1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Farivar N, Khazamipour N, Roberts ME, Nelepcu I, Marzban M, Moeen A, Oo HZ, Nakouzi NA, Dolleris C, Black PC, Daugaard M. Pulsed Photothermal Therapy of Solid Tumors as a Precondition for Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309495. [PMID: 38511548 DOI: 10.1002/smll.202309495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Photothermal therapy (PTT) refers to the use of plasmonic nanoparticles to convert electromagnetic radiation in the near infrared region to heat and kill tumor cells. Continuous wave lasers have been used clinically to induce PTT, but the treatment is associated with heat-induced tissue damage that limits usability. Here, the engineering and validation of a novel long-pulsed laser device able to induce selective and localized mild hyperthermia in tumors while reducing the heat affected zone and unwanted damage to surrounding tissue are reported. Long-pulsed PTT induces acute necrotic cell death in heat affected areas and the release of tumor associated antigens. This antigen release triggers maturation and stimulation of CD80/CD86 in dendritic cells in vivo that primes a cytotoxic T cell response. Accordingly, long-pulsed PTT enhances the therapeutic effects of immune checkpoint inhibition and increases survival of mice with bladder cancer. Combined, the data promote long-pulsed PTT as a safe and effective strategy for enhancing therapeutic responses to immune checkpoint inhibitors while minimizing unwanted tissue damage.
Collapse
Affiliation(s)
- Negin Farivar
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nastaran Khazamipour
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Morgan E Roberts
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Alireza Moeen
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Casper Dolleris
- Dolleris Scientific Corp., 2327 Collingwood Street, Vancouver, BC, V6R 3L2, Canada
| | - Peter C Black
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mads Daugaard
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
3
|
Nieukirk BD, Tang R, Hughes RA, Neretina S. Site-Selective Deposition of Silica Nanoframes and Nanocages onto Faceted Gold Nanostructures Using a Primer-free Tetraethyl Orthosilicate Synthesis. ACS NANO 2024; 18:19257-19267. [PMID: 38984856 DOI: 10.1021/acsnano.4c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The Stöber method for forming spherical silica colloids is well-established as one of the pillars of colloidal synthesis. In a modified form, it has been extensively used to deposit both porous and protective shells over metal nanomaterials. Current best-practice techniques require that the vitreophobic surface of metal nanoparticles be primed with a surface ligand to promote silica deposition. Although such techniques have proved highly successful in forming core-shell configurations, the site-selective deposition of silica onto preselected areas of faceted metal nanostructures has proved far more challenging. Herein, a primer-free TEOS-based synthesis is demonstrated that is capable of forming architecturally complex nanoframes and nanocages on the pristine surfaces of faceted gold nanostructures. The devised synthesis overcomes vitreophobicity using elevated TEOS concentrations that trigger silica nucleation along the low-coordination sites where gold facets meet. Continued deposition sees the emergence of a well-connected frame followed by the lateral infilling of the openings formed over gold facets. With growth readily terminated at any point in this sequence, the synthesis distinguishes itself in being able to achieve patterned and tunable silica depositions expressing interfaces that are uncorrupted by primers. The so-formed structures are demonstrated as template materials capable of asserting high-level control over synthesis and assembly processes by using the deposited silica as a mask that deactivates selected areas against these processes while allowing them to proceed elsewhere. The work, hence, extends the capabilities and versatility of TEOS-based syntheses and provides pathways for forming multicomponent nanostructures and nanoassemblies with structurally engineered properties.
Collapse
Affiliation(s)
- Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runze Tang
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
You J, Qian Y, Xiong S, Zhang P, Mukwaya V, Levi-Kalisman Y, Raviv U, Dou H. Poly(ferrocenylsilane)-Based Redox-Active Artificial Organelles for Biomimetic Cascade Reactions. Chemistry 2024; 30:e202401435. [PMID: 38739532 DOI: 10.1002/chem.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghui Qian
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuhan Xiong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering., Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Xu T, Deng B, Zheng K, Li H, Wang Z, Zhong Y, Zhang C, Lévêque G, Grandidier B, Bachelot R, Treguer-Delapierre M, Qi Y, Wang S. Boosting the Performances of Semitransparent Organic Photovoltaics via Synergetic Near-Infrared Light Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311305. [PMID: 38270280 DOI: 10.1002/adma.202311305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.
Collapse
Affiliation(s)
- Tao Xu
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Baozhong Deng
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Kaiwen Zheng
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Hongyu Li
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zihan Wang
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yunbo Zhong
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chengxi Zhang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Gaëtan Lévêque
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, Lille, 59000, France
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, Lille, 59000, France
| | - Renaud Bachelot
- Light, nanomaterials, nanotechnologies (L2n), CNRS ERL 7004, University of Technology of Troyes, Troyes, F-10004, France
- EEE School, Nanyang Technological University, CNRS IRL, CINTRA, 3288, Singapore
| | | | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shenghao Wang
- School of Microelectronics and Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Mendes de Almeida Junior A, Ferreira AS, Camacho SA, Gontijo Moreira L, de Toledo KA, Oliveira ON, Aoki PHB. Enhancing Phototoxicity in Human Colorectal Tumor Cells Through Nanoarchitectonics for Synergistic Photothermal and Photodynamic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652860 DOI: 10.1021/acsami.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Phototherapies are promising for noninvasive treatment of aggressive tumors, especially when combining heat induction and oxidative processes. Herein, we show enhanced phototoxicity of gold shell-isolated nanorods conjugated with toluidine blue-O (AuSHINRs@TBO) against human colorectal tumor cells (Caco-2) with synergic effects of photothermal (PTT) and photodynamic therapies (PDT). Mitochondrial metabolic activity tests (MTT) performed on Caco-2 cell cultures indicated a photothermal effect from AuSHINRs owing to enhanced light absorption from the localized surface plasmon resonance (LSPR). The phototoxicity against Caco-2 cells was further increased with AuSHINRs@TBO where oxidative processes, such as hydroperoxidation, were also present, leading to a cell viability reduction from 85.5 to 39.0%. The molecular-level mechanisms responsible for these effects were investigated on bioinspired tumor membranes using Langmuir monolayers of Caco-2 lipid extract. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) revealed that the AuSHINRs@TBO incorporation is due to attractive electrostatic interactions with negatively charged groups of the Caco-2 lipid extract, resulting in the expansion of surface pressure isotherms. Upon irradiation, Caco-2 lipid extract monolayers containing AuSHINRs@TBO (1:1 v/v) exhibited ca. 1.0% increase in surface area. This is attributed to the generation of reactive oxygen species (ROS) and their interaction with Caco-2 lipid extract monolayers, leading to hydroperoxide formation. The oxidative effects are facilitated by AuSHINRs@TBO penetration into the polar groups of the extract, allowing oxidative reactions with carbon chain unsaturations. These mechanisms are consistent with findings from confocal fluorescence microscopy, where the Caco-2 plasma membrane was the primary site of the cell death induction process.
Collapse
Affiliation(s)
| | - André Satoshi Ferreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Sabrina Aléssio Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Lucas Gontijo Moreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Karina Alves de Toledo
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro Henrique Benites Aoki
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
7
|
Alzahrani YA, Alessa AM, Almosaind MK, Alarifi RS, Alromaeh A, Alkahtani M. Preparation and Characterization of Uniform and Controlled Silica Encapsulating on Lithium Yttrium Fluoride-Based Upconversion Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:685. [PMID: 38668180 PMCID: PMC11054348 DOI: 10.3390/nano14080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
In this work, we present an advancement in the encapsulation of lithium yttrium fluoride-based (YLiF4:Yb,Er) upconversion nanocrystals (UCNPs) with silica (SiO2) shells through a reverse microemulsion technique, achieving UCNPs@SiO2 core/shell structures. Key parameters of this approach were optimized to eliminate the occurrence of core-free silica particles and ensure a controlled silica shell thickness growth on the UCNPs. The optimal conditions for this method were using 6 mg of UCNPs, 1.5 mL of Igepal CO-520, 0.25 mL of ammonia, and 50 μL of tetraethyl orthosilicate (TEOS), resulting in a uniform silica shell around UCNPs with a thickness of 8 nm. The optical characteristics of the silica-encased UCNPs were examined, confirming the retention of their intrinsic upconversion luminescence (UC). Furthermore, we developed a reliable strategy to avoid the coencapsulation of multiple UCNPs within a single silica shell. This approach led to a tenfold increase in the UC luminescence of the annealed particles compared to their nonannealed counterparts, under identical silica shell thickness and excitation conditions. This significant improvement addresses a critical challenge and amplifies the applicability of the resulting UCNPs@SiO2 core/shell structures in various fields.
Collapse
Affiliation(s)
- Yahya A. Alzahrani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Abdulmalik M. Alessa
- Refining Technologies and Petrochemicals Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mona K. Almosaind
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Rahaf S. Alarifi
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Abdulaziz Alromaeh
- Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Masfer Alkahtani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| |
Collapse
|
8
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
9
|
Fernández-Vidal J, Hardwick LJ, Cabello G, Attard GA. Effect of alkali-metal cation on oxygen adsorption at Pt single-crystal electrodes in non-aqueous electrolytes. Faraday Discuss 2024; 248:102-118. [PMID: 37753622 DOI: 10.1039/d3fd00084b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The effect of Group 1 alkali-metal cations (Na+, K+, and Cs+) on the oxygen reduction and evolution reactions (ORR and OER) using dimethyl sulfoxide (DMSO)-based electrolytes was investigated. Cyclic voltammetry (CV) utilising different Pt-electrode surfaces (polycrystalline Pt, Pt(111) and Pt(100)) was undertaken to investigate the influence of surface structure upon the ORR and OER. For K+ and Cs+, negligible variation in the CV response (in contrast to Na+) was observed using Pt(111), Pt(100) and Pt(poly) electrodes, consistent with a weak surface-metal/superoxide complex interaction. Indeed, changes in the half-wave potentials (E1/2) and relative intensities of the redox peaks corresponding to superoxy (O2-) and peroxy (O22-) ion formation were consistent with a solution-mediated mechanism for larger cations, such as Cs+. Support for this finding was obtained via in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). During the ORR and in the presence of Cs+, O2- and weakly adsorbed caesium superoxide (CsO2) species were detected. Because DMSO was found to strongly interact with the surface at potentials associated with the ORR, CsO2 was readily displaced at more negative potentials via increased solvent adsorption at the surface. This finding highlights the important impact of the solvent during ORR/OER reactions.
Collapse
Affiliation(s)
- Julia Fernández-Vidal
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Peach Street, L69 7ZF Liverpool, UK
| | - Laurence J Hardwick
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Peach Street, L69 7ZF Liverpool, UK
| | - Gema Cabello
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Peach Street, L69 7ZF Liverpool, UK
| | - Gary A Attard
- Department of Physics, University of Liverpool, Crown Street, L69 7ZD Liverpool, UK.
| |
Collapse
|
10
|
Scarpitti BT, Fan S, Lomax-Vogt M, Lutton A, Olesik JW, Schultz ZD. Accurate Quantification and Imaging of Cellular Uptake Using Single-Particle Surface-Enhanced Raman Scattering. ACS Sens 2024; 9:73-80. [PMID: 38100727 PMCID: PMC10958331 DOI: 10.1021/acssensors.3c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Understanding the uptake, distribution, and stability of gold nanoparticles (NPs) in cells is of fundamental importance in nanoparticle sensors and therapeutic development. Single nanoparticle imaging with surface-enhanced Raman spectroscopy (SERS) measurements in cells is complicated by aggregation-dependent SERS signals, particle inhomogeneity, and limited single-particle brightness. In this work, we assess the single-particle SERS signals of various gold nanoparticle shapes and the role of silica encapsulation on SERS signals to develop a quantitative probe for single-particle level Raman imaging in living cells. We observe that silica-encapsulated gap-enhanced Raman tags (GERTs) provide an optimized probe that can be quantifiable per voxel in SERS maps of cells. This approach is validated by single-particle inductively coupled mass spectrometry (spICP-MS) measurements of NPs in cell lysate post-imaging. spICP-MS also provides a means of measuring the tag stability. This analytical approach can be used not only to quantitatively assess nanoparticle uptake on the cellular level (as in previous digital SERS methods) but also to reliably image the subcellular distribution and to assess the stability of NPs in cells.
Collapse
Affiliation(s)
- Brian T. Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Madeleine Lomax-Vogt
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Anthony Lutton
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John W. Olesik
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
11
|
Lacroce E, Bianchi L, Polito L, Korganbayev S, Molinelli A, Sacchetti A, Saccomandi P, Rossi F. On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation. NANOSCALE ADVANCES 2023; 5:6870-6879. [PMID: 38059037 PMCID: PMC10696932 DOI: 10.1039/d3na00353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 12/08/2023]
Abstract
Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial-temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Laura Polito
- Consiglio Nazionale delle Ricerche, CNR-SCITEC via Gaudenzio Fantoli 16/15 20138 Milan Italy
| | - Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Alessandro Molinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano via Giuseppe La Masa 1 20156 Milan Italy +39-02-2399-8470
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-02-2399-3145
| |
Collapse
|
12
|
Almeida AM, Moreira LG, Camacho SA, Ferreira FG, Conceição K, Tada DB, Aoki PHB. Photochemical outcomes triggered by gold shell-isolated nanorods on bioinspired nanoarchitectonics for bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184216. [PMID: 37598878 DOI: 10.1016/j.bbamem.2023.184216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL. AuSHINRs incorporation expanded the isotherms, with stronger effect on the anionic DOPG and CL. Indeed, FTIR of LS films revealed more modifications for DOPG and CL owing to stronger attractive electrostatic interactions between anionic phosphates and the positively charged AuSHINRs, while electrostatic repulsions with the cationic ethanolamine (DOPE) and lysyl (Lysyl-PG) polar groups might have weakened their interactions with AuSHINRs. No statistical difference was observed in the surface area of irradiated DOPE and Lysyl-PG monolayers on AuSHINRs, which is evidence of the restricted nanostructures insertion. In contrast, irradiated DOPG monolayer on AuSHINRs decreased 4.0 % in surface area, while irradiated CL monolayer increased 3.7 %. Such results agree with oxidative reactions prompted by ROS generated by AuSHINRs photoactivation. The deepest AuSHINRs insertion into DOPG may have favored chain cleavage while hydroperoxidation is the mostly like outcome in CL, where AuSHINRs are surrounding the polar groups. Furthermore, preliminary experiments on Escherichia coli culture demonstrated that the electrostatic interactions with AuSHINRs do not inhibit bacterial growth, but the photoinduced effects are highly toxic, resulting in microbial inactivation.
Collapse
Affiliation(s)
- Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Fabiana G Ferreira
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Katia Conceição
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Dayane B Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP 12231280, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
13
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
14
|
Farinha JPS. Bright and Stable Nanomaterials for Imaging and Sensing. Polymers (Basel) 2023; 15:3935. [PMID: 37835984 PMCID: PMC10575272 DOI: 10.3390/polym15193935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This review covers strategies to prepare high-performance emissive polymer nanomaterials, combining very high brightness and photostability, to respond to the drive for better imaging quality and lower detection limits in fluorescence imaging and sensing applications. The more common approaches to obtaining high-brightness nanomaterials consist of designing polymer nanomaterials carrying a large number of fluorescent dyes, either by attaching the dyes to individual polymer chains or by encapsulating the dyes in nanoparticles. In both cases, the dyes can be covalently linked to the polymer during polymerization (by using monomers functionalized with fluorescent groups), or they can be incorporated post-synthesis, using polymers with reactive groups, or encapsulating the unmodified dyes. Silica nanoparticles in particular, obtained by the condensation polymerization of silicon alcoxides, provide highly crosslinked environments that protect the dyes from photodegradation and offer excellent chemical modification flexibility. An alternative and less explored strategy is to increase the brightness of each individual dye. This can be achieved by using nanostructures that couple dyes to plasmonic nanoparticles so that the plasmon resonance can act as an electromagnetic field concentrator to increase the dye excitation efficiency and/or interact with the dye to increase its emission quantum yield.
Collapse
Affiliation(s)
- José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
15
|
Sugawa K, Suzuki A, Honda J, Yabuki T, Tahara H, Hayakawa Y, Furuya M, Ikake H, Kimura T, Kosuge Y, Kurumi S, Akiyama T, Takase K, Otsuki J. Photothermal therapeutic ability of copper open-shell nanostructures that are effective in the second biological transparency window based on symmetry breaking-induced plasmonic properties. J Mater Chem B 2023. [PMID: 37376903 DOI: 10.1039/d3tb00443k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, a photothermal therapy agent that works efficiently in the second biological transparency window was developed based on the localized surface plasmon (LSP) resonance of symmetry-broken open-shell nanostructures of low-cost Cu (CuOSNs). The strong LSP resonance and superior photothermal conversion ability in the second biological transparency window were achieved by generating the dipolar bonding mode due to the plasmon hybridization between the nanoshell dipole and the nanohole dipole at the opening edge in CuOSNs derived from the symmetry breaking of a Cu nanoshell. Oxidative dissolution of CuOSNs in water was significantly suppressed by successive coating with the self-assembled monolayer of 16-mercaptohexadecanoic acid and a thin silica layer. Furthermore, the stability in phosphate buffered saline, which models the biological environment, was attained by further coating the nanoparticles with polyethylene glycol. It was demonstrated from in vitro cell tests using HeLa cells that the cytotoxicity of CuOSNs was effectively suppressed by the surface protection. The viability of HeLa cells incubated with CuOSNs was decreased under the irradiation of low intensity 1060 nm laser with increasing number of CuOSNs. These results demonstrate that low-cost symmetry-broken Cu-based nanostructures can act as an excellent photothermal therapy agent in the second biological transparency window.
Collapse
Affiliation(s)
- Kosuke Sugawa
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Arisa Suzuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Jotaro Honda
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Taiku Yabuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, Bunkyo, Nagasaki, 852-8521, Japan
| | - Yutaro Hayakawa
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Masato Furuya
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Hiroki Ikake
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabashi 274-8555, Japan
| | - Satoshi Kurumi
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Tsuyoshi Akiyama
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Kouichi Takase
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| | - Joe Otsuki
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan.
| |
Collapse
|
16
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
17
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
18
|
Danischewski J, Donelson D, Farzansyed M, Jacoski E, Kato H, Lucin Q, Roca M. Color Transferability from Solution to Solid Using Silica Coated Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1786-1792. [PMID: 36701245 PMCID: PMC9910289 DOI: 10.1021/acs.langmuir.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The interpretation of color change in sensors and tests can be linked to incorrect conclusions if the intrinsic color changes are not accounted for. In this work, we study the intrinsic color change associated with the process of embedding nanoparticles in a polymer to create nanocomposite films. We present a safer, faster method to coat silver nanoparticles with silica and employ a seven-factor Plackett-Burman design to identify critical factors in the synthesis. Silver nanodisks with increasing thicknesses of the silica shell showed a decreasing sensitivity of their localized surface plasmon resonance (LSPR) toward changes in the refractive index surrounding the nanoparticle. A color shift of up to 72 nm was observed when bare nanoparticles were embedded in poly(vinyl alcohol), but no color change was perceived when nanoparticles were coated with a 25-nm-thick silica shell. Understanding the origin of color changes intrinsic to the preparation of polymeric nanocomposites aids in the design and correct use of plasmonic sensors.
Collapse
Affiliation(s)
| | - Destiny Donelson
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Maleeha Farzansyed
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Erin Jacoski
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Haru Kato
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Quincy Lucin
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| | - Maryuri Roca
- Chemistry Department, Skidmore
College, Saratoga
Springs, New York12866-1632, United States
| |
Collapse
|
19
|
Jia H, Zhao M, Du A, Dou Y, Zhang CY. Symmetry-breaking synthesis of Janus Au/CeO 2 nanostructures for visible-light nitrogen photofixation. Chem Sci 2022; 13:13060-13067. [PMID: 36425489 PMCID: PMC9667935 DOI: 10.1039/d2sc03863c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/23/2022] [Indexed: 10/14/2023] Open
Abstract
Precise manipulation of the reactive site spatial distribution in plasmonic metal/semiconductor photocatalysts is crucial to their photocatalytic performance, but the construction of Janus nanostructures through symmetry-breaking synthesis remains a significant challenge. Here we demonstrate a synthetic strategy for the selective growth of a CeO2 semi-shell on Au nanospheres (NSs) to fabricate Janus Au NS/CeO2 nanostructures with the assistance of a SiO2 hard template and autoredox reaction between Ag+ ions and a ceria precursor. The obtained Janus nanostructures possess a spatially separated architecture and exhibit excellent photocatalytic performance toward N2 photofixation under visible-light illumination. In this scenario, N2 molecules are reduced by hot electrons on the CeO2 semi-shell, while hole scavengers are consumed by hot holes on the exposed Au NS surface, greatly promoting the charge carrier separation. Moreover, the exposed Au NS surface in the Janus structures offers an additional opportunity for the fabrication of ternary Janus noble metal/Au NS/CeO2 nanostructures. This work highlights the genuine superiority of the spatially separated nanoarchitectures in the photocatalytic reaction, offering instructive guidance for the design and construction of novel plasmonic photocatalysts.
Collapse
Affiliation(s)
- Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Mengxuan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Aoxuan Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Yanrong Dou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| |
Collapse
|
20
|
Acharya A, Lee IS. Designing plasmonically integrated nanoreactors for efficient catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospaceconfined Chemical Reactions (NCCR) and Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang South Korea
| |
Collapse
|
21
|
Huang Y, Xu H, Zhou Z, Jiang B, Li L, Ma Z, Zhou S. Thermally stable gold nanorod dispersed silicone composite with plasmonic resonance in the optical communication window. NANOTECHNOLOGY 2022; 33:415707. [PMID: 35728516 DOI: 10.1088/1361-6528/ac7abf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Gold nanorods (AuNRs) possess a high optical nonlinear coefficient, ultrafast optical response speed and widely tunable localized surface plasmon resonance (LSPR) wavelength covering the visible and near infrared region. Therefore, they are extensively investigated for many optical applications. However, the poor thermal stability of the AuNRs seriously restricts their practical performance. In addition, for many applications, such as optical communication or laser modulation, AuNRs have to be combined with transparent solids, for example polymers, glass or crystals to make devices. Here, we report on the preparation of 0.23 mg AuNR dispersed methyl silicone resin (MSR) with longitudinal LSPR (L-LSPR) wavelength (1450 nm) in the optical communication window. We found that AuNR-silicone composites possess high thermal stability. After calcination in ambient environment at a temperature of 250 °C for 10 h, the L-LSPR peak of the sample can remain longer than 1380 nm, implying that the NR shape of the Au particles was well maintained. Using the open-aperture Z-scan technique, the nonlinear absorption coefficient of the composites was measured as -11.71 cm GW-1, higher than many nonlinear materials. Thus, the thermally stable AuNR@SiO2-MSR composite with high nonlinearity is promising for practical applications in the optical communication window.
Collapse
Affiliation(s)
- Yupeng Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Haijiao Xu
- School of Physics and Optoelectronics, The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhihao Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Bofan Jiang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhijun Ma
- Research Center for Intelligent Sensing and Perception, Zhejiang Lab, Hangzhou 311121, People's Republic of China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
22
|
Coating PtRh alloy nanoparticles with mesoporous silica for the hydrogenation of toluene to methylcyclohexane. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
24
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Cataluminescence sensor based on Pt/NU-901 nanocomposite for rapid capture, catalysis and detection of acetone in exhaled breath. Anal Chim Acta 2022; 1206:339787. [DOI: 10.1016/j.aca.2022.339787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
26
|
Zhao C, Ge Z, Jiang Z, Yan S, Shu J, Wang M, Ge X. Study on the morphological regulation mechanism of hollow silica microsphere prepared via emulsion droplet template. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Meyer SM, Murphy CJ. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors. NANOSCALE 2022; 14:5214-5226. [PMID: 35315863 DOI: 10.1039/d1nr07918b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanorods are well-known surface-enhanced Raman scattering substrates. Under longitudinal plasmonic excitation, the ends of the nanorods experience larger local electric fields compared to the sides of the rods, suggesting that Raman-active molecules would be best detected if the molecules could preferentially bind to the ends of the nanorods. Coating the tips of gold nanorods with anionic mesoporous silica caps enabled surface-enhanced Raman scattering (SERS) detection of the cationic dye methylene blue at lower concentrations than observed for the corresponding silica coating of the entire rod. By analyzing the intensity ratio of two Raman active modes of methylene blue and the surface plasmon resonance peak shift of the gold nanorod composites, it can be inferred that at a low concentration of methylene blue, molecules adsorb to the tips of the tip coated silica gold nanorods. Functionalization of the anionic silica endcaps with cationic groups eliminates the SERS enhancement for the cationic methylene blue, demonstrating the electrostatic nature of the adsorption process in this case. These results show that anisotropic silica coatings can concentrate analytes at the tips of gold nanorods for improvements in chemical sensing and diagnostics.
Collapse
Affiliation(s)
- Sean M Meyer
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Catherine J Murphy
- Department of Chemistry, 600. S. Mathews Ave., University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
28
|
Penelas MJ, Arenas GF, Trabadelo F, Soler-Illia GJAA, Moya SE, Angelomé PC, Hoppe CE. Importance of the Structural and Physicochemical Properties of Silica Nanoshells in the Photothermal Effect of Silica-Coated Au Nanoparticles Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3876-3886. [PMID: 35302776 DOI: 10.1021/acs.langmuir.2c00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, monodisperse silica-coated gold nanoparticles (NPs) were synthesized and used for obtaining aqueous colloidal dispersions with an optimum relationship between colloidal stability and photothermal activity. The idea behind this design was to produce systems with the advantages of the presence of a silica shell (biocompatibility, potential for surface modification, and protecting effect) with a minimal loss of optical and thermal properties. With this aim, the photothermal properties of NPs with silica shells of different thicknesses were analyzed under conditions of high radiation extinction. By using amorphous, gel-like silica coatings, thicknesses higher than 40 nm could be obtained without an important loss of the light absorption capacity of the colloids and with a significant photothermal response even at low NP concentrations. The effects produced by changes in the solvent and in the NP concentration were also analyzed. The results show that the characteristics of the shell control both, the photothermal effect and the optical properties of the colloidal dispersions. As the presence of a silica shell strongly enhances the possibilities of adding cargo molecules or probes, these colloids can be considered of high interest for biomedical therapies, sensing applications, remote actuation, and other technological applications.
Collapse
Affiliation(s)
- M Jazmín Penelas
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, B7606BWV Mar del Plata, Buenos Aires, Argentina
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, San Martín, B1650 Buenos Aires, Argentina
| | - Gustavo F Arenas
- Laboratorio LASER, ICYTE, UNMdP-CONICET, Av. J. B. Justo 4302, B7608FDQ Mar del Plata, Buenos Aires, Argentina
| | - Fernando Trabadelo
- Laboratorio de Electrónica, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET,Av. Cristóbal Colón 10850, B7606BWV, Mar del Plata, Buenos Aires, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de Mayo 1021, San Martín, B1650 Buenos Aires, Argentina
| | - Sergio E Moya
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Paula C Angelomé
- Gerencia Química & INN, CAC, CNEA-CONICET, Av. General Paz 1499, 1650, San Martín, Buenos Aires, Argentina
| | - Cristina E Hoppe
- División Polímeros Nanoestructurados, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMdP-CONICET y Departamento de Química, UNMdP, Av. Cristóbal Colón 10850, B7606BWV Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
29
|
Mitiche S, Gueffrache S, Marguet S, Audibert JF, Pansu RB, Palpant B. Coating gold nanorods with silica prevents the generation of reactive oxygen species under laser light irradiation for safe biomedical applications. J Mater Chem B 2022; 10:589-597. [PMID: 34985476 DOI: 10.1039/d1tb02207e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles can produce reactive oxygen species (ROS) under the action of ultrashort pulsed light. While beneficial for photodynamic therapy, this phenomenon is prohibitive for other biomedical applications such as imaging, photo-thermal drug release, or targeted gene delivery. Here, ROS are produced in water by irradiating gold nanorods and silica-coated gold nanorods with near-infrared femtosecond laser pulses and are detected using two fluorescent probes. Our results demonstrate that a dense silica shell around gold nanorods inhibits the formation of singlet oxygen (1O2) and hydroxyl radical (˙OH) efficiently. The silica coating prevents the Dexter energy transfer between the nanoparticles and 3O2, stopping thus the generation of 1O2. In addition, numerical simulations accounting for the use of ultrashort laser pulses show that the plasmonic field enhancement at the nanoparticle vicinity is lessened once adding the silica layer. With the multiphotonic ejection of electrons being also blocked, all the possible pathways for ROS production are hindered by adding the silica shell around gold nanorods, making them safer for a range of biomedical developments.
Collapse
Affiliation(s)
- Sarra Mitiche
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Syrine Gueffrache
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Sylvie Marguet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | | | - Robert Bernard Pansu
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Bruno Palpant
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
30
|
Olson JE, Yu JH, Thimes RL, Camden JP. Vibrational two-photon microscopy for tissue imaging: Short-wave infrared surface-enhanced resonance hyper-Raman scattering. JOURNAL OF BIOPHOTONICS 2022; 15:e202100158. [PMID: 34609064 DOI: 10.1002/jbio.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Multiphoton microscopy using short-wave infrared (SWIR) radiation offers nondestructive and high-resolution imaging through tissue. Two-photon fluorescence (TPF), for example, is commonly employed to increase the penetration depth and spatial resolution of SWIR imaging, but the broad spectral peaks limit its multiplexing capabilities. Hyper-Raman scattering, the vibrational analog of TPF, yields spectral features on the order of 20 cm-1 and reporter-functionalized noble metal nanoparticles (NPs) provide a platform for both hyper-Raman signal enhancement and selective targeting in biological media. Herein we report the first tissue imaging study employing surface-enhanced resonance hyper-Raman scattering (SERHRS), the two-photon analog of surface-enhanced resonance Raman scattering. Specifically, we employ multicore gold-silica NPs (Au@SiO2 NPs) functionalized with a near infrared-resonant cyanine dye, 3,3'-diethylthiatricarbocyanine iodide as a SERHRS reporter. SWIR SERHRS spectra are efficiently acquired from mouse spleen tissue. SWIR SERHRS combines two-photon imaging advantages with narrow vibrational peak widths, presenting future applications of multitargeted bioimaging.
Collapse
Affiliation(s)
- Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jung Ho Yu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - Rebekah L Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
31
|
Egorova E, Arias Alpizar G, Vlieg R, Gooris GS, Bouwstra J, noort JV, Kros A, Boyle AL. Coating Gold Nanorods with Self-Assembling Peptide Amphiphiles Promotes Stability and Facilitates in vivo Two-Photon Imaging. J Mater Chem B 2022; 10:1612-1622. [DOI: 10.1039/d2tb00073c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanorods (GNRs) are versatile asymmetric nanoparticles with unique optical properties. These properties makes GNRs ideal agents for applications such as photothermal cancer therapy, biosensing, and in vivo imaging. However,...
Collapse
|
32
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
33
|
Lu JY, Chen HA, Yang CM, Chu LK. Radiative Relaxation of Gold Nanorods Coated with Mesoporous Silica with Different Porosities upon Nanosecond Photoexcitation Monitored by Time-Resolved Infrared Emission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60018-60026. [PMID: 34898178 DOI: 10.1021/acsami.1c19613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanorods (AuNRs) have been widely used in photothermal conversion, and a coating of silica (SiO2) provides higher thermal stability, better biocompatibility, and versatile chemical functionalization. In this work, two gold nanorods coated with surfactant-templated mesoporous silica layers of the same thickness but different porosities, and thus different specific surface areas, were prepared. Upon irradiation with 1064 nm nanosecond pulsed laser, the transient infrared emissions of AuNR@SiO2 enveloped the stretching mode of the Si-O-Si bridge (1000-1250 cm-1), the bending mode of adsorbed H2O (1600-1650 cm-1) within the mesoporous silica layer, and blackbody radiation, in terms of an underlying broad band (1000-2000 cm-1) probed with a step-scan Fourier transform spectrometer. The mesoporous silica shell and the adsorbed H2O gained populations of their vibrationally excited states, and the whole AuNR@SiO2 was heated up via the photothermal energy of the core AuNRs. An average temperature after 5-10 μs within 80% of the emission intensity was ca. 200 °C. The decay of the emission at 1000-1250 and 1500-1750 cm-1 was both accelerated, and the blackbody radiation components were negatively correlated with the porosity of the mesoporous silica layer. Higher porosity of the mesoporous silica layer was associated with more effective depopulation of the vibrationally excited states of the silica layers on the AuNRs via the nonradiative thermal conduction of the adsorbed H2O, since H2O has a larger thermal conduction coefficient than that of silica, in concomitance with the accelerated emission kinetics. This work unveils the roles of the porosity, capping materials, and entrapping molecules of a core-shell nanostructure during the thermalization after photoexcitation.
Collapse
Affiliation(s)
- Jun-Yi Lu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Hsi-An Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
34
|
Asselin J, Hopper ER, Ringe E. Improving the stability of plasmonic magnesium nanoparticles in aqueous media. NANOSCALE 2021; 13:20649-20656. [PMID: 34877958 PMCID: PMC8675025 DOI: 10.1039/d1nr06139a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 05/12/2023]
Abstract
This work describes two different core-shell architectures based on Mg nanoparticles (NPs) synthesised in order to improve Mg's stability in aqueous solutions. The shell thickness in Mg-polydopamine NPs can be modulated from 5 to >50 nm by ending the polymerization at different times; the resulting structures stabilize the metallic, plasmonic core in water for well over an hour. Mg-silica NPs with shells ranging from 5 to 30 nm can also be prepared via a modified Stöber procedure and they retain optical properties in 5% water-in-isopropanol solutions. These new architectures allow Mg nanoplasmonics to be investigated as an alternative to Ag and Au in a broader range of experimental conditions for a rich variety of applications.
Collapse
Affiliation(s)
- Jérémie Asselin
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth R Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
35
|
Liu H, Ouyang D, Wang J, Lei C, Shi W, Gilliam T, Liu J, Li Y, Chopra N. Chemical Vapor Deposition Mechanism of Graphene-Encapsulated Au Nanoparticle Heterostructures and Their Plasmonics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58134-58143. [PMID: 34807555 DOI: 10.1021/acsami.1c16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct encapsulation of graphene shells on noble metal nanoparticles via chemical vapor deposition (CVD) has been recently reported as a unique way to design and fabricate new plasmonic heterostructures. But currently, the fundamental nature of the growth mechanism of graphene layers on metal nanostructures is still unknown. Herein, we report a systematic investigation on the CVD growth of graphene-encapsulated Au nanoparticles (Au@G) by combining an experimental parameter study and theoretical modeling. We studied the effect of growth temperature, duration, hydrocarbon precursor concentration, and extent of reducing (H2) environment on the morphology of the products. In addition, the influence of plasma oxidation conditions for the surface oxidation of gold nanoparticles on the graphene shell growth is evaluated in combination with thermodynamic calculations. We find that these parameters critically aid in the evolution of graphene shells around gold nanoparticles and allow for controlling shell thickness, graphene shell quality and morphology, and hybrid nanoparticle diameter. An optimized condition including the growth temperature of ∼675 °C, duration of 30 min, and xylene feed rate of ∼10 mL/h with 10% H2/Ar carrier gas was finally obtained for the best morphology evolution. We further performed finite-element analysis (FEA) simulations to understand the equivalent von Mises stress distribution and discrete dipolar approximation (DDA) calculation to reveal the optical properties of such new core-shell heterostructures. This study brings new insight to the nature of CVD mechanism of Au@G and might help guiding their controlled growth and future design and application in plasmonic applications.
Collapse
Affiliation(s)
- Heguang Liu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Decai Ouyang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chao Lei
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Wenwu Shi
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Todd Gilliam
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Nitin Chopra
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
36
|
Yang W, Kaur S, Kim YD, Kim JM, Lee SH, Lim DK. Precise control over the silica shell thickness and finding the optimal thickness for the peak heat diffusion property of AuNR@SiO 2. J Mater Chem B 2021; 10:364-372. [PMID: 34825907 DOI: 10.1039/d1tb02288a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silica-coated gold nanorods (AuNRs) exhibit significantly enhanced photothermal effects and photoacoustic (PA) signal intensities, which is beneficial for various nanophotonic applications in materials science. However, the silica shell thickness for optimum enhancement is not fully understood and is even controversial depending on the physical state of the silica shell. This is because of the lack of systematic investigations of the nanoscale silica shell thickness and the photothermal effect. This study provides a robust synthetic method to control the silica shell thickness at the nanoscale and the physical state-dependent heat diffusion property. The selected base and solvent system enabled the production of silica-coated AuNRs (AuNR@SiO2) with silica shell thicknesses of 5, 10, 15, 20, 25, 30, 35, and 40 nm. AuNRs with a 20 nm silica shell showed the highest photothermal effect with a 1.45-times higher photothermal efficiency than that of AuNRs without a silica shell. The low density of the silica shell on the AuNRs showed a low photothermal effect and photostability. It was found that the disruption of cetyltrimethyl ammonium bromide (CTAB) layers on the AuNRs was responsible for the low photostability of the AuNRs. The simulation study for the heat diffusion property showed facilitated heat diffusion in the presence of a 20 nm silica shell. In a cell-based study, AuNRs with a 20 nm silica shell showed the most sensitive photothermal effect for cell death. The results of this robust study can provide conclusive conditions for the optimal silica shell thickness to obtain the highest photothermal effect, which will be useful for the future design of nanomaterials in various fields of application.
Collapse
Affiliation(s)
- Wonseok Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Sandeep Kaur
- Department of Nanoconvergence Engineering and Department of Polymer Nano-Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jung-Mu Kim
- Department of Electronic Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Seung Hee Lee
- Department of Nanoconvergence Engineering and Department of Polymer Nano-Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
38
|
Xing L, Wang C, Cao Y, Zhang J, Xia H. Macroscopical monolayer films of ordered arrays of gold nanoparticles as SERS substrates for in situ quantitative detection in aqueous solutions. NANOSCALE 2021; 13:14925-14934. [PMID: 34533157 DOI: 10.1039/d1nr03864h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of 10% (no more than 25%), which can greatly reduce the electrostatic repulsion among NPs during the self-assembly due to the quick transfer of the remaining citrate ions into the DEG solutions containing water. Thanks to the uniformity in the intensity of SERS signals, the as-prepared MMF-OA-Au NPs transferred onto polydimethylsiloxane (PDMS) as SERS substrates (MMF-OA-Au NP@PDMS) can achieve in situ quantitative detection of the analytes (such as crystal violet and malachite green) in aqueous solutions. Moreover, MMF-OA-Au NP@PDMS as SERS-based pH sensors can directly determine the pH value of the aqueous solution in the range of 3 to 10 by means of the established well-defined linear relationship with the intensity of the peak of νCOO- without any calibration, instead of the intensity ratio of the Raman peaks of νCOO- to ν8a with further calculation. In addition, the as-prepared SERS-based pH sensors can still have excellent long-term durability.
Collapse
Affiliation(s)
- Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Cui Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Yi Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Jihui Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
39
|
Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Romolini G, Gambucci M, Ricciarelli D, Tarpani L, Zampini G, Latterini L. Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochem Photobiol Sci 2021; 20:1161-1172. [PMID: 34449077 DOI: 10.1007/s43630-021-00089-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
Semiconductor nanomaterials are often proposed as photocatalysts for wastewater treatment; silica nanomaterials are still largely unexploited because their photocatalytic performances need improvements, especially under visible light. The present study is a proof-of-concept that amorphous silica colloids once submitted to the proper surface modifications change into an efficient photocatalyst even under low-energy illumination source. For this reason, silica-based colloidal nanomaterials, such as bare (SiO2 NPs), aminated (NH2-SiO2 NPs), and Ag NPs-decorated (Ag-SiO2 NPs) silica, are tested as photocatalysts for the degradation of 9-anthracenecarboxylic acid (9ACA), taken as a model aromatic compound. Interestingly, upon irradiation at 313 nm, NH2-SiO2 NPs induce 9ACA degradation, and the effect is even improved when Ag-SiO2 NPs are used. On the other hand, irradiation at 405 nm activates the plasmon of Ag-SiO2 NPs photocatalyst, providing a faster and more efficient photodegradation. The photodegradation experiments are also performed under white light illumination, employing a low-intensity fluorescent lamp, confirming satisfying efficiencies. The catalytic effect of SiO2-based nanoparticles is thought to originate from photo-excitable surface defects and Ag NP plasmons since the catalytic degradation takes place only when the 9ACA is adsorbed on the surface. In addition, the involvement of reactive oxygen species was demonstrated through a scavenger use, obtaining a yield of 17%. In conclusion, this work shows the applicability of silica-based nanoparticles as photocatalysts through the involvement of silica surface defects, confirming that the silica colloids can act as photocatalysts under irradiation with monochromatic and white light. Silica and Ag-decorated silica colloids photosensitize the formation of Reactive Oxygen Species with 17% efficiencies. ROS are able to oxidase aromatic pollutants chemi-adsorbed on the surface of the colloids. Silica-silver nanocomposites present a photocatalytic activity useful to degrade aromatic compounds.
Collapse
Affiliation(s)
- G Romolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.,Chem & Tech, Molecular Imaging and Photonics, KULeuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - M Gambucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - D Ricciarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - L Tarpani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - G Zampini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - L Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
41
|
Lai J, Shih M, Chu L. Influence of the thickness of silica layer on the radiative relaxation of
AuNR
@
SiO
2
core–shell nanostructures upon photoexcitation. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jhih‐Jie Lai
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Meng‐Chen Shih
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Li‐Kang Chu
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
42
|
Utsav, Khanna S, Makani NH, Paneliya S, Mukhopadhyay I, Banerjee R. Thermal crowning mechanism in gold-silica nanocomposites: plasmonic-photonic pairing in archetypal two-dimensional structures. Phys Chem Chem Phys 2021; 23:17197-17207. [PMID: 34351337 DOI: 10.1039/d1cp03002g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A close-packed monolayer of a two-dimensional periodic array of Silica nanospheres (SNs) with gold (Au) crowning, forming a long-ranged archetypal plasmonic-photonic nanocomposite, has been achieved. We investigate the thermal crowning mechanism in such a nanocomposite using electron microscopy and X-ray diffraction techniques. Pre- and post-annealing morphological features reveal gold crowning on top of SNs, at different annealing temperatures for various thicknesses of the sputter-deposited gold. In situ grazing incidence X-ray diffraction was employed to structurally characterize the reconstruction in the Au-layer as a function of the annealing temperature. Finite element methods were used to simulate the interaction between the paired nanocomposites and the incident electromagnetic radiations to elucidate the crowning and nanodrop formation mechanism. This study provides an insight into real-time morphological and structural changes of a dewetting plasmonic film over a photonic basis and explores a robust, reliable, and scalable route to fabricate coupled nanocomposites. Such nanocomposites allow prospective applications in optoelectronics, sensing, catalysis, and surface-enhanced Raman spectroscopy by exploiting the plasmonic-photonic pairing in archetypal two-dimensional structures.
Collapse
Affiliation(s)
- Utsav
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India.
| | - Sakshum Khanna
- Department of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382426, Gujarat, India.
| | - Nisha Hiralal Makani
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India.
| | - Sagar Paneliya
- Department of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382426, Gujarat, India.
| | - Indrajit Mukhopadhyay
- Department of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382426, Gujarat, India.
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
43
|
Albrecht W, Arslan Irmak E, Altantzis T, Pedrazo-Tardajos A, Skorikov A, Deng TS, van der Hoeven JES, van Blaaderen A, Van Aert S, Bals S. 3D Atomic-Scale Dynamics of Laser-Light-Induced Restructuring of Nanoparticles Unraveled by Electron Tomography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100972. [PMID: 34247423 DOI: 10.1002/adma.202100972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Understanding light-matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous-silica-coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic-scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.
Collapse
Affiliation(s)
- Wiebke Albrecht
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - Ece Arslan Irmak
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | - Thomas Altantzis
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | - Adrián Pedrazo-Tardajos
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | - Alexander Skorikov
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | - Tian-Song Deng
- School of Electronics and Information Engineering, Hangzhou Dianzi University, No. 1158, 2nd Avenue, Baiyang Street, Hangzhou, 310018, China
| | - Jessi E S van der Hoeven
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| |
Collapse
|
44
|
Alam A, Tanveer F, Khalil AT, Zohra T, Khamlich S, Alam MM, Salman M, Ali M, Ikram A, Shinwari ZK, Maaza M. Silver nanoparticles biosynthesized from secondary metabolite producing marine actinobacteria and evaluation of their biomedical potential. Antonie van Leeuwenhoek 2021; 114:1497-1516. [PMID: 34324106 DOI: 10.1007/s10482-021-01616-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) from marine actinobacteria offers a promising avenue for exploring bacterial extracts as reducing and stabilizing agents. We report extracellular extracts of Rhodococcus rhodochrous (MOSEL-ME29) and Streptomyces sp. (MOSEL-ME28), identified by 16S rRNA gene sequencing for synthesis of AgNPs. Ultrafine silver nanoparticles were biosynthesized using the extracts of R. rhodochrous and Streptomyces sp. and their possible therapeutic applications were studied. The physicochemical properties of nanoparticles were established by HR-SEM/TEM, SAED, UV-Vis, EDS, XRD, and FTIR. UV-Vis spectra displayed characteristic absorption at 430 nm and 412 nm for AgNPs from Streptomyces sp. (S-AgNPs) and Rhodococcus sp. (R-AgNPs), respectively. HR-SEM/TEM, XRD, EDS analysis confirmed the spherical shape, crystalline nature, and elemental formation of silver. Crystallite or grain size was deduced as 5.52 nm for R-AgNPs and 35 nm for S-AgNPs. Zeta-potential indicated electrostatic negative charge for AgNPs, while FTIR revealed the presence of diverse functional groups. Disc diffusion assay indicated the broad-spectrum antibacterial potential of S-AgNPs with the maximum inhibition of B. subtilis while R-AgNPs revealed potency against P. aeruginosa at 10 µg/mL concentration. Biogenic AgNPs revealed antileishmanial activity and the IC50 was calculated as 164 µg/mL and 184 µg/mL for R-AgNPs and S-AgNPs respectively. Similarly, the R-AgNPs and S-AgNPs revealed anti-cancer potential against HepG2 and the IC50 was calculated as 49 µg/mL and 69 µg/mL for R-AgNPs and S-AgNPs, respectively. Moreover, the antioxidant activity showed significant results. MTT assay on RD cells, L20B cells, and Hep-2C indicated intensification in viability by reducing the concentration of R-AgNPs and S-AgNPs. The R-AgNPs and S-AgNPs inhibited sabin-like poliovirus (1TCID50 infection in RD cells). Furthermore, hemocompatibility at low concentrations has been confirmed. Hence, it is concluded that biogenic-AgNPs has the potential to be used in diverse biological applications and that the marine actinobacteria are an excellent resource for fabrication of AgNPs.
Collapse
Affiliation(s)
- Ashia Alam
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faouzia Tanveer
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital, Peshawar, Pakistan. .,UNESCO UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa. .,Nanosciences African Network (NANOAFNET)-Materials Research Department, iThemba Labs, Cape Town, South Africa.
| | - Tanzeel Zohra
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan.,WHO Regional Reference Laboratory of Polio Eradication Initiative, National Institute of Health, Islamabad, Pakistan
| | - Saleh Khamlich
- UNESCO UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET)-Materials Research Department, iThemba Labs, Cape Town, South Africa
| | - Muhammad Masroor Alam
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan. .,Pakistan Academy of Sciences, Islamabad, Pakistan.
| | - Aamer Ikram
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- WHO Regional Reference Laboratory of Polio Eradication Initiative, National Institute of Health, Islamabad, Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET)-Materials Research Department, iThemba Labs, Cape Town, South Africa.,Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
45
|
Egorova EA, Gooris GS, Luther P, Bouwstra JA, Kros A, Boyle AL. Self‐assembly of thiolated versus non‐thiolated peptide amphiphiles. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Elena A. Egorova
- Supramolecular and Biomaterials Chemistry Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Gert S. Gooris
- Division of BioTherapeutics Leiden Academic Centre for Drug Research, Leiden University Leiden The Netherlands
| | - Prianka Luther
- Macromolecular Biochemistry Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Joke A. Bouwstra
- Division of BioTherapeutics Leiden Academic Centre for Drug Research, Leiden University Leiden The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| | - Aimee L. Boyle
- Macromolecular Biochemistry Leiden Institute of Chemistry, Leiden University Leiden The Netherlands
| |
Collapse
|
46
|
Novel covalent organic polymer-supported Ag nanoparticles as a catalyst for nitroaromatics reduction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Kurka DW, Niehues M, Kudruk S, Gerke V, Ravoo BJ. Polythiolactone-Decorated Silica Particles: A Versatile Approach for Surface Functionalization, Catalysis and Encapsulation. Chemistry 2021; 27:7667-7676. [PMID: 33788322 PMCID: PMC8252643 DOI: 10.1002/chem.202100547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/29/2022]
Abstract
The surface chemistry of colloidal silica has tremendous effects on its properties and applications. Commonly the design of silica particles is based on their de novo synthesis followed by surface functionalization leading to tailormade properties for a specific purpose. Here, the design of robust "precursor" polymer-decorated silica nano- and microparticles is demonstrated, which allows for easy post-modification by polymer embedded thiolactone chemistry. To obtain this organic-inorganic hybrid material, silica particles (SiO2 P) were functionalized via surface-initiated atom transfer radical polymerization (SI-ATRP) with poly(2-hydroxyethyl acrylate) (PHEA)-poly(thiolactone acrylamide (PThlAm) co-polymer brushes. Exploiting the versatility of thiolactone post-modification, a system was developed that could be used in three exemplary applications: 1) the straightforward molecular post-functionalization to tune the surface polarity, and therefore the dispersibility in various solvents; 2) the immobilization of metal nanoparticles into the polymer brushes via the in situ formation of free thiols that preserved catalytic activity in a model reaction; 3) the formation of redox-responsive, permeable polymer capsules by crosslinking the thiolactone moieties with cystamine dihydrochloride (CDH) followed by dissolution of the silica core.
Collapse
Affiliation(s)
- Dustin Werner Kurka
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| | - Maximilian Niehues
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| | - Sergej Kudruk
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationWestfälische Wilhelms-Universität MünsterVon-Esmarch-Straße 5648149 MünsterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationWestfälische Wilhelms-Universität MünsterVon-Esmarch-Straße 5648149 MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute/Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149Münster
- Busso-Peus-Straße 1048149MünsterGermany
| |
Collapse
|
48
|
Wang M, Wang M, Zheng G, Dai Z, Ma Y. Recent progress in sensing application of metal nanoarchitecture-enhanced fluorescence. NANOSCALE ADVANCES 2021; 3:2448-2465. [PMID: 36134167 PMCID: PMC9417471 DOI: 10.1039/d0na01050b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/13/2021] [Indexed: 05/21/2023]
Abstract
Fluorescence analytical methods, as real time and in situ analytical approaches to target analytes, can offer advantages of high sensitivity/selectivity, great versatility, non-invasive measurement and easy transmission over long distances. However, the conventional fluorescence assay still suffers from low specificity, insufficient sensitivity, poor reliability and false-positive responses. By exploiting various metal nanoarchitectures to manipulate fluorescence, both increased fluorescence quantum yield and improved photostability can be realized. This metal nanoarchitecture-enhanced fluorescence (MEF) phenomenon has been extensively studied and used in various sensors over the past years, which greatly improved their sensing performance. Thus in this review, we primarily give a general overview of MEF based sensors from mechanisms to state-of-the-art applications in environmental assays, biological/medical analysis and diagnosis areas. Finally, their pros and cons as well as further development directions are also discussed.
Collapse
Affiliation(s)
- Meiling Wang
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Min Wang
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Ganhong Zheng
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Zhenxiang Dai
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Yongqing Ma
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230039 China
| |
Collapse
|
49
|
van
der Hoeven JES, Deng TS, Albrecht W, Olthof LA, van Huis MA, de Jongh PE, van Blaaderen A. Structural Control over Bimetallic Core-Shell Nanorods for Surface-Enhanced Raman Spectroscopy. ACS OMEGA 2021; 6:7034-7046. [PMID: 33748617 PMCID: PMC7970553 DOI: 10.1021/acsomega.0c06321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bimetallic nanorods are important colloidal nanoparticles for optical applications, sensing, and light-enhanced catalysis due to their versatile plasmonic properties. However, tuning the plasmonic resonances is challenging as it requires a simultaneous control over the particle shape, shell thickness, and morphology. Here, we show that we have full control over these parameters by performing metal overgrowth on gold nanorods within a mesoporous silica shell, resulting in Au-Ag, Au-Pd, and Au-Pt core-shell nanorods with precisely tunable plasmonic properties. The metal shell thickness was regulated via the precursor concentration and reaction time in the metal overgrowth. Control over the shell morphology was achieved via a thermal annealing, enabling a transition from rough nonepitaxial to smooth epitaxial Pd shells while retaining the anisotropic rod shape. The core-shell synthesis was successfully scaled up from micro- to milligrams, by controlling the kinetics of the metal overgrowth via the pH. By carefully tuning the structure, we optimized the plasmonic properties of the bimetallic core-shell nanorods for surface-enhanced Raman spectroscopy. The Raman signal was the most strongly enhanced by the Au core-Ag shell nanorods, which we explain using finite-difference time-domain calculations.
Collapse
Affiliation(s)
- Jessi E. S. van
der Hoeven
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tian-Song Deng
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Wiebke Albrecht
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Liselotte A. Olthof
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Petra E. de Jongh
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Alfons van Blaaderen
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
50
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|