a strong focus on the advantages of organic semiconductor utilization. In addition, this review explores the opportunities and challenges of organic semiconductor-based integration, emphasizing the issues related to patterning and interconnection.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Niu X, Zhang Q, Dang Y, Hu W, Sun Y. MolPackL: Quantification and Interpretation of Intermolecular Interactions Driven by Molecular Packing. J Am Chem Soc 2024; 146:24075-24084. [PMID: 39141522 DOI: 10.1021/jacs.4c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In organic optoelectronic devices, the properties of the aggregated organic materials depend not only on individual molecules or monomers but also significantly on their packing modes. Different from their inorganic counterparts linked by explicit covalent bonds, organic solids exhibit intricate and numerous intermolecular interactions (IMIs). Due to the intrinsic complexity and disorder of IMIs, identifying and understanding them is a formidable challenge in experimental, theoretical, and data-driven approaches. In this work, we constructed an innovative algorithm framework, Molecular Packing Learning (MolPackL), which can accurately quantify elusive IMIs using contact density histograms (CDHs) and efficiently extract intermolecular features for further property prediction of organic solids. It performs satisfactorily in training predictive models of IMI-related properties in molecular crystals. Particularly, the band gap predictive model based on MolPackL achieved the best-reported performance, with an MAE of 0.20 eV and an impressive R2 of 0.92. Class activation mapping (CAM) visually demonstrates MolPackL's accurate identification of effective interaction sites as the molecular packing changes. What is more, the elemental importance analysis verified that the superior score benefits from MolPackL's ability to comprehensively consider multiple influencing factors of IMIs. In summary, MolPackL provides a new framework for quantitative assessment and understanding of the effect of IMIs. The development of MolPackL marks a significant advancement in establishing predictive models of molecular aggregates, deepening the comprehension of IMIs on the material properties. Given the superior performance, we believe that MolPackL will also become a powerful tool in the design of high-performance organic optoelectronic materials.
Collapse
Affiliation(s)
- Xinxin Niu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Qian Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, P.R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
3
|
Sun L, Wang J, Matsui H, Lee S, Wang W, Guo S, Chen H, Fang K, Ito Y, Inoue D, Hashizume D, Mori K, Takakuwa M, Lee S, Zhou Y, Yokota T, Fukuda K, Someya T. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. SCIENCE ADVANCES 2024; 10:eadk9460. [PMID: 38598623 PMCID: PMC11006222 DOI: 10.1126/sciadv.adk9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.
Collapse
Affiliation(s)
- Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuyang Guo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hongting Chen
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuma Mori
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Takakuwa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sunghoon Lee
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Shimada K, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Carrier Transport Switching of Ferroelectric BTBT Derivative. J Am Chem Soc 2024; 146:8557-8566. [PMID: 38484118 DOI: 10.1021/jacs.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-NHCOC14H29 (1), which has ferroelectric N-H···O= hydrogen-bonding network of alkylamide group and two-dimensional (2D) electric structure of BTBT π-cores, was prepared to design the external electric field-responsive organic semiconductors. The short-chain derivative of BTBT-NHCOC3H7 (1') revealed the coexistence of a 2D electronic band structure based on the herringbone BTBT arrangement and the one-dimensional (1D) hydrogen-bonding chain. 1 formed a smectic E (SmE) liquid crystal phase above 412 K and showed ferroelectric hysteresis in the electric field-polarization (P-E) curves at 403-433 K. The remanent polarization (Pr) and coercive electric field (Ec) of 1 at 408 K, 0.1 Hz were 24.0 μC cm-2 and 5.54 V μm-1, respectively. By thermal annealing of thin-film 1 at 443 K, the molecular assembly structure of 1 changed from a monolayer to a bilayer structure with high crystallinity, resulting in conducting layers of BTBT parallel to the substrate surface. The organic field-effect transistor (OFET) device with thermally annealed thin-film 1 showed p-type semiconducting behavior with the hole mobility of 1.0 × 10-3 cm2 V-1 s-1. Furthermore, device 1 showed switching behavior of semiconducting properties by electric field poling and thermal annealing cycle. The electric field response of ferroelectrics modulated the molecular orientation and conduction properties of organic semiconductors, resulting in external electric field control of carrier transport properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazuki Shimada
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
6
|
Yang N, Yue G, Zhang Y, Qin X, Gao Z, Mi B, Fan Q, Qian Y. Reproducible and High-Performance WOLEDs Based on Independent High-Efficiency Triplet Harvesting of Yellow Hot-Exciton ESIPT and Blue TADF Emitters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304615. [PMID: 37822169 DOI: 10.1002/smll.202304615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Hot exciton organic light-emitting diode (OLED) emitters can balance the high performance of a device and reduce efficiency roll-off by fast reverse intersystem crossing from high-lying triplets (hRISC). In this study, an excited-state intramolecular proton transfer (ESIPT) fluorophore of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) with the typical characteristic properties of a hot exciton is developed. With high efficiency of utilization of the exciton (91%), its yellow OLED exhibited high external quantum efficiency (EQE) of 5.6%, current efficiency (CE) of 16.8 cd A-1 , and power efficiency (PE) of 17.3 lm W-1 . The performance of the yellow emissive "hot exciton" ESIPT fluorophores is among the highest recorded. Due to the large Stokes shift of the ESIPT emitter, non-energy-transferred high-performance white OLEDs (WOLEDs) are developed, which are reproducible and highly efficient. This is possible because of the independent harvesting of most of the triplets in both complementary-color emitters without the interference of energy transfer. The PyHBT-based WOLEDs exhibit a maximum EQE of 14.3% and CE of 41.1 cd A-1 , which facilitates the high-yield mass production of inexpensive WOLEDs.
Collapse
Affiliation(s)
- Ningjing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Guochang Yue
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yong Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiaoyu Qin
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiqiang Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Baoxiu Mi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Qian
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
7
|
Sung CY, Lin CY, Chueh CC, Lin YC, Chen WC. Investigating the Mobility-Compressibility Properties of Conjugated Polymers by the Contact Film Transfer Method with Prestrain. Macromol Rapid Commun 2024; 45:e2300058. [PMID: 36913597 DOI: 10.1002/marc.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.
Collapse
Affiliation(s)
- Chih-Yuan Sung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Wu HC, Nikzad S, Zhu C, Yan H, Li Y, Niu W, Matthews JR, Xu J, Matsuhisa N, Arunachala PK, Rastak R, Linder C, Zheng YQ, Toney MF, He M, Bao Z. Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability. Nat Commun 2023; 14:8382. [PMID: 38104194 PMCID: PMC10725446 DOI: 10.1038/s41467-023-44099-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Stretchable polymer semiconductors (PSCs) have seen great advancements alongside the development of soft electronics. But it remains a challenge to simultaneously achieve high charge carrier mobility and stretchability. Herein, we report the finding that stretchable PSC thin films (<100-nm-thick) with high stretchability tend to exhibit multi-modal energy dissipation mechanisms and have a large relative stretchability (rS) defined by the ratio of the entropic energy dissipation to the enthalpic energy dissipation under strain. They effectively recovered the original molecular ordering, as well as electrical performance, after strain was released. The highest rS value with a model polymer (P4) exhibited an average charge carrier mobility of 0.2 cm2V-1s-1 under 100% biaxial strain, while PSCs with low rS values showed irreversible morphology changes and rapid degradation of electrical performance under strain. These results suggest rS can be used as a parameter to compare the reliability and reversibility of stretchable PSC thin films.
Collapse
Affiliation(s)
- Hung-Chin Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
| | - Chenxin Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, US
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, US
| | - Yang Li
- Corning Incorporated, Corning, NY, 14831, US
| | - Weijun Niu
- Corning Incorporated, Corning, NY, 14831, US
| | | | - Jie Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, US
| | - Naoji Matsuhisa
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
| | | | - Reza Rastak
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, US
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, US
| | - Yu-Qing Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, US
- Department of Chemical and Biological Engineering and Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, 80309, US
| | - Mingqian He
- Corning Incorporated, Corning, NY, 14831, US.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, US.
| |
Collapse
|
9
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
10
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
11
|
Wang Z, Lin H, Zhang M, Yu W, Zhu C, Wang P, Huang Y, Lv F, Bai H, Wang S. Water-soluble conjugated polymers for bioelectronic systems. MATERIALS HORIZONS 2023; 10:1210-1233. [PMID: 36752220 DOI: 10.1039/d2mh01520j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioelectronics is an interdisciplinary field of research that aims to establish a synergy between electronics and biology. Contributing to a deeper understanding of bioelectronic processes and the built bioelectronic systems, a variety of new phenomena, mechanisms and concepts have been derived in the field of biology, medicine, energy, artificial intelligence science, etc. Organic semiconductors can promote the applications of bioelectronics in improving original performance and creating new features for organisms due to their excellent photoelectric and electrical properties. Recently, water-soluble conjugated polymers (WSCPs) have been employed as a class of ideal interface materials to regulate bioelectronic processes between biological systems and electronic systems, relying on their satisfying ionic conductivity, water-solubility, good biocompatibility and the additional mechanical and electrical properties. In this review, we summarize the prominent contributions of WSCPs in the aspect of the regulation of bioelectronic processes and highlight the latest advances in WSCPs for bioelectronic applications, involving biosynthetic systems, photosynthetic systems, biophotovoltaic systems, and bioelectronic devices. The challenges and outlooks of WSCPs in designing high-performance bioelectronic systems are also discussed.
Collapse
Affiliation(s)
- Zenghao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengcheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Chen PA, Guo J, Yan X, Liu Y, Wei H, Qiu X, Xia J, Guo J, Ding J, Gong Z, Chen C, Lei T, Chen H, Zeng Z, Hu Y. A Methodology of Fabricating Novel Electrodes for Semiconductor Devices: Doping and Van der Waals Integrating Organic Semiconductor Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207858. [PMID: 36949014 DOI: 10.1002/smll.202207858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Electrodes are indispensable components in semiconductor devices, and now are mainly made from metals, which are convenient for use but not ideal for emerging technologies such as bioelectronics, flexible electronics, or transparent electronics. Here the methodology of fabricating novel electrodes for semiconductor devices using organic semiconductors (OSCs) is proposed and demonstrated. It is shown that polymer semiconductors can be heavily p- or n-doped to achieve sufficiently high conductivity for electrodes. In contrast with metals, the doped OSC films (DOSCFs) are solution-processable, mechanically flexible, and have interesting optoelectronic properties. By integrating the DOSCFs with semiconductors through van der Waals contacts different kinds of semiconductor devices can be constructed. Importantly, these devices exhibit higher performance than their counterparts with metal electrodes, and/or excellent mechanical or optical properties that are unavailable in metal-electrode devices, suggesting the superiority of DOSCF electrodes. Given the existing large amount of OSCs, the established methodology can provide abundant electrode choices to meet the demand of various emerging devices.
Collapse
Affiliation(s)
- Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xinwen Yan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
| | - Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
| | - Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jiaqi Ding
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Zhenqi Gong
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, P. R. China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
13
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204804. [PMID: 36124375 DOI: 10.1002/adma.202204804] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The development of flexible and conformable devices, whose performance can be maintained while being continuously deformed, provides a significant step toward the realization of next-generation wearable and e-textile applications. Organic field-effect transistors (OFETs) are particularly interesting for flexible and lightweight products, because of their low-temperature solution processability, and the mechanical flexibility of organic materials that endows OFETs the natural compatibility with plastic and biodegradable substrates. Here, an in-depth review of two competing flexible OFET technologies, planar and vertical OFETs (POFETs and VOFETs, respectively) is provided. The electrical, mechanical, and physical properties of POFETs and VOFETs are critically discussed, with a focus on four pivotal applications (integrated logic circuits, light-emitting devices, memories, and sensors). It is pointed out that the flexible function of the relatively newer VOFET technology, along with its perspective on advancing the applicability of flexible POFETs, has not been reviewed so far, and the direct comparison regarding the performance of POFET- and VOFET-based flexible applications is most likely absent. With discussions spanning printed and wearable electronics, materials science, biotechnology, and environmental monitoring, this contribution is a clear stimulus to researchers working in these fields to engage toward the plentiful possibilities that POFETs and VOFETs offer to flexible electronics.
Collapse
Affiliation(s)
- Ali Nawaz
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Letícia M M Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Carlos C B Bufon
- MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, São Paulo, 01302-907, Brazil
| |
Collapse
|
15
|
Sarabia-Vallejos MA, Cerda-Iglesias FE, Pérez-Monje DA, Acuña-Ruiz NF, Terraza-Inostroza CA, Rodríguez-Hernández J, González-Henríquez CM. Smart Polymer Surfaces with Complex Wrinkled Patterns: Reversible, Non-Planar, Gradient, and Hierarchical Structures. Polymers (Basel) 2023; 15:polym15030612. [PMID: 36771913 PMCID: PMC9920088 DOI: 10.3390/polym15030612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
This review summarizes the relevant developments in preparing wrinkled structures with variable characteristics. These include the formation of smart interfaces with reversible wrinkle formation, the construction of wrinkles in non-planar supports, or, more interestingly, the development of complex hierarchically structured wrinkled patterns. Smart wrinkled surfaces obtained using light-responsive, pH-responsive, temperature-responsive, and electromagnetic-responsive polymers are thoroughly described. These systems control the formation of wrinkles in particular surface positions and the reversible construction of planar-wrinkled surfaces. This know-how of non-planar substrates has been recently extended to other structures, thus forming wrinkled patterns on solid, hollow spheres, cylinders, and cylindrical tubes. Finally, this bibliographic analysis also presents some illustrative examples of the potential of wrinkle formation to create more complex patterns, including gradient structures and hierarchically multiscale-ordered wrinkles. The orientation and the wrinkle characteristics (amplitude and period) can also be modulated according to the requested application.
Collapse
Affiliation(s)
- Mauricio A. Sarabia-Vallejos
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Sede Santiago, Santiago 8420524, Chile
| | - Felipe E. Cerda-Iglesias
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa PhD en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Dan A. Pérez-Monje
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Nicolas F. Acuña-Ruiz
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
| | - Claudio A. Terraza-Inostroza
- Research Laboratory for Organic Polymer (RLOP), Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain
| | - Carmen M. González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
- Correspondence:
| |
Collapse
|
16
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
17
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
18
|
Wang Y, Li T, Li Y, Yang R, Zhang G. 2D-Materials-Based Wearable Biosensor Systems. BIOSENSORS 2022; 12:bios12110936. [PMID: 36354445 PMCID: PMC9687877 DOI: 10.3390/bios12110936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 05/24/2023]
Abstract
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible materials. Among them, 2D materials with excellent mechanical, optical, and electrical properties provide the expected characteristics to address the challenges of developing microminiaturized wearable biosensor systems. This review summarizes the recent research progresses in 2D-materials-based wearable biosensors including e-skin, contact lens sensors, and others. Then, we highlight the challenges of flexible power supply technologies for smart systems. The latest advances in biosensor systems involving wearable wristbands, diabetic patches, and smart contact lenses are also discussed. This review will enable a better understanding of the design principle of 2D biosensors, offering insights into innovative technologies for future biosensor systems toward their practical applications.
Collapse
Affiliation(s)
- Yi Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tong Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yangfeng Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Rong Yang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Luo H, Wang F, Guo R, Zhang D, He G, Chen S, Wang Q. Progress on Polymer Dielectrics for Electrostatic Capacitors Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202438. [PMID: 35981884 PMCID: PMC9561874 DOI: 10.1002/advs.202202438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Polymer dielectrics are attracting increasing attention for electrical energy storage owing to their advantages of mechanical flexibility, corrosion resistance, facile processability, light weight, great reliability, and high operating voltages. However, the dielectric constants of most dielectric polymers are less than 10, which results in low energy densities and limits their applications in electrostatic capacitors for advanced electronics and electrical power systems. Therefore, intensive efforts have been placed on the development of high-energy-density polymer dielectrics. In this perspective, the most recent results on the all-organic polymer dielectrics are summarized, including molecular structure design, polymer blends, and layered structured polymers. The challenges in the field and suggestions for future research on high-energy-density polymer dielectrics are also presented.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Fan Wang
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Ru Guo
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Dou Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Guanghu He
- Key Laboratory of Polymeric Materials and Application Technology of Hunan ProvinceCollege of ChemistryXiangtan UniversityXiangtanHunan Province411105China
| | - Sheng Chen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan ProvinceCollege of ChemistryXiangtan UniversityXiangtanHunan Province411105China
| | - Qing Wang
- Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
20
|
Light-emitting crystals of aptamer-hybrid organic semiconductor signaling on human cells expressing EpCAM. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Savedra RML, de Morais MNB, Siqueira MF. On the microstructures of the bulk of P3HT amorphous films obtained from two protocols: Insights from molecular dynamics simulations. J Mol Graph Model 2022; 117:108279. [DOI: 10.1016/j.jmgm.2022.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
|
22
|
Liu Y, Zhu M, Sun J, Shi W, Zhao Z, Wei X, Huang X, Guo Y, Liu Y. A Self-Assembled 3D Penetrating Nanonetwork for High-Performance Intrinsically Stretchable Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201844. [PMID: 35488389 DOI: 10.1002/adma.202201844] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The emergence of wearable technology can significantly benefit from electronic displays fabricated using intrinsically stretchable (is-) materials. Typically, an improvement in the stretchability of conventional light-emitting polymers is accompanied by a decrease in charge transportability, thus resulting in a significant decrease in device efficiency. In this study, a self-assembled 3D penetrating nanonetwork is developed to achieve increased stretchability and mobility simultaneously, based on high-molecular-weight phenylenevinylene (L-SY-PPV) and polyacrylonitrile (PAN). The mobility of L-SY-PPV/PAN increases by 5-6 times and the stretchability increases from 20% (pristine L-SY-PPV film) to 100%. A high current efficiency (CE) of 8.13 cd A-1 is observed in polymer light-emitting diodes (PLEDs) fabricated using 40% stretched L-SY-PPV/PAN. Furthermore, using a polyethyleneimine ethoxylated (PEIE), an 1,10-phenanthroline monohydrate (pBphen), and a reduced Triton X-100 (TR) chelated Zn-based is- electron-injection layer of Zn-PEIE-pBphen-TR, an is-PLED is realized with a turn-on voltage of 6.5 V and a high CE of 2.35 cd A-1 . These results demonstrate the effectiveness of using the self-assembled 3D penetrating nanonetwork for the fabrication of is-PLEDs.
Collapse
Affiliation(s)
- Yanwei Liu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingliang Zhu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Vong D, Nematiaram T, Dettmann MA, Murrey TL, Cavalcante LSR, Gurses SM, Radhakrishnan D, Daemen LL, Anthony JE, Koski KJ, Kronawitter CX, Troisi A, Moulé AJ. Quantitative Hole Mobility Simulation and Validation in Substituted Acenes. J Phys Chem Lett 2022; 13:5530-5537. [PMID: 35695809 DOI: 10.1021/acs.jpclett.2c00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (μh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict μh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.
Collapse
Affiliation(s)
- Daniel Vong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tahereh Nematiaram
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Makena A Dettmann
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tucker L Murrey
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Lucas S R Cavalcante
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Sadi M Gurses
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Dhanya Radhakrishnan
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John E Anthony
- University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Kristie J Koski
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| |
Collapse
|
24
|
Khatua R, Debata S, Sahu S. Computational study of electron transport in halogen incorporated diindenotetracene compounds: crystal structure, charge transport and optoelectronic properties. Phys Chem Chem Phys 2022; 24:13256-13265. [PMID: 35604064 DOI: 10.1039/d1cp05784g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure, charge transport and optoelectronic properties of newly designed air-stable halogenated diindenotetracene (DIT) based OSCs are reported in this article. The structural, electronic and charge transport properties of the compounds are investigated using density functional theory (DFT) formalism. The air-stability and n-type characteristics are validated from their low lying LUMO energies (<-3.9 eV) and large electron affinity (EA) values (>3.0 eV). Compared with the parent DIT, the designed DIT-X compounds (except for DIT-I) exhibit larger electronic coupling (Ve is found to be ∼1.5 times larger than that of the bare DIT) and higher electron mobilities because of the effect of electron-withdrawing groups substituted at the peripheral positions of the DIT derivatives. The designed DIT-X compounds (except DIT-I) show high electron mobilities (∼2.4-5.4 cm2 V-1 s-1), implying that the compounds can serve as promising electron transport materials. In addition, the UV-visible optical spectra of DIT derivatives (except DIT-F) display bathochromic shifts as compared to the bare DIT compound.
Collapse
Affiliation(s)
- Rudranarayan Khatua
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Suryakanti Debata
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sridhar Sahu
- Computational Materials Research Lab, Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
25
|
Recent Advances in Metal−Oxide Thin−Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors and Neuromorphic Applications. COATINGS 2022. [DOI: 10.3390/coatings12020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Thin−film transistors using metal oxides have been investigated extensively because of their high transparency, large area, and mass production of metal oxide semiconductors. Compatibility with conventional semiconductor processes, such as photolithography of the metal oxide offers the possibility to develop integrated circuits on a larger scale. In addition, combinations with other materials have enabled the development of sensor applications or neuromorphic devices in recent years. Here, this paper provides a timely overview of metal−oxide−based thin−film transistors focusing on emerging applications, including flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic devices. This overview also revisits recent efforts on metal oxide−based thin−film transistors developed with high compatibility for integration to newly reported applications.
Collapse
|
26
|
Woo JH, Park SY, Koo D, Song MH, Park H, Kim JY. Highly Elastic and Corrosion-Resistive Metallic Glass Thin Films for Flexible Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5578-5585. [PMID: 35040614 DOI: 10.1021/acsami.1c20551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ternary CuZrTi metallic glass thin films synthesized by sputtering are suggested as highly flexible and corrosion-resistant encapsulation materials. Unlike nanocrystalline Cu and binary CuZr metallic glass thin films, the ternary CuZrTi metallic glass thin films retain amorphous structure and do not oxidize even after 1000 h in an accelerated harsh environment at 85 °C with 85% relative humidity. The encapsulation performance of 260 nm thick ternary CuZrTi metallic glass is maintained even after 1000 bending cycles at a 3% tensile strain, corresponding to 70% of the elastic deformation limit, according to the results of a uniaxial tensile test. Because of the enhanced mechanical flexibility and reliability of the ternary CuZrTi metallic glass thin films, they have been applied to flexible organic solar cells as an encapsulation material.
Collapse
Affiliation(s)
- Jeong-Hyun Woo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun-Young Park
- Materials Safety Technology Development Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Donghwan Koo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
27
|
Park S, Ryu S, Ho D, Chae W, Earmme T, Kim C, Seo S. Novel benzo[ b]thieno[2,3- d]thiophene derivatives with an additional alkyl-thiophene core: synthesis, characterization, and p-type thin film transistor performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized benzo[b]thieno[2,3-d]thiophene derivatives were employed as active layers of organic field effect transistors, and these transistors showed decent electrical performance.
Collapse
Affiliation(s)
- Soyoon Park
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Soomin Ryu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Wookil Chae
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - SungYong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
28
|
Wang J, Ruan H, Hu Z, Wang W, Zhao Y, Wang X. Indeno[2,1-a]fluorene-11,12-dione radical anions:synthesis,characterization and property. Chemistry 2021; 28:e202103897. [PMID: 34928531 DOI: 10.1002/chem.202103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
The one-electron reduction reactions of indeno[2,1-a]fluorene-11,12-dione ( IF ) with various alkali metals bring about the radical anion salts. The different structures and properties are characterized by single crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and physical property measurement system (PPMS). IF •- K + (18-c-6) is regarded as a one-dimensional magnetic chain through C-H-C interaction. Theoretical calculations and magnetic results prove that [ IF •- K + (15-c-5)] 2 is a dimer with an open-shell ground state. IF •- Na + (15-c-5) and IF •- K + (cryptand) are monoradical anion salts. IF 2 •- Li + possesses unique π-stack structure with an interplanar separation less than 3.46 Å, making it a semiconductor ( δ RT = 1.9 Χ 10 -4 S•cm -1 ). This work gives a wealth of insights into multifunctional radical anions, and makes the design and development of different functional radicals attractive.
Collapse
Affiliation(s)
- Jie Wang
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Huapeng Ruan
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhaobo Hu
- JiangXi University of Science and Technology, Faculty of Materials metallurgy and Chemistry, CHINA
| | - Wenqing Wang
- Anhui Normal University, college of chemistry and material science, CHINA
| | - Yue Zhao
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinping Wang
- Nanjing University, Chemistry, Xianlin Ave 163, 210023, Nanjing, CHINA
| |
Collapse
|
29
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
30
|
Shi K, Qiu B, Zhu C, Yao J, Xia X, Zhang J, Meng L, Huang S, Lu X, Wan Y, Zhang ZG, Li Y. Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54237-54245. [PMID: 34726374 DOI: 10.1021/acsami.1c15377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unraveling the relationship between nanoscale morphology of active layers and chemical structures of organic semiconductor photovoltaic materials is crucially important for further advancing the development of all-small-molecule organic solar cells (SM-OSCs). Here, in order to delve into the effect of flexible side chains of small molecule donors on the photovoltaic properties of SM-OSCs, we synthesized two new small molecule donors substituted by different flexible alkyl chains (iso-octyl chains for SM1-EH and n-octyl chains for SM1-Oct). As a result, the two small molecules present different absorption properties, energy levels, and stacking characteristics. When blending with Y6 as an acceptor, the SM1-Oct-based SM-OSC demonstrated a higher PCE value of 11.73%, while the SM1-EH-based device presents a relatively poorer PCE value of 8.42%. In addition, the morphology analysis demonstrated that, compared with the SM1-EH:Y6 blend, the SM1-Oct:Y6 blend film displayed better molecular stacking properties with stronger multilevel diffraction and preferable phase separation, resulting in the higher hole mobility, more efficient charge separation efficiency, and better device performance. These results underline that reasonably adjusting the flexible alkyl chains of small molecule donors can be an effective approach to further advance the development of the SM-OSCs field.
Collapse
Affiliation(s)
- Keli Shi
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Beibei Qiu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yao
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shihua Huang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhi-Guo Zhang
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
31
|
Kim T, Oh S, Choudhry U, Meinhart CD, Chabinyc ML, Liao B. Transient Strain-Induced Electronic Structure Modulation in a Semiconducting Polymer Imaged by Scanning Ultrafast Electron Microscopy. NANO LETTERS 2021; 21:9146-9152. [PMID: 34672604 DOI: 10.1021/acs.nanolett.1c02963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the optoelectronic properties of semiconducting polymers under external strain is essential for their applications in flexible devices. Although prior studies have highlighted the impact of static and macroscopic strains, assessing the effect of a local transient deformation before structural relaxation occurs remains challenging. Here, we employ scanning ultrafast electron microscopy (SUEM) to image the dynamics of a photoinduced transient strain in the semiconducting polymer poly(3-hexylthiophene) (P3HT). We observe that the photoinduced SUEM contrast, corresponding to the local change of secondary electron emission, exhibits an unusual ring-shaped profile. We attribute the observation to the electronic structure modulation of P3HT caused by a photoinduced strain field owing to its low modulus and strong electron-lattice coupling, supported by a finite-element analysis. Our work provides insights into tailoring optoelectronic properties using transient mechanical deformation in semiconducting polymers and demonstrates the versatility of SUEM to study photophysical processes in diverse materials.
Collapse
Affiliation(s)
- Taeyong Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Saejin Oh
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Usama Choudhry
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Carl D Meinhart
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Michael L Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Bolin Liao
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Yuan K, Song T, Yang C, Guo J, Sun Q, Zou Y, Jiao F, Li L, Zhang X, Dong H, Li L, Hu W. Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal-Organic Framework-Based Composite Films. J Am Chem Soc 2021; 143:17526-17534. [PMID: 34644063 DOI: 10.1021/jacs.1c07033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
At the gas-liquid interface, the confined synthesis of metal-organic framework (MOF) films has been extensively developed by spreading an ultrathin oil layer on the aqueous surface as a reactor. However, this interface is susceptible to various disturbances and incapable of synthesizing large-area crystalline MOF films. Herein, we developed a polymer-assisted space-confined strategy to synthesize large-area films by blending poly(methyl methacrylate) (PMMA) into the oil layer, which improved the stability of the gas-liquid interface and the self-shrinkage of the oil layer on the water surface. Meanwhile, the as-synthesized MOFs as a quasi-solid substrate immobilized the edge of the oil layer, which maintained a large spreading area. Thanks to this synergistic effect, we synthesized the freestanding MOF-based film with a foot-level (0.66 ft) lateral dimension, which is the largest size reported so far. Besides, due to the phase separation of the two components, the MOF-PMMA composite film combined the conductivity of MOFs (1.13 S/m) with the flexibility of PMMA and exhibited excellent mechanical properties. More importantly, this strategy could be extended to the preparation of other MOFs, coordination polymers (CPs), and even inorganic material composite films, bringing light to the design and large-scale synthesis of various composite films for practical applications.
Collapse
Affiliation(s)
- Kuo Yuan
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.,Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tianqun Song
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.,School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Chenhuai Yang
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jun Guo
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qisheng Sun
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ye Zou
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fei Jiao
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lujiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaotao Zhang
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liqiang Li
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
33
|
Jin R, Shi K, Qiu B, Huang S. Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate. NANOTECHNOLOGY 2021; 33:025201. [PMID: 34619668 DOI: 10.1088/1361-6528/ac2dc5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Recently, antimony-doped tin oxide nanoparticles (ATO NPs) have been widely used in the fields of electronics, photonics, photovoltaics, sensing, and other fields because of their good conductivity, easy synthesis, excellent chemical stability, high mechanical strength, good dispersion and low cost. Herein, for the first time, a novel nonvolatile transistor memory device is fabricated using ATO NPs as charge trapping sites to enhance the memory performance. The resulting organic nano-floating gate memory (NFGM) device exhibits outstanding memory properties, including tremendous memory window (∼85 V), superhigh memory on/off ratio (∼109), long data retention (over 10 years) and eminent multilevel storage behavior, which are among the optimal performances in NFGM devices based on organic field effect transistors. Additionally, the device displays photoinduced-reset characteristic with low energy consumption erasing operation. This study provides novel avenues for the manufacture of simple and low-cost data storage devices with outstanding memory performance, multilevel storage behavior and suitability as platforms for integrated circuits.
Collapse
Affiliation(s)
- Risheng Jin
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Keli Shi
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Beibei Qiu
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Shihua Huang
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| |
Collapse
|
34
|
|
35
|
Zhang Q, Pei L, Li J, Wang K, Zeng Q, Yu H. Achieving Band Gap Reduction and Carrier Lifetime Enhancement in Metal Halide Perovskites via Mechanical Stretching. J Phys Chem Lett 2021; 12:7207-7212. [PMID: 34310153 DOI: 10.1021/acs.jpclett.1c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain engineering has become an efficient way to tune the optical and electronic behaviors of metal halide perovskites as a result of their unique structure-dependent optoelectronic characteristics. In this work, we show that the band gap can be reduced and, meanwhile, the carrier lifetime is increased by simply stretching the MAPbI3-xClx perovskite thin films. The narrowed band gap and prolonged carrier lifetime are beneficial for the photovoltaic actions, indicating that mechanical stretching can be a simple and efficient way to achieve photovoltaic property optimization of stretchable perovskite-based devices. Furthermore, Raman spectra show that the Pb-I bond length is shortened with mechanical stretching, which increases the valence band maximum (VBM) through orbital coupling, leading to a narrower band gap. Consequently, the trap states near VBM can be radiative as the trap energy levels become closer to the VBM, resulting in a prolonged carrier lifetime. This work brings huge opportunities to control the optoelectronic properties of metal halide perovskites through mechanical stress toward optoelectronic applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Liying Pei
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Qi Zeng
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
36
|
Jo S, Cho S, Yang UJ, Hwang GS, Baek S, Kim SH, Heo SH, Kim JY, Choi MK, Son JS. Solution-Processed Stretchable Ag 2 S Semiconductor Thin Films for Wearable Self-Powered Nonvolatile Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100066. [PMID: 33929062 DOI: 10.1002/adma.202100066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Compared with the large plastic deformation observed in ductile metals and organic materials, inorganic semiconductors have limited plasticity (<0.2%) due to their intrinsic bonding characters, restricting their widespread applications in stretchable electronics. Herein, the solution-processed synthesis of ductile α-Ag2 S thin films and fabrication of all-inorganic, self-powered, and stretchable memory devices, is reported. Molecular Ag2 S complex solution is synthesized by chemical reduction of Ag2 S powder, fabricating wafer-scale highly crystalline Ag2 S thin films. The thin films show stretchability due to the intrinsic ductility, sustaining the structural integrity at a tensile strain of 14.9%. Moreover, the fabricated Ag2 S-based resistive random access memory presents outstanding bipolar switching characteristics (Ion /Ioff ratio of ≈105 , operational endurance of 100 cycles, and retention time >106 s) as well as excellent mechanical stretchability (no degradation of properties up to stretchability of 52%). Meanwhile, the device is highly durable under diverse chemical environments and temperatures from -196 to 300 °C, especially maintaining the properties for 168 h in 85% relative humidity and 85 °C. A self-powered memory combined with motion sensors for use as a wearable healthcare monitoring system is demonstrated, offering the potential for designing high-performance wearable electronics that are usable in daily life in a real-world setting.
Collapse
Affiliation(s)
- Seungki Jo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- KIURI Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyoung Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - U Jeong Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Gyeong-Seok Hwang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seongheon Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Si-Hoon Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Seung Hwae Heo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Sung Son
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
37
|
Lee JW, Ma BS, Kim HJ, Kim TS, Kim BJ. High-Molecular-Weight Electroactive Polymer Additives for Simultaneous Enhancement of Photovoltaic Efficiency and Mechanical Robustness in High-Performance Polymer Solar Cells. JACS AU 2021; 1:612-622. [PMID: 34467323 PMCID: PMC8395705 DOI: 10.1021/jacsau.1c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 05/13/2023]
Abstract
The development of small-molecule acceptors (SMAs) has significantly enhanced the power conversion efficiency (PCE) of polymer solar cells (PSCs); however, the inferior mechanical properties of SMA-based PSCs often limit their long-term stability and application in wearable power generators. Herein, we demonstrate a simple and effective strategy for enhancing the mechanical robustness and PCE of PSCs by incorporating a high-molecular-weight (MW) polymer acceptor (P A, P(NDI2OD-T2)). The addition of 10-20 wt % P A leads to a more than 4-fold increase in the mechanical ductility of the SMA-based PSCs in terms of the crack onset strain (COS). At the same time, the incorporation of P A into the active layer improves the charge transport and recombination properties, increasing the PCE of the PSC from 14.6 to 15.4%. The added P As act as tie molecules, providing mechanical and electrical bridges between adjacent domains of SMAs. Thus, for the first time, we produce highly efficient and mechanically robust PSCs with a 15% PCE and 10% COS at the same time, thereby demonstrating their great potential as stretchable or wearable power generators. To understand the origin of the dual enhancements realized by P A, we investigate the influence of the P A content on electrical, structural, and morphological properties of the PSCs.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department
of Chemical and Biomolecular Engineering and Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Boo Soo Ma
- Department
of Chemical and Biomolecular Engineering and Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyeong Jun Kim
- Department
of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Taek-Soo Kim
- Department
of Chemical and Biomolecular Engineering and Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- . (T.-S.K.)
| | - Bumjoon J. Kim
- Department
of Chemical and Biomolecular Engineering and Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- . (B.J.K.)
| |
Collapse
|
38
|
Han S, Noh S, Kim JW, Lee CR, Lee SK, Kim JS. Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22728-22737. [PMID: 33969979 DOI: 10.1021/acsami.1c03023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To effectively implement wearable systems, their constituent components should be made stretchable. We successfully fabricated highly efficient stretchable photosensors made of inorganic GaN nanowires (NWs) as light-absorbing media and graphene as a carrier channel on polyurethane substrates using the pre-strain method. When a GaN-NW photosensor was stretched at a strain level of 50%, the photocurrent was measured to be 0.91 mA, corresponding to 87.5% of that (1.04 mA) obtained in the released state, and the photoresponsivity was calculated to be 11.38 A/W. These photosensors showed photocurrent and photoresponsivity levels much higher than those previously reported for any stretchable semiconductor-containing photosensor. To explain the superior performances of the stretchable GaN-NW photosensor, it was approximated as an equivalent circuit with resistances and capacitances, and in this way, we analyzed the behavior of the photogenerated carriers, particularly at the NW-graphene interface. In addition, the buckling phenomenon typically observed in organic-based stretchable devices fabricated using the pre-strain method was not observed in our photosensors. After a 1000-cycle stretching test with a strain level of 50%, the photocurrent and photoresponsivity of the GaN-NW photosensor were measured to be 0.96 mA and 11.96 A/W, respectively, comparable to those measured before the stretching test. To evaluate the potential of our stretchable devices in practical applications, the GaN-NW photosensors were attached to the proximal interphalangeal joint of the index finger and to the back of the wrist. Photocurrents of these photosensors were monitored during movements made about these joints.
Collapse
Affiliation(s)
- Sangmoon Han
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jong-Woong Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheul-Ro Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
39
|
Choi DK, Kim DH, Lee CM, Hafeez H, Sarker S, Yang JS, Chae HJ, Jeong GW, Choi DH, Kim TW, Yoo S, Song J, Ma BS, Kim TS, Kim CH, Lee HJ, Lee JW, Kim D, Bae TS, Yu SM, Kang YC, Park J, Kim KH, Sujak M, Song M, Kim CS, Ryu SY. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO 3/Au/MoO 3 electrode with encapsulation. Nat Commun 2021; 12:2864. [PMID: 34001906 PMCID: PMC8128878 DOI: 10.1038/s41467-021-23203-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Stretchable organic light-emitting diodes are ubiquitous in the rapidly developing wearable display technology. However, low efficiency and poor mechanical stability inhibit their commercial applications owing to the restrictions generated by strain. Here, we demonstrate the exceptional performance of a transparent (molybdenum-trioxide/gold/molybdenum-trioxide) electrode for buckled, twistable, and geometrically stretchable organic light-emitting diodes under 2-dimensional random area strain with invariant color coordinates. The devices are fabricated on a thin optical-adhesive/elastomer with a small mechanical bending strain and water-proofed by optical-adhesive encapsulation in a sandwiched structure. The heat dissipation mechanism of the thin optical-adhesive substrate, thin elastomer-based devices or silicon dioxide nanoparticles reduces triplet-triplet annihilation, providing consistent performance at high exciton density, compared with thick elastomer and a glass substrate. The performance is enhanced by the nanoparticles in the optical-adhesive for light out-coupling and improved heat dissipation. A high current efficiency of ~82.4 cd/A and an external quantum efficiency of ~22.3% are achieved with minimum efficiency roll-off.
Collapse
Affiliation(s)
- Dae Keun Choi
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Dong Hyun Kim
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Chang Min Lee
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Hassan Hafeez
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Subrata Sarker
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Jun Su Yang
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Hyung Ju Chae
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Geon-Woo Jeong
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Dong Hyun Choi
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Tae Wook Kim
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Seunghyup Yoo
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinouk Song
- grid.37172.300000 0001 2292 0500School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Boo Soo Ma
- grid.37172.300000 0001 2292 0500Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taek-Soo Kim
- grid.37172.300000 0001 2292 0500Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chul Hoon Kim
- grid.222754.40000 0001 0840 2678Department of Advanced Materials Chemistry, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Hyun Jae Lee
- grid.222754.40000 0001 0840 2678Department of Advanced Materials Chemistry, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea
| | - Jae Woo Lee
- grid.222754.40000 0001 0840 2678Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Donghyun Kim
- grid.222754.40000 0001 0840 2678Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Tae-Sung Bae
- grid.410885.00000 0000 9149 5707Jeonju Center, Korea Basic Science Institute (KBSI), Analysis & Researcher Division, Jeollabuk-do, Republic of Korea
| | - Seung Min Yu
- grid.410885.00000 0000 9149 5707Jeonju Center, Korea Basic Science Institute (KBSI), Analysis & Researcher Division, Jeollabuk-do, Republic of Korea
| | - Yong-Cheol Kang
- grid.412576.30000 0001 0719 8994Department of Chemistry, Pukyong National University 45 Yongso-Ro, Nam-gu, Busan, Republic of Korea
| | - Juyun Park
- grid.412576.30000 0001 0719 8994Department of Chemistry, Pukyong National University 45 Yongso-Ro, Nam-gu, Busan, Republic of Korea
| | - Kyoung-Ho Kim
- grid.254229.a0000 0000 9611 0917Department of Physics, Chungbuk National University, Cheongju, Republic of Korea
| | - Muhammad Sujak
- grid.254229.a0000 0000 9611 0917Department of Physics, Chungbuk National University, Cheongju, Republic of Korea
| | - Myungkwan Song
- grid.410902.e0000 0004 1770 8726Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Chang-Su Kim
- grid.410902.e0000 0004 1770 8726Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Seung Yoon Ryu
- grid.222754.40000 0001 0840 2678Division of Display and Semiconductor Physics, Display Convergence, College of Science and Technology, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Applied Physics, Korea University Sejong Campus, Sejong City, Republic of Korea ,grid.222754.40000 0001 0840 2678E-ICT–Culture-Sports Convergence Track, Korea University Sejong Campus, Sejong City, Republic of Korea
| |
Collapse
|
40
|
Landi A, Peluso A, Troisi A. Quantitative Prediction of the Electro-Mechanical Response in Organic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008049. [PMID: 33598958 DOI: 10.1002/adma.202008049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Organic semiconductors' inherent flexibility makes them appealing for advanced applications such as wearable electronics, e-skins, or pressure sensors, and can even be used to enhance their intrinsic electronic properties. Unfortunately, these applications for organic materials are currently hindered by the lack of a quantitative understanding of the interplay between their electrical and mechanical properties. In this work, this gap is filled by presenting an accurate methodology able to predict quantitatively the effects of external deformation on the charge transport properties of any organic semiconductors. Three prototypical materials are investigated, showing that the experimental variation of charge carrier mobility with strain is fully reproduced, even in a wide range of deformations applied along different crystal axes. The results indicate that the intrinsic electro-mechanical response of the materials varies by orders of magnitude within the class of organic semiconductors, a difference rationalized observing that the mobility trend is primarily influenced by the transfer integrals' variation, rather than by a modification of the crystal phonons. In light of its robustness, accuracy, and low computational cost, this protocol represents an ideal tool to quantify the electro-mechanical response in new organic compounds, thus establishing a reliable route for a full exploitation of strain engineering in advanced technologies.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia, Università di Salerno, Fisciano, Salerno, I-84084, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia, Università di Salerno, Fisciano, Salerno, I-84084, Italy
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
41
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Hsu LC, Isono T, Lin YC, Kobayashi S, Chiang YC, Jiang DH, Hung CC, Ercan E, Yang WC, Hsieh HC, Tajima K, Satoh T, Chen WC. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2932-2943. [PMID: 33423476 DOI: 10.1021/acsami.0c18820] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed. In this study, a series of new conjugated/insulating BCPs, poly(9,9-di-n-hexyl-2,7-fluorene)-block-poly(δ-decanolactone)s (PF-b-PDLx, x = 1-3), as stretchable hole-trapping materials are reported. The linear and branched PDL blocks with comparable molecular weights were used to investigate the effect of polymer architecture on morphology and device performance. Moreover, the coverage area of the polyfluorene nanofibers on the BCP films was extracted from atomic force microscopy images, which can be correlated with the trapping density of the polymer electrets. The branched PDL segments not only improve stretchability but also tailor crystallinity and phase separation of the BCPs, thus increasing their charge-trapping ability. The OFET memory device with PF-b-PDL3 as the electret layer exhibited the largest memory window (102 V) and could retain its performance at up to 100% strain. This research highlights the importance of the BCP design for developing stretchable charge-trapping materials.
Collapse
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dai-Hua Jiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chih-Chien Hung
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
43
|
Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. NANOSCALE 2020; 12:23391-23423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The substantial amount of data generated every second in the big data age creates a pressing requirement for new and advanced data storage techniques. Luminescent nanomaterials (LNMs) not only possess the same optical properties as their bulk materials but also have unique electronic and mechanical characteristics due to the strong constraints of photons and electrons at the nanoscale, enabling the development of revolutionary methods for data storage with superhigh storage capacity, ultra-long working lifetime, and ultra-low power consumption. In this review, we investigate the latest achievements in LNMs for constructing next-generation data storage systems, with a focus on optical data storage and optoelectronic data storage. We summarize the LNMs used in data storage, namely upconversion nanomaterials, long persistence luminescent nanomaterials, and downconversion nanomaterials, and their applications in optical data storage and optoelectronic data storage. We conclude by discussing the superiority of the two types of data storage and survey the prospects for the field.
Collapse
Affiliation(s)
- Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, 518060, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiang K, Wang L, Zhang X, Ma Z, Song Y, Zhang W. Side-Chain Length Dependence of Young’s Modulus and Strength in Crystalline Poly(3-alkylthiophene) Nanofibers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
45
|
Chiang YC, Hung CC, Lin YC, Chiu YC, Isono T, Satoh T, Chen WC. High-Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod-Coil Materials as a Floating Gate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002638. [PMID: 32700349 DOI: 10.1002/adma.202002638] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
A novel approach for using conjugated rod-coil materials as a floating gate in the fabrication of nonvolatile photonic transistor memory devices, consisting of n-type Sol-PDI and p-type C10-DNTT, is presented. Sol-PDI and C10-DNTT are used as dual functions of charge-trapping (conjugated rod) and tunneling (insulating coil), while n-type BPE-PDI and p-type DNTT are employed as the corresponding transporting layers. By using the same conjugated rod in the memory layer and transporting channel with a self-assembled structure, both n-type and p-type memory devices exhibit a fast response, a high current contrast between "Photo-On" and "Electrical-Off" bistable states over 105 , and an extremely low programing driving force of 0.1 V. The fabricated photon-driven memory devices exhibit a quick response to different wavelengths of light and a broadband light response that highlight their promising potential for light-recorder and synaptic device applications.
Collapse
Affiliation(s)
- Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chien Hung
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
46
|
Song J, Lee H, Jeong EG, Choi KC, Yoo S. Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907539. [PMID: 32142190 DOI: 10.1002/adma.201907539] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Organic light-emitting diodes (OLEDs) are established as a mainstream light source for display applications and can now be found in a plethora of consumer electronic devices used daily. This success can be attributed to the rich luminescent properties of organic materials, but efficiency enhancement made over the last few decades has also played a significant role in making OLEDs a practically viable technology. This report summarizes the efforts made so far to improve the external quantum efficiency (EQE) of OLEDs and discusses what should further be done to push toward the ultimate efficiency that can be offered by OLEDs. The study indicates that EQE close to 58% and 80% can be within reach without and with additional light extraction structures, respectively, with an optimal combination of cavity engineering, low-index transport layers, and horizontal dipole orientation. In addition, recent endeavors to identify possible applications of OLEDs beyond displays are presented with emphasis on their potential in wearable healthcare, such as OLED-based pulse oximetry as well as phototherapeutic applications based on body-attachable flexible OLED patches. OLEDs with fabric-like form factors and washable encapsulation strategies are also introduced as technologies essential to the success of OLED-based wearable electronics.
Collapse
Affiliation(s)
- Jinouk Song
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeonwoo Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Gyo Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
47
|
Shi Y, Zheng Y, Wang J, Zhao R, Wang T, Zhao C, Chang KC, Meng H, Wang X. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid. RESEARCH 2020; 2020:6587102. [PMID: 33015635 PMCID: PMC7510345 DOI: 10.34133/2020/6587102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/04/2020] [Indexed: 11/12/2022]
Abstract
Organic field-effect transistors (OFETs) are of the core units in organic electronic circuits, and the performance of OFETs replies critically on the properties of their dielectric layers. Owing to the intrinsic flexibility and natural compatibility with other organic components, organic polymers, such as poly(vinyl alcohol) (PVA), have emerged as highly interesting dielectric materials for OFETs. However, unsatisfactory issues, such as hysteresis, high subthreshold swing, and low effective carrier mobility, still considerably limit the practical applications of the polymer-dielectric OFETs for high-speed, low-voltage flexible organic circuits. This work develops a new approach of using supercritical CO2 fluid (SCCO2) treatment on PVA dielectrics to achieve remarkably high-performance polymer-dielectric OFETs. The SCCO2 treatment is able to completely eliminate the hysteresis in the transfer characteristics of OFETs, and it can also significantly reduce the device subthreshold slope to 0.25 V/dec and enhance the saturation regime carrier mobility to 30.2 cm2 V−1 s−1, of which both the numbers are remarkable for flexible polymer-dielectric OFETs. It is further demonstrated that, coupling with an organic light-emitting diode (OLED), the SCCO2-treated OFET is able to function very well under fast switching speed, which indicates that an excellent switching behavior of polymer-dielectric OFETs can be enabled by this SCCO2 approach. Considering the broad and essential applications of OFETs, we envision that this SCCO2 technology will have a very broad spectrum of applications for organic electronics, especially for high refresh rate and low-voltage flexible display devices.
Collapse
Affiliation(s)
- Yuhao Shi
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yingkai Zheng
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jialiang Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Ran Zhao
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Tao Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Changbin Zhao
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Kuan-Chang Chang
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Meng
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
48
|
|
49
|
Choi G, Oh S, Kim C, Lee K, An TK, Lee J, Jang Y, Lee HS. Omnidirectionally Stretchable Organic Transistors for Use in Wearable Electronics: Ensuring Overall Stretchability by Applying Nonstretchable Wrinkled Components. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32979-32986. [PMID: 32602339 DOI: 10.1021/acsami.0c04739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the emergence of wearable human interface technologies, new applications based on stretchable electronics, such as skin-attached sensors or wearable displays, must be developed. Difficulties associated with developing electronic components with the high stretchabilities required for such applications have restricted the range of appearance and utilization of cost- or process-efficient stretchable electronics. Herein, we present omnidirectionally stretchable wrinkled transistors having a shape that replicates human skin, which operates stably on deformable objects or complex surfaces. Our device offers excellent mechanical and electrical stabilities for preserving relative field-effect mobilities within a standard deviation of nearly 5.6%, under a strain level of up to 62%. Even after 10 000 cycles of stretching to 60% strain, the devices exhibited stable operation with little performance changes. These results indicate that the devices display stretchability properties superior to those of organic transistor arrays by utilizing existing nonstretchable device components.
Collapse
Affiliation(s)
- Giheon Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seungtaek Oh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Cheulhwan Kim
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Kanghuck Lee
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Tae Kyu An
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jihoon Lee
- Department of IT Convergence, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Yunseok Jang
- Department of Printed Electronics, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Hwa Sung Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
50
|
Hsu LC, Kobayashi S, Isono T, Chiang YC, Ree BJ, Satoh T, Chen WC. Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brian J. Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|