1
|
Hsu LY, Melo SG, Vazquez-Martel C, Spiegel CA, Ziebert F, Schwarz US, Blasco E. Alignment and actuation of liquid crystals via 3D confinement and two-photon laser printing. SCIENCE ADVANCES 2024; 10:eadq2597. [PMID: 39241061 PMCID: PMC11378907 DOI: 10.1126/sciadv.adq2597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
Liquid crystalline (LC) materials are especially suited for the preparation of active three-dimensional (3D) and 4D microstructures using two-photon laser printing. To achieve the desired actuation, the alignment of the LCs has to be controlled during the printing process. In most cases studied before, the alignment relied on surface modifications and complex alignment patterns and concomitant actuation were not possible. Here, we introduce a strategy for spatially aligning LC domains in three-dimensional space by using 3D-printed polydimethylsiloxane-based microscaffolds as confinement barriers, which induce the desired director field. The director field resulting from the boundary conditions is calculated with Landau de Gennes theory and validated by comparing experimentally measured and theoretically predicted birefringence patterns. We demonstrate our procedures for structures of varying complexity and then employed them to fabricate 4D microstructures that show the desired actuation. Overall, we obtain excellent agreement between theory and experiment. This opens the door for rational design of functional materials for 4D (micro)printing in the future.
Collapse
Affiliation(s)
- Li-Yun Hsu
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| | - Santiago Gomez Melo
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg 69120 Germany
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120 Germany
| | - Clara Vazquez-Martel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| | - Christoph A Spiegel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg 69120 Germany
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120 Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg 69120 Germany
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120 Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Zhang Z, Deng C, Fan X, Li M, Zhang M, Wang X, Chen F, Shi S, Zhou Y, Deng L, Gao H, Xiong W. 3D Directional Assembly of Liquid Crystal Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401533. [PMID: 38794830 DOI: 10.1002/adma.202401533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The precise construction of hierarchically long-range ordered structures using molecules as fundamental building blocks can fully harness their anisotropy and potential. However, the 3D, high-precision, and single-step directional assembly of molecules is a long-pending challenge. Here, a 3D directional molecular assembly strategy via femtosecond laser direct writing (FsLDW) is proposed and the feasibility of this approach using liquid crystal (LC) molecules as an illustrative example is demonstrated. The physical mechanism for femtosecond (fs) laser-induced assembly of LC molecules is investigated, and precise 3D arbitrary assembly of LC molecules is achieved by defining the discretized laser scanning pathway. Additionally, an LC-based Fresnel zone plate array with polarization selection and colorization imaging functions is fabricated to further illustrate the potential of this method. This study not only introduces a 3D high-resolution alignment method for LC-based functional devices but also establishes a universal protocol for the precise 3D directional assembly of anisotropic molecules.
Collapse
Affiliation(s)
- Zexu Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minjing Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinger Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fayu Chen
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaoxi Shi
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yining Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
3
|
Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing Green: Microalgae-Based Materials for 3D Printing with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402786. [PMID: 38876261 DOI: 10.1002/adma.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Collapse
Affiliation(s)
- Clara Vazquez-Martel
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Lilliana Florido Martins
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Elisa Genthner
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Carlos Almeida
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juan Luis Gómez Pinchetti
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Eva Blasco
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
He T, Yang Y, Chen XB. Propulsion mechanisms of micro/nanorobots: a review. NANOSCALE 2024; 16:12696-12734. [PMID: 38940742 DOI: 10.1039/d4nr01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Micro/nanomotors (MNMs) are intelligent, efficient and promising micro/nanorobots (MNR) that can respond to external stimuli (e.g., chemical energy, temperature, light, pH, ultrasound, magnetic, biosignals, ions) and perform specific tasks. The MNR can adapt to different external stimuli and transform into various functional forms to match different application scenarios. So far, MNR have found extensive application in targeted therapy, drug delivery, tissue engineering, environmental remediation, and other fields. Despite the promise of MNR, there are few reviews that focus on them. To shed new light on the further development of the field, it is necessary to provide an overview of the current state of development of these MNR. Therefore, this paper reviews the research progress of MNR in terms of propulsion mechanisms, and points out the pros and cons of different stimulus types. Finally, this paper highlights the current challenges faced by MNR and proposes possible solutions to facilitate the practical application of MNR.
Collapse
Affiliation(s)
- Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
5
|
Zhao Y, Tong D, Chen Y, Chen Q, Wu Z, Xu X, Fan X, Xie H, Yang Z. Microgripper Robot with End Electropermanent Magnet Collaborative Actuation. MICROMACHINES 2024; 15:798. [PMID: 38930768 PMCID: PMC11205932 DOI: 10.3390/mi15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Magnetic microgrippers, with their miniaturized size, flexible movement, untethered actuation, and programmable deformation, can perform tasks such as cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery in hard-to-reach regions. However, common external magnetic-field-driving devices suffer from low efficiency and utilization due to the significant size disparity with magnetic microgrippers. Here, we introduce a microgripper robot (MGR) driven by end electromagnetic and permanent magnet collaboration. The magnetic field generated by the microcoils can be amplified by the permanent magnets and the direction can be controlled by changing the current, allowing for precise control over the opening and closing of the magnetic microgripper and enhancing its operational range. Experimental results demonstrate that the MGR can be flexibly controlled in complex constrained environments and is highly adaptable for manipulating objects. Furthermore, the MGR can achieve planar and antigravity object grasping and transportation within complex simulated human cavity pathways. The MGR's grasping capabilities can also be extended to specialized tasks, such as circuit connection in confined spaces. The MGR combines the required safety and controllability for in vivo operations, making it suitable for potential clinical applications such as tumor or abnormal tissue sampling and surgical assistance.
Collapse
Affiliation(s)
- Yiqun Zhao
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Dingwen Tong
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Yutan Chen
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Qinkai Chen
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Zhengnan Wu
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Xinmiao Xu
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Xinjian Fan
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, China
| | - Zhan Yang
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China; (Y.Z.); (D.T.); (Q.C.); (Z.W.); (Z.Y.)
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China; (Y.C.)
| |
Collapse
|
6
|
Donato S, Nocentini S, Martella D, Kolagatla S, Wiersma DS, Parmeggiani C, Delaney C, Florea L. Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi-Level Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306802. [PMID: 38063817 DOI: 10.1002/smll.202306802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Indexed: 05/18/2024]
Abstract
Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
Collapse
Affiliation(s)
- Simone Donato
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Sara Nocentini
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Srikanth Kolagatla
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Diederik S Wiersma
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara 1, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019, Italy
| | - Colm Delaney
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| | - Larisa Florea
- School of Chemistry & AMBER, The SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|
7
|
Gruzdenko A, Mulder DJ, Schenning APHJ, den Toonder JMJ, Debije MG. Dual-Wavelength Volumetric Microlithography for Rapid Production of 4D Microstructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22696-22703. [PMID: 38646711 PMCID: PMC11071039 DOI: 10.1021/acsami.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
4D microstructured actuators are micro-objects made of stimuli-responsive materials capable of induced shape deformations, with applications ranging from microrobotics to smart micropatterned haptic surfaces. The novel technology dual-wavelength volumetric microlithography (DWVML) realizes rapid printing of high-resolution 3D microstructures and so has the potential to pave the way to feasible manufacturing of 4D microdevices. In this work, DWVML is applied for the first time to printing stimuli-responsive materials, namely, liquid crystal networks (LCNs). An LCN photoresist is developed and characterized, and large arrays of up to 5625 LCN micropillars with programmable shape changes are produced by means of DWVML in the time span of seconds, over areas as large as ∼5.4 mm2. The production rate of 0.24 mm3 h-1 is achieved, exceeding speeds previously reported for additive manufacturing of LCNs by 2 orders of magnitude. Finally, a membrane with tunable, micrometer-sized pores is fabricated to illustrate the potential DWVML holds for real-world applications.
Collapse
Affiliation(s)
- Alexandra Gruzdenko
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Interactive
Polymer Materials (IPM), Eindhoven University
of Technology, Groene
Loper 3, 5612 AE Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Dirk J. Mulder
- Photosynthetic, De Boelelaan
1085, 1081HV Amsterdam, The Netherlands
| | - Albert P. H. J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Interactive
Polymer Materials (IPM), Eindhoven University
of Technology, Groene
Loper 3, 5612 AE Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Jaap M. J. den Toonder
- Microsystems,
Department of Mechanical Engineering, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Interactive
Polymer Materials (IPM), Eindhoven University
of Technology, Groene
Loper 3, 5612 AE Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Michael G. Debije
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Interactive
Polymer Materials (IPM), Eindhoven University
of Technology, Groene
Loper 3, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|
8
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
9
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
den Hoed FM, Carlotti M, Palagi S, Raffa P, Mattoli V. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots. MICROMACHINES 2024; 15:275. [PMID: 38399003 PMCID: PMC10893381 DOI: 10.3390/mi15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.
Collapse
Affiliation(s)
- Frank Marco den Hoed
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Marco Carlotti
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Palagi
- BioRobotics Institute, Sant’Anna School of Advanced Studies, P.zza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
12
|
He T, Yang Y, Chen XB. Preparation, Stimulus-Response Mechanisms and Applications of Micro/Nanorobots. MICROMACHINES 2023; 14:2253. [PMID: 38138422 PMCID: PMC10745970 DOI: 10.3390/mi14122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Micro- and nanorobots are highly intelligent and efficient. They can perform various complex tasks as per the external stimuli. These robots can adapt to the required functional form, depending on the different stimuli, thus being able to meet the requirements of various application scenarios. So far, microrobots have been widely used in the fields of targeted therapy, drug delivery, tissue engineering, environmental remediation and so on. Although microbots are promising in some fields, few reviews have yet focused on them. It is therefore necessary to outline the current status of these microbots' development to provide some new insights into the further evolution of this field. This paper critically assesses the research progress of microbots with respect to their preparation methods, stimulus-response mechanisms and applications. It highlights the suitability of different preparation methods and stimulus types, while outlining the challenges experienced by microbots. Viable solutions are also proposed for the promotion of their practical use.
Collapse
Affiliation(s)
| | | | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (Y.Y.)
| |
Collapse
|
13
|
Urban D, Marcucci N, Wölfle CH, Torgersen J, Hjelme DR, Descrovi E. Polarization-driven reversible actuation in a photo-responsive polymer composite. Nat Commun 2023; 14:6843. [PMID: 37891157 PMCID: PMC10611746 DOI: 10.1038/s41467-023-42590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Light-responsive polymers and especially amorphous azopolymers with intrinsic anisotropic and polarization-dependent deformation photo-response hold great promises for remotely controlled, tunable devices. However, dynamic control requires reversibility characteristics far beyond what is currently obtainable via plastic deformation of such polymers. Here, we embed azopolymer microparticles in a rubbery elastic matrix at high density. In the resulting composite, cumulative deformations are replaced by reversible shape switching - with two reversible degrees of freedom defined uniquely by the writing beam polarization. We quantify the locally induced strains, including small creeping losses, directly by means of a deformation tracking algorithm acting on microscope images of planar substrates. Further, we introduce free-standing 3D actuators able to smoothly undergo multiple configurational changes, including twisting, roll-in, grabbing-like actuation, and even continuous, pivot-less shape rotation, all dictated by a single wavelength laser beam with controlled polarization.
Collapse
Affiliation(s)
- David Urban
- Department of Electronic Systems, Norwegian University of Science and Technology, O.S. Bragstads plass 2b, 7034, Trondheim, Norway
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Niccolò Marcucci
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Christoph Hubertus Wölfle
- Institute of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Jan Torgersen
- Institute of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dag Roar Hjelme
- Department of Electronic Systems, Norwegian University of Science and Technology, O.S. Bragstads plass 2b, 7034, Trondheim, Norway
| | - Emiliano Descrovi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| |
Collapse
|
14
|
Zhou Y, Ye M, Hu C, Qian H, Nelson BJ, Wang X. Stimuli-Responsive Functional Micro-/Nanorobots: A Review. ACS NANO 2023; 17:15254-15276. [PMID: 37534824 DOI: 10.1021/acsnano.3c01942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Stimuli-responsive functional micro-/nanorobots (srFM/Ns) are a class of intelligent, efficient, and promising microrobots that can react to external stimuli (such as temperature, light, ultrasound, pH, ion, and magnetic field) and perform designated tasks. Through adaptive transformation into the corresponding functional forms, they can perfectly match the demands depending on different applications, which manifest extremely important roles in targeted therapy, biological detection, tissue engineering, and other fields. Promising as srFM/Ns can be, few reviews have focused on them. It is therefore necessary to provide an overview of the current development of these intelligent srFM/Ns to provide clear inspiration for further development of this field. Hence, this review summarizes the current advances of stimuli-responsive functional microrobots regarding their response mechanism, the achieved functions, and their applications to highlight the pros and cons of different stimuli. Finally, we emphasize the existing challenges of srFM/Ns and propose possible strategies to help accelerate the study of this field and promote srFM/Ns toward actual applications.
Collapse
Affiliation(s)
- Yan Zhou
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Min Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huihuan Qian
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Bradley J Nelson
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| |
Collapse
|
15
|
Jia E, Xie C, Yang Y, Xiao N, Hu M. Abruptly Autofocusing Vortex Beams for Rapid Controllable Femtosecond Two-Photon Polymerization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4625. [PMID: 37444938 DOI: 10.3390/ma16134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Micro-fabrication based on structured-beam-assisted Two-Photon Polymerization (2 PP) provides a rapid and flexible method for the manufacture of microstructures with complex morphologies. The tunable Abruptly Autofocusing Vortex (AAFV) beams were designed theoretically and generated experimentally based on a single-phase-only Spatial Light Modulator (SLM). Their specific spatial intensity distributions were further utilized to assist the fabrication of a bowl-shaped Three-Dimensional (3D) micro-trap array via 2 PP with a one-step exposure technique. Finally, the fabricated microstructures act as a novel tool for the trapping and spatial positioning of micro-particles with different diameters, which shows potential applications in fiber optics and cell study.
Collapse
Affiliation(s)
- Erse Jia
- Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chen Xie
- Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yue Yang
- Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Na Xiao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Minglie Hu
- Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Zubritskaya I, Cichelero R, Faniayeu I, Martella D, Nocentini S, Rudquist P, Wiersma DS, Brongersma ML. Dynamically Tunable Optical Cavities with Embedded Nematic Liquid Crystalline Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209152. [PMID: 36683324 DOI: 10.1002/adma.202209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tunable metal-insulator-metal (MIM) Fabry-Pérot (FP) cavities that can dynamically control light enable novel sensing, imaging and display applications. However, the realization of dynamic cavities incorporating stimuli-responsive materials poses a significant engineering challenge. Current approaches rely on refractive index modulation and suffer from low dynamic tunability, high losses, and limited spectral ranges, and require liquid and hazardous materials for operation. To overcome these challenges, a new tuning mechanism employing reversible mechanical adaptations of a polymer network is proposed, and dynamic tuning of optical resonances is demonstrated. Solid-state temperature-responsive optical coatings are developed by preparing a monodomain nematic liquid crystalline network (LCN) and are incorporated between metallic mirrors to form active optical microcavities. LCN microcavities offer large, reversible and highly linear spectral tuning of FP resonances reaching wavelength-shifts up to 40 nm via thermomechanical actuation while featuring outstanding repeatability and precision over more than 100 heating-cooling cycles. This degree of tunability allows for reversible switching between the reflective and the absorbing states of the device over the entire visible and near-infrared spectral regions, reaching large changes in reflectance with modulation efficiency ΔR = 79%.
Collapse
Affiliation(s)
- Irina Zubritskaya
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
- Department of Physics, University of Gothenburg, Origovägen 6B, Gothenburg, 41296, Sweden
| | - Rafael Cichelero
- Department of Physics, University of Gothenburg, Origovägen 6B, Gothenburg, 41296, Sweden
| | - Ihar Faniayeu
- Department of Physics, University of Gothenburg, Origovägen 6B, Gothenburg, 41296, Sweden
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Per Rudquist
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Kemivägen 9, Gothenburg, 41296, Sweden
| | - Diederik Sybolt Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Physics and Astronomy Department, University of Florence, via G. Sansone 1, Sesto Fiorentino, 50019, Italy
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Liu M, Jin L, Yang S, Wang Y, Murray CB, Yang S. Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Micro-Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208613. [PMID: 36341507 DOI: 10.1002/adma.202208613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystalline elastomers (LCEs) with intrinsic molecular anisotropy can be programmed to morph shapes under external stimuli. However, it is difficult to program the position and orientation of individual mesogenic units separately and locally, whether in-plane or out-of-plane, since each mesogen is linked to adjacent ones through the covalently bonded polymer chains. Here, dually responsive, spindle-shaped micro-actuators are synthesized from LCE composites, which can reorient under a magnetic field and change the shape upon heating. When the discrete micro-actuators are embedded in a conventional and nonresponsive elastomer with programmed height distribution and in-plane orientation in local regions, robust and complex shape morphing induced by the cooperative actuations of the locally distributed micro-actuators, which corroborates with finite element analysis, are shown. The spatial encoding of discrete micro-actuators in a nonresponsive matrix allows to decouple the actuators and the matrix, broadening the material palette to program local and global responses to stimuli for applications including soft robotics, smart wearables, and sensors.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
20
|
Zhang D, Gorochowski TE, Marucci L, Lee HT, Gil B, Li B, Hauert S, Yeatman E. Advanced medical micro-robotics for early diagnosis and therapeutic interventions. Front Robot AI 2023; 9:1086043. [PMID: 36704240 PMCID: PMC9871318 DOI: 10.3389/frobt.2022.1086043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- Bristol Robotics Laboratory, Bristol, United Kingdom
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- BrisEngBio, University of Bristol, Bristol, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- BrisEngBio, University of Bristol, Bristol, United Kingdom
| | - Hyun-Taek Lee
- Department of Mechanical Engineering, Inha University, Incheon, South Korea
| | - Bruno Gil
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Bing Li
- The Institute for Materials Discovery, University College London, London, United Kingdom
- Department of Brain Science, Imperial College London, London, United Kingdom
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- Bristol Robotics Laboratory, Bristol, United Kingdom
- BrisEngBio, University of Bristol, Bristol, United Kingdom
| | - Eric Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Han L, Wang R, Dong Y, Zhang X, Wu C, Zhao X. A wireless "Janus" soft gripper with multiple tactile sensors. NANOSCALE ADVANCES 2022; 4:4756-4765. [PMID: 36381512 PMCID: PMC9642356 DOI: 10.1039/d2na00208f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic properties allow soft robots to complexly interact with the environment. As the bridge between the robot and the operating object, the gripping hand is an important organ for its connection with the outside world, which requires the ability to provide feedback from the grasped object, similar to the human sensory and nervous system. In this work, to cope with the difficulty of integrating complex sensing and communication systems into flexible soft grippers, we propose a GO/PI composite bilayer film-based gripper with two types of tactile sensors and a LC passive wireless transmission module to obtain the grip information and transmit it to the processor. The bilayer film structure demonstrates good photothermal driving performance. Pressure and material sensors are located at the tips of the gripper's fingers to acquire tactile information which is wirelessly transmitted to the processor for analysis via the LC circuit. The grasping and feedback of the gripper are presented through an intelligent display system, realizing the wireless interconnection between the robot terminal and processing system, exhibiting broad application potential.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Yupeng Dong
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Xun Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Chenggen Wu
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Xiaoguang Zhao
- Department of Precision Instruments, Tsinghua University Beijing 100084 China
| |
Collapse
|
23
|
Hobich J, Blasco E, Wegener M, Mutlu H, Barner‐Kowollik C. Synergistic, Orthogonal, and Antagonistic Photochemistry for Light‐Induced 3D Printing. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Hobich
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Eva Blasco
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Organic Chemistry Institute Heidelberg University im Neuenheimer Feld 270 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Applied Physics Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Christopher Barner‐Kowollik
- Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- School of Chemistry and Physics, Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
24
|
Son H, Park Y, Na Y, Yoon C. 4D Multiscale Origami Soft Robots: A Review. Polymers (Basel) 2022; 14:polym14194235. [PMID: 36236182 PMCID: PMC9571758 DOI: 10.3390/polym14194235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
Collapse
Affiliation(s)
- Hyegyo Son
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| |
Collapse
|
25
|
Luo Y, Chen Z, Wen S, Han Q, Fu L, Yan L, Jin D, Bünzli JCG, Bao G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Leveziel M, Haouas W, Laurent GJ, Gauthier M, Dahmouche R. MiGriBot: A miniature parallel robot with integrated gripping for high-throughput micromanipulation. Sci Robot 2022; 7:eabn4292. [PMID: 36001685 DOI: 10.1126/scirobotics.abn4292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although robotic micromanipulation using microtweezers has been widely explored, the current manipulation throughput hardly exceeds one operation per second. Increasing the manipulation throughput is thus a key factor for the emergence of robotized microassembly industries. This article presents MiGriBot (Millimeter Gripper Robot), a miniaturized parallel robot with a configurable platform and soft joints, designed to perform pick-and-place operations at the microscale. MiGriBot combines in a single robot the benefits of a parallel kinematic architecture with a configurable platform and the use of soft joints at the millimeter scale. The configurable platform of the robot provides an internal degree of freedom that can be used to actuate microtweezers using piezoelectric bending actuators located at the base of the robot, which notably reduces the robot's inertia. The soft joints make it possible to miniaturize the mechanism and to avoid friction. These benefits enable MiGriBot to reach a throughput of 10 pick-and-place cycles per second of micrometer-sized objects, with a precision of 1 micrometer.
Collapse
Affiliation(s)
- Maxence Leveziel
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, F-25000 Besançon, France
| | - Wissem Haouas
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, F-25000 Besançon, France
| | - Guillaume J Laurent
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, F-25000 Besançon, France
| | - Michaël Gauthier
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, F-25000 Besançon, France
| | - Redwan Dahmouche
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, F-25000 Besançon, France
| |
Collapse
|
27
|
Monti J, Concellón A, Dong R, Simmler M, Münchinger A, Huck C, Tegeder P, Nirschl H, Wegener M, Osuji CO, Blasco E. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33746-33755. [PMID: 35849651 DOI: 10.1021/acsami.2c10106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mira Simmler
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Alexander Münchinger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Christian Huck
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Petra Tegeder
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Center for Advanced Materials (CAM), Heidelberg University, Heidelberg 69120, Germany
- Organic Chemistry Institute, Heidelberg University, Hedelberg 69120, Germany
| |
Collapse
|
28
|
Tanjeem N, Minnis MB, Hayward RC, Shields CW. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105758. [PMID: 34741359 PMCID: PMC9579005 DOI: 10.1002/adma.202105758] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Indexed: 05/05/2023]
Abstract
Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.
Collapse
Affiliation(s)
- Nabila Tanjeem
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Montana B Minnis
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Ryan C Hayward
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Charles Wyatt Shields
- Department of Chemical & Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
29
|
Del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of Liquid Crystals: What's Right for Me? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104390. [PMID: 34716625 DOI: 10.1002/adma.202104390] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Indexed: 05/24/2023]
Abstract
Recent years have seen major advances in the developments of both additive manufacturing concepts and responsive materials. When combined as 4D printing, the process can lead to functional materials and devices for use in health, energy generation, sensing, and soft robots. Among responsive materials, liquid crystals, which can deliver programmed, reversible, rapid responses in both air and underwater, are a prime contender for additive manufacturing, given their ease of use and adaptability to many different applications. In this paper, selected works are compared and analyzed to come to a didactical overview of the liquid crystal-additive manufacturing junction. Reading from front to back gives the reader a comprehensive understanding of the options and challenges in the field, while researchers already experienced in either liquid crystals or additive manufacturing are encouraged to scan through the text to see how they can incorporate additive manufacturing or liquid crystals into their own work. The educational text is closed with proposals for future research in this crossover field.
Collapse
Affiliation(s)
- Marc Del Pozo
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Jeroen A H P Sol
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Albert P H J Schenning
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
30
|
Liu Y, Lin G, Bao G, Guan M, Yang L, Liu Y, Wang D, Zhang X, Liao J, Fang G, Di X, Huang G, Zhou J, Cheng YY, Jin D. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS NANO 2021; 15:19924-19937. [PMID: 34714044 DOI: 10.1021/acsnano.1c07431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microrobots can expand our abilities to access remote, confined, and enclosed spaces. Their potential applications inside our body are obvious, e.g., to diagnose diseases, deliver medicine, and monitor treatment efficacy. However, critical requirements exist in relation to their operations in gastrointestinal environments, including resistance to strong gastric acid, responsivity to a narrow proton variation window, and locomotion in confined cavities with hierarchical terrains. Here, we report a proton-activatable microrobot to enable real-time, repeated, and site-selective pH sensing and monitoring in physiological relevant environments. This is achieved by stratifying a hydrogel disk to combine a range of functional nanomaterials, including proton-responsive molecular switches, upconversion nanoparticles, and near-infrared (NIR) emitters. By leveraging the 3D magnetic gradient fields and the anisotropic composition, the microrobot can be steered to locomote as a gyrating "Euler's disk", i.e., aslant relative to the surface and along its low-friction outer circumference, exhibiting a high motility of up to 60 body lengths/s. The enhanced magnetomotility can boost the pH-sensing kinetics by 2-fold. The fluorescence of the molecular switch can respond to pH variations with over 600-fold enhancement when the pH decreases from 8 to 1, and the integration of upconversion nanoparticles further allows both the efficient sensitization of NIR light through deep tissue and energy transfer to activate the pH probes. Moreover, the embedded down-shifting NIR emitters provide sufficient contrast for imaging of a single microrobot inside a live mouse. This work suggests great potential in developing multifunctional microrobots to perform generic site-selective tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Gungun Lin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ming Guan
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Liu Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Yongtao Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dejiang Wang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xun Zhang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guocheng Fang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guan Huang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| |
Collapse
|
31
|
Vantomme G, Elands LCM, Gelebart AH, Meijer EW, Pogromsky AY, Nijmeijer H, Broer DJ. Coupled liquid crystalline oscillators in Huygens' synchrony. NATURE MATERIALS 2021; 20:1702-1706. [PMID: 33603183 PMCID: PMC7612044 DOI: 10.1038/s41563-021-00931-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/15/2021] [Indexed: 05/24/2023]
Abstract
In the flourishing field of soft robotics, strategies to embody communication and collective motion are scarce. Here we report the synchronized oscillations of thin plastic actuators by an approach reminiscent of the synchronized motion of pendula and metronomes. Two liquid crystalline network oscillators fuelled by light influence the movement of one another and display synchronized oscillations in-phase and anti-phase in a steady state. By observing entrainment between the asymmetric oscillators we demonstrate the existence of coupling between the two actuators. We qualitatively explain the origin of the synchronized motion using a theoretical model and numerical simulations, which suggest that the motion can be tuned by the mechanical properties of the coupling joint. We thus anticipate that the complex synchronization phenomena usually observed in rigid systems can also exist in soft polymeric materials. This enables the use of new stimuli, featuring an example of collective motion by photo-actuation.
Collapse
Affiliation(s)
- Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Lars C M Elands
- Department of Mechanical Engineering, Dynamics and Control, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anne Helene Gelebart
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Chemical Engineering and Chemistry, Laboratory for Functional Organic Materials and Devices, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Alexander Y Pogromsky
- Department of Mechanical Engineering, Dynamics and Control, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Control Systems and Industrial Robotics, Saint-Petersburg National Research University of Information Technologies Mechanics and Optics, Petersburg, Russia
| | - Henk Nijmeijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Mechanical Engineering, Dynamics and Control, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Dirk J Broer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Chemical Engineering and Chemistry, Laboratory for Functional Organic Materials and Devices, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
33
|
Martella D, Nocentini S, Parmeggiani C, Wiersma DS. Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discuss 2021; 223:216-232. [PMID: 32716468 DOI: 10.1039/d0fd00032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light responsive shape-changing polymers are able to mimic the function of biological muscles accomplishing mechanical work in response to selected stimuli. A variety of manufacturing techniques and chemical processes can be employed to shape these materials to different length scales, from centimeter fibers and films to 3D printed micrometric objects trying to replicate biological functions and operations. Controlled deformations shown to mimick basic animal operations such as walking, swimming or grabbing objects, while also controlling the refractive index and the geometry of devices, opens up the potential to implement tunable optical properties. Another possibility is that of combining artificial polymers with cells or biological tissue (such as intact cardiac trabeculae) with the aim to improve tissue formation in vitro or to support the mechanical function of damaged biological muscles. Such versatility is afforded by chemistry. New customized liquid crystalline monomers are presented here that modulate material properties for different applications. The role of synthetic material composition is highlighted as we demonstrate how using apparently similar molecular formulations, that liquid crystalline polymers can be adapted to different technological and medical challenges.
Collapse
Affiliation(s)
- Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Diederik S Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| |
Collapse
|
34
|
Huan X, Lee S, Lee H, Xu Z, Yang J, Chen M, Liu Y, Kim JT. One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43396-43403. [PMID: 34472833 DOI: 10.1021/acsami.1c12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there has been extensive development and exploration of small-scale robots, the technological challenges associated with their complicated and high-cost fabrication processes remain unresolved. Here, we report a one-step, bi-material, high-resolution three-dimensional (3D) printing method for the fabrication of multi-stimuli-responsive microactuators. This method exploits a two-phase femtoliter ink meniscus formed on a double-barreled theta micropipette to continuously print a freestanding bilayer microstructure, which undergoes an asymmetric volume change upon the adsorption or desorption of water. We show that the 3D-printed bilayer microstructures exhibit reversible, reproducible actuation in ambient humidity or under illumination with infrared light. Our 3D printing approach can assemble bilayer segments for programming microscale actuation, as demonstrated by proof-of-concept experiments. We expect that this method will serve as the basis for flexible, programmable, one-step routes for the assembly of small-scale intelligent actuators.
Collapse
Affiliation(s)
- Xiao Huan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sanghyeon Lee
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Heekwon Lee
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhaoyi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojun Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
35
|
Zhang M, Shahsavan H, Guo Y, Pena‐Francesch A, Zhang Y, Sitti M. Liquid-Crystal-Elastomer-Actuated Reconfigurable Microscale Kirigami Metastructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008605. [PMID: 33987863 PMCID: PMC7612660 DOI: 10.1002/adma.202008605] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Indexed: 05/02/2023]
Abstract
Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.
Collapse
Affiliation(s)
- Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084China
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Hamed Shahsavan
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Yubing Guo
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Abdon Pena‐Francesch
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Materials Science and EngineeringMacromolecular Science and EngineeringRobotics InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8092Switzerland
- School of Medicine and School of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
36
|
Chen Q, Lv P, Huang J, Huang TY, Duan H. Intelligent Shape-Morphing Micromachines. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9806463. [PMID: 34056618 PMCID: PMC8139332 DOI: 10.34133/2021/9806463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
Intelligent machines are capable of switching shape configurations to adapt to changes in dynamic environments and thus have offered the potentials in many applications such as precision medicine, lab on a chip, and bioengineering. Even though the developments of smart materials and advanced micro/nanomanufacturing are flouring, how to achieve intelligent shape-morphing machines at micro/nanoscales is still significantly challenging due to the lack of design methods and strategies especially for small-scale shape transformations. This review is aimed at summarizing the principles and methods for the construction of intelligent shape-morphing micromachines by introducing the dimensions, modes, realization methods, and applications of shape-morphing micromachines. Meanwhile, this review highlights the advantages and challenges in shape transformations by comparing micromachines with the macroscale counterparts and presents the future outlines for the next generation of intelligent shape-morphing micromachines.
Collapse
Affiliation(s)
- Qianying Chen
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- CAPT, HEDPS, Peking University, Beijing 100871, China
| | - Pengyu Lv
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tian-Yun Huang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- CAPT, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Lio GE, Ferraro A, Ritacco T, Aceti DM, De Luca A, Giocondo M, Caputo R. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008644. [PMID: 33783047 DOI: 10.1002/adma.202008644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Indexed: 05/23/2023]
Abstract
A novel technique is developed to improve the resolution of two-photon direct laser writing lithography. Thanks to the high collimation enabled by extraordinary εNZ (near-zero) metamaterial features, ultrathin dielectric hyper-resolute nanostructures are within reach. With respect to the standard direct laser writing approach, a size reduction of 89% and 50%, in height and width respectively, is achieved with the height of the structures adjustable between 5 and 50 nm. The retrieved 2D fabrication parameters are exploited for realizing extremely thin all-dielectric metalenses tailored through deep machine learning codes. The hyper-resolution achieved in the writing process enables the fabrication of a highly detailed dielectric 3D bas-relief (with full height of 500 nm) of Da Vinci's "Lady with an Ermine". The proof-of-concept results show intriguing cues for the current and trendsetting research scenario in anti-counterfeiting applications and ultracompact photonics, paving the way for the realization of all-dielectric and apochromatic ultrathin imaging systems.
Collapse
Affiliation(s)
- Giuseppe Emanuele Lio
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Antonio Ferraro
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
| | - Tiziana Ritacco
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
| | - Dante Maria Aceti
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
| | - Antonio De Luca
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
| | - Michele Giocondo
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
| | - Roberto Caputo
- Institute of Nanotechnology - Nanotec, Consiglio Nazionale delle Ricerche, Ponte P. Bucci - Cubo 33C, Rende, 87036, Italy
- University of Calabria, Physics Department, 87036 Arcavacata di Rende (CS), Italy
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
38
|
Lao Z, Xia N, Wang S, Xu T, Wu X, Zhang L. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. MICROMACHINES 2021; 12:465. [PMID: 33924199 PMCID: PMC8074609 DOI: 10.3390/mi12040465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Microactuators, which can transform external stimuli into mechanical motion at microscale, have attracted extensive attention because they can be used to construct microelectromechanical systems (MEMS) and/or microrobots, resulting in extensive applications in a large number of fields such as noninvasive surgery, targeted delivery, and biomedical machines. In contrast to classical 2D MEMS devices, 3D microactuators provide a new platform for the research of stimuli-responsive functional devices. However, traditional planar processing techniques based on photolithography are inadequate in the construction of 3D microstructures. To solve this issue, researchers have proposed many strategies, among which 3D laser printing is becoming a prospective technique to create smart devices at the microscale because of its versatility, adjustability, and flexibility. Here, we review the recent progress in stimulus-responsive 3D microactuators fabricated with 3D laser printing depending on different stimuli. Then, an outlook of the design, fabrication, control, and applications of 3D laser-printed microactuators is propounded with the goal of providing a reference for related research.
Collapse
Affiliation(s)
- Zhaoxin Lao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Shijie Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| |
Collapse
|
39
|
Zhang J, Guo Y, Hu W, Soon RH, Davidson ZS, Sitti M. Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006191. [PMID: 33448077 PMCID: PMC7610459 DOI: 10.1002/adma.202006191] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Indexed: 05/08/2023]
Abstract
Stimuli-responsive and active materials promise radical advances for many applications. In particular, soft magnetic materials offer precise, fast, and wireless actuation together with versatile functionality, while liquid crystal elastomers (LCEs) are capable of large reversible and programmable shape-morphing with high work densities in response to various environmental stimuli, e.g., temperature, light, and chemical solutions. Integrating the orthogonal stimuli-responsiveness of these two kinds of active materials could potentially enable new functionalities and future applications. Here, magnetic microparticles (MMPs) are embedded into an LCE film to take the respective advantages of both materials without compromising their independent stimuli-responsiveness. This composite material enables reconfigurable magnetic soft miniature machines that can self-adapt to a changing environment. In particular, a miniature soft robot that can autonomously alter its locomotion mode when it moves from air to hot liquid, a vine-like filament that can sense and twine around a support, and a light-switchable magnetic spring are demonstrated. The integration of LCEs and MMPs into monolithic structures introduces a new dimension in the design of soft machines and thus greatly enhances their use in applications in complex environments, especially for miniature soft robots, which are self-adaptable to environmental changes while being remotely controllable.
Collapse
Affiliation(s)
- Jiachen Zhang
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Yubing Guo
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Wenqi Hu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Ren Hao Soon
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Zoey S. Davidson
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Department of Information Technology and Electrical EngineeringETH ZürichZürich8092Switzerland
| |
Collapse
|
40
|
Abstract
Hybrid stimuli-responsive soft robots have been extensively developed by incorporating multi-functional materials, such as carbon-based nanoparticles, nanowires, low-dimensional materials, and liquid crystals. In addition to the general functions of conventional soft robots, hybrid stimuli-responsive soft robots have displayed significantly advanced multi-mechanical, electrical, or/and optical properties accompanied with smart shape transformation in response to external stimuli, such as heat, light, and even biomaterials. This review surveys the current enhanced scientific methods to synthesize the integration of multi-functional materials within stimuli-responsive soft robots. Furthermore, this review focuses on the applications of hybrid stimuli-responsive soft robots in the forms of actuators and sensors that display multi-responsive and highly sensitive properties. Finally, it highlights the current challenges of stimuli-responsive soft robots and suggests perspectives on future directions for achieving intelligent hybrid stimuli-responsive soft robots applicable in real environments.
Collapse
|
41
|
Kuang X, Roach DJ, Hamel CM, Yu K, Qi HJ. Materials, design, and fabrication of shape programmable polymers. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba1d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Ma ZC, Zhang YL, Han B, Hu XY, Li CH, Chen QD, Sun HB. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 2020; 11:4536. [PMID: 32913189 PMCID: PMC7484797 DOI: 10.1038/s41467-020-18117-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Natural musculoskeletal systems have been widely recognized as an advanced robotic model for designing robust yet flexible microbots. However, the development of artificial musculoskeletal systems at micro-nanoscale currently remains a big challenge, since it requires precise assembly of two or more materials of distinct properties into complex 3D micro/nanostructures. In this study, we report femtosecond laser programmed artificial musculoskeletal systems for prototyping 3D microbots, using relatively stiff SU-8 as the skeleton and pH-responsive protein (bovine serum albumin, BSA) as the smart muscle. To realize the programmable integration of the two materials into a 3D configuration, a successive on-chip two-photon polymerization (TPP) strategy that enables structuring two photosensitive materials sequentially within a predesigned configuration was proposed. As a proof-of-concept, we demonstrate a pH-responsive spider microbot and a 3D smart micro-gripper that enables controllable grabbing and releasing. Our strategy provides a universal protocol for directly printing 3D microbots composed of multiple materials.
Collapse
Affiliation(s)
- Zhuo-Chen Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Bing Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Xin-Yu Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chun-He Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian District, Beijing, 100084, China.
| |
Collapse
|
43
|
Hu Y, Feng W, Xue C, Lao Z, Ji S, Cai Z, Zhu W, Li J, Wu D, Chu J. Self-assembled micropillars fabricated by holographic femtosecond multi-foci beams forin situ trapping of microparticles. OPTICS LETTERS 2020; 45:4698-4701. [PMID: 32870835 DOI: 10.1364/ol.398682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Dynamic self-assembly of micropillars has found wide applications in targeted trapping, micro-crystallization and plasmonic sensing. Yet the efficient fabrication of micropillars array with high flexibility still remains a grand challenge. In this Letter, holographic femtosecond laser multi-foci beams (fs-MFBs) based on a spatial light modulator (SLM) is adopted to efficiently create micropillars array with controllable geometry and spatial distribution by predesigning the computer-generated holograms (CGHs). Based on these micropillars array, diverse hierarchical assemblies are formed under the evaporation-induced capillary force. Moreover, taking advantage of the excellent flexibility and controllability of fs-MFBs, on-demand one-bead-to-one-trap of targeted microspheres at arbitrary position is demonstrated with unprecedentedly high capture efficiency, unfolding their potential applications in the fields of microfluidics and biomedical engineering.
Collapse
|
44
|
Guo Y, Shahsavan H, Sitti M. 3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002753. [PMID: 32767434 PMCID: PMC7610484 DOI: 10.1002/adma.202002753] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Indexed: 05/17/2023]
Abstract
The shape-shifting behavior of liquid crystal networks (LCNs) and elastomers (LCEs) is a result of an interplay between their initial geometrical shape and their molecular alignment. For years, reliance on either one-step in situ or two-step film processing techniques has limited the shape-change transformations from 2D to 3D geometries. The combination of various fabrication techniques, alignment methods, and chemical formulations developed in recent years has introduced new opportunities to achieve 3D-to-3D shape-transformations in large scales, albeit the precise control of local molecular alignment in microscale 3D constructs remains a challenge. Here, the voxel-by-voxel encoding of nematic alignment in 3D microstructures of LCNs produced by two-photon polymerization using high-resolution topographical features is demonstrated. 3D LCN microstructures (suspended films, coils, and rings) with designable 2D and 3D director fields with a resolution of 5 µm are achieved. Different shape transformations of LCN microstructures with the same geometry but dissimilar molecular alignments upon actuation are elicited. This strategy offers higher freedom in the shape-change programming of 3D LCN microstructures and expands their applicability in emerging technologies, such as small-scale soft robots and devices and responsive surfaces.
Collapse
Affiliation(s)
- Yubing Guo
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany; Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| |
Collapse
|
45
|
Lahikainen M, Zeng H, Priimagi A. Design principles for non-reciprocal photomechanical actuation. SOFT MATTER 2020; 16:5951-5958. [PMID: 32542246 DOI: 10.1039/d0sm00624f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-reciprocal motions are a sequence of movements exhibiting time-reversal asymmetry. Such movements are common among various natural species, being adopted as a typical strategy for achieving efficient locomotion. Generally, the realization of non-reciprocal motions in man-made robotic devices requires synchronous control of at least two individual actuators, hence posing challenges to soft micro-robotics where the miniaturization limits integration of different mechanical components and the possibility of using onboard batteries. Here, we introduce general concepts for achieving non-reciprocal movements in wirelessly controlled soft actuators made of photomechanically responsive liquid crystal networks. The monolithic actuators are composed of two segments that can be actuated photochemically and photothermally, and the non-reciprocal motion is obtained by a control sequence that temporally modulates light sources of different wavelengths. Through proper selection of photoactive compounds, the number of modulated light sources can be decreased, from three to two, and eventually to one. Finally, we demonstrate non-reciprocal self-oscillation by self-shadowing effect in a flexible strip under a constant light field with no temporal modulation. This study provides general guidelines to light-controlled non-reciprocal actuation, offering new strategies for the control of wireless soft micro-robotics.
Collapse
Affiliation(s)
- Markus Lahikainen
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, FI-33101 Tampere, Finland.
| | | | | |
Collapse
|
46
|
Abstract
Voxels, the 3D equivalent of 2D pixels, are obtained by individual point exposures in 3D laser nanoprinting, and are the building blocks of laser printed 3D micro/nano-structures, and their optimization is important in determining the resolution of printed 3D objects. Here, we report what is believed the first detailed study of the voxel size dependence on the z-potion of the laser spot in 3D nano-printing. That is, we study the evolution and the low-limit size (diameter and length) of voxels fabricated in the vicinity of the substrate/resin interface. We use two-photon absorption in a photopolymerizable resin, and we vary the position of the laser’s focal spot, with respect to the cover glass/resin interface; i.e. in the longitudinal direction (z-direction). We found that the minimum lateral and the longitudinal sizes of complete voxels depend on the extent of penetration of the laser focal spot inside the resin. Truncated voxels, which are fabricated by partial overlap of the resin and the laser spot, allow for the fabrication of nano-features that are not diffraction limited, and we achieved near 100 nm feature sizes in our 3D fabricated objects. Our work is of central interest to 3D nanoprinting, since it addresses the spatial resolution of 3D printing technology, and might have potential impact for industry.
Collapse
|
47
|
Sitti M, Wiersma DS. Pros and Cons: Magnetic versus Optical Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906766. [PMID: 32053227 DOI: 10.1002/adma.201906766] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Indexed: 05/21/2023]
Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard-to-reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell-driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long-range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab-/organ-on-a-chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real-world conditions.
Collapse
Affiliation(s)
- Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Diederik S Wiersma
- LENS, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- INRIM, Strada delle Cacce 91, 10135, Torino, Italy
| |
Collapse
|
48
|
|
49
|
Ferrantini C, Pioner JM, Martella D, Coppini R, Piroddi N, Paoli P, Calamai M, Pavone FS, Wiersma DS, Tesi C, Cerbai E, Poggesi C, Sacconi L, Parmeggiani C. Development of Light-Responsive Liquid Crystalline Elastomers to Assist Cardiac Contraction. Circ Res 2020; 124:e44-e54. [PMID: 30732554 DOI: 10.1161/circresaha.118.313889] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Despite major advances in cardiovascular medicine, heart disease remains a leading cause of death worldwide. However, the field of tissue engineering has been growing exponentially in the last decade and restoring heart functionality is now an affordable target; yet, new materials are still needed for effectively provide rapid and long-lasting interventions. Liquid crystalline elastomers (LCEs) are biocompatible polymers able to reversibly change shape in response to a given stimulus and generate movement. Once stimulated, LCEs can produce tension or movement like a muscle. However, so far their application in biology was limited by slow response times and a modest possibility to modulate tension levels during activation. OBJECTIVE To develop suitable LCE-based materials to assist cardiac contraction. METHODS AND RESULTS Thanks to a quick, simple, and versatile synthetic approach, a palette of biocompatible acrylate-based light-responsive LCEs with different molecular composition was prepared and mechanically characterized. Out of this, the more compliant one was selected. This material was able to contract for some weeks when activated with very low light intensity within a physiological environment. Its contraction was modulated in terms of light intensity, stimulation frequency, and ton/toff ratio to fit different contraction amplitude/time courses, including those of the human heart. Finally, LCE strips were mounted in parallel with cardiac trabeculae, and we demonstrated their ability to improve muscular systolic function, with no impact on diastolic properties. CONCLUSIONS Our results indicated LCEs are promising in assisting cardiac mechanical function and developing a new generation of contraction assist devices.
Collapse
Affiliation(s)
- Cecilia Ferrantini
- From the Department of Experimental and Clinical Medicine (C.F., J.M.P., N.P., C.T., C.Po.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.)
| | - Josè M Pioner
- From the Department of Experimental and Clinical Medicine (C.F., J.M.P., N.P., C.T., C.Po.), University of Florence, Italy
| | - Daniele Martella
- Department of Chemistry "Ugo Schiff" (D.M., C.Pa.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.)
| | - Raffaele Coppini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) (R.C., E.C), University of Florence, Italy
| | - Nicoletta Piroddi
- From the Department of Experimental and Clinical Medicine (C.F., J.M.P., N.P., C.T., C.Po.), University of Florence, Italy
| | - Paolo Paoli
- Department of Biochemical, Experimental and Clinical "Mario Serio", Italy (P.P.)
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.)
| | - Francesco S Pavone
- Department of Physics and Astronomy (F.S.P., D.S.W.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.)
| | - Diederik S Wiersma
- Department of Physics and Astronomy (F.S.P., D.S.W.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.).,Istituto Nazionale di Ricerca Metrologica INRiM, Turin, Italy (D.S.W., C.Pa.)
| | - Chiara Tesi
- From the Department of Experimental and Clinical Medicine (C.F., J.M.P., N.P., C.T., C.Po.), University of Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA) (R.C., E.C), University of Florence, Italy
| | - Corrado Poggesi
- From the Department of Experimental and Clinical Medicine (C.F., J.M.P., N.P., C.T., C.Po.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.)
| | - Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.)
| | - Camilla Parmeggiani
- Department of Chemistry "Ugo Schiff" (D.M., C.Pa.), University of Florence, Italy.,European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy (C.F., D.M., M.C., F.S.P., D.S.W., C.Po., L.S., C.Pa.).,National Institute of Optics, National Research Council, Sesto Fiorentino, Italy (D.M., M.C., F.S.P., D.S.W., L.S., C.Pa.).,Istituto Nazionale di Ricerca Metrologica INRiM, Turin, Italy (D.S.W., C.Pa.)
| |
Collapse
|
50
|
Abstract
Herein, recent developments in the 3D printing of materials with structural hierarchy and their future prospects are reviewed. It is shown that increasing the extent of ordering, is essential to access novel properties and functionalities.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Eva Blasco
- Institute of Nanotechnology
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
- Organisch-Chemisches Institut, University of Heidelberg
| |
Collapse
|