1
|
Shi Z, Zhou H, Fan Z, Guo K, Nie H, Zhou X, Xue Z. Waterborne Polyurethane Micelles Reinforce PEO-Based Electrolytes for Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407293. [PMID: 39422372 DOI: 10.1002/smll.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Although solid polymer electrolytes have been developed for several decades, poly(ethylene oxide) (PEO) or polymers with ethoxy (EO) segments are still one of the most promising candidates for advanced batteries. The low ionic conductivity and lithium-ion transference number as well as the deterioration of mechanical properties after coupling with lithium salts restrict its further adoption. Herein, a serial of PEO-based composite electrolytes optimized by waterborne polyurethane are prepared via blend method. With the assistance of H2O, ionic type waterborne polyurethane assembles into flexible micelles, in which hydrophobic segments as the core and hydrophilic groups as the shell. Utilizing this feature of waterborne polyurethane, PEO and Li salt (LiTFSI) aqueous solution is slowly added to the organic solution of waterborne polyurethane to compound in situ, and polymer composite electrolytes are fabricated. The multilevel (hydrogen bonds with different binding energy) and multiscale (deformation of flexible micelles) dynamic interaction endows the composite electrolyte with attractive mechanical properties. The assembled Li|Li symmetric battery with the molar ratio of EO to Li salts of 8:1 exhibits excellent cycling stability up to 800 h at 0.1 mA cm-2, and the assembled Li|LiFePO4 battery can be stably cycled at 1C for >400 cycles.
Collapse
Affiliation(s)
- Zhen Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongru Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kairui Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Tao Y, Xue Y, Wang F, Shan L, Ni Z, Lan Y, Zhang P, Wang Y, Liu J. Polyurethane Vitrimers Engineered with Nitrogen-Coordinating Cyclic Boronic Diester Bonds for Sustainable Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408557. [PMID: 39420697 DOI: 10.1002/smll.202408557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Flexible bioelectronic devices seamlessly interface with organs and tissues, offering unprecedented opportunity for timely prevention, early diagnosis, and medical therapies. However, the majority of flexible substrates utilized in bioelectronics still encounter significant challenges in terms of recyclability and reprocessing, leading to the accumulation of environmentally and biologically hazardous toxic waste. Here, the study reports the design of recyclable polyurethane (PU) vitrimers engineered with internal boron-nitrogen coordination bonds that can reversibly dissociate to boronic acids and hydroxyl, or undergo metathesis reaction following an associative pathway. The study demonstrates the capacity of these recyclable PU vitrimers as flexible substrates in various wearable and implantable bioelectronic applications, achieving high-quality electrophysiological recordings and stimulation. Furthermore, the study establishes a sustainable recycling process by reconstructing a range of bioelectronic devices from the recycled PU vitrimers without compromising the mechanical performance. This closed-loop approach not only addresses the critical challenge of the reclaiming medical electronic waste but also paves the way for the development of sustainable flexible bioelectronics for healthcare applications.
Collapse
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Jiangxi Province Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China
| | - Fucheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yunting Lan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Wang S, Lei L, Tian Y, Ning H, Hu N, Wu P, Jiang H, Zhang L, Luo X, Liu F, Zou R, Wen J, Wu X, Xiang C, Liu J. Strong, tough and anisotropic bioinspired hydrogels. MATERIALS HORIZONS 2024; 11:2131-2142. [PMID: 38376175 DOI: 10.1039/d3mh02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Soft materials are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a challenge to fabricate soft materials, such as hydrogels, with both high strength and toughness that are comparable to biological tissues. Inspired by the anisotropic structure of biological tissues, a novel solvent-exchange-assisted wet-stretching strategy is proposed to prepare anisotropic polyvinyl alcohol (PVA) hydrogels by tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and nanofibril formation". These hydrogels exhibit excellent mechanical properties, such as extremely high fracture stress (12.8 ± 0.7 MPa) and fracture strain (1719 ± 77%), excellent modulus (4.51 ± 0.76 MPa), high work of fracture (134.47 ± 9.29 MJ m-3), and fracture toughness (305.04 kJ m-2) compared with other strong hydrogels and even natural tendons. In addition, excellent conductivity, strain sensing capability, water retention, freezing resistance, swelling resistance, and biocompatibility can also be achieved. This work provides a new and effective method to fabricate multifunctional anisotropic hydrogels with high tunable strength and toughness with potential applications in the fields of regenerative medicine, flexible sensors, and soft robotics.
Collapse
Affiliation(s)
- Shu Wang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ling Lei
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Yuanhao Tian
- Southwest Technology and Engineering Research Institute, Chongqing, 400039, P. R. China
| | - Huiming Ning
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Ning Hu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Lidan Zhang
- School of Basic Medicine, Chongqing Medical University, 400042, P. R. China
| | - Xiaolin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Feng Liu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Rui Zou
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jie Wen
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaopeng Wu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Chenxing Xiang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Jie Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha, Hunan, 410082, P. R. China.
| |
Collapse
|
5
|
He L, Jiang Y, Wei J, Zhang Z, Hong T, Ren Z, Huang J, Huang F, Stang PJ, Li S. Highly robust supramolecular polymer networks crosslinked by a tiny amount of metallacycles. Nat Commun 2024; 15:3050. [PMID: 38594237 PMCID: PMC11004166 DOI: 10.1038/s41467-024-47333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Supramolecular polymeric materials have exhibited attractive features such as self-healing, reversibility, and stimuli-responsiveness. However, on account of the weak bonding nature of most noncovalent interactions, it remains a great challenge to construct supramolecular polymeric materials with high robustness. Moreover, high usage of supramolecular units is usually necessary to promote the formation of robust supramolecular polymeric materials, which restrains their applications. Herein, we describe the construction of highly robust supramolecular polymer networks by using only a tiny amount of metallacycles as the supramolecular crosslinkers. A norbornene ring-opening metathesis copolymer with a 120° dipyridine ligand is prepared and self-assembled with a 60° or 120° Pt(II) acceptor to fabricate the metallacycle-crosslinked polymer networks. With only 0.28 mol% or less pendant dipyridine units to form the metallacycle crosslinkers, the mechanical properties of the polymers are significantly enhanced. The tensile strengths, Young's moduli, and toughness of the reinforced polymers reach up to more than 20 MPa, 600 MPa, and 150 MJ/m3, respectively. Controllable destruction and reconstruction of the metallacycle-crosslinked polymer networks are further demonstrated by the sequential addition of tetrabutylammonium bromide and silver triflate, indicative of good stimuli-responsiveness of the networks. These remarkable performances are attributed to the thermodynamically stable, but dynamic metallacycle-based supramolecular coordination complexes that offer strong linkages with good adaptive characteristics.
Collapse
Affiliation(s)
- Lang He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Yu Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jialin Wei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Tao Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Zhiqiang Ren
- School of Materials Science and Engineering, Peking University, Beijing, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China.
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China.
| |
Collapse
|
6
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Shi Z, Wang Y, Yue X, Zhao J, Fang M, Liu J, Chen Y, Dong Y, Yan X, Liang Z. Mechanically Interlocked Interphase with Energy Dissipation and Fast Li-Ion Transport for High-Capacity Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401711. [PMID: 38381000 DOI: 10.1002/adma.202401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Constructing an artificial solid electrolyte interphase (ASEI) on Li metal anodes (LMAs) is a potential strategy for addressing the dendrite issues. However, the mechanical fatigue of the ASEI caused by stress accumulation under the repeated deformation from the Li plating/stripping is not taken seriously. Herein, this work introduces a mechanically interlocked [an]daisy chain network (DC MIN) into the ASEI to stabilize the Li metal/ASEI interface by combining the functions of energy dissipation and fast Li-ion transport. The DC MIN featured by large-range molecular motions is cross-linked via efficient thiol-ene click chemistry; thus, the DC MIN has flexibility and excellent mechanical properties. As an ASEI, the crown ether units in DC MIN not only interact with the dialkylammonium of a flexible chain, forming the energy dissipation behavior but also coordinate with Li ion to support the fast Li-ion transport in DC MIN. Therefore, a stable 2800 h-symmetrical cycling (1 mA cm-2 ) and an excellent 5 C-rate (full cell with LiFePO4 ) performance are achieved by DC MIN-based ASEI. Furthermore, the 1-Ah pouch cell (LiNi0.88 Co0.09 Mn0.03 O2 cathode) with DC MIN-coated LMA exhibits improved capacity retention (88%) relative to the Control. The molecular design of DC MIN provides new insights into the optimization of an ASEI for high-energy LMAs.
Collapse
Affiliation(s)
- Zhangqin Shi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinyang Yue
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingming Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jijiang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuanmao Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongteng Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zheng Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Deng J, Bai R, Zhao J, Liu G, Zhang Z, You W, Yu W, Yan X. Insights into the Correlation of Cross-linking Modes with Mechanical Properties for Dynamic Polymeric Networks. Angew Chem Int Ed Engl 2023; 62:e202309058. [PMID: 37491679 DOI: 10.1002/anie.202309058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Simultaneously introducing covalent and supramolecular cross-links into one system to construct dually cross-linked networks, has been proved an effective approach to prepare high-performance materials. However, so far, features and advantages of dually cross-linked networks compared with those possessing individual covalent or supramolecular cross-linking points are rarely investigated. Herein, on the basis of comparison between supramolecular polymer network (SPN), covalent polymer network (CPN) and dually cross-linked polymer network (DPN), we reveal that the dual cross-linking strategy can endow the DPN with integrated advantages of CPN and SPN. Benefiting from the energy dissipative ability along with the dissociation of host-guest complexes, the DPN shows excellent toughness and ductility similar to the SPN. Meanwhile, the elasticity of covalent cross-links in the DPN could rise the structural stability to a level comparable to the CPN, exhibiting quick deformation recovery capacity. Moreover, the DPN has the strongest breaking stress and puncture resistance among the three, proving the unique property advantages of dual cross-linking method. These findings gained from our study further deepen the understanding of dynamic polymeric networks and facilitate the preparation of high-performance elastomeric materials.
Collapse
Affiliation(s)
- Jingxi Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Hafeez S, Decarli MC, Aldana A, Ebrahimi M, Ruiter FAA, Duimel H, van Blitterswijk C, Pitet LM, Moroni L, Baker MB. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301242. [PMID: 37370137 DOI: 10.1002/adma.202301242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Agustina Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mahsa Ebrahimi
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology- Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging Institute, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
10
|
Chen R, Li Y, Jin Y, Sun Y, Zhao Z, Xu Y, Xu JF, Dong Y, Liu D. Reinforcing supramolecular hyaluronan hydrogels via kinetically interlocking multiple-units strategy. Carbohydr Polym 2023; 310:120703. [PMID: 36925240 DOI: 10.1016/j.carbpol.2023.120703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Supramolecular hydrogels exhibit promising potential in biological and clinical fields due to their special dynamic properties. However, most existing supramolecular hydrogels suffer from poor mechanical strength, which severely limits their applications. Here in this study, the Kinetically Interlocking Multiple-Units (KIMU) strategy was applied to the hyaluronan networks by introducing different supramolecular interaction motifs in an organized and alternative manner. Our strategy successfully elevated the energy barrier of crosslinker dissociation to 103.0 kJ mol-1 and increased the storage modulus of hydrogels by 78 % with the intrinsic dynamic properties preserved. It can be expected that this method would bring a convenient and effective route to fabricate novel supramolecular materials with excellent mechanical properties.
Collapse
Affiliation(s)
- Ruofan Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yu Jin
- Department of ophthalmology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (Huadong), Qingdao, 266580, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yun Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Qixiang Road No.50, Haidian District, Beijing 100081, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China.
| |
Collapse
|
11
|
Fan X, Zhang L, Dong F, Liu H, Xu X. Room-temperature self-healing polyurethane-cellulose nanocrystal composites with strong strength and toughness based on dynamic bonds. Carbohydr Polym 2023; 308:120654. [PMID: 36813344 DOI: 10.1016/j.carbpol.2023.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Self-healing materials suffer from a trade-off relationship between their self-healing ability and mechanical strength, which limits their applications. Therefore, we developed a room-temperature self-healing supramolecular composite based on polyurethane (PU) elastomer, cellulose nanocrystals (CNCs), and multiple dynamic bonds. In this system, the abundant hydroxyl groups on the surfaces of the CNCs form multiple hydrogen bonds with the PU elastomer, yielding a dynamic physical cross-linking network. This dynamic network enables self-healing without degrading the mechanical properties. As a result, the obtained supramolecular composites exhibited high tensile strength (24.5 ± 2.3 MPa), good elongation at break (1484.8 ± 74.9 %), favourable toughness (156.4 ± 31.1 MJ m-3, which is equivalent to that of spider silk and 5.1-times higher than that of aluminium), and excellent self-healing efficiency (95 ± 1.9 %). Notably, the mechanical properties of the supramolecular composites were almost completely retained after reprocessing three times. Further, using these composites, flexible electronic sensors were prepared and tested. In summary, we have reported a method for preparing supramolecular materials having high toughness and room temperature self-healing ability that have applications in flexible electronics.
Collapse
Affiliation(s)
- Xu Fan
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China; College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, Jiangsu Province, China
| |
Collapse
|
12
|
Xue B, Bashir Z, Guo Y, Yu W, Sun W, Li Y, Zhang Y, Qin M, Wang W, Cao Y. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres. Nat Commun 2023; 14:2583. [PMID: 37142590 PMCID: PMC10160100 DOI: 10.1038/s41467-023-38280-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Hydrogels are promising soft materials as tissue engineering scaffolds, stretchable sensors, and soft robotics. Yet, it remains challenging to develop synthetic hydrogels with mechanical stability and durability similar to those of the connective tissues. Many of the necessary mechanical properties, such as high strength, high toughness, rapid recovery, and high fatigue resistance, generally cannot be established together using conventional polymer networks. Here we present a type of hydrogels comprising hierarchical structures of picot fibres made of copper-bound self-assembling peptide strands with zipped flexible hidden length. The redundant hidden lengths allow the fibres to be extended to dissipate mechanical load without reducing network connectivity, making the hydrogels robust against damage. The hydrogels possess high strength, good toughness, high fatigue threshold, and rapid recovery, comparable to or even outperforming those of articular cartilage. Our study highlights the unique possibility of tailoring hydrogel network structures at the molecular level to improve their mechanical performance.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zoobia Bashir
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yachong Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Wenting Yu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wenxu Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Yiyang Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
13
|
Yuan Z, Duan X, Su X, Tian Z, Jiang A, Wan Z, Wang H, Wei P, Zhao B, Liu X, Huang J. Catch bond-inspired hydrogels with repeatable and loading rate-sensitive specific adhesion. Bioact Mater 2023; 21:566-575. [PMID: 36204280 PMCID: PMC9519436 DOI: 10.1016/j.bioactmat.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Biological receptor-ligand adhesion governed by mammalian cells involves a series of mechanochemical processes that can realize reversible, loading rate-dependent specific interfacial bonding, and even exhibit a counterintuitive behavior called catch bonds that tend to have much longer lifetimes when larger pulling forces are applied. Inspired by these catch bonds, we designed a hydrogen bonding-meditated hydrogel made from acrylic acid-N-acryloyl glycinamide (AA-NAGA) copolymers and tannic acids (TA), which formed repeatable specific adhesion to polar surfaces in an ultra-fast and robust way, but hardly adhered to nonpolar materials. It demonstrated up to five-fold increase in shear adhesive strength and interfacial adhesive toughness with external loading rates varying from 5 to 500 mm min−1. With a mechanochemical coupling model based on Monte Carlo simulations, we quantitatively revealed the nonlinear dependence of rate-sensitive interfacial adhesion on external loading, which was in good agreement with the experimental data. Likewise, the developed hydrogels were biocompatible, possessed antioxidant and antibacterial properties and promoted wound healing. This work not only reports a stimuli-responsive hydrogel adhesive suitable for multiple biomedical applications, but also offers an innovative strategy for bionic designs of smart hydrogels with loading rate-sensitive specific adhesion for various emerging areas including flexible electronics and soft robotics. Catch-bond inspired hydrogels (PNT hydrogels) were proposed. PNT hydrogels could realize loading-rate sensitive specific adhesion. The nonlinear dynamic responses of PNT hydrogels were quantitatively dissected. The optimized PNT-10 hydrogel was promotive in wound healing.
Collapse
|
14
|
Liu Y, Chen L, Yang Y, Chen H, Zhang X, Liu S. High Mechanical Strength and Multifunctional Microphase-Separated Supramolecular Hydrogels Fabricated by Liquid-Crystalline Block Copolymer. Macromol Rapid Commun 2023; 44:e2200829. [PMID: 36482796 DOI: 10.1002/marc.202200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The development of multifunctional supramolecular hydrogels with high mechanical strength and multifunction is in high demand. In this work, the diblock copolymer poly(acrylamide-co-1-benzyl-3-vinylimidazolium bromide)-block-polyAzobenzene is synthesized through reversible addition-fragmentation chain transfer polymerization. The dynamic host-guest interactions between the host molecule cucurbit[8] uril and guest units are used to fabricate a 3D network of supramolecular hydrogels. Investigations on the properties of the supramolecular hydrogels show that the tensile stress of the sample is 1.46 MPa, eight times higher than that of hydrogel without liquid-crystalline block copolymer, and the self-healing efficiency of the supramolecular hydrogels at room temperature is 88.3% (fracture stress) and 100% (fracture strain) after 24 h. Results show that microphase-separated structure plays a key role in the high-strength hydrogel, whereas the host-guest interaction endows the hydrogel with self-healing properties. The supramolecular hydrogels with high mechanical strength, photo-responsivity, injectability, and biocompatibility can be used in various potential applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lv Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuxuan Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiongzhi Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
15
|
Jian N, Guo R, Zuo L, Sun Y, Xue Y, Liu J, Zhang K. Bioinspired Self-Growing Hydrogels by Harnessing Interfacial Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210609. [PMID: 36585822 DOI: 10.1002/adma.202210609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The production of natural materials is achieved through a bottom-up approach, in which materials spontaneously grow and adapt to the external environment. Synthetic materials are specifically designed and fabricated as engineered materials; however, they are far away from these natural self-growing attributes. Thus, design and fabrication of synthetic material systems to replicate the self-growing characteristics of those natural prototypes (i.e., hairs and nails) remains challenging. Inspired by the self-growing behaviors of keratin proteins, here the fabrication of synthetic hydrogels (i.e., polyacrylamide (PAAm)) from the free radical polymerization at the interface between AAm precursor solution and liquid metals (i.e., eutectic gallium-indium (EGaIn)) is reported. The newly formed hydrogel materials at the EGaIn/AAm precursor interface gradually push the whole hydrogel upward, enabling the self-growing of these synthetic hydrogel materials. This work not only endows the fabrication of synthetic materials with unprecedented self-growing characters, but also broadens the potential applications of self-growing materials in actuation and soft robotics.
Collapse
Affiliation(s)
- Nannan Jian
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rui Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Zuo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yibo Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, P. R. China
| |
Collapse
|
16
|
Zhu X, Zhang W, Lu G, Zhao H, Wang L. Ultrahigh Mechanical Strength and Robust Room-Temperature Self-Healing Properties of a Polyurethane-Graphene Oxide Network Resulting from Multiple Dynamic Bonds. ACS NANO 2022; 16:16724-16735. [PMID: 36215403 DOI: 10.1021/acsnano.2c06264] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Addressing the conflict between achieving high mechanical properties and room-temperature self-healing ability is extremely significant to achieving a breakthrough in the application of self-healing materials. Therefore, inspired by natural spider silk and nacre, a room-temperature self-healing supramolecular material with ultrahigh strength and toughness is developed by synergistically incorporating flexible disulfide bonds and dynamic sextuple hydrogen bonds (H-bonds) into polyurethanes (PUs). Simultaneously, abundant H-bonds are introduced at the interface between graphene oxide nanosheets with dynamic multiple H-bonds and the PU matrix to afford strong interfacial interactions. The resulting urea-containing PU material with an inverse artificial nacre structure has a record mechanical strength (78.3 MPa) and toughness (505.7 MJ m-3), superior tensile properties (1273.2% elongation at break), and rapid room-temperature self-healing abilities (88.6% at 25 °C for 24 h), forming the strongest room-temperature self-healing elastomer reported to date and thus upending the previous understanding of traditional self-healing materials. In addition, this bionic PU-graphene oxide network endows the fabricated flexible intelligent robot with functional repair and shape memory capabilities, thus providing prospects for the fabrication of flexible functional devices.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wujun Zhang
- T&H Chemicals Corporation LTD., Quanzhou 362000, People's Republic of China
| | - Guangming Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
17
|
Zhang J, Bo S, Wang R, Fang J, Wang XG, Bai Y, Ma Z, Liang Y, Zhang M, Yu Q, Cai M, Zhou F, Liu W. Supramolecular Polymer Gel Lubricant with Excellent Mechanical Stability and Tribological Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45934-45944. [PMID: 36166403 DOI: 10.1021/acsami.2c14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lubricants performing better in machinery systems would lead to the remarkable reduction of environmental pollution problems and the significant improvement of fuel economy. A new family of supramolecular polymer gel lubricants with urea groups has been successfully prepared via self-assembling noncovalent bonds. These newly designed supramolecular polymer gels were well characterized with field-emission scanning electron microscopy, proton nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared spectroscopy, a rheometer, oscillating reciprocating friction, and a wear tester. Compared to low molecular weight supramolecular gels, the covalent and noncovalent bonds cooperated in the supramolecular polymer gel based on macromolecules. Hence, the mechanical properties and viscoelasticity of gel lubricants are greater than those of the low molecular weight supramolecular gels. Furthermore, owing to the longer chain length of polymer gelators, the thickness of the adsorbed film formed on the surface lubricated by macromolecules is thicker than that on the surface lubricated by low molecular weight supramolecular gels, which positively correlates with the lubricating property, making supramolecular polymer gels based on macromolecules better than low molecular weight supramolecular gels. Excitingly, the supramolecular polymer gels based on macromolecules exhibit more excellent thermal reversibility, creep recovery, and thixotropic properties, which not only achieve the lubricating property but also lead to the remarkable reduction of environmental pollution problems due to oil creeping.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shangshang Bo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhui Fang
- Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou 310051, China
| | - Xin-Gang Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanyan Bai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900 China
| | - Yijing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
Hou Y, Peng Y, Li P, Wu Q, Zhang J, Li W, Zhou G, Wu J. Bioinspired Design of High Vibration-Damping Supramolecular Elastomers Based on Multiple Energy-Dissipation Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35097-35104. [PMID: 35858204 DOI: 10.1021/acsami.2c07604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing vibrations and noises is essential for our automated society. Here, inspired by the hierarchical dynamic bonds and phase separation of mussel byssal threads, we synthesize high-damping supramolecular elastomers (HDEs) via simple one-pot radical polymerization of butyl acrylate (BA), acrylic acid (AA), and vinylimidazole (VI). Interestingly, AA and VI not only form hydrogen bonds and ionic bonds simultaneously but also segregate into aggregates of different sizes, thereby successfully mimicking the hierarchical structure of mussel byssal threads. When applying external forces, the weak hydrogen bonds are broken at first and then the ionic bonds and aggregates are disrupted progressively from small to large deformations. Such multiple energy-dissipation mechanisms lead to the outstanding damping property of the HDEs. Therefore, the HDEs outperform commercially available rubbers in terms of sound absorption and vibration damping. Furthermore, the multiple energy-dissipation mechanisms impart the HDEs with high toughness (41.1 MJ/m3), tensile strength (21.3 MPa), and self-healing ability.
Collapse
Affiliation(s)
- Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junqi Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Li Y, Wang X, Fang X, Sun J. Noncovalently Cross-Linked Polymeric Materials Reinforced by Well-Designed In Situ-Formed Nanofillers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9050-9063. [PMID: 35863752 DOI: 10.1021/acs.langmuir.2c01380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noncovalently cross-linked polymeric materials generally exhibit lower mechanical robustness than traditional polymeric materials. Therefore, it is important to improve the mechanical properties of noncovalently cross-linked polymeric materials using an efficient and generalized approach. In this Perspective, we systematically summarized the recent development of noncovalently cross-linked polymeric materials reinforced by in situ-formed nanofillers. The synergy of high-density noncovalent interactions and in situ-formed rigid nanofillers provided an effective means for the fabrication of noncovalently cross-linked plastics with high mechanical strength. The design of in situ-formed tough nanofillers, which could deform and dissociate, endowed the noncovalently cross-linked hydrogels and elastomers with high toughness, excellent stretchability, elasticity, damage resistance, and damage tolerance. Benefiting from the well-designed in situ-formed nanofillers, these noncovalently cross-linked polymeric materials with enhanced mechanical strength still exhibited satisfactory healing, recycling, and reprocessing properties. Outlooks were provided to envision the remaining challenges to the further development and practical application of noncovalently cross-linked polymeric materials reinforced with in situ-formed nanofillers.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
20
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
21
|
Mareliati M, Tadiello L, Guerra S, Giannini L, Schrettl S, Weder C. Metal–Ligand Complexes as Dynamic Sacrificial Bonds in Elastic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marco Mareliati
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Luciano Tadiello
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Silvia Guerra
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Luca Giannini
- Research & Development, Material Advanced Research, Pirelli Tyre SpA, Viale Piero e Alberto Pirelli, 25, 20126 Milano, Italy
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202201426. [PMID: 35179293 DOI: 10.1002/anie.202201426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Biology exploits a transcription-translation approach to deliver structural information from DNA to the protein-building machines with high precision. Here, we show how the structural information of small synthetic molecules could be used to guide the assembly of inorganic nanoparticles into diversified yet long-range ordered superstructures, enabling the information transfer across four or five orders of magnitude in length scale. We designed three perylene diimide (PDI) based isomers differing by their site-specific substitutions of the methyl group, which were able to supramolecularly polymerize into diverse structures. Importantly, coassembly of these PDI isomers with nanoparticles (NPs) could produce diverse long-range ordered nanoparticle superstructures, including one-dimensional NPs chains, double helical NPs assemblies and two-dimensional NPs superlattices. Equally important, we demonstrate that the information originated from small molecules could diversify the functions of the self-assembled nanocomposites.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
23
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
24
|
Ishizaka S, Nakagawa S, Matsuoka K, Yoshie N. Tough polymer with a gradual spatial change in the hydrogen bond density controlled by simple one-pot copolymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Li Q, He H, Zhang C, Liang X, Shen Y. Research on synthesis of polyurethane based on a new chain extender obtained from waste polyethylene terephthalate. J Appl Polym Sci 2022. [DOI: 10.1002/app.52402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qunyang Li
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Hui He
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Cheng Zhang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Xutong Liang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| | - Yue Shen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials South China University of Technology Guangzhou China
| |
Collapse
|
26
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
27
|
Liu J, Liu R, Li H, Zhang F, Yao Q, Wei J, Yang Z. Diversifying Nanoparticle Superstructures and Functions Enabled by Translative Templating from Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiaming Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Rongjuan Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Hui Li
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Fenghua Zhang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qingyuan Yao
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Jingjing Wei
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Zhijie Yang
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
28
|
He F, Ou Y, Liu J, Huang Q, Tang B, Xin F, Zhang J, Jiang M, Chen S, Yu Z. 3D Printed Biocatalytic Living Materials with Dual-Network Reinforced Bioinks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104820. [PMID: 34854551 DOI: 10.1002/smll.202104820] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The field of living materials seeks to harness living cells as microfactories that can construct a material itself or enhance the performance of material in some manner. While recent advances in 3D printing allow microbe manipulation to create bespoke living materials, the effective coupling of these living components in reinforced bioink designs remains a major challenge due to the difficulty in building a robust and cell-friendly microenvironment. Here, a type of dual-network bioink is reported for the 3D printing of living materials with enhanced biocatalysis capabilities, where bioinks are readily printable and provide a biocompatible environment along with desirable mechanical performance. It is demonstrated that integrating microbes into these bioinks enables the direct printing of catalytically living materials with high cell viability and maintains metabolic activity, which those living materials can be preserved and reused. Further, a bacteria-algae coculture system is fabricated for the bioremediation of chemicals, giving rise to its potential field applications.
Collapse
Affiliation(s)
- Fukun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiu Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
29
|
Bai R, Zhang H, Yang X, Zhao J, Wang Y, Zhang Z, Yan X. Supramolecular polymer networks crosslinked by crown ether-based host-guest recognition: dynamic materials with tailored mechanical properties in bulk. Polym Chem 2022. [DOI: 10.1039/d1py01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer networks (SPNs) based on host-guest recognition have attracted much research attention to develop smart supramolecular materials. However, these researches mainly focus on SPNs in solution or in gel...
Collapse
|
30
|
Miller KA, Dodo OJ, Devkota GP, Kirinda VC, Bradford KGE, Sparks J, Hartley CS, Konkolewicz D. Aromatic Foldamers as Molecular Springs in Network Polymers. Chem Commun (Camb) 2022; 58:5590-5593. [DOI: 10.1039/d2cc01223e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer networks crosslinked with spring-like ortho-phenylene (oP) foldamers were developed. NMR analysis indicated the oP crosslinkers were well-folded. Polymer networks with oP-based crosslinkers showed enhanced energy dissipation and elasticity compared...
Collapse
|
31
|
Meng Z, Liu Q, Zhang Y, Sun J, Yang C, Li H, Loznik M, Göstl R, Chen D, Wang F, Clark NA, Zhang H, Herrmann A, Liu K. Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Self-Healing, and Magnetic Response Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106208. [PMID: 34734442 DOI: 10.1002/adma.202106208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
DNA-based gels are attractive materials as they allow intuitive rational design, respond to external physicochemical stimuli, and show great potential for biomedical applications. However, their relatively poor mechanical properties currently limit their technological application considerably as the latter requires mechanical integrity and tunability. With this work, a DNA organogel is reported that gels through supramolecular interactions, which induce mesophase ordering, and that exhibits exceptional stretchability, deformability, plasticity, and biocompatibility. Moreover, the nature of the supramolecular bond enables complete self-healing within 3 s. Most importantly, the DNA-based liquid crystalline organogels exhibit impressive ultimate tensile strengths above 1 MPa, stiffness higher than 20 MPa, and toughness up to 18 MJ m-3 , rendering these materials the strongest among reported DNA networks. In addition, the facile access is demonstrated to composite DNA materials by blending magnetic nanoparticles with the organogel matrix giving access to magnetic field induced actuation. It is believed that these findings contribute significantly to the advancement of DNA gels for their use in smart materials and biomedical applications.
Collapse
Affiliation(s)
- Zhuojun Meng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Qing Liu
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, P. R. China
| | - Hongyan Li
- Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Mark Loznik
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Noel A Clark
- Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO, 80309-0390, USA
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
32
|
Wu M, Yang L, Shen Q, Zheng Z, Xu C. Endeavour to balance mechanical properties and self-healing of nature rubber by increasing covalent crosslinks via a controlled vulcanization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chen Y, Yin L, Ge F, Tong X, Zhang H, Zhao Y. Liquid Crystalline Hydrogel with Thermally Induced Reversible Shape Change and Water-Triggered Shape Memory. Macromol Rapid Commun 2021; 42:e2100495. [PMID: 34633718 DOI: 10.1002/marc.202100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Liquid crystalline hydrogel (LCH) is synthesized through simultaneous polymerization of hydrophobic and hydrophilic monomers in an oil-in-water emulsion, resulting in phase-separated liquid crystalline network (LCN) embedded in a hydrogel matrix. This material features some properties and functions of both LCN and hydrogel, displaying stable LC phase over repeated hydration and dehydration cycles of the hydrogel matrix. Using mechanically stretched and photocrosslinked LCH, the thermally induced LC-isotropic phase transition in LCN domains can be translated into reversible macroscopic deformation of the LCH. Moreover, the LCH exhibits water absorption-controlled shape memory effect.
Collapse
Affiliation(s)
- Yiming Chen
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Lu Yin
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Feijie Ge
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Xia Tong
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| |
Collapse
|
34
|
Madl AC, Myung D. Supramolecular Host-Guest Hydrogels for Corneal Regeneration. Gels 2021; 7:163. [PMID: 34698163 PMCID: PMC8544529 DOI: 10.3390/gels7040163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Over 6.2 million people worldwide suffer from moderate to severe vision loss due to corneal disease. While transplantation with allogenic donor tissue is sight-restoring for many patients with corneal blindness, this treatment modality is limited by long waiting lists and high rejection rates, particularly in patients with severe tissue damage and ocular surface pathologies. Hydrogel biomaterials represent a promising alternative to donor tissue for scalable, nonimmunogenic corneal reconstruction. However, implanted hydrogel materials require invasive surgeries and do not precisely conform to tissue defects, increasing the risk of patient discomfort, infection, and visual distortions. Moreover, most hydrogel crosslinking chemistries for the in situ formation of hydrogels exhibit off-target effects such as cross-reactivity with biological structures and/or result in extractable solutes that can have an impact on wound-healing and inflammation. To address the need for cytocompatible, minimally invasive, injectable tissue substitutes, host-guest interactions have emerged as an important crosslinking strategy. This review provides an overview of host-guest hydrogels as injectable therapeutics and highlights the potential application of host-guest interactions in the design of corneal stromal tissue substitutes.
Collapse
Affiliation(s)
- Amy C. Madl
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
35
|
Guo H, Yang S, Cao L, Chen L, Gao R, Huang Y, Xue B, Tao Z. Multiple Stimuli-Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit[5]uril-para-phenylenediamine Exclusion Complex. Macromol Rapid Commun 2021; 42:e2100431. [PMID: 34480770 DOI: 10.1002/marc.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Indexed: 11/12/2022]
Abstract
The hydrogels composed of decamethylcucurbit[5]uril (Me10 Q[5]) and para-phenylenediamine (p-PDA) are first reported herein. They are the first Q[5]-based supramolecular hydrogels, the formation of which is driven by portal exclusion between Me10 Q[5] and p-PDA. The composition, structure, and properties of the Me10 Q[5]/p-PDA-based hydrogels are investigated by various techniques. Since the 1D supramolecular chain forms via portal exclusion between Me10 Q[5] and p-PDA is the key to the formation of the hydrogels, any competitive species, such as metal ions, organic molecules, and amino acids, which can affect the portal exclusion, can change the behavior of the Me10 Q[5]/p-PDA-based hydrogels. Hence, the hydrogels can be used for various applications. Importantly, the results may provide a new research direction for the preparation of Q[n]-based hydrogels via portal exclusion of Q[n]s with guests.
Collapse
Affiliation(s)
- Hanling Guo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Shengdu Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Long Cao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Lixia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ruihan Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Bai Xue
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
36
|
Aoudi B, Khaligh A, Sheidaei Y, Tuncel D. In situ-Electrochemically reduced graphene oxide integrated with cross-linked supramolecular polymeric network for electrocatalytic hydrogen evaluation reaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Fan L, Hu L, Xie J, He Z, Zheng Y, Wei D, Yao D, Su F. Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomater Sci 2021; 9:5884-5896. [PMID: 34286727 DOI: 10.1039/d1bm00665g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a bioelectronic material used in personalized medicine, it is necessary to integrate excellent adhesion and stretchability in hydrogels for ensuring biosafety. Herein, a high-performance multifunctional hydrogel of polyvinyl alcohol-sodium alginate-g-dopamine-silver nanowire-borax (PSAB) is reported. It can not only easily adhere to the surface of various substrates, but also exhibit excellent mechanical properties. Its tensile strength, elongation at break and toughness are 0.286 MPa, 500% and 55.15 MJ m-3, respectively. The excellent mechanical properties and high conductivity guarantee that the PSAB hydrogel can successfully serve as a multifunctional sensor for detecting small activities and large-scale movements of the human body through strain and pressure changes. Meanwhile, the long-lasting potent and broad-spectrum antibacterial activity, combined with good in vitro biocompatibility, guarantees the biological safety and non-toxicity of the PSAB hydrogel. These compelling features, such as high flexibility and elasticity, high adhesion, multi-functional sensing and recyclability, as well as biological safety, pave the way for the application of PSAB hydrogel e-skin in biomedicine.
Collapse
Affiliation(s)
- Ling Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Surjadi JU, Zhou Y, Wang T, Yang Y, Kai JJ, Lu Y, Wang Z. 3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. iScience 2021; 24:102789. [PMID: 34278275 PMCID: PMC8271157 DOI: 10.1016/j.isci.2021.102789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
The properties of mechanical metamaterials such as strength and energy absorption are often “locked” upon being manufactured. While there have been attempts to achieve tunable mechanical properties, state-of-the-art approaches still cannot achieve high strength/energy absorption with versatile tunability simultaneously. Herein, we fabricate for the first time, 3D architected organohydrogels with specific energy absorption that is readily tunable in an unprecedented range up to 5 × 103 (from 0.0035 to 18.5 J g−1) by leveraging on the energy dissipation induced by the synergistic combination of hydrogen bonding and metal coordination. The 3D architected organohydrogels also possess anti-freezing and non-drying properties facilitated by the hydrogen bonding between ethylene glycol and water. In a broader perspective, this work demonstrates a new type of architected metamaterials with the ability to produce a large range of mechanical properties using only a single material system, pushing forward the applications of mechanical metamaterials to broader possibilities. The first fabrication of 3D architected organohydrogels by Digital Light Processing Two-step toughening effect of organohydrogels by metal coordination and hydrogen bonding 3D structures achieved ultra-tunable range of specific energy absorption up to 5000 x 3D architected organohydrogels were demonstrated as tunable impact attenuators
Collapse
Affiliation(s)
- James Utama Surjadi
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yongsen Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Tianyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yong Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ji-Jung Kai
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.,Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
39
|
Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into the Role of Hydrogen Bonds on the Mechanical Properties of Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Huang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
40
|
Tang Y, Cao P, Li W, He M, Dai Z, Xiong Y. Redox-responsive poly(ionic liquid) microgels explored as the building blocks for supramolecular assembly. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Xing W, Ghahfarokhi AJ, Xie C, Naghibi S, Campbell JA, Tang Y. Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers. Polymers (Basel) 2021; 13:805. [PMID: 33800715 PMCID: PMC7961438 DOI: 10.3390/polym13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle-hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance.
Collapse
Affiliation(s)
- Wenjin Xing
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
| | - Amin Jamshidi Ghahfarokhi
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
| | - Sanaz Naghibi
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Jonathan A. Campbell
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Youhong Tang
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
42
|
Zhang H, Yang S, Yang Z, Wang D, Han J, Li C, Zhu C, Xu J, Zhao N. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4499-4507. [PMID: 33433191 DOI: 10.1021/acsami.0c19560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of a single polymer network with extreme stretchability, relatively high mechanical strength, and fast and facile autonomous room-temperature self-healing capability still remains a challenge. Herein, supramolecular polymer networks are fabricated by synergistically incorporating metal-ligand and hydrogen bonds in poly(propylene glycol) (PPG). The representative specimen, PPG-Im-MDA-1.5-0.25-Cu, shows a combination of notable mechanical properties involving an extreme stretching ratio of 346 ± 14× and a Young's modulus of 2.10 ± 0.14 MPa, which are superior to the previously reported extremely stretchable polymeric materials. Notably, the destroyed specimen can fully recover mechanical performances within 1 h. The tunability of mechanical properties and self-healing capability has been actualized by merely tailoring the content of a chain extender. The application of the as-prepared supramolecular PPG network in constructing a flexible and self-healable conductor has been demonstrated. This strategy provides some insights for preparing extremely stretchable and self-healable polymeric materials.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Gao H, Sun Y, Wang M, Wang Z, Han G, Jin L, Lin P, Xia Y, Zhang K. Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1581-1591. [PMID: 33356096 DOI: 10.1021/acsami.0c19520] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reprocessable acrylate vitrimer needs to enhance its strength to expand the application in photo-three-dimensional (photo-3D) printing. However, the methods for improving mechanical properties by the addition of nanofillers or a multifunctional resin into acrylate vitrimers are inappropriate for photo-3D printing due to the low curing speed of photopolymerization induced by weakening light transmittance or reduction of dimensional accuracy caused by large shrinkage. At present, we demonstrate a new strategy for developing a kind of mechanically robust and reprocessable 3D printing thermosets by combining hydrogen bonds and exchangeable β-hydroxyl esters into acrylate vitrimers. To realize this purpose, diacrylate prepolymer containing β-hydroxyl esters was first synthesized from glycidyl methacrylate and suberic acid. Then, the resin formulations for 3D printing comprising the synthesized diacrylate prepolymer together with acrylamide generate exchanged β-hydroxyl ester and pendent amide in cross-linked networks. Here, hydrogen bonds resulting from the amide group as sacrificial bonds dissipate vast mechanical energy under an external load. With the inclusion of 20 wt % acrylamide, the average tensile strength and Young's modulus are up to 40.1 and 871 MPa, which increased by about 4.4 and 3.85 times, respectively. The network rearrangement of cross-linked vitrimers can be achieved through the dynamic ester exchange reactions with gradual disappearance of hydrogen bonds at elevated temperatures, imparting reprocessability into the printed structures. Various photo-3D printing or UV irradiation shapes were successfully produced, and these dissolved in ethylene glycol could be remolded again.
Collapse
Affiliation(s)
- Hong Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yingchun Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Miaomiao Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Guoqiang Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Ling Jin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Youyi Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
44
|
Whitaker DJ, Huang Z, Longbottom BW, Sala RL, Wu G, Scherman OA. Supramolecular hydrogels prepared from fluorescent alkyl pyridinium acrylamide monomers and CB[8]. Polym Chem 2021. [DOI: 10.1039/d0py01374a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthetic methodology unlocks alkyl pyridinium acrylamide monomers for use in the construction of cucurbit[8]uril mediated dynamic, fluorescent hydrogels.
Collapse
Affiliation(s)
- Daniel J. Whitaker
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Zehuan Huang
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Brooke W. Longbottom
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Renata L. Sala
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
45
|
Zhang L, Wang D, Xu L, Zhang A. A supramolecular polymer with ultra-stretchable, notch-insensitive, rapid self-healing and adhesive properties. Polym Chem 2021. [DOI: 10.1039/d0py01536a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Supramolecular elastomers, possessing excellent mechanical, reusable adhesivity, and rapid self-healing properties, are essential for use in various applications.
Collapse
Affiliation(s)
- Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
46
|
Wang X, Zhan S, Lu Z, Li J, Yang X, Qiao Y, Men Y, Sun J. Healable, Recyclable, and Mechanically Tough Polyurethane Elastomers with Exceptional Damage Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005759. [PMID: 33175420 DOI: 10.1002/adma.202005759] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Indexed: 06/11/2023]
Abstract
There is a huge requirement of elastomers for use in tires, seals, and shock absorbers every year worldwide. In view of a sustainable society, the next generation of elastomers is expected to combine outstanding healing, recycling, and damage-tolerant capacities with high strength, elasticity, and toughness. However, it remains challenging to fabricate such elastomers because the mechanisms for the properties mentioned above are mutually exclusive. Herein, the fabrication of healable, recyclable, and mechanically tough polyurethane (PU) elastomers with outstanding damage tolerance by coordination of multiblock polymers of poly(dimethylsiloxane) (PDMS)/polycaprolactone (PCL) containing hydrogen and coordination bonding motifs with Zn2+ ions is reported. The organization of bipyridine groups coordinated with Zn2+ ions, carbamate groups cross-linked with hydrogen bonds, and crystallized PCL segments generates phase-separated dynamic hierarchical domains. Serving as rigid nanofillers capable of deformation and disintegration under an external force, the dynamic hierarchical domains can strengthen the elastomers and significantly enhance their toughness and fracture energy. As a result, the elastomers exhibit a tensile strength of ≈52.4 MPa, a toughness of ≈363.8 MJ m-3 , and an exceptional fracture energy of ≈192.9 kJ m-2 . Furthermore, the elastomers can be conveniently healed and recycled to regain their original mechanical properties and integrity under heating.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shengnan Zhan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Jian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiao Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Yongna Qiao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
47
|
Dai W, Sun M, Leng X, Hu X, Ao Y. Recent Progress in 3D Printing of Elastic and High-Strength Hydrogels for the Treatment of Osteochondral and Cartilage Diseases. Front Bioeng Biotechnol 2020; 8:604814. [PMID: 33330436 PMCID: PMC7729093 DOI: 10.3389/fbioe.2020.604814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Despite considerable progress for the regenerative medicine, repair of full-thickness articular cartilage defects and osteochondral interface remains challenging. This low efficiency is largely due to the difficulties in recapitulating the stratified zonal architecture of articular cartilage and engineering complex gradients for bone-soft tissue interface. This has led to increased interest in three-dimensional (3D) printing technologies in the field of musculoskeletal tissue engineering. Printable and biocompatible hydrogels are attractive materials for 3D printing applications because they not only own high tunability and complexity, but also offer favorable biomimetic environments for live cells, such as porous structure, high water content, and bioactive molecule incorporation. However, conventional hydrogels are usually mechanically weak and brittle, which cannot reach the mechanical requirements for repair of articular cartilage defects and osteochondral interface. Therefore, the development of elastic and high-strength hydrogels for 3D printing in the repairment of cartilage defects and osteochondral interface is crucial. In this review, we summarized the recent progress in elastic and high-strength hydrogels for 3D printing and categorized them into six groups, namely ion bonds interactions, nanocomposites integrated in hydrogels, supramolecular guest-host interactions, hydrogen bonds interactions, dynamic covalent bonds interactions, and hydrophobic interactions. These 3D printed elastic and high-strength hydrogels may provide new insights for the treatment of osteochondral and cartilage diseases.
Collapse
Affiliation(s)
- Wenli Dai
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Muyang Sun
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqing Hu
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Beijing Key Laboratory of Sports Injuries, Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
48
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
49
|
Huang X, Zhang M, Ming J, Ning X, Bai S. High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions. ACS APPLIED BIO MATERIALS 2020; 3:7103-7112. [PMID: 35019370 DOI: 10.1021/acsabm.0c00933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural polymer-based hydrogels attract great attention because of their inherent biocompatibility and controllable biodegradability. However, the broad applications of these hydrogels require a combination of high mechanical strength, high toughness, fatigue resistance, as well as self-healing. The integration of this combination into one natural polymer-based hydrogel remains challenging. Here, a molecular design strategy was proposed to fabricate mechanically robust silk fibroin-based hydrogels using host-guest interactions. Silk fibroin molecules was chemically modified with cholesterol (Chol, guest) or β-cyclodextrin (β-CD, host), and host-guest interaction between Chol and β-CD moieties drove the supramolecular assemblies of hydrogels. The dissociation/reassociation behavior of host-guest complexation, serving as sacrificial bonds, endowed hydrogels with effective energy dissipation and rapid self-healing ability. The prepared silk fibroin-based hydrogels exhibited high mechanical strength, high toughness, and remarkable fatigue resistance, superior to conventional silk fibroin hydrogels. Moreover, due to reversible host-guest interactions, hydrogels achieved facile functional recovery after damage without any external stimuli. This design strategy provides an avenue to develop natural polymer-based materials with robust mechanical properties, thus broadening current hydrogel applications.
Collapse
Affiliation(s)
- Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Mengya Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
50
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|