1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Yang J, Ye J, Li R, Li R, Liu X, Han J, Yang Y, Ran N, Yuan M, Zhang Z, Chong W, Ji X. Nanozyme-functionalized microalgal biohybrid microrobots in inflammatory bowel disease treatment. Biomaterials 2025; 319:123231. [PMID: 40037206 DOI: 10.1016/j.biomaterials.2025.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Oral drugs are the most direct and effective strategy for the treatment of gastrointestinal diseases. However, the harsh environment of gastric juice, lack of targeted lesion sites, and rapid metabolism present difficulties in the development of oral drugs. This research introduces a nanozyme-functionalized microalgal biohybrid microrobot (Hp@CS-PNAs@PAA) with a novel mechanism for treating inflammatory bowel disease (IBD) by leveraging the therapeutic advantages of microalgae and nanozymes. The microrobot uniquely combines the natural antioxidant capacity of Hematococcus pluvialis (Hp) microalgae and the catalytically active enzyme-mimicking properties of platinum-based nanoparticle assemblies (PNAs), enabling enhanced scavenging of reactive oxygen species (ROS) and targeted anti-inflammatory effects. Through its layered design, the Hp@CS-PNAs@PAA microrobot can navigate the gastrointestinal tract, resist degradation, and target inflamed colon tissues via electrostatic interactions, achieving extended retention and prolonged therapeutic action at inflammation sites. This study demonstrated that the synergistic anti-inflammatory effects of the microrobot derive from its ability to reduce ROS, inhibit proinflammatory cytokines, and promote the expression of tight junction proteins critical for preserving the integrity of the intestinal barrier. Both in vitro and in vivo tests in a DSS-induced colitis mouse model revealed that this system effectively restores damaged tissues by reducing oxidative stress and inflammation, indicating significant potential for clinical application in the management of colitis and similar inflammatory diseases.
Collapse
Affiliation(s)
- Jinmei Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Runtan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ruiyan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xinting Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jingwen Han
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yiwen Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Nana Ran
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Mengyu Yuan
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, China.
| | - Xiaoyuan Ji
- State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
3
|
Chen Y, Gonçalves JM, Ferrer Campos R, Villa K. Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410901. [PMID: 39716841 DOI: 10.1002/smll.202410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration. To overcome these challenges, recent innovations have integrated light-based actuation with other external stimuli-such as magnetic, acoustic, and electrical fields-broadening the functional range and control of MNMs. This review highlights the cutting-edge developments in dual-energy powered MNMs, emphasizing examples where light is paired with secondary energy sources for enhanced propulsion and task performance. Furthermore, insights are offered into the fabrication techniques, biomedical applications, and the future directions of such hybrid MNMs, while addressing the remaining challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Yufen Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - João Marcos Gonçalves
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona, E-43007, Spain
| |
Collapse
|
4
|
Xu C, Dong J, Shi X, Rui J, Chen M, Lu W, Zhang A, Wang S, Teng Z, Ye X. Engineered microalgae for photo-sonodynamic synergistic therapy in breast cancer treatment. Acta Biomater 2025; 193:531-544. [PMID: 39709158 DOI: 10.1016/j.actbio.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Dynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy. The resulting Chl-MOF can be used as an oxygenator for O2 generation through Chl-mediated photosynthesis, alleviating tumor hypoxia. Furthermore, Chl-MOF produces reactive oxygen species (ROS) during laser and ultrasound (US) irradiation, further augmenting the photo-sonodynamic effects and enhancing tumor cell apoptosis. Owing to the high mobility of Chl, cellular uptake efficiency and accumulation in deep tumor sites are 5.2-fold and 3.3-fold higher, respectively, for Chl-MOF than for the MOF. Owing to the immunomodulatory effects of Chl, Chl-MOF can increase natural killer (NK) cell cytotoxic activity, increase dendritic cell (DC) antigen-presenting ability, reverse the establishment of an immunosuppressive tumor microenvironment (TME), and induce a relatively strong antitumor immune response. Chl-MOF can effectively reduce breast cancer size by 88.8 % in vitro and in vivo via synergistic photo-sonodynamic therapy and immunotherapy. These intriguing properties of the combination of Chl and MOF provide promising platform for cancer theranostic applications. STATEMENT OF SIGNIFICANCE: : • Chl acts as an O2 generator for alleviating hypoxia in tumors. • The high mobility of Chl resulted in 3.3-folds higher tumor accumulation. • The Chl-MOF can induce synergistic photo-sonodynamic effects and a relatively strong antitumor immune response. • Chl-MOF effectively reduce breast cancer size by 88.8 % via synergistic therapies.
Collapse
Affiliation(s)
- Chaoli Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China
| | - Jinhao Dong
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Xuzhi Shi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Jiaxin Rui
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Meng Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Aihua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China.
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China.
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| |
Collapse
|
5
|
Ren E, Hu J, Mei Z, Lin L, Zhang Q, He P, Wang J, Sheng T, Chen H, Cheng H, Xu T, Pang S, Zhang Y, Dai Q, Gao X, Liu H, Li H, Zhao Y, Gu Z, Yan X, Liu G. Water-Stable Magnetic Lipiodol Micro-Droplets as a Miniaturized Robotic Tool for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412187. [PMID: 39538994 DOI: 10.1002/adma.202412187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Magnetic microrobots, designed to navigate the complex environments of the human body, show promise for minimally invasive diagnosis and treatment. However, their clinical adoption faces hurdles such as biocompatibility, precise control, and intelligent tracking. Here a novel formulation (referred to water-stable magnetic lipiodol micro-droplets, MLMD), integrating clinically approved lipiodol, gelatin, and superparamagnetic iron oxide nanoparticles (SPION) with a fundamental understanding of the structure-property relationships is presented. This formulation demonstrates multiple improved properties including flowability, shape adaptability, efficient drug loading, and compatibility with digital subtraction angiography (DSA) imaging in both in vitro and in vivo experiments. This enables the MLMD as a versatile tool for image-guided therapy, supported by a close-looped magnetic navigation system featuring artificial intelligence (AI)-driven visual feedback for autonomous control. The system effectively performs navigational tasks, including pinpointing specific locations of MLMD, recognizing and avoiding obstacles, mapping and following predetermined paths, and utilizing magnetic fields for precise motion planning to achieve visual drug delivery. The MLMD combines magnetic actuation with an AI-directed close-looped navigation, offering a transformative platform for targeted therapeutic delivery.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Hu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Ziyang Mei
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Qian Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Pan He
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Tiantian Xu
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Shiyao Pang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Xing Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Department of Shenzhen Research Institute, Xiamen University, Shenzhen, 518000, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, and Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Yan
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Sui Z, Wan C, Cheng H, Yang B. Micro/nanorobots for gastrointestinal tract. Front Chem 2024; 12:1423696. [PMID: 39582767 PMCID: PMC11581860 DOI: 10.3389/fchem.2024.1423696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The application of micro/nanomotors (MNMs) in the gastrointestinal tract has become a Frontier in the treatment of gastrointestinal diseases. These miniature robots can enter the gastrointestinal tract through oral administration, achieving precise drug delivery and therapy. They can traverse mucosal layers and tissue barriers, directly targeting tumors or other lesion sites, thereby enhancing the bioavailability and therapeutic effects of drugs. Through the application of nanotechnology, these MNMs are able to accomplish targeted medication release, regulating drug release in response to either external stimuli or the local biological milieu. This results in reduced side effects and increased therapeutic efficacy. This review summarizes the primary classifications and power sources of current MNMs, as well as their applications in the gastrointestinal tract, providing inspiration and direction for the treatment of gastrointestinal diseases with MNMs.
Collapse
Affiliation(s)
- Ziqi Sui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chugen Wan
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hefei Cheng
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Bin Yang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
9
|
Harada K, Komasaka Y, Yamada K, Iizuka T, Otani M, Murayama Y. Position-dependent roles of somatic cells in phototaxis of Volvox. PNAS NEXUS 2024; 3:pgae444. [PMID: 39529862 PMCID: PMC11552624 DOI: 10.1093/pnasnexus/pgae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
A spherical green alga, Volvox, achieves phototaxis via a simple on/off switch of flagellar beating in response to changes in light intensity, without the need for complex signal transduction between cells. Moreover, the alga can change its susceptibility to light in order to adapt to its environment. To identify the mechanisms of susceptibility regulation, experiments were conducted at three different levels: population, individual, and cellular. The light intensity dependence of the average velocity at the population level and that of the change in flow speed obtained at the individual level were consistent, indicating that susceptibility regulation occurred in each Volvox colony. Furthermore, by measuring the probability of stopping flagellar beating when the light intensity was changed, susceptibility regulation was found to result from the properties of somatic cells as differential and adaptive photosensors. These photosensing properties deteriorated from the anterior to the posterior regions of the colony. Considering the mechanical motion of a Volvox colony, the position-dependent ability of somatic cells indicates that the anterior cells play the role of a rudder, whereas the posterior cells play the role of a rower. The position-dependent properties of somatic cells imply an early stage of cell differentiation that allows for an efficient response to changes in the circumstances.
Collapse
Affiliation(s)
- Keigo Harada
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yukariko Komasaka
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Yamada
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takumi Iizuka
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Minato Otani
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Murayama
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
10
|
Nie D, Zhang K, Lin J. Enhanced speed of microswimmers adjacent to a rough surface. Phys Rev E 2024; 110:045101. [PMID: 39562938 DOI: 10.1103/physreve.110.045101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024]
Abstract
Increased speed is not only the goal of human sports but also the aim we seek to achieve for artificial microswimmers. Microswimmers driven by various power mechanisms have shown unrivaled advantages in drug delivery and cancer therapy. Attaining high mobility with limited power has been a never-ending motive for researchers. We show the speed of squirmer-type microswimmers can be noticeably enhanced as they are released to move along the surface of a pillar array, which is constructed of multiple pillars of equal sizes and spacing. An additional pressure force arising from the significant low pressure between the swimmers and the surface is likely behind this enhancement. According to their polarity strengths, the speed of the microswimmers can be double or triple (or even more) compared with that in an unbounded environment. In particular, for systems requiring microswimmers moving along a complex path, the transport rate, instead of being slowed down, may be increased owing to the curvatures of the path constructed by the pillar arrays. We reveal two types of motion for microswimmers after increasing the pillar gap: free and forced oscillating. Our study sheds light on the hydrodynamic interactions between squirmer-type microswimmers and a rough wall.
Collapse
|
11
|
Yu Y, Liang L, Sun T, Lu H, Yang P, Li J, Pang Q, Zeng J, Shi P, Li J, Lu Y. Micro/Nanomotor-Driven Intelligent Targeted Delivery Systems: Dynamics Sources and Frontier Applications. Adv Healthc Mater 2024; 13:e2400163. [PMID: 39075811 DOI: 10.1002/adhm.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Micro/nanomotors represent a promising class of drug delivery carriers capable of converting surrounding chemical or external energy into mechanical power, enabling autonomous movement. Their distinct autonomous propulsive force distinguishes them from other carriers, offering significant potential for enhancing drug penetration across cellular and tissue barriers. A comprehensive understanding of micro/nanomotor dynamics with various power sources is crucial to facilitate their transition from proof-of-concept to clinical application. In this review, micro/nanomotors are categorized into three classes based on their energy sources: endogenously stimulated, exogenously stimulated, and live cell-driven. The review summarizes the mechanisms governing micro/nanomotor movements under these energy sources and explores factors influencing autonomous motion. Furthermore, it discusses methods for controlling micro/nanomotor movement, encompassing aspects related to their structure, composition, and environmental factors. The remarkable propulsive force exhibited by micro/nanomotors makes them valuable for significant biomedical applications, including tumor therapy, bio-detection, bacterial infection therapy, inflammation therapy, gastrointestinal disease therapy, and environmental remediation. Finally, the review addresses the challenges and prospects for the application of micro/nanomotors. Overall, this review emphasizes the transformative potential of micro/nanomotors in overcoming biological barriers and enhancing therapeutic efficacy, highlighting their promising clinical applications across various biomedical fields.
Collapse
Affiliation(s)
- Yue Yu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ting Sun
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Pushan Yang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Qinjiao Pang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| |
Collapse
|
12
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
13
|
Kim H, Jo K, Choi H, Hahn SK. Biocompatible polymer-based micro/nanorobots for theranostic translational applications. J Control Release 2024; 374:606-626. [PMID: 39208932 DOI: 10.1016/j.jconrel.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungjoo Jo
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
14
|
Ramos Docampo MA. Magnetic motors in interphases: Motion control and integration in soft robots. Biointerphases 2024; 19:048502. [PMID: 38994898 DOI: 10.1116/6.0003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
15
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
16
|
Li Z, Duan Y, Zhang F, Luan H, Shen WT, Yu Y, Xian N, Guo Z, Zhang E, Yin L, Fang RH, Gao W, Zhang L, Wang J. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci Robot 2024; 9:eadl2007. [PMID: 38924422 DOI: 10.1126/scirobotics.adl2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.
Collapse
Affiliation(s)
- Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Fangyu Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nianfei Xian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Edward Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Chen T, Cai Y, Ren B, Sánchez BJ, Dong R. Intelligent micro/nanorobots based on biotemplates. MATERIALS HORIZONS 2024; 11:2772-2801. [PMID: 38597188 DOI: 10.1039/d4mh00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Intelligent micro/nanorobots based on natural materials as biotemplates are considered to be some of the most promising robots in the future in the microscopic field. Due to the advantages of biotemplates such as unique structure, abundant resources, environmental friendliness, easy removal, low price, easy access, and renewability, intelligent micro/nanorobots based on biotemplates can be endowed with both excellent biomaterial activity and unique structural morphology through biotemplates themselves and specific functions through artificial micro/nanotechnology. Thus, intelligent micro/nanorobots show excellent application potential in various fields from biomedical applications to environmental remediation. In this review, we introduce the advantages of using natural biological materials as biotemplates to build intelligent micro/nanorobots, and then, classify the micro/nanorobots according to different types of biotemplates, systematically detail their preparation strategies and summarize their application prospects. Finally, in order to further advance the development of intelligent micro/nanorobots, we discuss the current challenges and future prospects of biotemplates. Intelligent micro/nanorobots based on biotemplates are a perfect combination of natural biotemplates and micro/nanotechnology, which is an important trend for the future development of micro/nanorobots. We hope this review can provide useful references for developing more intelligent, efficient and safe micro/nanorobots in the future.
Collapse
Affiliation(s)
- Ting Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes Lingnan Normal University Zhanjiang, Guangdong 524048, P. R. China
| |
Collapse
|
18
|
Lu L, Zhao H, Lu Y, Zhang Y, Wang X, Fan C, Li Z, Wu Z. Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications. Adv Healthc Mater 2024; 13:e2400414. [PMID: 38412402 DOI: 10.1002/adhm.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.
Collapse
Affiliation(s)
- Lu Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongqiao Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yucong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxuan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengjuan Fan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zesheng Li
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguang Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
19
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
20
|
Bozuyuk U, Wrede P, Yildiz E, Sitti M. Roadmap for Clinical Translation of Mobile Microrobotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311462. [PMID: 38380776 DOI: 10.1002/adma.202311462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Medical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use. From the concept of a "magic bullet" to the physicochemical interactions of microrobots in complex biological environments in medical applications, there are several translational steps to consider. Clinical translation of mobile microrobots is only possible with a close collaboration between clinical experts and microrobotics researchers to address the technical challenges in microfabrication, safety, and imaging. The clinical application potential can be materialized by designing microrobots that can solve the current main challenges, such as actuation limitations, material stability, and imaging constraints. The strengths and weaknesses of the current progress in the microrobotics field are discussed and a roadmap for their clinical applications in the near future is outlined.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- School of Medicine and College of Engineering, Koc University, Istanbul, 34450, Turkey
| |
Collapse
|
21
|
Zhong D, Jin K, Wang R, Chen B, Zhang J, Ren C, Chen X, Lu J, Zhou M. Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312275. [PMID: 38277492 DOI: 10.1002/adma.202312275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Patients diagnosed with inflammatory bowel disease (IBD) exhibit a notable prevalence of psychiatric disorders, such as anxiety and depression. Nevertheless, the etiology of psychiatric disorders associated with IBD remains uncertain, and an efficacious treatment approach has yet to be established. Herein, an oral hydrogel strategy (SP@Rh-gel) is proposed for co-delivery of Spirulina platensis and rhein to treat IBD and IBD-associated anxiety and depression by modulating the microbiota-gut-brain axis. SP@Rh-gel improves the solubility, release characteristics and intestinal retention capacity of the drug, leading to a significant improvement in the oral therapeutic efficacy. Oral administration of SP@Rh-gel can reduce intestinal inflammation and rebalance the disrupted intestinal microbial community. Furthermore, SP@Rh-gel maintains intestinal barrier integrity and reduces the release of pro-inflammatory factors and their entry into the hippocampus through the blood-brain barrier, thereby inhibiting neuroinflammation and maintaining neuroplasticity. SP@Rh-gel significantly alleviates the colitis symptoms, as well as anxiety- and depression-like behaviors, in a chronic colitis mouse model. This study demonstrates the significant involvement of the microbiota-gut-brain axis in the development of IBD with psychiatric disorders and proposes a safe, simple, and highly efficient therapeutic approach for managing IBD and comorbid psychiatric disorders.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Kangyu Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Chaojie Ren
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, P. R. China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, 314400, P. R. China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Erdos Etuoke Joint Research Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310029, P. R. China
| |
Collapse
|
22
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
23
|
Wijesinghe P. Light-deformable microrobots shape up for the biological obstacle course. LIGHT, SCIENCE & APPLICATIONS 2024; 13:103. [PMID: 38710694 DOI: 10.1038/s41377-024-01448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Euglena gracilis microalga has been transformed into a soft bio-microrobot with light-controlled motion and deformation that can address diverse bio-challenges, such as drug delivery, diseased cell removal, and photodynamic therapy.
Collapse
Affiliation(s)
- Philip Wijesinghe
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
| |
Collapse
|
24
|
Chen X, Liu S, Shen M, Shi J, Wu C, Song Z, Zhao Y. Dielectrophoretic characterization and selection of non-spherical flagellate algae in parallel channels with right-angle bipolar electrodes. LAB ON A CHIP 2024; 24:2506-2517. [PMID: 38619815 DOI: 10.1039/d4lc00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
25
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
26
|
Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, Lu D, Xin H. Light-controlled soft bio-microrobot. LIGHT, SCIENCE & APPLICATIONS 2024; 13:55. [PMID: 38403642 PMCID: PMC10894875 DOI: 10.1038/s41377-024-01405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Micro/nanorobots hold exciting prospects for biomedical and even clinical applications due to their small size and high controllability. However, it is still a big challenge to maneuver micro/nanorobots into narrow spaces with high deformability and adaptability to perform complicated biomedical tasks. Here, we report a light-controlled soft bio-microrobots (called "Ebot") based on Euglena gracilis that are capable of performing multiple tasks in narrow microenvironments including intestinal mucosa with high controllability, deformability and adaptability. The motion of the Ebot can be precisely navigated via light-controlled polygonal flagellum beating. Moreover, the Ebot shows highly controlled deformability with different light illumination duration, which allows it to pass through narrow and curved microchannels with high adaptability. With these features, Ebots are able to execute multiple tasks, such as targeted drug delivery, selective removal of diseased cells in intestinal mucosa, as well as photodynamic therapy. This light-controlled Ebot provides a new bio-microrobotic tool, with many new possibilities for biomedical task execution in narrow and complicated spaces where conventional tools are difficult to access due to the lack of deformability and bio-adaptability.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
27
|
Bailey MR, Barriuso Gutiérrez CM, Martín-Roca J, Niggel V, Carrasco-Fadanelli V, Buttinoni I, Pagonabarraga I, Isa L, Valeriani C. Minimal numerical ingredients describe chemical microswimmers' 3-D motion. NANOSCALE 2024; 16:2444-2451. [PMID: 38214073 DOI: 10.1039/d3nr03695b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.
Collapse
Affiliation(s)
- Maximilian R Bailey
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - C Miguel Barriuso Gutiérrez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - José Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid, Madrid, Spain
| | - Vincent Niggel
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Virginia Carrasco-Fadanelli
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ivo Buttinoni
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- GISC - Grupo Interdiplinar de Sistemas Complejos, Madrid, Spain
| |
Collapse
|
28
|
Li R, Jiang M, Liu B, Jiang S, Chen C, Liang M, Qu L, Wang C, Zhao G, Hu Y, Wu D, Chu J, Li J. High-performance magnetic metal microrobot prepared by a two-photon polymerization and sintering method. LAB ON A CHIP 2024. [PMID: 38235769 DOI: 10.1039/d3lc01084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Magnetically-actuated microrobots (MARs) exhibit great potential in biomedicine owing to their precise navigation, wireless actuation and remote operation in confined space. However, most previously explored MARs unfold the drawback of hypodynamic magnetic torque due to low magnetic content, leading to their limited applications in controlled locomotion in fast-flowing fluid and massive cargo carrying to the target position. Here, we report a high-performance pure-nickel magnetically-actuated microrobot (Ni-MAR), prepared by a femtosecond laser polymerization followed by sintering method. Our Ni-MAR possesses a high magnetic content (∼90 wt%), thus resulting in enhanced magnetic torque under low-strength rotating magnetic fields, which enables the microrobot to exhibit high-speed swimming and superior cargo carrying. The maximum velocity of our Ni-MAR, 12.5 body lengths per second, outperforms the velocity of traditional helical MARs. The high-speed Ni-MAR is capable of maintaining controlled locomotion in fast-flowing fluid. Moreover, the Ni-MAR with massive cargo carrying capability can push a 200-times heavier microcube with translation and rotation motion. A single cell and multiple cells can be transported facilely by a single Ni-MAR to the target position. This work provides a scheme for fabricating high-performance magnetic microrobots, which holds great promise for targeted therapy and drug delivery in vivo.
Collapse
Affiliation(s)
- Rui Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Modong Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Bingrui Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengxue Liang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lijie Qu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Gang Zhao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
29
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
30
|
Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci 2023; 11:7512-7530. [PMID: 37877241 DOI: 10.1039/d3bm01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Over the past decade, researchers have proposed a new class of drug delivery systems, bio-hybrid micro-robots, designed with a variety of living cell-driven micro-robots that utilize the unique mobility of natural organisms (bacteria, cells, exosomes, etc.) to transport effective drugs. Microalgae are considered potential drug delivery carriers. Recent studies have shown that microalga-based drug delivery systems exhibit excellent biocompatibility. In addition, microalgae have a large surfactant area, phototaxis, oxygen production, and other characteristics, so they are used as a carrier for the treatment of bacterial infections, cancer, etc. This review summarizes the modification of microalgae including click chemistry and electrostatic adsorption, and can improve the drug loading efficiency through dehydration and hydration strategies. The prepared microalgal drug delivery system can be targeted to different organs by different dosing methods or using external forces. Finally, it summarizes its antibacterial (gastritis, periodontitis, skin wound inflammation, etc.) and antitumor applications.
Collapse
Affiliation(s)
- Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
31
|
Liu X, Wu H, Wu S, Qin H, Zhang T, Lin Y, Zheng X, Li B. Optically Programmable Living Microrouter in Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304103. [PMID: 37749869 PMCID: PMC10646234 DOI: 10.1002/advs.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Indexed: 09/27/2023]
Abstract
With high reconfigurability and swarming intelligence, programmable medical micromachines (PMMs) represent a revolution in microrobots for executing complex coordinated tasks, especially for dynamic routing of various targets along their respective routes. However, it is difficult to achieve a biocompatible implantation into the body due to their exogenous building blocks. Herein, a living microrouter based on an organic integration of endogenous red blood cells (RBCs), programmable scanning optical tweezers and flexible optofluidic strategy is reported. By harvesting energy from a designed optical force landscape, five RBCs are optically rotated in a controlled velocity and direction, under which, a specific actuation flow is achieved to exert the well-defined hydrodynamic forces on various biological targets, thus enabling a selective routing by integrating three successive functions, i.e., dynamic input, inner processing, and controlled output. Benefited from the optofluidic manipulation, various blood cells, such as the platelets and white blood cells, are transported toward the damaged vessel and cell debris for the dynamic hemostasis and targeted clearance, respectively. Moreover, the microrouter enables a precise transport of nanodrugs for active and targeted delivery in a large quantity. The proposed RBC microrouter might provide a biocompatible medical platform for cell separation, drug delivery, and immunotherapy.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
32
|
Ma H, Chen C, Bao J, Zhao Q, Jiang Y, Zhang Z, Tao H, Jiang Y, Geng X, Lu X, Zhu N. Portable Electrochemical Sensor for Micromotor Speed Monitoring. ACS Sens 2023; 8:3804-3811. [PMID: 37708345 DOI: 10.1021/acssensors.3c01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Autonomous movement promotes practical applications of micromotors. Understanding the moving speeds is a crucial step in micromotor studies. The current analysis method relies on an expensive optical microscope, which is limited to laboratory settings. Herein, we have developed a lightweight (0.15 g), portable (2.0 × 3.5 cm2), and low-cost (approximately $0.26) micromotor sensor (μ-Motor sensor), composed of water-sensitive materials for micromotor speed monitoring. Moving micromotors induce fluid flow, enhancing the evaporation rate of the liquid medium. Consequently, a high correlation between motor speed and water molecule concentration above the moving medium has been established. The μ-Motor sensor enables a real-time readout of the moving speed in various settings, with high accuracy (≥95% in the lab and ≥90% in field studies at a local beach). The μ-Motor sensor opens up a new way for detecting micro/nanomachine movements, illuminating future applications of micro/nanorobotics for diverse scenarios.
Collapse
Affiliation(s)
- Hongting Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinhui Bao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qian Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhouxiaolong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Huannuo Tao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
33
|
Bröker S, Bickmann J, Te Vrugt M, Cates ME, Wittkowski R. Orientation-Dependent Propulsion of Active Brownian Spheres: From Self-Advection to Programmable Cluster Shapes. PHYSICAL REVIEW LETTERS 2023; 131:168203. [PMID: 37925724 DOI: 10.1103/physrevlett.131.168203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
Applications of active particles require a method for controlling their dynamics. While this is typically achieved via direct interventions, indirect interventions based, e.g., on an orientation-dependent self-propulsion speed of the particles, become increasingly popular. In this Letter, we investigate systems of interacting active Brownian spheres in two spatial dimensions with orientation-dependent propulsion using analytical modeling and Brownian dynamics simulations. It is found that the orientation dependence leads to self-advection, circulating currents, and programmable cluster shapes.
Collapse
Affiliation(s)
- Stephan Bröker
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
34
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
35
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
36
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Xin Z, Zhang M, Cui H, Ding X, Zhang T, Wu L, Cui H, Xue Q, Chen C, Gao J. Algae: A Robust Living Material Against Cancer. Int J Nanomedicine 2023; 18:5243-5264. [PMID: 37727650 PMCID: PMC10506609 DOI: 10.2147/ijn.s423412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Its incidence has been increasing in recent years, and it is becoming a major threat to human health. Conventional cancer treatment strategies, including surgery, chemotherapy, and radiotherapy, have faced problems such as drug resistance, toxic side effects and unsatisfactory therapeutic efficacy. Therefore, better development and utilization of biomaterials can improve the specificity and efficacy of tumor therapy. Algae, as a novel living material, possesses good biocompatibility. Although some reviews have elucidated several algae-based biomaterials for cancer treatment, the majority of the literature has focused on a limited number of algae. As a result, there is currently a lack of comprehensive reviews on the subject of anticancer algae. This review aims to address this gap by conducting a thorough examination of algal species that show potential for anticancer activity. Furthermore, our review will also elucidate the engineering strategies of algae and discuss the challenges and prospects associated with their implementation.
Collapse
Affiliation(s)
- Zhongyuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiuwen Ding
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Qian Xue
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
38
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
39
|
Wang D, Chen Z, Li M, Hou Z, Zhan C, Zheng Q, Wang D, Wang X, Cheng M, Hu W, Dong B, Shi F, Sitti M. Bioinspired rotary flight of light-driven composite films. Nat Commun 2023; 14:5070. [PMID: 37604907 PMCID: PMC10442326 DOI: 10.1038/s41467-023-40827-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Light-driven actuators have great potential in different types of applications. However, it is still challenging to apply them in flying devices owing to their slow response, small deflection and force output and low frequency response. Herein, inspired by the structure of vine maple seeds, we report a helicopter-like rotary flying photoactuator (in response to 0.6 W/cm2 near-infrared (NIR) light) with ultrafast rotation (~7200 revolutions per minute) and rapid response (~650 ms). This photoactuator is operated based on a fundamentally different mechanism that depends on the synergistic interactions between the photothermal graphene and the hygroscopic agar/silk fibroin components, the subsequent aerodynamically favorable airscrew formation, the jet propulsion, and the aerodynamics-based flying. The soft helicopter-like photoactuator exhibits controlled flight and steering behaviors, making it promising for applications in soft robotics and other miniature devices.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaomin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Zhen Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Changsong Zhan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qijun Zheng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Dalei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
40
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
41
|
Gotovtsev P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics (Basel) 2023; 8:biomimetics8010109. [PMID: 36975339 PMCID: PMC10046805 DOI: 10.3390/biomimetics8010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The presented review focused on the microbial cell based system. This approach is based on the application of microorganisms as the main part of a robot that is responsible for the motility, cargo shipping, and in some cases, the production of useful chemicals. Living cells in such microrobots have both advantages and disadvantages. Regarding the advantages, it is necessary to mention the motility of cells, which can be natural chemotaxis or phototaxis, depending on the organism. There are approaches to make cells magnetotactic by adding nanoparticles to their surface. Today, the results of the development of such microrobots have been widely discussed. It has been shown that there is a possibility of combining different types of taxis to enhance the control level of the microrobots based on the microorganisms' cells and the efficiency of the solving task. Another advantage is the possibility of applying the whole potential of synthetic biology to make the behavior of the cells more controllable and complex. Biosynthesis of the cargo, advanced sensing, on/off switches, and other promising approaches are discussed within the context of the application for the microrobots. Thus, a synthetic biology application offers significant perspectives on microbial cell based microrobot development. Disadvantages that follow from the nature of microbial cells such as the number of external factors influence the cells, potential immune reaction, etc. They provide several limitations in the application, but do not decrease the bright perspectives of microrobots based on the cells of the microorganisms.
Collapse
Affiliation(s)
- Pavel Gotovtsev
- National Research Center "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141701 Moscow, Russia
| |
Collapse
|
42
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
43
|
Choi H, Kim B, Jeong SH, Kim TY, Kim DP, Oh YK, Hahn SK. Microalgae-Based Biohybrid Microrobot for Accelerated Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204617. [PMID: 36354165 DOI: 10.1002/smll.202204617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A variety of wound healing platforms have been proposed to alleviate the hypoxic condition and/or to modulate the immune responses for the treatment of chronic wounds in diabetes. However, these platforms with the passive diffusion of therapeutic agents through the blood clot result in the relatively low delivery efficiency into the deep wound site. Here, a microalgae-based biohybrid microrobot for accelerated diabetic wound healing is developed. The biohybrid microrobot autonomously moves at velocity of 33.3 µm s-1 and generates oxygen for the alleviation of hypoxic condition. In addition, the microrobot efficiently bound with inflammatory chemokines of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) for modulating the immune responses. The enhanced penetration of microrobot is corroborated by measuring fibrin clots in biomimetic wound using microfluidic devices and the enhanced retention of microrobot is confirmed in the real wounded mouse skin tissue. After deposition on the chronic wound in diabetic mice without wound dressing, the wounds treated with microrobots are completely healed after 9 days with the significant decrease of inflammatory cytokines below 31% of the control level and the upregulated angiogenesis above 20 times of CD31+ cells. These results confirm the feasibility of microrobots as a next-generation platform for diabetic wound healing.
Collapse
Affiliation(s)
- Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
| | - Bolam Kim
- School of Chemical Engineering and Institute of Environment & Energy, Pusan National University, Busan, 46241, Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - You-Kwan Oh
- School of Chemical Engineering and Institute of Environment & Energy, Pusan National University, Busan, 46241, Korea
| | - Sei Kwang Hahn
- PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul, 06248, Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
44
|
Zhang F, Li Z, Duan Y, Luan H, Yin L, Guo Z, Chen C, Xu M, Gao W, Fang RH, Zhang L, Wang J. Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. SCIENCE ADVANCES 2022; 8:eade6455. [PMID: 36563149 PMCID: PMC9788783 DOI: 10.1126/sciadv.ade6455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
The function of robots in extreme environments is regarded as one of the major challenges facing robotics. Here, we demonstrate that acidophilic microalgae biomotors can maintain their swimming behavior over long periods of time in the harsh acidic environment of the stomach, thus enabling them to be applied for gastrointestinal (GI) delivery applications. The biomotors can also be functionalized with a wide range of cargos, ranging from small molecules to nanoparticles, without compromising their ability to self-propel under extreme conditions. Successful GI delivery of model payloads after oral administration of the acidophilic algae motors is confirmed using a murine model. By tuning the surface properties of cargos, it is possible to modulate their precise GI localization. Overall, our findings indicate that multifunctional acidophilic algae-based biomotors offer distinct advantages compared to traditional biohybrid platforms and hold great potential for GI-related biomedical applications.
Collapse
|
45
|
Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt OG, Medina-Sánchez M. Multifunctional 4D-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204257. [PMID: 36189842 DOI: 10.1002/adma.202204257] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Remotely controllable microrobots are appealing for various biomedical in vivo applications. In particular, in recent years, our group has focused on developing sperm-microcarriers to assist sperm cells with motion deficiencies or low sperm count (two of the most prominent male infertility problems) to reach the oocyte toward in-vivo-assisted fertilization. Different sperm carriers, considering their motion in realistic media and confined environments, have been optimized. However, the already-reported sperm carriers have been mainly designed to transport single sperm cell, with limited functionality. Thus, to take a step forward, here, the development of a 4D-printed multifunctional microcarrier containing soft and smart materials is reported. These microcarriers can not only transport and deliver multiple motile sperm cells, but also release heparin and mediate local enzymatic reactions by hyaluronidase-loaded polymersomes (HYAL-Psomes). These multifunctional facets enable in situ sperm capacitation/hyperactivation, and the local degradation of the cumulus complex that surrounds the oocyte, both to facilitate the sperm-oocyte interaction for the ultimate goal of in vivo assisted fertilization.
Collapse
Affiliation(s)
- Fatemeh Rajabasadi
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Silvia Moreno
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Kristin Fichna
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Dietmar Appelhans
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Nanophysics, Faculty of Physics, School of Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
46
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
47
|
Zhang F, Zhuang J, Li Z, Gong H, de Ávila BEF, Duan Y, Zhang Q, Zhou J, Yin L, Karshalev E, Gao W, Nizet V, Fang RH, Zhang L, Wang J. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. NATURE MATERIALS 2022; 21:1324-1332. [PMID: 36138145 PMCID: PMC9633541 DOI: 10.1038/s41563-022-01360-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/09/2022] [Indexed: 05/03/2023]
Abstract
Bioinspired microrobots capable of actively moving in biological fluids have attracted considerable attention for biomedical applications because of their unique dynamic features that are otherwise difficult to achieve by their static counterparts. Here we use click chemistry to attach antibiotic-loaded neutrophil membrane-coated polymeric nanoparticles to natural microalgae, thus creating hybrid microrobots for the active delivery of antibiotics in the lungs in vivo. The microrobots show fast speed (>110 µm s-1) in simulated lung fluid and uniform distribution into deep lung tissues, low clearance by alveolar macrophages and superb tissue retention time (>2 days) after intratracheal administration to test animals. In a mouse model of acute Pseudomonas aeruginosa pneumonia, the microrobots effectively reduce bacterial burden and substantially lessen animal mortality, with negligible toxicity. Overall, these findings highlight the attractive functions of algae-nanoparticle hybrid microrobots for the active in vivo delivery of therapeutics to the lungs in intensive care unit settings.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jia Zhuang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Zhengxing Li
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Hua Gong
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | | | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jiarong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Kim J, Park H, Yoon C. Advances in Biodegradable Soft Robots. Polymers (Basel) 2022; 14:polym14214574. [PMID: 36365570 PMCID: PMC9658808 DOI: 10.3390/polym14214574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Biodegradable soft robots have been proposed for a variety of intelligent applications in soft robotics, flexible electronics, and bionics. Biodegradability offers an extraordinary functional advantage to soft robots for operations accompanying smart shape transformation in response to external stimuli such as heat, pH, and light. This review primarily surveyed the current advanced scientific and engineering strategies for integrating biodegradable materials within stimuli-responsive soft robots. It also focused on the fabrication methodologies of multiscale biodegradable soft robots, and highlighted the role of biodegradable soft robots in enhancing the multifunctional properties of drug delivery capsules, biopsy tools, smart actuators, and sensors. Lastly, the current challenges and perspectives on the future development of intelligent soft robots for operation in real environments were discussed.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Harim Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence:
| |
Collapse
|
49
|
Lai J, Meng QF, Tian M, Zhuang X, Pan P, Du L, Deng L, Tang J, Jin N, Rao L. A decoy microrobot that removes SARS-CoV-2 and its variants in wastewater. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101061. [PMID: 36158867 PMCID: PMC9490858 DOI: 10.1016/j.xcrp.2022.101061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can persist in wastewater for several days, has a risk of waterborne-human transmission. The emergence of SARS-CoV-2 variants with increased infection capacity further highlights the need to remove the virus and restrict its spread in wastewater. Here, we report a decoy microrobot created by camouflaging algae with cell membranes displaying angiotensin-converting enzyme 2 (ACE2) for effective elimination of SARS-CoV-2 and its variants. The decoy microrobots show fast self-propulsion (>85 μm/s), allowing for successful "on-the-fly" elimination of SARS-CoV-2 spike proteins and pseudovirus in wastewater. Moreover, relying on the robust binding between ACE2 and SARS-CoV-2 variants, the decoy microrobots exhibit a broad-spectrum elimination of virus with a high efficiency of 95% for the wild-type strain, 92% for the Delta variant, and 93% for the Omicron variant, respectively. Our work presents a simple and safe decoy microrobot aimed toward eliminating viruses and other environmental hazards from wastewater.
Collapse
Affiliation(s)
- Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pan Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Du
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
50
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|