1
|
Jena SS, Garg M, Ghosh S. Evolution of electronic structure and optical properties of naphthalenediimide dithienylvinylene (NDI-TVT) polymer as a function of reduction level: a density functional theory study. Phys Chem Chem Phys 2025; 27:2177-2191. [PMID: 39780765 DOI: 10.1039/d4cp02770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent. To date, a theoretical understanding of how these properties vary with reduction levels for NDI-based polymers is completely missing. Herein, the evolution of the electronic structure and optical properties of the naphthalenediimide dithienylvinylene (NDI-TVT) polymer with varying reduction levels (Cred) is studied using density functional theory and time-dependent density functional theory, respectively, in the gaseous phase and solvent phase. We have envisaged that at lower reduction levels, Cred ≤ 100% (i.e., up to one negative charge per NDI moiety), only radical anions, i.e., polarons, are formed. The bipolarons are observed to be formed only at higher reduction levels, Cred > 100%. We note the coexistence of polarons and bipolarons for the intermediate reduction levels (100% < Cred < 200%). Finally, at 200% reduction levels, the presence of two electrons per NDI unit leads to the completely spin-resolved bipolaronic state formation, where one bipolaron is localized at every NDI unit. This aforementioned evolution of polarons and bipolarons with varying reduction levels is also prominently reflected in the calculated UV-vis-NIR absorption spectra. The detailed theoretical insights gained from the evolution of the (opto)electronic properties of NDI-TVT with reduction levels due to the formation of polaronic/bipolaronic states can guide the systematic design of n-type NDI-TVT-based (opto)electronic devices and in their advancement.
Collapse
Affiliation(s)
- Sushri Soumya Jena
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Sarbani Ghosh
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Xu Y, He Y, Shan D, Zeng B, Ni QX. Emerging Artificial Synaptic Devices Based on Organic Semiconductors: Molecular Design, Structure and Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4290-4315. [PMID: 39785981 DOI: 10.1021/acsami.4c17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In modern computing, the Von Neumann architecture faces challenges such as the memory bottleneck, hindering efficient processing of large datasets and concurrent programs. Neuromorphic computing, inspired by the brain's architecture, emerges as a promising alternative, offering unparalleled computational power while consuming less energy. Artificial synaptic devices play a crucial role in this paradigm shift. Various material systems, from organic to inorganic, have been explored for neuromorphic devices, with organic materials attracting attention for their excellent photoelectric properties, diverse material choices, and versatile preparation methods. Organic semiconductors, in particular, offer advantages over transition-metal dichalcogenides, including ease of preparation and flexibility, making them suitable for large-area organic films. This review focuses on emerging artificial synaptic devices based on organic semiconductors, discussing different branches within the organic semiconductor material system, various fabrication methods, device structure designs, and applications of organic artificial synapse. Critical considerations and challenges for achieving truly human-like dynamic perception in artificial systems based on organic semiconductors are also outlined, reflecting the ongoing evolution of neuromorphic computing.
Collapse
Affiliation(s)
- Yunchao Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yuan He
- China Center for Special Economic Zone Research, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Management, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Dongyong Shan
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410013, Hunan, People's Republic of China
| | - Biao Zeng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Qian-Xi Ni
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| |
Collapse
|
3
|
Prodhan S, Troisi A. Effective Model Reduction Scheme for the Electronic Structure of Highly Doped Semiconducting Polymers. J Chem Theory Comput 2024; 20:10147-10157. [PMID: 39495939 PMCID: PMC11603604 DOI: 10.1021/acs.jctc.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Highly doped organic polymers have emerged as prominent candidates within novel technological disciplines, yet the fundamental correlation between structure and charge transport characteristics still remains missing. Toward this objective, an efficient model reduction scheme for highly doped polymer chains is developed considering the paradigmatic case of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). The reduced model accounts for the chemical and structural details of the conducting polymer chain in addition to the long-range Coulombic interactions between charge carriers (holes) and dopant ions and the Coulombic repulsion between holes residing on the PEDOT chain. The model is shown to reproduce the intrachain hole-density profile of bulk polymer chains within a mean-field description. Furthermore, and critically, the model is adept at determining the energy distribution of doped PEDOT samples that in effect, influences the hole distribution among polymer chains. The hole distribution so obtained broadly upholds the approximation of a homogeneous charge-carrier distribution in doped polymers commonly found in the literature. In addition, it is observed that the spin configuration of the charge carriers dictates the energetics of the doped chains while it is a critical function of the chain length, carrier density, and disorder parameters.
Collapse
Affiliation(s)
- Suryoday Prodhan
- Department
of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
- Department
of Chemistry, Birla Institute of Technology
and Science, Pilani,
Hyderabad Campus, Hyderabad 500078, India
| | - Alessandro Troisi
- Department
of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
4
|
Wu EC, Schwartz BJ. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. J Chem Theory Comput 2024; 20:10059-10070. [PMID: 39541436 PMCID: PMC11603617 DOI: 10.1021/acs.jctc.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Doped conjugated polymers have a variety of potential applications in thermoelectric and other electronic devices, but the nature of their electronic structure is still not well understood. In this work, we use time-dependent density functional theory (TD-DFT) calculations along with natural transition orbital (NTO) analysis to understand electronic structures of both p-type (e.g., poly(3-hexylthiophene-2,5-diyl), P3HT) and n-type (e.g., poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}, N2200) conjugated polymers that are both p-doped and n-doped. Of course, the electronic transitions of doped conjugated polymers are multiconfigurational in nature, but it is still useful to have a one-electron energy level diagram with which to interpret their spectroscopy and other electronic behaviors. Based on the NTOs associated with the TD-DFT transitions, we find that the "best" one-electron orbital-based energy level diagram for doped conjugated polymers such as P3HT is the so-called traditional band picture. We also find that the situation is more complicated for donor-acceptor-type polymers like N2200, where the use of different exchange-correlation functionals leads to different predicted optical transitions that have significantly less one-electron character. For some functionals, we still find that the "best" one-electron energy level diagram agrees with the traditional picture, but for others, there is no obvious route to reducing the multiconfigurational transitions to a one-electron energy level diagram. We also see that the presence of both electron-rich and electron-poor subunits on N2200 breaks the symmetry between n- and p-doping, because different types of polarons reside on different subunits leading to different degrees of charge delocalization. This effect is exaggerated by the presence of dopant counterions, which interact differently with n- and p-polarons. Despite these complications, we argue that the traditional band picture suffices if one wishes to employ a simple one-electron picture to explain the spectroscopy of n- and p-doped conjugated polymers.
Collapse
Affiliation(s)
- Eric C. Wu
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry, University of California,
Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
5
|
Deng XY, Zhang Z, Lei T. Integrated Materials Design and Process Engineering for n-Type Polymer Thermoelectrics. JACS AU 2024; 4:4066-4083. [PMID: 39610747 PMCID: PMC11600150 DOI: 10.1021/jacsau.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/30/2024]
Abstract
Polymer thermoelectrics (TEs) have attracted increasing interest in recent years, owing to their great potential in intimate integration with wearable electronics for powering small electronics/sensors and personal temperature regulation. Over the past few decades, substantial progress has been made in enhancing polymer TE performance. However, the electrical conductivity and power factor of most n-doped polymers are about an order of magnitude lower than those of their p-type counterparts, impeding the development of highly efficient polymer TE devices. In addition, unlike well-studied inorganic materials, the complex charge transport mechanism and polymer-dopant interactions in polymer TE materials have hindered a comprehensive understanding of the structure-property relationships. This Perspective aims to survey recent achievements in understanding the charge transport mechanism and selectively provide some critical insights into molecular design and process engineering for n-type polymer TEs. We also highlight the great potential of polymer TEs in wearable electronics and offer an outlook for future development.
Collapse
Affiliation(s)
- Xin-Yu Deng
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Hu X, Wang L, Luo S, Yan H, Chen S. Polymeric Charge-Transporting Materials for Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412327. [PMID: 39535323 DOI: 10.1002/adma.202412327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Inverted perovskite solar cells (PSCs) hold exceptional promise as next-generation photovoltaic technology, where both perovskite absorbers and charge-transporting materials (CTMs) play critical roles in cell performance. In recent years, polymeric CTMs have played an important role in developing efficient, stable, and large-area inverted PSCs due to their unique properties of high conductivity, tunable structures, and mechanical flexibility. This review provides a comprehensive overview of polymeric CTMs used in inverted PSCs, encompassing polymeric hole transport materials (HTMs) and electron transport materials (ETMs). the relationship between their molecular structures, modification strategies are systematically summarized and analyzed for adjusting energy levels, and improving charge extraction, enabling a deep understanding of these widely used materials. The review also explores effective strategies for designing even more efficient polymeric CTMs. Finally, an outlook is proposed on the exciting research of novel polymeric CTMs, paving the way for their commercialized applications in PSCs.
Collapse
Affiliation(s)
- Xiaodong Hu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyuan Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Siwei Luo
- Department of Chemistry and Energy Institute, Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Energy Institute, Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Shangshang Chen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| |
Collapse
|
7
|
Alsufyani M, Moss B, Tait CE, Myers WK, Shahi M, Stewart K, Zhao X, Rashid RB, Meli D, Wu R, Paulsen BD, Thorley K, Lin Y, Combe C, Kniebe-Evans C, Inal S, Jeong SY, Woo HY, Ritchie G, Kim JS, Rivnay J, Paterson A, Durrant JR, McCulloch I. The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403911. [PMID: 39221539 DOI: 10.1002/adma.202403911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N-DMBI doped form, resulting in an excellent and air-stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Benjamin Moss
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Claudia E Tait
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - William K Myers
- Centre for Advanced ESR, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Maryam Shahi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Katherine Stewart
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Xiaolei Zhao
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Yuanbao Lin
- College of Education Sciences, The Hong Kong University of Science and Technology, Guangzhou, 510000, CN
| | - Craig Combe
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Charlie Kniebe-Evans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Grant Ritchie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ji-Seon Kim
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alexandra Paterson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
8
|
Yang X, Ye G, Liu J, Chiechi RC, Koster LJA. Carrier-Carrier Repulsion Limits the Conductivity of N-Doped Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404397. [PMID: 39246234 DOI: 10.1002/adma.202404397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Molecular doping is a key strategy to enhance the electrical conductivity of organic semiconductors. Typically, the electrical conductivity shows a maximum value upon increased doping, after which the conductivity decreases. This decrease in conductivity is commonly attributed to unfavorable changes in the morphology. However, in recent simulation work, has shown, that the conductivity-at high doping-is instead limited by electron-electron repulsion rather than by morphology, at least for some material combinations. Based on the simulations, this limitation is expected to show up in the dependence of the Seebeck coefficient versus carrier density: the Seebeck coefficient will follow Heike's formula if carrier-carrier repulsion limits the conductivity. Here, the electrical conductivity and Seebeck coefficient are measured as a function of doping for a series of n-type organic semiconductors. Additionally, the resulting carrier density is measured using metal-insulator-semiconductor diodes, which link dopant loading and the number of charge carriers. At high carrier densities, the Seebeck coefficient indeed follows Heike's formula, confirming that the conductivity is limited by carrier-carrier repulsion rather than by morphological effects. This study shows that current models of hopping transport in organic semiconductors may be incomplete. As a result, this study offers novel insights in the design of organic semiconductors.
Collapse
Affiliation(s)
- Xuwen Yang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Ryan C Chiechi
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
9
|
Ren Z, Chen Z, Luo Z, Zhong F, Wu Y, Jiang L, Chen Y, Gao C, Wang L. Synergistically Improved Crystallinity and Molecular Doping Ability of Polythiophene-Diketopyrropyrrole Derivatives by m-Trifluoromethylbenzene Containing Side Chains for Improved Thermoelectric Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52988-52996. [PMID: 39297704 DOI: 10.1021/acsami.4c13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
m-Trifluoromethylbenzene (FB) groups have been widely employed in various fields; however, no studies have reported the use of FB in side chains to enhance the carrier mobility and molecular doping of conjugated polymers. In this study, based on density functional theory (DFT) calculations, we discovered that FB groups can effectively bind to [FeCl4]-, the counterion of the p-type dopant FeCl3, thereby increasing doping ability. Consequently, FB groups were incorporated into the side chains of thiophene-diketopyrrolopyrrole-based donor-acceptor (D-A)-conjugated polymers, and a series of random conjugated polymers were synthesized (denoted as PDPPFB-x, where x represents the molar ratio of the FB side chain). The findings revealed that an appropriate number of FB groups can decrease the π-π stacking distances, enhance the films' crystallinity, and consequently improve the charge transfer ability. Furthermore, after doping with FeCl3, the UV-vis-NIR spectra indicated that the doping efficiency was augmented by increasing the molar fraction of the FB side chain. Among these polymers, PDPPFB-10 exhibited the highest conductivity and power factor, which were 2.0 and 1.5 times higher than those of PDPPFB-0, respectively. These results illustrated a straightforward molecular design strategy for enhancing the crystallinity and conductivity of conjugated polymers, thereby expanding the way to optimize their thermoelectric performance.
Collapse
Affiliation(s)
- Zhibo Ren
- School of Chemistry and Environmental Engineering, Key Laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhifu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyong Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fei Zhong
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yufeng Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Linhai Jiang
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Resources Environmental and Green Low Carbon Processes in East Guangdong, Hanshan Normal University, Chaozhou 521041, China
| | - Chunmei Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Chen D, Tong Z, Rao Q, Liu X, Meng H, Huang W. High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices. Nat Commun 2024; 15:8457. [PMID: 39349468 PMCID: PMC11442578 DOI: 10.1038/s41467-024-52430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
Black-to-transparent electrochromism is hailed as the holy grail of organic optoelectronics. Despite its potential, designing black electrochromic materials that fully absorb visible light remains a significant challenge. Electroactive materials that simultaneously possess excellent cyclic stability, fast switching times, and high coloration efficiency are rare. In this study, we successfully designed copolymers that fully absorb the entire visible spectrum by judiciously selecting four types of monomers. We incorporated two types of polar side chains to synergistically enhance the ionic conductivity of the copolymers, thus improving the performance of electrochromic devices. Among these electrochromic devices, the P2-a device exhibits cycling stability exceeding 105 cycles, and the P2-c device demonstrates a coloring/ bleaching time of 0.82 s/0.86 s and achieves a coloration efficiency of 1078 cm²/C. This study proposes a strategy for designing and synthesizing high-performance black electrochromic copolymers.
Collapse
Affiliation(s)
- Dinghui Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, China
| | - Zizheng Tong
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Qiushi Rao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xingchen Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, China
| |
Collapse
|
11
|
Fan X, Deng S, Cao X, Meng B, Hu J, Liu J. Isomers of n-Type Poly(thiophene- alt- co-thiazole) for Organic Thermoelectrics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46741-46749. [PMID: 39162353 DOI: 10.1021/acsami.4c08553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
n-Type polythiophene represents a promising category of n-type polymer thermoelectric materials known for their straightforward structure and scalable synthesis. However, n-type polythiophene often suffers from a twisted backbone and poor stacking property when introducing high-density electron-withdrawing groups for a lower lowest unoccupied molecular orbital (LUMO) level, which is considered to be beneficial for n-doping efficiency. Herein, we developed two isomers of polythiophene derivatives, PTTz1 and PTTz2, by inserting thiazole units into the polythiophene backbone composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and thiophene-3,4-dicarbonitrile (2CNT). Although PTTz1 and PTTz2 share a similar polymer skeleton, they differ in thiazole configuration, with the nitrogen atoms of the thiazole units oriented toward TPD and 2CNT, respectively. The insertion of thiazole units significantly planarizes the polythiophene backbone while largely preserving low LUMO levels. Notably, PTTz2 exhibits a more coplanar backbone and closer π-stacking compared to PTTz1, resulting in a greatly enhanced electron mobility. Both PTTz1 and PTTz2 can be easily n-doped due to their deep LUMO levels. PTTz2 demonstrates superior thermoelectric performance, with an electrical conductivity of 50.3 S cm-1 and a power factor of 23.8 μW m-1 K-2, which is approximately double that of PTTz1. This study highlights the impact of the thiazole unit on n-type polythiophene derivatives and provides valuable guidelines for the design of high-performance n-type polymer thermoelectric materials.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Stoeckel MA, Feng K, Yang CY, Liu X, Li Q, Liu T, Jeong SY, Woo HY, Yao Y, Fahlman M, Marks TJ, Sharma S, Motta A, Guo X, Fabiano S, Facchetti A. On-Demand Catalysed n-Doping of Organic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202407273. [PMID: 38770935 DOI: 10.1002/anie.202407273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.
Collapse
Affiliation(s)
- Marc-Antoine Stoeckel
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chi-Yuan Yang
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tiefeng Liu
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Yao Yao
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sakshi Sharma
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma "La Sapienza", p.le A. Moro 5, Rome, I-00185, Italy
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Simone Fabiano
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Antonio Facchetti
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
13
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
14
|
Cai H, Tang H, Wang T, Xu C, Xie J, Fu M, Luo X, Hu Z, Zhang Y, Deng Y, Li G, Liu C, Huang F, Cao Y. An n-Type Open-Shell Conjugated Polymer with High-Spin Ground-State and High Intrinsic Electrical Conductivity. Angew Chem Int Ed Engl 2024; 63:e202402375. [PMID: 38619528 DOI: 10.1002/anie.202402375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Open-shell conjugated polymers with a high intrinsic conductivity and high-spin ground state hold considerable promise for applications in organic electronics and spintronics. Herein, two novel acceptor-acceptor (A-A) conjugated polymers based on a highly electron-deficient quinoidal benzodifurandione unit have been developed, namely DPP-BFDO-Th and DPP-BFDO. The incorporation of the quinoidal moiety into the polymers backbones enables deeply aligned lower-lying lowest unoccupied molecular orbital (LUMO) levels of below -4.0 eV. Notably, DPP-BFDO exhibits an exceptionally low LUMO (-4.63 eV) and a high-spin ground state characterized by strong diradical characters. Moreover, a self-doping through intermolecular charge-transfer is observed for DPP-BFDO, as evidenced by X-ray photoelectron spectroscopy (XPS) studies. The high carrier concentration in combination with a planar and linear conjugated backbone yields a remarkable electrical conductivity (σ) of 1.04 S cm-1 in the "undoped" native form, ranking among the highest values reported for n-type radical-based conjugated polymers. When employed as an n-type thermoelectric material, DPP-BFDO achieves a power factor of 12.59 μW m-1 K-2. Furthermore, upon n-doping, the σ could be improved to 65.68 S cm-1. This study underscores the great potential of electron-deficient quinoidal units in constructing dopant-free n-type conductive polymers with a high-spin ground state and exceptional intrinsic conductivity.
Collapse
Affiliation(s)
- Houji Cai
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Chenhui Xu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Juxuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Muyi Fu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xi Luo
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhengwei Hu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yi Zhang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Guangwu Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Chunchen Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
15
|
Craighero M, Guo J, Zokaei S, Griggs S, Tian J, Asatryan J, Kimpel J, Kroon R, Xu K, Reparaz JS, Martín J, McCulloch I, Campoy-Quiles M, Müller C. Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophene. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:2909-2916. [PMID: 38828039 PMCID: PMC11137803 DOI: 10.1021/acsaelm.3c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 06/05/2024]
Abstract
Conjugated polymers with oligoether side chains make up a promising class of thermoelectric materials. In this work, the impact of the side-chain length on the thermoelectric and mechanical properties of polythiophenes is investigated. Polymers with tri-, tetra-, or hexaethylene glycol side chains are compared, and the shortest length is found to result in thin films with the highest degree of order upon doping with the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). As a result, a stiff material with an electrical conductivity of up to 830 ± 15 S cm-1 is obtained, resulting in a thermoelectric power factor of about 21 μW m-1 K-2 in the case of as-cast films. Aging at ambient conditions results in an initial decrease in thermoelectric properties but then yields a highly stable performance for at least 3 months, with values of about 200 S cm-1 and 5 μW m-1 K-2. Evidently, identification of the optimal side-chain length is an important criterion for the design of conjugated polymers for organic thermoelectrics.
Collapse
Affiliation(s)
- Mariavittoria Craighero
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg 41296, Sweden
| | - Jiali Guo
- Materials
Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Sepideh Zokaei
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg 41296, Sweden
| | - Sophie Griggs
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Junfu Tian
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jesika Asatryan
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, 15403 Ferrol, Spain
| | - Joost Kimpel
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg 41296, Sweden
| | - Renee Kroon
- Laboratory
of Organic Electronics, Linköping
University, 60174 Norrköping, Sweden
| | - Kai Xu
- Materials
Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Juan Sebastian Reparaz
- Materials
Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Jaime Martín
- Universidade
da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, 15403 Ferrol, Spain
- POLYMAT, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mariano Campoy-Quiles
- Materials
Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg 41296, Sweden
| |
Collapse
|
16
|
Xu C, Wang D. Theoretical Perspective of Enhancing Order in n-Doped Thermoelectric Polymers through Side Chain Engineering: The Interplay of Counterion-Backbone Interaction and Side Chain Steric Hindrance. NANO LETTERS 2024; 24:1776-1783. [PMID: 38284760 DOI: 10.1021/acs.nanolett.3c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Donor-acceptor (D-A) copolymers doped with n-type dopants are widely sought after for their potential in organic thermoelectric devices. However, the existing structural disorder significantly hampers their charge transport and thermoelectric performance. In this Letter, we propose a mechanism to mitigate this disorder through side chain engineering. Utilizing molecular dynamics simulations, we demonstrate that strong Coulomb interactions between counterions and charged polymer backbones induce a transition in the stacking arrangement of the polymer backbones from a slipped to a vertical configuration. However, the presence of side chain steric hindrance impedes the formation of closely packed and ordered vertical stacking arrangements, resulting in greater distances between adjacent backbones and a higher level of structural disorder in the doped films. Therefore, we propose minimizing side chain steric hindrance to enhance the structural order in doped films. Our findings provide essential insights for advancing high-performance thermoelectric polymers.
Collapse
Affiliation(s)
- Chunlin Xu
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Deng S, Kuang Y, Liu L, Liu X, Liu J, Li J, Meng B, Di CA, Hu J, Liu J. High-Performance and Ecofriendly Organic Thermoelectrics Enabled by N-Type Polythiophene Derivatives with Doping-Induced Molecular Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309679. [PMID: 38051134 DOI: 10.1002/adma.202309679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The ability of n-type polymer thermoelectric materials to tolerate high doping loading limits further development of n-type polymer conductivity. Herein, two alcohol-soluble n-type polythiophene derivatives that are n-PT3 and n-PT4 are reported. Due to the ability of two polymers to tolerate doping loading more significantly than 100 mol%, both achieve electrical conductivity >100 S cm-1 . Moreover, the conductivity of both polythiophenes remains almost constant at high doping concentrations with excellent doping tunability, which may be related to their ability to overcome charging-induced backbone torsion and morphology change caused by saturated doping. The characterizations reveal that n-PT4 has a high doping level and carrier concentration (>3.10 × 1020 cm-3 ), and the carrier concentration continues to increase as the doping concentration increases. In addition, doping leads to improved crystal structure of n-PT4, and the crystallinity does not decrease significantly with increasing doping concentration; even the carrier mobility increases with it. The synergistic effect of these two leads to both n-PT3 and n-PT4 achieving a breakthrough of 100 in conductivity and power factor. The DMlmC-doped n-PT4 achieves a power factor of over 150 µW m-1 K-2 . These values are among the highest for n-type organic thermoelectric materials.
Collapse
Affiliation(s)
- Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingyu Li
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
18
|
Gilhooly-Finn PA, Jacobs IE, Bardagot O, Zaffar Y, Lemaire A, Guchait S, Zhang L, Freeley M, Neal W, Richard F, Palma M, Banerji N, Sirringhaus H, Brinkmann M, Nielsen CB. Interplay between Side Chain Density and Polymer Alignment: Two Competing Strategies for Enhancing the Thermoelectric Performance of P3HT Analogues. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9029-9039. [PMID: 38027547 PMCID: PMC10653083 DOI: 10.1021/acs.chemmater.3c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Indexed: 12/01/2023]
Abstract
A series of polythiophenes with varying side chain density was synthesized, and their electrical and thermoelectric properties were investigated. Aligned and non-aligned thin films of the polymers were characterized in the neutral and chemically doped states. Optical and diffraction measurements revealed an overall lower order in the thin films with lower side chain density, also confirmed using polarized optical experiments on aligned thin films. However, upon doping the non-aligned films, a sixfold increase in electrical conductivity was observed for the polythiophene with the lowest side chain density compared to poly(3-hexylthiophene) (P3HT). We found that the improvement in conductivity was not due to a larger charge carrier density but an increase in charge carrier mobility after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). On the other hand, doped aligned films did not show the same trend; lower side chain density instead led to a lower conductivity and Seebeck coefficient compared to those for P3HT. This was attributed to the poorer alignment of the polymer thin films with lower side chain density. The study demonstrates that optimizing side chain density is a synthetically simple and effective way to improve electrical conductivity in polythiophene films relevant to thermoelectric applications.
Collapse
Affiliation(s)
- Peter A. Gilhooly-Finn
- Department
of Chemistry, University College London, Gower Street, London WC1E 6BT, U.K.
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Ian E. Jacobs
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Olivier Bardagot
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Yasser Zaffar
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Antoine Lemaire
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Shubhradip Guchait
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Lu Zhang
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Mark Freeley
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - William Neal
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Fanny Richard
- Université
de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg 67000, France
| | - Matteo Palma
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Natalie Banerji
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Henning Sirringhaus
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Martin Brinkmann
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Christian B. Nielsen
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
19
|
Feng K, Wang J, Jeong SY, Yang W, Li J, Woo HY, Guo X. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302629. [PMID: 37553779 PMCID: PMC10582446 DOI: 10.1002/advs.202302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Indexed: 08/10/2023]
Abstract
n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side-chain size delivers a champion σ up to 92.0 S cm-1 and a power factor (PF) as high as 94.3 µW m-1 K-2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution-processing n-doped polymers. In-depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12-based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n-type polymers with substantial σ for improving organic thermoelectric performance.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Junwei Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sang Young Jeong
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Wanli Yang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianfeng Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Han Young Woo
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
20
|
Wei H, Cheng Z, Wu T, Liu Y, Guo J, Chen PA, Xia J, Xie H, Qiu X, Liu T, Zhang B, Hui J, Zeng Z, Bai Y, Hu Y. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300084. [PMID: 36929089 DOI: 10.1002/adma.202300084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.
Collapse
Affiliation(s)
- Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zehong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haihong Xie
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Tingting Liu
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Bohan Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, 85 Minglun Street, Kaifeng, Henan, 475004, China
| | - Jingshu Hui
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| |
Collapse
|
21
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Chen P, Wang D, Luo L, Meng J, Zhou Z, Dai X, Zou Y, Tan L, Shao X, Di CA, Jia C, Zhang HL, Liu Z. Self-Doping Naphthalene Diimide Conjugated Polymers for Flexible Unipolar n-Type OTFTs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300240. [PMID: 36812459 DOI: 10.1002/adma.202300240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Indexed: 05/19/2023]
Abstract
The development of high-performance organic thin-film transistor (OTFT) materials is vital for flexible electronics. Numerous OTFTs are so far reported but obtaining high-performance and reliable OTFTs simultaneously for flexible electronics is still challenging. Herein, it is reported that self-doping in conjugated polymer enables high unipolar n-type charge mobility in flexible OTFTs, as well as good operational/ambient stability and bending resistance. New naphthalene diimide (NDI)-conjugated polymers PNDI2T-NM17 and PNDI2T-NM50 with different contents of self-doping groups on their side chains are designed and synthesized. The effects of self-doping on the electronic properties of resulting flexible OTFTs are investigated. The results reveal that the flexible OTFTs based on self-doped PNDI2T-NM17 exhibit unipolar n-type charge-carrier properties and good operational/ambient stability thanks to the appropriate doping level and intermolecular interactions. The charge mobility and on/off ratio are fourfold and four orders of magnitude higher than those of undoped model polymer, respectively. Overall, the proposed self-doping strategy is useful for rationally designing OTFT materials with high semiconducting performance and reliability.
Collapse
Affiliation(s)
- Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Dongyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jinqiu Meng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Narasimha K, Albert SK, Kim J, Kang H, Kang S, Park J, Park J, Park SJ. Charge-Transfer-Induced Self-Assembly of Doped Conjugated Block Copolymer Nanofibers. ACS Macro Lett 2023; 12:382-388. [PMID: 36866815 DOI: 10.1021/acsmacrolett.2c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Here, we report charge-transfer-driven self-assembly of conjugated block copolymers (BCP) into highly doped conjugated polymer nanofibers. The ground-state integer charge transfer (ICT) between a BCP composed of poly(3-hexylthiophene) and poly(ethylene oxide) (P3HT-b-PEO) and electron-deficient 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) induced spontaneous self-assembly of the donor and the acceptor into well-defined one-dimensional nanofibers. The presence of the PEO block plays an important role for the self-assembly by providing a polar environment that can stabilize nanoscale charge transfer (CT) assemblies. The doped nanofibers were responsive to various external stimuli such as heat, chemical, and light and exhibited efficient photothermal properties in the near-IR region. The CT-driven BCP self-assembly reported here provides a new platform for the fabrication of highly doped semiconductor nanostructures.
Collapse
Affiliation(s)
- Karnati Narasimha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jongwook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyojung Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
24
|
Eryilmaz IH, Chen YF, Mattana G, Orgiu E. Organic thermoelectric generators: working principles, materials, and fabrication techniques. Chem Commun (Camb) 2023; 59:3160-3174. [PMID: 36805573 DOI: 10.1039/d2cc04205c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Organic thermoelectricity is a blooming field of research that employs organic (semi)conductors to recycle waste heat through its partial conversion to electrical power. Such a conversion occurs by means of organic thermoelectric generator (OTEG) devices. The recent process on the synthesis of novel materials and on the understanding of doping mechanisms to increase conductivity has tremendously narrowed the gap between laboratory research and their application in actual applications. This Feature Article intends to highlight the impressive progress in materials and fabrication techniques for OTEGs made in recent years.
Collapse
Affiliation(s)
- Ilknur Hatice Eryilmaz
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| | - Yan-Fang Chen
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| | - Giorgio Mattana
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France.
| | - Emanuele Orgiu
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| |
Collapse
|
25
|
Li J, Yang K, Wang D, Liu B, Wang Y, Jeong SY, Chen Z, Woo HY, Guo X. Regioisomeric Cyanated Polythiophenes Bearing Polar Side Chains for n-Type Organic Thermoelectrics. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Dong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| |
Collapse
|
26
|
Zhang Y, Deng L, Cho Y, Lee J, Shibayama N, Zhang Z, Wang C, Hu Z, Wang J, Wu F, Chen L, Du Y, Ren F, Yang C, Gao P. Revealing the Enhanced Thermoelectric Properties of Controllably Doped Donor-Acceptor Copolymer: The Impact of Regioregularity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206233. [PMID: 36592416 DOI: 10.1002/smll.202206233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Albeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance. As a result, the regioregular P2F exhibits a maximum power factor (PF) of up to 113.27 µW m-1 K-2 , more than three times that of the regiorandom PRF (35.35 µW m-1 K-2 ). However, the regular backbone also implies lower miscibility with a dopant, negatively affecting TE performance. Therefore, the trade-off between doping efficiency and miscibility plays a vital role in OTE materials, and this work sheds light on the molecular design strategy of OTE polymers with state-of-the-art performances.
Collapse
Affiliation(s)
- Yingyao Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Longhui Deng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yongjoon Cho
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jungho Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Samsung Electro-Mechanics Co, Ltd., 150, Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16674, Republic of Korea
| | - Naoyuki Shibayama
- Naoyuki Shibayama, Department of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa, 225-8503, Japan
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Can Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhenyu Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Wang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Feiyan Wu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Lie Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
| | - Yitian Du
- Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021, China
| | - Fangbin Ren
- Xiamen University of Technology, Xiamen, 361024, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
27
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Ke Z, Abtahi A, Hwang J, Chen K, Chaudhary J, Song I, Perera K, You L, Baustert KN, Graham KR, Mei J. Highly Conductive and Solution-Processable n-Doped Transparent Organic Conductor. J Am Chem Soc 2023; 145:3706-3715. [PMID: 36746755 DOI: 10.1021/jacs.2c13051] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transparent conductors (TCs) play a vital role in displays, solar cells, and emerging printed electronics. Here, we report a solution-processable n-doped organic conductor from copper-catalyzed cascade reactions in the air, which involves oxidative polymerization and reductive doping in one pot. The formed polymer ink is shelf-stable over 20 days and can endure storage temperatures from -20 to 65 °C. The optimized n-doped thin-film TC exhibits a low sheet resistance of 45 Ω/sq and a high transmittance (T550 > 80%), which can rival indium tin oxide. The transparent organic conductor exhibits excellent durability under accelerated weathering tests (85 °C/85% RH). Furthermore, the n-doped polymer film can also function as an electrode material with a high volumetric capacity. When it is paired with p-doped PEDOT:PSS, a record-high coloration efficiency is obtained in a dual-polymer electrochromic device.
Collapse
Affiliation(s)
- Zhifan Ke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashkan Abtahi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinhyo Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jagrity Chaudhary
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Inho Song
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kyle N Baustert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Duan J, Zhu G, Lan L, Chen J, Zhu X, Chen C, Yu Y, Liao H, Li Z, McCulloch I, Yue W. Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2023; 62:e202213737. [PMID: 36349830 DOI: 10.1002/anie.202213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liuyuan Lan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
30
|
Khan P, Kaushik R, Jayaraj A. Approaches and Perspective of Coarse-Grained Modeling and Simulation for Polymer-Nanoparticle Hybrid Systems. ACS OMEGA 2022; 7:47567-47586. [PMID: 36591142 PMCID: PMC9798744 DOI: 10.1021/acsomega.2c06248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Molecular modeling and simulations have emerged as effective and indispensable tools to characterize polymeric systems. They provide fundamental and essential insights to design a product of the required properties and to improve the understanding of a phenomenon at the molecular level for a particular system. The polymer-nanoparticle hybrids are materials with outstanding properties and correspondingly large applications whose study has benefited from this new paradigm. However, despite the significant expansion of modern day computational powers, investigation of the long time and large length scale phenomenon in polymeric and polymer-nanoparticle systems is still a challenging task to complete through all-atom molecular dynamics (AA-MD) simulations. To circumvent this problem, a variety of coarse-grained (CG) models have been proposed, ranging from the generic CG models for qualitative properties predictions to more realistic chemically specific CG models for quantitative properties predictions. These CG models have already delivered some success stories in the study of several spatial and temporal evolutions of many processes. Some of these studies were beyond the feasibility of traditional atomistic resolution models due to either the size or the time constraints. This review captures the different types of popular CG approaches that are utilized in the investigation of the microscopic behavior of polymer-nanoparticle hybrid systems. The rationale of this article is to furnish an overview of the popular CG approaches and their applications, to review several important and most recent developments, and to delineate the perspectives on future directions in the field.
Collapse
Affiliation(s)
- Parvez Khan
- Department
of Chemical Engineering, Aligarh Muslim
University, Aligarh202002, India
| | - Rahul Kaushik
- Laboratory
for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa230-0045, Japan
| | - Abhilash Jayaraj
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06459, United States
| |
Collapse
|
31
|
Gao R, Wu Q, Zhang J, Cen H, Hai J, Li X, Zhang J, Lu Z. Organic N‐type Dopants with a Phenyl Tertiary Carbon Structure: Molecular Structure and Doping Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202204021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ran Gao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Qinggang Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Jiyun Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Huan Cen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Jiefeng Hai
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Xueming Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Jinxiao Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhenhuan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
32
|
Shi Y, Li J, Sun H, Li Y, Wang Y, Wu Z, Jeong SY, Woo HY, Fabiano S, Guo X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew Chem Int Ed Engl 2022; 61:e202214192. [PMID: 36282628 DOI: 10.1002/anie.202214192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/22/2022]
Abstract
n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
33
|
Sami S, Alessandri R, W. Wijaya JB, Grünewald F, de Vries AH, Marrink SJ, Broer R, Havenith RWA. Strategies for Enhancing the Dielectric Constant of Organic Materials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19462-19469. [PMID: 36425002 PMCID: PMC9677499 DOI: 10.1021/acs.jpcc.2c05682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Indexed: 05/30/2023]
Abstract
High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains. The selection allows studying the dielectric response in terms of both the number and length of EG chains and also the choice of the group connecting the fullerene to the EG chain. The computed time- and frequency-dependent dielectric responses reveal that the experimentally observed rise of the dielectric constant within the kilo/megahertz regime for some molecules is likely due to the highly stretched dielectric response of the EGs: the initial sharp increase over the first few nanoseconds is followed by a smaller but persistent increase in the range of microseconds. Additionally, our computational protocol allows the separation of different factors that contribute to the overall dielectric constant, providing insights to make several molecular design guides for future organic materials in order to enhance their dielectric constant further.
Collapse
Affiliation(s)
- Selim Sami
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Riccardo Alessandri
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Jeff B. W. Wijaya
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Fabian Grünewald
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Alex H. de Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Ria Broer
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
| | - Remco W. A. Havenith
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Department
of Chemistry, Ghent University, Krijgslaan 281-(S3), B-9000Ghent, Belgium
| |
Collapse
|
34
|
Borrmann F, Tsuda T, Guskova O, Kiriy N, Hoffmann C, Neusser D, Ludwigs S, Lappan U, Simon F, Geisler M, Debnath B, Krupskaya Y, Al‐Hussein M, Kiriy A. Charge-Compensated N-Doped π-Conjugated Polymers: Toward both Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203530. [PMID: 36065004 PMCID: PMC9631074 DOI: 10.1002/advs.202203530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Indexed: 05/28/2023]
Abstract
The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective "in-water" applications is developed. A combined experimental-theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10-2 S cm-1 under ambient conditions and 10-1 S cm-1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced "collapse" of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
Collapse
Affiliation(s)
- Fabian Borrmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Takuya Tsuda
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Olga Guskova
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
- Dresden Center for Computational Materials Science (DCMS)TU Dresden01062DresdenGermany
| | - Nataliya Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Cedric Hoffmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - David Neusser
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Uwe Lappan
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Frank Simon
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Martin Geisler
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Bipasha Debnath
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Yulia Krupskaya
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Mahmoud Al‐Hussein
- Physics Department and Hamdi Mango Center for Scientific ResearchThe University of JordanAmman11942Jordan
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| |
Collapse
|
35
|
Wang T, Zhang Y, Kong W, Qiao L, Peng B, Shen Z, Han Q, Chen H, Yuan Z, Zheng R, Yang X. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 2022; 377:1227-1232. [PMID: 36074838 DOI: 10.1126/science.abq6235] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly efficient halide perovskite solar cells generally rely on lithium-doped organic hole transporting layers that are thermally and chemically unstable, in part because of migration of iodide anions from the perovskite layer. We report a solution strategy to stabilize the hole transport in organic layers by ionic coupling positive polymer radicals and molecular anions through an ion-exchange process. The target layer exhibited a hole conductivity that was 80 times higher than that of the conventional lithium-doped layer. Moreover, after extreme iodide invasion caused by light-soaking at 85°C for 200 hours, the target layer maintained high hole conductivity and well-matched band alignment. This ion-exchange strategy enabled fabrication of perovskite solar cells with a certified power conversion efficiency of 23.9% that maintained 92% under standard illumination at 85°C after 1000 hours.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Yao Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiyu Kong
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Liang Qiao
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Bingguo Peng
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Zhichao Shen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qifeng Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiliang Yuan
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Rongkun Zheng
- School of Physics, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xudong Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201210, China
| |
Collapse
|
36
|
Du T, Liu Y, Wang C, Deng Y, Geng Y. n-Type Conjugated Polymers Based on an Indandione-Terminated Quinoidal Building Block. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Du
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yingying Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
37
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
38
|
Zhou D, Zhang H, Zheng H, Xu Z, Xu H, Guo H, Li P, Tong Y, Hu B, Chen L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200679. [PMID: 35285160 DOI: 10.1002/smll.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Thermoelectric (TE) materials possess unique energy conversion capabilities between heat and electrical energy. Small organic semiconductors have aroused widespread attention for the fabrication of TE devices due to their advantages of low toxicity, large area, light weight, and easy fabrication. However, the low TE properties hinder their large-scale commercial application. Herein, the basic knowledge about TE materials, including parameters affecting the TE performance and the remaining challenges of the organic thermoelectric (OTE) materials, are initially summarized in detail. Second, the optimization strategies of power factor, including the selection and design of dopants and structural modification of the dope-host are introduced. Third, some achievements of p- and n-type small molecular OTE materials are highlighted to briefly provide their future developing trend; finally, insights on the future development of OTE materials are also provided in this study.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Hehui Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Haolan Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Zhentian Xu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Huilong Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Peining Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
39
|
Lau MT, Li Z, Sun Z, Wong WY. Synthesis, characterization and thermoelectric properties of new non-conjugated nitroxide radical-containing metallopolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Evans AM, Collins KA, Xun S, Allen TG, Jhulki S, Castano I, Smith HL, Strauss MJ, Oanta AK, Liu L, Sun L, Reid OG, Sini G, Puggioni D, Rondinelli JM, Rajh T, Gianneschi NC, Kahn A, Freedman DE, Li H, Barlow S, Rumbles G, Brédas JL, Marder SR, Dichtel WR. Controlled n-Doping of Naphthalene-Diimide-Based 2D Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101932. [PMID: 34850459 DOI: 10.1002/adma.202101932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4 S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Kelsey A Collins
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Sangni Xun
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Taylor G Allen
- Center for Chemistry and Nanoscience, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Samik Jhulki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Hannah L Smith
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Alexander K Oanta
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Lujia Liu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Lei Sun
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Obadiah G Reid
- Center for Chemistry and Nanoscience, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Renewable and Sustainable Energy Institute, Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Gjergji Sini
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
- CY Cergy Paris Université, Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, 5 mail Gay-Lussac, Cergy-Pontoise Cedex, 95031, France
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Department of Biomedical Engineering, Department of Pharmacology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Evanston, IL, 60208, USA
| | - Antoine Kahn
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hong Li
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Stephen Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Garry Rumbles
- Center for Chemistry and Nanoscience, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Renewable and Sustainable Energy Institute, Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
41
|
Li QY, Yao ZF, Wu HT, Luo L, Ding YF, Yang CY, Wang XY, Shen Z, Wang JY, Pei J. Regulation of High Miscibility for Efficient Charge-Transport in n-Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202200221. [PMID: 35107203 DOI: 10.1002/anie.202200221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/10/2022]
Abstract
Strong interchain interactions of conjugated polymers usually result in poor miscibility with molecular dopants, limiting the doping efficiency because of uncontrolled phase separation. We have developed a strategy to achieve efficient charge-transport and high doping miscibility in n-doped conjugated polymers. We solve the miscibility issue through disorder side-chains containing dopants better. Systemic structural characterization reveals a farther side-chain branching point will lead to higher disorders, which provides appropriate sites to accommodate extrinsic molecular dopants without harming original chain packings and charge-transport channels. Therefore, better sustainability of solid-state microstructure is obtained, yielding a stable conductivity even when overloading massive dopants. This work highlights the importance of realizing high host-dopant miscibility in molecular doping of conjugated polymers.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chi-Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
42
|
Kim DE, Park JW, Seo S, Baeg KJ. Versatile Solution-Processed Reductive Interface Layer for Contact Engineering of Staggered Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13560-13571. [PMID: 35258275 DOI: 10.1021/acsami.1c21864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient charge injection/extraction from/to contact electrodes is essential to realize organic electronic and optoelectronic devices with optimum characteristics for many applications. Herein, we studied a versatile reductive interlayer based on sodium borohydride (NaBH4) to control the contact properties of the staggered organic field-effect transistors (OFETs) either by doping and/or by regulating the contribution of charge carriers. The versatile functionalities of the NaBH4 layer are mainly determined by the alignment of frontier molecular orbitals of donor-acceptor (D-A) type copolymer semiconductors and the work function of the contact electrode. After incorporating the NaBH4 layer, the work function of the bottom-contact gold electrode can be decreased significantly by 1.0 eV, which makes it favorable to efficient electron injection. An Ohmic contact is achieved by the spontaneous injection of electrons to the n-type organic semiconductors with high electron affinity while converting the OFET operation mode to n-type characteristics by blocking the counter-charge carriers for the other types of ambipolar and p-type semiconductors. The solution-processed reducing agent can be a valuable approach to develop high-performance printed and flexible electronic devices through careful engineering to obtain proper contributions of charge carriers either as electrons or holes in various D-A copolymer semiconductors.
Collapse
Affiliation(s)
- Dong Eun Kim
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Jun-Woo Park
- Next-Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI), 12 Jeongiui-gil, Seongsan-gu,Changwon-si 51543, Gyeongsangnam-do, Republic of Korea
| | - SungYong Seo
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Kang-Jun Baeg
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
43
|
Zhang Y, Wang W, Zhang F, Dai K, Li C, Fan Y, Chen G, Zheng Q. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104922. [PMID: 34921579 DOI: 10.1002/smll.202104922] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The enormous demand for waste heat utilization and burgeoning eco-friendly wearable materials has triggered huge interest in the development of thermoelectric materials that can harvest low-cost energy resources by converting waste heat to electricity efficiently. In particular, due to their high flexibility, nontoxicity, cost-effectivity, and promising applicability in various fields, organic thermoelectric materials are drawing more attention compared with their toxic, expensive, heavy, and brittle inorganic counterparts. Organic thermoelectric materials are approaching the figure of merit of the inorganic ones via the construction and optimization of unique transport pathways and device geometries. This review presents the recent development of the interdependence and decoupling principles of the thermoelectric efficiency parameters as well as the new achievements of high performance organic thermoelectric materials. Moreover, this review also discusses the advances in the thermoelectric devices with emphasis on their energy-related applications. It is believed that organic thermoelectric materials are emerging as green energy alternatives rivaling their conventional inorganic counterparts in the efficient and pure electricity harvesting from waste heat and solar thermal energy.
Collapse
Affiliation(s)
- Yinhang Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kun Dai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuan Fan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| |
Collapse
|
44
|
Wang J, Liu L, Wu F, Liu Z, Fan Z, Chen L, Chen Y. Recent Developments of n-Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. CHEMSUSCHEM 2022; 15:e202102420. [PMID: 34964275 DOI: 10.1002/cssc.202102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Organic semiconductor (OSCs) thermoelectric materials have been studied widely due to their low thermal conductivity and solution processing characteristics. Currently, the high conductivity (up to 1000 s cm-1 ) has boosted the performance of p-type organic thermoelectric materials substantially. In contrast, the development of n-type organic thermoelectric materials is still limited by their low mobility, inferior air stability, and poor doping efficiency, which is relevant to the molecule structure and dopant dispersion. Herein, the recent development of n-type organic thermoelectric materials was reviewed with an emphasis on molecule structure modification and solution processing. Methods for optimizing conjugate structure were summarized from the effects of conjugated backbone modification and side chains diversification on molecular stacking. The primary n-type dopants were also summarized briefly. Especially, the role of solution aggregation controlling on film preparation and properties was given special attention. Additionally, the emergence of organic diradicals with low lowest unoccupied molecular orbital energy level and no doping was introduced, which shows great potential in n-type organic thermoelectric materials. All these endeavors have led to the development of n-type OSCs materials. This Review is aimed at illustrating the state-of-the-art progress and providing some guideline for the design of organic thermoelectric materials in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Liang Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zhiping Fan
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Institute of Advanced Scientific Research (IASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
45
|
Li Q, Yao Z, Wu H, Luo L, Ding Y, Yang C, Wang X, Shen Z, Wang J, Pei J. Regulation of High Miscibility for Efficient Charge‐Transport in n‐Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi‐Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hao‐Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi‐Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Chi‐Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
46
|
Alsufyani M, Stoeckel M, Chen X, Thorley K, Hallani RK, Puttisong Y, Ji X, Meli D, Paulsen BD, Strzalka J, Regeta K, Combe C, Chen H, Tian J, Rivnay J, Fabiano S, McCulloch I. Lactone Backbone Density in Rigid Electron‐Deficient Semiconducting Polymers Enabling High n‐type Organic Thermoelectric Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Xingxing Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Karl Thorley
- Department of Chemistry University of Kentucky Lexington KY 40506-0055 USA
| | - Rawad K. Hallani
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology Linköping University 58183 Linköping Sweden
| | - Xudong Ji
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dilara Meli
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bryan D. Paulsen
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joseph Strzalka
- X-Ray Science Division Argonne National Laboratory Lemont IL 60439 USA
| | - Khrystyna Regeta
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Craig Combe
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hu Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Junfu Tian
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
| | - Simone Fabiano
- Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Iain McCulloch
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
47
|
Zokaei S, Craighero M, Cea C, Kneissl LM, Kroon R, Khodagholy D, Lund A, Müller C. Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102813. [PMID: 34816573 DOI: 10.1002/smll.202102813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70 µm. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm-1 , which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Claudia Cea
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Lucas M Kneissl
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| |
Collapse
|
48
|
Doping and Thermoelectric Behaviors of Donor-Acceptor Polymers with Extended Planar Backbone. Macromol Res 2022. [DOI: 10.1007/s13233-021-9099-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Rosas Villalva D, Singh S, Galuska LA, Sharma A, Han J, Liu J, Haque MA, Jang S, Emwas AH, Koster LJA, Gu X, Schroeder BC, Baran D. Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymers. MATERIALS HORIZONS 2022; 9:500-508. [PMID: 34927646 PMCID: PMC8725799 DOI: 10.1039/d1mh01357b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Molecular doping is the key to enabling organic electronic devices, however, the design strategies to maximize doping efficiency demands further clarity and comprehension. Previous reports focus on the effect of the side chains, but the role of the backbone is still not well understood. In this study, we synthesize a series of NDI-based copolymers with bithiophene, vinylene, and acetylenic moieties (P1G, P2G, and P3G, respectively), all containing branched triethylene glycol side chains. Using computational and experimental methods, we explore the impact of the conjugated backbone using three key parameters for doping in organic semiconductors: energy levels, microstructure, and miscibility. Our experimental results show that P1G undergoes the most efficient n-type doping owed primarily to its higher dipole moment, and better host-dopant miscibility with N-DMBI. In contrast, P2G and P3G possess more planar backbones than P1G, but the lack of long-range order, and poor host-dopant miscibility limit their doping efficiency. Our data suggest that backbone planarity alone is not enough to maximize the electrical conductivity (σ) of n-type doped organic semiconductors, and that backbone polarity also plays an important role in enhancing σ via host-dopant miscibility. Finally, the thermoelectric properties of doped P1G exhibit a power factor of 0.077 μW m-1 K-2, and ultra-low in-plane thermal conductivity of 0.13 W m-1K-1 at 5 mol% of N-DMBI, which is among the lowest thermal conductivity values reported for n-type doped conjugated polymers.
Collapse
Affiliation(s)
- Diego Rosas Villalva
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| | - Saumya Singh
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Luke A Galuska
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Anirudh Sharma
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| | - Jianhua Han
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| | - Jian Liu
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Md Azimul Haque
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| | - Soyeong Jang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| | - Abdul Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955, Saudi Arabia
| | - L Jan Anton Koster
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Bob C Schroeder
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
50
|
Khot A, Savoie BM. How
side‐chain
hydrophilicity modulates morphology and charge transport in mixed conducting polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| | - Brett M. Savoie
- Davidson School of Chemical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|