1
|
Li T, Jiang W, Wu Y, Zhou L, Ye H, Geng Y, Hu M, Liu K, Wang R, Sun Y. Controlled Fabrication of Metallic MoO 2 Nanosheets towards High-Performance p-Type 2D Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403118. [PMID: 38990881 DOI: 10.1002/smll.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Indexed: 07/13/2024]
Abstract
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are extensively employed as channel materials in advanced electronic devices. The electrical contacts between electrodes and 2D semiconductors play a crucial role in the development of high-performance transistors. While numerous strategies for electrode interface engineering have been proposed to enhance the performance of n-type 2D transistors, upgrading p-type ones in a similar manner remains a challenge. In this work, significant improvements in a p-type WSe2 transistor are demonstrated by utilizing metallic MoO2 nanosheets as the electrode contact, which are controllably fabricated through physical vapor deposition and subsequent annealing. The MoO2 nanosheets exhibit an exceptional electrical conductivity of 8.4 × 104 S m‒1 and a breakdown current density of 3.3 × 106 A cm‒2. The work function of MoO2 nanosheets is determined to be ≈5.1 eV, making them suitable for contacting p-type 2D semiconductors. Employing MoO2 nanosheets as the electrode contact in WSe2 transistors results in a notable increase in the field-effect mobility to 92.0 cm2 V‒1 s‒1, which is one order of magnitude higher than the counterpart devices with conventional electrodes. This study not only introduces an intriguing 2D metal oxide to improve the electrical contact in p-type 2D transistors, but also offers an effective approach to fabricating all-2D devices.
Collapse
Affiliation(s)
- Tianchi Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wengui Jiang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Liang Zhou
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Geng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Minghui Hu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Yang E, Hong S, Ma J, Park SJ, Lee DK, Das T, Ha TJ, Kwak JY, Chang J. Realization of Extremely High-Gain and Low-Power in nMOS Inverter Based on Monolayer WS 2 Transistor Operating in Subthreshold Regime. ACS NANO 2024; 18:22965-22977. [PMID: 39146081 DOI: 10.1021/acsnano.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In this work, we report an n-type metal-oxide-semiconductor (nMOS) inverter using chemical vapor deposition (CVD)-grown monolayer WS2 field-effect transistors (FETs). Our large-area CVD-grown monolayer WS2 FETs exhibit outstanding electrical properties including a high on/off ratio, small subthreshold swing, and excellent drain-induced barrier lowering. These are achieved by n-type doping using AlOx/Al2O3 and a double-gate structure employing high-k dielectric HfO2. Due to the superior subthreshold characteristics, monolayer WS2 FETs show high transconductance and high output resistance in the subthreshold regime, resulting in significantly higher intrinsic gain compared to conventional Si MOSFETs. Therefore, we successfully realize subthreshold operating monolayer WS2 nMOS inverters with extremely high gains of 564 and 2056 at supply voltage (VDD) of 1 and 2 V, respectively, and low power consumption of ∼2.3 pW·μm-1 at VDD = 1 V. In addition, the monolayer WS2 nMOS inverter is further expanded to the demonstration of logic circuits such as AND, OR, NAND, NOR logic gates, and SRAM. These findings suggest the potential of monolayer WS2 for high-gain and low-power logic circuits and validate the practical application in large areas.
Collapse
Affiliation(s)
- Eunyeong Yang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Sekwon Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Jiwon Ma
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Sang-Joon Park
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Dae Kyu Lee
- Korea Institute of Science and Technology, KIST, Seoul 02792, South Korea
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, Petaling Jaya, Selangor 47301, Malaysia
| | - Tae-Jun Ha
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Joon Young Kwak
- Division of Electronic and Semiconductor Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Jiwon Chang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
- Department of System Semiconductor Engineering, Yonsei University, Seoul 03722, South Korea
- BK21 Graduate Program in Intelligent Semiconductor Technology, Seoul 03722, South Korea
| |
Collapse
|
3
|
Kim B, Lee S, Park JH. Innovations of metallic contacts on semiconducting 2D transition metal dichalcogenides toward advanced 3D-structured field-effect transistors. NANOSCALE HORIZONS 2024; 9:1417-1431. [PMID: 38973382 DOI: 10.1039/d4nh00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
2D semiconductors, represented by transition metal dichalcogenides (TMDs), have the potential to be alternative channel materials for advanced 3D field-effect transistors, such as gate-all-around field-effect-transistors (GAAFETs) and complementary field-effect-transistors (C-FETs), due to their inherent atomic thinness, moderate mobility, and short scaling lengths. However, 2D semiconductors encounter several technological challenges, especially the high contact resistance issue between 2D semiconductors and metals. This review provides a comprehensive overview of the high contact resistance issue in 2D semiconductors, including its physical background and the efforts to address it, with respect to their applicability to GAAFET structures.
Collapse
Affiliation(s)
- Byeongchan Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Seojoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16417, Korea
| |
Collapse
|
4
|
Li M, Jiang Y, Ju H, He S, Jia C, Guo X. Electronic Devices Based on Heterostructures of 2D Materials and Self-Assembled Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402857. [PMID: 38934535 DOI: 10.1002/smll.202402857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.
Collapse
Affiliation(s)
- Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Yu Jiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
5
|
Bae J, Ryu H, Kim D, Lee CS, Seol M, Byun KE, Kim S, Lee S. Optimizing Ultrathin 2D Transistors for Monolithic 3D Integration: A Study on Directly Grown Nanocrystalline Interconnects and Buried Contacts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314164. [PMID: 38608715 DOI: 10.1002/adma.202314164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The potential of monolithic 3D integration technology is largely dependent on the enhancement of interconnect characteristics which can lead to thinner stacks, better heat dissipation, and reduced signal delays. Carbon materials such as graphene, characterized by sp2 hybridized carbons, are promising candidates for future interconnects due to their exceptional electrical, thermal conductivity and resistance to electromigration. However, a significant challenge lies in achieving low contact resistance between extremely thin semiconductor channels and graphitic materials. To address this issue, an innovative wafer-scale synthesis approach is proposed that enables low contact resistance between dry-transferred 2D semiconductors and the as-grown nanocrystalline graphitic interconnects. A hybrid graphitic interconnect with metal doping reduces the sheet resistance by 84% compared to an equivalent thickness metal film. Furthermore, the introduction of a buried graphitic contact results in a contact resistance that is 17 times lower than that of bulk metal contacts (>40 nm). Transistors with this optimal structure are used to successfully demonstrate a simple logic function. The thickness of active layer is maintained within sub-7 nm range, encompassing both channels and contacts. The ultrathin transistor and interconnect stack developed here, characterized by a readily etchable interlayer and low parasitic resistance, leads to heterogeneous integration of future 3D integrated circuits (ICs).
Collapse
Affiliation(s)
- Junseong Bae
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeyoon Ryu
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dohee Kim
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Seok Lee
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Minsu Seol
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Kyung-Eun Byun
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Sangwon Kim
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Seunghyun Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
6
|
Ulstrup S, In 't Veld Y, Miwa JA, Jones AJH, McCreary KM, Robinson JT, Jonker BT, Singh S, Koch RJ, Rotenberg E, Bostwick A, Jozwiak C, Rösner M, Katoch J. Observation of interlayer plasmon polaron in graphene/WS 2 heterostructures. Nat Commun 2024; 15:3845. [PMID: 38714749 PMCID: PMC11519396 DOI: 10.1038/s41467-024-48186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get "dressed", which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials. Here, we present the discovery of an interlayer plasmon polaron in heterostructures composed of graphene on top of single-layer WS2. By using micro-focused angle-resolved photoemission spectroscopy during in situ doping of the top graphene layer, we observe a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the single-layer WS2 conduction band minimum. Our results are explained by an effective many-body model in terms of a coupling between single-layer WS2 conduction electrons and an interlayer plasmon mode. It is important to take into account the presence of such interlayer collective modes, as they have profound consequences for the electronic and optical properties of heterostructures that are routinely explored in many device architectures involving 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Søren Ulstrup
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| | - Yann In 't Veld
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, the Netherlands
| | - Jill A Miwa
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Alfred J H Jones
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | | | - Simranjeet Singh
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Roland J Koch
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Malte Rösner
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, the Netherlands.
| | - Jyoti Katoch
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Yang Z, Peng X, Wang J, Lin J, Zhang C, Tang B, Zhang J, Yang W. Lowering the Schottky Barrier Height by Quasi-van der Waals Contacts for High-Performance p-Type MoTe 2 Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676636 DOI: 10.1021/acsami.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) offer advantages over traditional silicon in future electronics but are hampered by the prominent high contact resistance of metal-TMD interfaces, especially for p-type TMDs. Here, we present high-performance p-type MoTe2 field-effect transistors via a nondestructive van der Waals (vdW) transfer process, establishing low contact resistance between the 2D MoTe2 semiconductor and the PtTe2 semimetal. The integration of PtTe2 as contacts in MoTe2 field-effect transistors leads to significantly improved electrical characteristics compared to conventional metal contacts, evidenced by a mobility increase to 80 cm2 V-1 s-1, an on-state current rise to 5.0 μA/μm, and a reduction in Schottky barrier height (SBH) to 48 meV. Such a low SBH in quasi-van der Waals contacts can be assigned to the low electrical resistivity of PtTe2 and the high efficiency of carrier injection at the 2D semimetal/2D semiconductor interfaces. Imaging via transmission electron microscopy reveals that the 2D semimetal/two-dimensional semiconductor interfaces are atomically flat and exceptionally clean. This interface engineering strategy could enable low-resistance contacts based on vdW architectures in a facile manner, providing opportunities for 2D materials for next-generation optoelectronics and electronics.
Collapse
Affiliation(s)
- Ze Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Xingkun Peng
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jialong Lin
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Chuanlun Zhang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Baoshan Tang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jie Zhang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Weifeng Yang
- Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Luo Y, Lu H, Huang J, He L, Chen H, Yuan C, Xu Y, Zeng B, Dai L. A Molecular Coordination Strategy for Regulating the Interface of MoS 2 Field Effect Transistors. J Am Chem Soc 2024; 146:9709-9720. [PMID: 38546406 DOI: 10.1021/jacs.3c13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemically modifying monolayer two-dimensional transition metal dichalcogenides (TMDs) with organic molecules provides a wide range of possibilities to regulate the electronic and optoelectronic performance of both materials and devices. However, it remains challenging to chemically attach organic molecules to monolayer TMDs without damaging their crystal structures. Herein, we show that the Mo atoms of monolayer MoS2 (1L-MoS2) in defect states can coordinate with both catechol and 1,10-phenanthroline (Phen) groups, affording a facile route to chemically modifying 1L-MoS2. Through the design of two isomeric molecules (LA2 and LA5) comprising catechol and Phen groups, we show that attaching organic molecules to Mo atoms via coordinative bonds has no negative effect on the crystal structure of 1L-MoS2. Both theoretical calculation and experiment results indicate that the coordinative strategy is beneficial for (i) repairing sulfur vacancies and passivating defects; (ii) achieving a long-term and stable n-doping effect; and (iii) facilitating the electron transfer. Field effect transistors (FETs) based on the coordinatively modified 1L-MoS2 show high electron mobilities up to 120.3 cm2 V-1 s-1 with impressive current on/off ratios over 109. Our results indicate that coordinatively attaching catechol- or Phen-bearing molecules may be a general method for the nondestructive modification of TMDs.
Collapse
|
9
|
Lv H, Chu L, Lu P, Lu N, Cai X, Du H, Chen F. Photothermionic Effect-Assisted Ultrafast Charge Transfer in NbS 2/MoS 2 Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16669-16677. [PMID: 38514924 DOI: 10.1021/acsami.3c19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures (vdW HSs) composed of transition metal dichalcogenides (TMDCs) have emerged as frontrunners in the optoelectronics field, owing to their exceptional optical and electrical properties. Recent research on the intrinsic interlayer charge transfer mechanism has been primarily focused on the Type II HSs, while metal-semiconductor (MS) vertical HSs, promising for advancing photodetector technology, have received comparatively less attention. Here, we reveal the first experimental observation of photothermionic effect-assisted ultrafast interlayer charge transfer in the NbS2/MoS2 heterostructure using femtosecond transient absorption technology and first-principles calculations, effectively ignoring the Schottky barrier height. We demonstrate that within 500 fs, charge transfer occurs from NbS2 to MoS2 in the heterostructure, resulting in supplementary carrier generation in the visible spectrum when excited with infrared light below the MoS2 bandgap, at wavelengths of 1030 and 1500 nm. Such promising characteristics of 2D NbS2-semiconductor heterostructures offer a potential platform for synergistically combining low contact resistance with broadband photocarrier generation, marking a significant advancement in optoelectronics and light harvesting.
Collapse
Affiliation(s)
- Hengyue Lv
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lingrui Chu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Lu
- School of Physics, Shandong University, Jinan 250100, China
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaofan Cai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haoyang Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Wang D, Tan C, Wang S, Yang Z, Yang L, Wang Z. Sm and Gd Contacts in 2D Semiconductors for High-Performance Electronics and Spintronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14064-14071. [PMID: 38452753 DOI: 10.1021/acsami.3c19260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Two-dimensional (2D) semiconductors have attracted great attention due to their rich electronic properties and even been considered to have the potential to extend Moore's Law. However, the Schottky barrier between the metal and 2D semiconductor is formed due to the metal-induced gap states (MIGS), which greatly hinder the development of 2D semiconductor transistors in large-scale integrated circuits. Meanwhile, most air-stable 2D semiconductors are nonmagnetic, limiting the possibility of spintronic application. Here, we report a new strategy to suppress the MIGS and reduce the Schottky barrier height on 2D semiconductors (MoS2, WS2, and WSe2) by using lanthanide metal (Sm and Gd) contacts. It was found the lanthanide contacts exhibit a good Ohmic property with a near-zero Schottky barrier. As a result, the carrier mobility of MoS2 transistors reaches 118 cm2/(V s). Furthermore, Gd-contact MoS2 transistors show the typical magnetic property where the magnetoresistance reaches 2.7% at 5 K. By studying its spin valve effect, it was demonstrated that the nonlocal magnetoresistance is 4.1% and spin polarization is 3.25%. This study provides a promising pathway for high-performance 2D electronic and spintronics, which may open a new strategy for future computing-in-memory architecture.
Collapse
Affiliation(s)
- Dong Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shaoyuan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhihao Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Yin L, Cheng R, Ding J, Jiang J, Hou Y, Feng X, Wen Y, He J. Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits. ACS NANO 2024; 18:7739-7768. [PMID: 38456396 DOI: 10.1021/acsnano.3c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiahui Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yutang Hou
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| |
Collapse
|
12
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Zhang W, Kong C, Zhang X, Wang Q, Xue W. Surface plasmon enhancement in silver nanowires and bilayer two-dimensional materials. NANOSCALE 2024; 16:4275-4280. [PMID: 38349082 DOI: 10.1039/d3nr05810g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In order to improve the low light absorption of two-dimensional (2D) transition metal dichalcogenides (TMDCs), surface plasmon (SP) nanostructures have been widely studied. However, the impact of interlayer twist on such nanostructures has rarely been studied. Here, we construct two different composite structures of silver nanowires (Ag NWs) and pristine bilayer MoS2 (pBLM) or twisted bilayer MoS2 (tBLM). The interlayer twist can further promote the light utilization of MoS2, resulting in an ∼4-fold higher spectral enhancement in Ag/tBLM than that in Ag/pBLM. In addition, the photocurrent and detectivity of the phototransistor based on the Ag/tBLM composite structure were improved by 7-fold and ∼100-fold, respectively, compared to those of the Ag/pBLM phototransistor. Theoretical simulations show that the enhancement of photocurrent can be attributed to the enhancement of the local electric field at the interface between Ag NWs and the tBLM film, which is called the 'hot spot'. These results provide a reference for understanding the modulation mechanism of SPs and interlayer twist on the optoelectronic properties of 2D materials.
Collapse
Affiliation(s)
- Weibin Zhang
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Cunwei Kong
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinfeng Zhang
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
- Jiangsu Zorrun Semiconductor Co., Ltd, Nantong 226500, China
| | - Quan Wang
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wei Xue
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
14
|
Wong H, Zhang J, Liu J. Contacts at the Nanoscale and for Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:386. [PMID: 38392759 PMCID: PMC10893407 DOI: 10.3390/nano14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Contact scaling is a major challenge in nano complementary metal-oxide-semiconductor (CMOS) technology, as the surface roughness, contact size, film thicknesses, and undoped substrate become more problematic as the technology shrinks to the nanometer range. These factors increase the contact resistance and the nonlinearity of the current-voltage characteristics, which could limit the benefits of the further downsizing of CMOS devices. This review discusses issues related to the contact size reduction of nano CMOS technology and the validity of the Schottky junction model at the nanoscale. The difficulties, such as the limited doping level and choices of metal for band alignment, Fermi-level pinning, and van der Waals gap, in achieving transparent ohmic contacts with emerging two-dimensional materials are also examined. Finally, various methods for improving ohmic contacts' characteristics, such as two-dimensional/metal van der Waals contacts and hybrid contacts, junction doping technology, phase and bandgap modification effects, buffer layers, are highlighted.
Collapse
Affiliation(s)
- Hei Wong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jieqiong Zhang
- Hubei Jiu Feng Shan Laboratory, Wuhan 430074, China; (J.Z.); (J.L.)
| | - Jun Liu
- Hubei Jiu Feng Shan Laboratory, Wuhan 430074, China; (J.Z.); (J.L.)
| |
Collapse
|
15
|
Ghani M, Sarkar S, Lee JI, Zhu Y, Yan H, Wang Y, Chhowalla M. Metal Films on Two-Dimensional Materials: van der Waals Contacts and Raman Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7399-7405. [PMID: 38318783 PMCID: PMC10875649 DOI: 10.1021/acsami.3c15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Electronic devices based on two-dimensional (2D) materials will need ultraclean and defect-free van der Waals (vdW) contacts with three-dimensional (3D) metals. It is therefore important to understand how vdW metal films deposit on 2D surfaces. Here, we study the growth and nucleation of vdW metal films of indium (In) and non-vdW metal films of gold (Au), deposited on 2D MoS2 and graphene. In follows a 2D growth mode in contrast to Au that follows a 3D growth mode. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to image the morphology of metal clusters during growth and quantify the nucleation density. As compared to Au, In atoms exhibit nearly 50 times higher diffusivity (3.65 × 10-6 μm-2 s-1) and half the nucleation density (64.9 ± 2.46 μm-2), leading to larger grain sizes (∼60 nm for 5 nm In on monolayer MoS2). The grain size of In can be further increased by reducing the 2D surface roughness, while the grain size for Au is limited by its high nucleation density due to the creation of interface defects during deposition. The vdW gap between In and MoS2 and graphene leads to strong enhancement (>103) in their Raman signal intensity due to localized surface plasmon resonance. In the absence of a vdW gap, the plasmon-mediated enhancement in Raman does not occur.
Collapse
Affiliation(s)
- Maheera
Abdul Ghani
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Soumya Sarkar
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Jung-In Lee
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Yiru Zhu
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Han Yan
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Yan Wang
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Manish Chhowalla
- Department of Materials Science
& Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| |
Collapse
|
16
|
Lin WH, Li CS, Wu CI, Rossman GR, Atwater HA, Yeh NC. Dramatically Enhanced Valley-Polarized Emission by Alloying and Electrical Tuning of Monolayer WTe 2 x S 2(1- x ) Alloys at Room Temperature with 1T'-WTe 2 -Contact. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304890. [PMID: 37974381 PMCID: PMC10787083 DOI: 10.1002/advs.202304890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Monolayer ternary tellurides based on alloying different transition metal dichalcogenides (TMDs) can result in new two-dimensional (2D) materials ranging from semiconductors to metals and superconductors with tunable optical and electrical properties. Semiconducting WTe2 x S2(1- x ) monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with circularly polarized light (CPL). The degree of valley polarization (DVP) under the excitation of CPL represents the purity of valley polarized photoluminescence (PL), a critical parameter for opto-valleytronic applications. Here, new strategies to efficiently tailor the valley-polarized PL from semiconducting monolayer WTe2 x S2(1- x ) at room temperature (RT) through alloying and back-gating are presented. The DVP at RT is found to increase drastically from < 5% in WS2 to 40% in WTe0.12 S1.88 by Te-alloying to enhance the spin-orbit coupling. Further enhancement and control of the DVP from 40% up to 75% is demonstrated by electrostatically doping the monolayer WTe0.12 S1.88 via metallic 1T'-WTe2 electrodes, where the use of 1T'-WTe2 substantially lowers the Schottky barrier height (SBH) and weakens the Fermi-level pinning of the electrical contacts. The demonstration of drastically enhanced DVP and electrical tunability in the valley-polarized emission from 1T'-WTe2 /WTe0.12 S1.88 heterostructures paves new pathways towards harnessing valley excitons in ultrathin valleytronic devices for RT applications.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chia-Shuo Li
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 106, P. R. China
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 106, P. R. China
| | - George R Rossman
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry A Atwater
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nai-Chang Yeh
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
17
|
Yan ZY, Hou Z, Xue KH, Tian H, Lu T, Xue J, Wu F, Zhao R, Shao M, Yan J, Yan A, Wang Z, Shen P, Zhao M, Miao X, Lin Z, Liu H, Yang Y, Ren TL. Landauer-QFLPS Model for Mixed Schottky-Ohmic Contact Two-Dimensional Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303734. [PMID: 37814361 DOI: 10.1002/advs.202303734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Indexed: 10/11/2023]
Abstract
Two-dimensional material-based field-effect transistors (2DM-FETs) are playing a revolutionary role in electronic devices. However, before electronic design automation (EDA) for 2DM-FETs can be achieved, it remains necessary to determine how to incorporate contact transports into model. Reported methods compromise between physical intelligibility and model compactness due to the heterojunction nature. To address this, quasi-Fermi-level phase space theory (QFLPS) is generalized to incorporate contact transports using the Landauer formula. It turns out that the Landauer-QFLPS model effectively overcomes the issue of concern. The proposed new formula can describe 2DM-FETs with Schottky or Ohmic contacts with superior accuracy and efficiency over previous methods, especially when describing non-monotonic drain conductance characteristics. A three-bit threshold inverter quantizer (TIQ) circuit is fabricated using ambipolar black phosphorus and it is demonstrated that the model accurately predicts circuit performance. The model could be very effective and valuable in the development of 2DM-FET-based integrated circuits.
Collapse
Affiliation(s)
- Zhao-Yi Yan
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhan Hou
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Kan-Hao Xue
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - He Tian
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian Lu
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Junying Xue
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wu
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Ruiting Zhao
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Minghao Shao
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Jianlan Yan
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Anzhi Yan
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhenze Wang
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Penghui Shen
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Mingyue Zhao
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Zhaoyang Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Houfang Liu
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Hou T, Li D, Qu Y, Hao Y, Lai Y. The Role of Carbon in Metal-Organic Chemical Vapor Deposition-Grown MoS 2 Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7030. [PMID: 37959627 PMCID: PMC10647219 DOI: 10.3390/ma16217030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Acquiring homogeneous and reproducible wafer-scale transition metal dichalcogenide (TMDC) films is crucial for modern electronics. Metal-organic chemical vapor deposition (MOCVD) offers a promising approach for scalable production and large-area integration. However, during MOCVD synthesis, extraneous carbon incorporation due to organosulfur precursor pyrolysis is a persistent concern, and the role of unintentional carbon incorporation remains elusive. Here, we report the large-scale synthesis of molybdenum disulfide (MoS2) thin films, accompanied by the formation of amorphous carbon layers. Using Raman, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM), we confirm how polycrystalline MoS2 combines with extraneous amorphous carbon layers. Furthermore, by fabricating field-effect transistors (FETs) using the carbon-incorporated MoS2 films, we find that traditional n-type MoS2 can transform into p-type semiconductors owing to the incorporation of carbon, a rare occurrence among TMDC materials. This unexpected behavior expands our understanding of TMDC properties and opens up new avenues for exploring novel device applications.
Collapse
Affiliation(s)
- Tianyu Hou
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Di Li
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Qu
- The Sixth Element (Changzhou) Materials Technology Co., Ltd. and Jiangsu Jiangnan Xiyuan Graphene Technology Co., Ltd., Changzhou 213161, China
| | - Yufeng Hao
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yun Lai
- National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Xiao J, Chen K, Zhang X, Liu X, Yu H, Gao L, Hong M, Gu L, Zhang Z, Zhang Y. Approaching Ohmic Contacts for Ideal Monolayer MoS 2 Transistors Through Sulfur-Vacancy Engineering. SMALL METHODS 2023; 7:e2300611. [PMID: 37551044 DOI: 10.1002/smtd.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Field-effect transistors (FETs) made of monolayer 2D semiconductors (e.g., MoS2 ) are among the basis of the future modern wafer chip industry. However, unusually high contact resistances at the metal-semiconductor interfaces have seriously limited the improvement of monolayer 2D semiconductor FETs so far. Here, a high-scale processable strategy is reported to achieve ohmic contact between the metal and monolayer MoS2 with a large number of sulfur vacancies (SVs) by using simple sulfur-vacancy engineering. Due to the successful doping of the contact regions by introducing SVs, the contact resistance of monolayer MoS2 FET is as low as 1.7 kΩ·µm. This low contact resistance enables high-performance MoS2 FETs with ultrahigh carrier mobility of 153 cm2 V-1 s-1 , a large on/off ratio of 4 × 109 , and high saturation current of 342 µA µm-1 . With the comprehensive investigation of different SV concentrations by adjusting the plasma duration, it is also demonstrated that the SV-increased electron doping, with its resulting reduced Schottky barrier, is the dominant factor driving enhanced electrical performance. The work provides a simple method to promote the development of industrialized atomically thin integrated circuits.
Collapse
Affiliation(s)
- Jiankun Xiao
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kuanglei Chen
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaozhi Liu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Li Gao
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lin Gu
- Collaborative Innovation Center of Quantum Matter, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
20
|
Wen X, Lei W, Li X, Di B, Zhou Y, Zhang J, Zhang Y, Li L, Chang H, Zhang W. ZrTe 2 Compound Dirac Semimetal Contacts for High-Performance MoS 2 Transistors. NANO LETTERS 2023; 23:8419-8425. [PMID: 37708326 DOI: 10.1021/acs.nanolett.3c01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Recent investigations reveal elemental semimetal (Bi and Sb) contacts fabricated with conventional deposition processes exhibit a remarkable capacity of approaching the quantum limit in two-dimensional (2D) semiconductor contacts, implying it might be an optimal option to solve the contact issue of 2D semiconductor electronics. Here, we demonstrate novel compound Dirac semimetal ZrTe2 contacts to MoS2 constructed by a nondestructive van der Waals (vdW) transfer process, exhibiting excellent ohmic contact characteristics with a negligible Schottky barrier. The band hybridization between ZrTe2 and MoS2 was verified. The bilayer MoS2 transistor with a 250 nm channel length on a 20 nm thick hexagonal boron nitride (h-BN) exhibits an ION/IOFF current ratio over 105 and an on-state current of 259 μA μm-1. The current results reveal that 2D compound semimetals with vdW contacts can offer a diverse selection of proper semimetals with adjustable work functions for the next-generation 2D-based beyond-silicon electronics.
Collapse
Affiliation(s)
- Xiaokun Wen
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Wenyu Lei
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xinlu Li
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Boyuan Di
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Ye Zhou
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jia Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Yuhui Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Liufan Li
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Haixin Chang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Wenfeng Zhang
- Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
21
|
Wang M, Luo R, Liu Y, Zhao X, Zhuang X, Xu WW, Chen M, Liu P. An unexpected interfacial Mo-rich phase in 2D molybdenum disulfide and 3D gold heterojunctions. NANOSCALE 2023; 15:14906-14911. [PMID: 37654188 DOI: 10.1039/d3nr01818k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The interface engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) and metals has been regarded as a promising strategy to modulate their outstanding electrical and optoelectronic properties. Chemical Vapour Deposition (CVD) is an effective strategy to regulate the contact interface between TMDs and metals via directly growing 2D TMDs on a 3D metal substrate. Nevertheless, the underlying mechanisms of interfacial phase formation and evolution during TMD growth on a metallic substrate are less known. In this work, we found a 2D non-van der Waals (vdW) Mo-rich phase (MoNSN+1) during thermal sulfidation of a Mo-Au surface alloy to molybdenum disulfide (MoS2) in a S-poor environment. Systematic atomic-scale observations reveal that the periodic Mo and S atomic layers are arranged separating from each other in the non-vdW Mo-rich phase, and the Mo-rich phase preferentially nucleates between outmost 2D MoS2 and a 3D nanostructured Au substrate which possesses copious surface steps and kinks. Theoretical calculations demonstrate that the appearance of the Mo-rich phase with a unique metallic nature causes an n-type contact interface with an ultralow transition energy barrier height. This study may help understand the formation mechanism of the interfacial second phase during the epitaxial growth of 2D-TMDs on 3D nanostructured metals, and provide a new approach to tune the Schottky barrier height by the design of the interfacial phase structure at the heterojunction.
Collapse
Affiliation(s)
- Mengjia Wang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Ruichun Luo
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Xiaoran Zhao
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xiaodong Zhuang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkin University, Baltimore, MD 21218, USA.
| | - Pan Liu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
22
|
Mahlouji R, Kessels WMME, Sagade AA, Bol AA. ALD-grown two-dimensional TiS x metal contacts for MoS 2 field-effect transistors. NANOSCALE ADVANCES 2023; 5:4718-4727. [PMID: 37705798 PMCID: PMC10496909 DOI: 10.1039/d3na00387f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023]
Abstract
Metal contacts to MoS2 field-effect transistors (FETs) play a determinant role in the device electrical characteristics and need to be chosen carefully. Because of the Schottky barrier (SB) and the Fermi level pinning (FLP) effects that occur at the contact/MoS2 interface, MoS2 FETs often suffer from high contact resistance (Rc). One way to overcome this issue is to replace the conventional 3D bulk metal contacts with 2D counterparts. Herein, we investigate 2D metallic TiSx (x ∼ 1.8) as top contacts for MoS2 FETs. We employ atomic layer deposition (ALD) for the synthesis of both the MoS2 channels as well as the TiSx contacts and assess the electrical performance of the fabricated devices. Various thicknesses of TiSx are grown on MoS2, and the resultant devices are electrically compared to the ones with the conventional Ti metal contacts. Our findings show that the replacement of 5 nm Ti bulk contacts with only ∼1.2 nm of 2D TiSx is beneficial in improving the overall device metrics. With such ultrathin TiSx contacts, the ON-state current (ION) triples and increases to ∼35 μA μm-1. Rc also reduces by a factor of four and reaches ∼5 MΩ μm. Such performance enhancements were observed despite the SB formed at the TiSx/MoS2 interface is believed to be higher than the SB formed at the Ti/MoS2 interface. These device metric improvements could therefore be mainly associated with an increased level of electrostatic doping in MoS2, as a result of using 2D TiSx for contacting the 2D MoS2. Our findings are also well supported by TCAD device simulations.
Collapse
Affiliation(s)
- Reyhaneh Mahlouji
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Wilhelmus M M Erwin Kessels
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Abhay A Sagade
- Department of Physics and Nanotechnology, Laboratory for Advanced Nanoelectronic Devices, SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603 203 Tamil Nadu India
| | - Ageeth A Bol
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
23
|
Mondal A, Biswas C, Park S, Cha W, Kang SH, Yoon M, Choi SH, Kim KK, Lee YH. Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01497-x. [PMID: 37666942 DOI: 10.1038/s41565-023-01497-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/01/2023] [Indexed: 09/06/2023]
Abstract
Beyond-silicon technology demands ultrahigh performance field-effect transistors. Transition metal dichalcogenides provide an ideal material platform, but the device performances such as the contact resistance, on/off ratio and mobility are often limited by the presence of interfacial residues caused by transfer procedures. Here, we show an ideal residue-free transfer approach using polypropylene carbonate with a negligible residue coverage of ~0.08% for monolayer MoS2 at the centimetre scale. By incorporating a bismuth semimetal contact with an atomically clean monolayer MoS2 field-effect transistor on hexagonal boron nitride substrate, we obtain an ultralow Ohmic contact resistance of ~78 Ω µm, approaching the quantum limit, and a record-high on/off ratio of ~1011 at 15 K. Such an ultra-clean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting transition metal dichalcogenides.
Collapse
Affiliation(s)
- Ashok Mondal
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chandan Biswas
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sehwan Park
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wujoon Cha
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seoung-Hun Kang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Kang Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Choi D, Jeon J, Park TE, Ju BK, Lee KY. Schottky barrier height engineering on MoS 2 field-effect transistors using a polymer surface modifier on a contact electrode. DISCOVER NANO 2023; 18:80. [PMID: 37382714 DOI: 10.1186/s11671-023-03855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023]
Abstract
Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS2 field-effect transistors (FETs) by lowering the work function (Фm = Evacuum - EF,metal) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (-NH2), as a surface modifier of the Au (ФAu = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS2 FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.
Collapse
Affiliation(s)
- Dongwon Choi
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Electrical Engineering, Korea University, Seoul, 02841, South Korea
| | - Jeehoon Jeon
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Tae-Eon Park
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Byeong-Kwon Ju
- Department of Electrical Engineering, Korea University, Seoul, 02841, South Korea.
| | - Ki-Young Lee
- Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| |
Collapse
|
25
|
Wu Y, Xin Z, Zhang Z, Wang B, Peng R, Wang E, Shi R, Liu Y, Guo J, Liu K, Liu K. All-Transfer Electrode Interface Engineering Toward Harsh-Environment-Resistant MoS 2 Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210735. [PMID: 36652589 DOI: 10.1002/adma.202210735] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Indexed: 05/05/2023]
Abstract
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.
Collapse
Affiliation(s)
- Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yiqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Ahmad W, Wu J, Zhuang Q, Neogi A, Wang Z. Research Process on Photodetectors based on Group-10 Transition Metal Dichalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207641. [PMID: 36658722 DOI: 10.1002/smll.202207641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiandong Zhuang
- Physics Department, Lancaster University, Lancaster, LA14YB, UK
| | - Arup Neogi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
27
|
Li Z, Zheng Y, Li G, Wang H, Zhu W, Wang H, Chen Z, Yuan Y, Zeng XC, Wu Y. Resolving Interface Barrier Deviation from the Schottky-Mott Rule: A Mitigation Strategy via Engineering MoS 2-Metal van der Waals Contact. J Phys Chem Lett 2023; 14:2940-2949. [PMID: 36930804 DOI: 10.1021/acs.jpclett.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Schottky barrier (SB) in the ultraclean van der Waals contact between two-dimensional (2D) MoS2 and three-dimensional (3D) indium (In) strikingly deviates from the Schottky-Mott limit (SML). Herein, on the basis of first-principles calculation, the origin of the SB deviation is brought to bear, as well as a strategy for mitigating the SB deviation. In light of the good agreement between the SB and the corrected SB by interface potential difference (ΔV) and Fermi -level shift (ΔEF) based on the SML, the SB deviation is attributed to the combined effects of ΔV and ΔEF. Furthermore, when a Au, Sc, or Ti thin film is coated on the back side of In, the SB deviation and the sum of ΔV and ΔEF decrease similarly. Importantly, in the Ti coating situation, the SB is reduced to 0.12 eV, notably smaller than the value of 0.30 eV in the Au coating case. This interface engineering can be generalized to regulate the SB between a 2D semiconductor and a 3D alloy.
Collapse
Affiliation(s)
- Zhongjun Li
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
| | - Yahui Zheng
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Guojun Li
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Hanxi Wang
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Weiduo Zhu
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Haidi Wang
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhao Chen
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yupeng Yuan
- School of Materials Science and Engineering, Anhui University, Hefei 2300601, Anhui, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Department of Chemistry, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States
| | - Yucheng Wu
- School of Physics, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
28
|
Zhuo F, Wu J, Li B, Li M, Tan CL, Luo Z, Sun H, Xu Y, Yu Z. Modifying the Power and Performance of 2-Dimensional MoS 2 Field Effect Transistors. RESEARCH (WASHINGTON, D.C.) 2023; 6:0057. [PMID: 36939429 PMCID: PMC10016345 DOI: 10.34133/research.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Over the past 60 years, the semiconductor industry has been the core driver for the development of information technology, contributing to the birth of integrated circuits, Internet, artificial intelligence, and Internet of Things. Semiconductor technology has been evolving in structure and material with co-optimization of performance-power-area-cost until the state-of-the-art sub-5-nm node. Two-dimensional (2D) semiconductors are recognized by the industry and academia as a hopeful solution to break through the quantum confinement for the future technology nodes. In the recent 10 years, the key issues on 2D semiconductors regarding material, processing, and integration have been overcome in sequence, making 2D semiconductors already on the verge of application. In this paper, the evolution of transistors is reviewed by outlining the potential of 2D semiconductors as a technological option beyond the scaled metal oxide semiconductor field-effect transistors. We mainly focus on the optimization strategies of mobility (μ), equivalent oxide thickness (EOT), and contact resistance (RC ), which enables high ON current (Ion ) with reduced driving voltage (Vdd ). Finally, we prospect the semiconductor technology roadmap by summarizing the technological development of 2D semiconductors over the past decade.
Collapse
Affiliation(s)
- Fulin Zhuo
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Wu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Binhong Li
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Institute of Microelectronics,
Chinese Academy of Sciences, Beijing 100029, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Moyang Li
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chee Leong Tan
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Huabin Sun
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Yong Xu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| | - Zhihao Yu
- College of Integrated Circuit Science and Engineering,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China
- Address correspondence to: (B.L.); (Z.L.); (H.S.); (Y.X.); (Z.Y.)
| |
Collapse
|
29
|
Hwa Y, Chee SS. Improvement of Visible Photodetection of Chemical Vapor Deposition-Grown MoS 2 Devices via Graphene/Au Contacts. SENSORS (BASEL, SWITZERLAND) 2022; 22:9687. [PMID: 36560055 PMCID: PMC9783588 DOI: 10.3390/s22249687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) molybdenum disulfide (MoS2) is a promising material for constructing high-performance visible photosensor arrays because of its high mobility and scale-up process. These distinct properties enable the construction of practical optoelectrical sensor arrays. However, contact engineering for MoS2 films is not still optimized. In this work, we inserted a graphene interlayer between the MoS2 films and Au contacts (graphene/Au) via the wet-transfer method to boost the device performance. Using graphene/Au contacts, outstanding electrical properties, namely field-effect mobility of 12.06 cm2/V∙s, on/off current ratio of 1.0 × 107, and responsivity of 610 A/W under illumination at 640 nm, were achieved. These favorable results were from the Fermi-level depinning effect induced by the graphene interlayer. Our results may help to construct large-area photonic sensor arrays based on 2D materials.
Collapse
Affiliation(s)
- Yeongsik Hwa
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
- School of Materials Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang-Soo Chee
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
| |
Collapse
|
30
|
Shen Y, Dong Z, Sun Y, Guo H, Wu F, Li X, Tang J, Liu J, Wu X, Tian H, Ren TL. The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201916. [PMID: 35535757 DOI: 10.1002/adma.202201916] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
2D transition metal chalcogenide (TMDC) materials, such as MoS2 , have recently attracted considerable research interest in the context of their use in ultrascaled devices owing to their excellent electronic properties. Microprocessors and neural network circuits based on MoS2 have been developed at a large scale but still do not have an advantage over silicon in terms of their integrated density. In this study, the current structures, contact engineering, and doping methods for 2D TMDC materials for the scaling-down process and performance optimization are reviewed. Devices are introduced according to a new mechanism to provide the comprehensive prospects for the use of MoS2 beyond the traditional complementary-metal-oxide semiconductor in order to summarize obstacles to the goal of developing high-density and low-power integrated circuits (ICs). Finally, prospects for the use of MoS2 in large-scale ICs from the perspectives of the material, system performance, and application to nonlogic functionalities such as sensor circuits and analogous circuits, are briefly analyzed. The latter issue is along the direction of "more than Moore" research.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist) School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zuoyuan Dong
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yabin Sun
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Hao Guo
- Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi, 030051, China
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist) School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Xianglong Li
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Jun Tang
- Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi, 030051, China
| | - Jun Liu
- Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi, 030051, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist) School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist) School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Zhang Y, Shen W, Wu S, Tang W, Shu Y, Ma K, Zhang B, Zhou P, Wang S. High-Speed Transition-Metal Dichalcogenides Based Schottky Photodiodes for Visible and Infrared Light Communication. ACS NANO 2022; 16:19187-19198. [PMID: 36305492 DOI: 10.1021/acsnano.2c08394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to their atomically ultrathin thickness, the development of high-performance transition-metal dichalcogenides (TMDCs) based photodetectors demands device designs distinct from architectures adopted in conventional bulk semiconductor devices. Here, we demonstrate a field-induced Schottky barrier photodiode with three different TMDC materials, WSe2, MoTe2, and WS2. Owing to the high gate efficiency of a high-κ dielectric film, the Schottky barrier at metal contacts is effectively modulated by external bias, giving rise to a strong diode-like rectifying characteristic with high current on/off ratio. The WSe2 photodiode shows a linear dynamic range of 112 dB, a responsivity of 0.17 A/W, and response time of 8 ns. When this fast WSe2 device is employed for visible light communication data linking, a maximum real-time data transmission rate of 110 Mbps is achieved. Meanwhile, infrared light communication was also realized with a maximum data rate of 30 Mbps using a field-induced MoTe2 Schottky barrier photodiode as a light sensor. This work provides a general CMOS-compatible and controllable fabrication strategy for TMDC-based photodetectors.
Collapse
Affiliation(s)
- Youwei Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen518057, China
| | - Wang Shen
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Su Wu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Weijia Tang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yantao Shu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Kankan Ma
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Butian Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai200433, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen518057, China
| |
Collapse
|
32
|
Guo M, Brewster Ii JT, Zhang H, Zhao Y, Zhao Y. Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction. ACS NANO 2022; 16:17778-17801. [PMID: 36355033 DOI: 10.1021/acsnano.2c08650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microelectromechanical-system (MEMS)-based semiconductor gas sensors are considered one of the fastest-growing, interdisciplinary high technologies during the post-Moore era. Modern advancements within this arena include wearable electronics, Internet of Things, and artificial brain-inspired intelligence, among other modalities, thus bringing opportunities to drive MEMS-based gas sensors with higher performance, lower costs, and wider applicability. However, the high demand for miniature and micropower sensors with unified processes on a single chip imposes great challenges. This review focuses on recent developments and pitfalls in MEMS-based micro- and nanoscale gas sensors and details future trends. We also cover the background of the topic, seminal efforts, current applications and challenges, and opportunities for next-generation systems.
Collapse
Affiliation(s)
- Mengya Guo
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - James T Brewster Ii
- Division of Medicinal Chemistry, Pfizer Boulder Research & Development, Boulder, Colorado80301, United States
| | - Huacheng Zhang
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Yuxin Zhao
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
33
|
Lee J, Hassan SZ, Lee S, Sim HR, Chung DS. Azide-functionalized ligand enabling organic-inorganic hybrid dielectric for high-performance solution-processed oxide transistors. Nat Commun 2022; 13:7021. [PMID: 36396638 PMCID: PMC9671905 DOI: 10.1038/s41467-022-34772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
We propose a highly efficient crosslinking strategy for organic-inorganic hybrid dielectric layers using azide-functionalized acetylacetonate, which covalently connect inorganic particles to polymers, enabling highly efficient inter- and intra-crosslinking of organic and inorganic inclusions, resulting in a dense and defect-free thin-film morphology. From the optimized processing conditions, we obtained an excellent dielectric strength of over 4.0 MV cm-1, a high dielectric constant of ~14, and a low surface energy of 38 mN m-1. We demonstrated the fabrication of exceptionally high-performance, hysteresis-free n-type solution-processed oxide transistors comprising an In2O3/ZnO double layer as an active channel with an electron mobility of over 50 cm2 V-1 s-1, on/off ratio of ~107, subthreshold swing of 108 mV dec-1, and high bias-stress stability. From temperature-dependent I-V analyses combined with charge transport mechanism analyses, we demonstrated that the proposed hybrid dielectric layer provides percolation-limited charge transport for the In2O3/ZnO double layer under field-effect conditions.
Collapse
Affiliation(s)
- Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sangjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Ryun Sim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
34
|
Shin DH, You YG, Jo SI, Jeong GH, Campbell EEB, Chung HJ, Jhang SH. Low-Power Complementary Inverter Based on Graphene/Carbon-Nanotube and Graphene/MoS 2 Barristors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3820. [PMID: 36364596 PMCID: PMC9658580 DOI: 10.3390/nano12213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The recent report of a p-type graphene(Gr)/carbon-nanotube(CNT) barristor facilitates the application of graphene barristors in the fabrication of complementary logic devices. Here, a complementary inverter is presented that combines a p-type Gr/CNT barristor with a n-type Gr/MoS2 barristor, and its characteristics are reported. A sub-nW (~0.2 nW) low-power inverter is demonstrated with a moderate gain of 2.5 at an equivalent oxide thickness (EOT) of ~15 nm. Compared to inverters based on field-effect transistors, the sub-nW power consumption was achieved at a much larger EOT, which was attributed to the excellent switching characteristics of Gr barristors.
Collapse
Affiliation(s)
- Dong-Ho Shin
- School of Physics, Konkuk University, Seoul 05029, Korea
| | - Young Gyu You
- School of Physics, Konkuk University, Seoul 05029, Korea
| | - Sung Il Jo
- Department of Advanced Materials Science and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Goo-Hwan Jeong
- Department of Advanced Materials Science and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Eleanor E. B. Campbell
- EaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, UK
- Department of Physics, Ehwa Womans University, Seoul 03760, Korea
| | | | - Sung Ho Jhang
- School of Physics, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
35
|
Pak S, Son J, Kim T, Lim J, Hong J, Lim Y, Heo CJ, Park KB, Jin YW, Park KH, Cho Y, Cha S. Facile one-pot iodine gas phase doping on 2D MoS 2/CuS FET at room temperature. NANOTECHNOLOGY 2022; 34:015702. [PMID: 36222531 DOI: 10.1088/1361-6528/ac952f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Electronic devices composed of semiconducting two-dimensional (2D) materials and ultrathin 2D metallic electrode materials, accompanying synergistic interactions and extraordinary properties, are becoming highly promising for future flexible and transparent electronic and optoelectronic device applications. Unlike devices with bulk metal electrode and 2D channel materials, devices with ultrathin 2D electrode and 2D channel are susceptible to chemical reactions in both channel and electrode surface due to the high surface to volume ratio of the 2D structures. However, so far, the effect of doping was primary concerned on the channel component, and there is lack of understanding in terms of how to modulate electrical properties of devices by engineering electrical properties of both the metallic electrode and the semiconducting channel. Here, we propose the novel, one-pot doping of the field-effect transistor (FET) based on 2D molybdenum disulfide (MoS2) channel and ultrathin copper sulfide (CuS) electrodes under mild iodine gas environment at room temperature, which simultaneously modulates electrical properties of the 2D MoS2channel and 2D CuS electrode in a facile and cost-effective way. After one-pot iodine doping, effective p-type doping of the channel and electrode was observed, which was shown through decreased off current level, improvedIon/Ioffratio and subthreshold swing value. Our results open up possibility for effectively and conveniently modulating electrical properties of FETs made of various 2D semiconductors and ultrathin contact materials without causing any detrimental damage.
Collapse
Affiliation(s)
- Sangyeon Pak
- School of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jiwon Son
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419 Republic of Korea
| | - Taehun Kim
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419 Republic of Korea
| | - Jungmoon Lim
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419 Republic of Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Younhee Lim
- Organic Materials Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Co. Ltd, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Chul-Joon Heo
- Organic Materials Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Co. Ltd, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Kyung-Bae Park
- Organic Materials Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Co. Ltd, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Yong Wang Jin
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419 Republic of Korea
| | - Kyung-Ho Park
- Convergence Technology Division, Korea Advanced Nano Fab Center, Suwon, Gyeonggi-do 16229, Republic of Korea
| | - Yuljae Cho
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minghang District, Shanghai 200240, People's Republic of China
| | - SeungNam Cha
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419 Republic of Korea
| |
Collapse
|
36
|
Sun Z, Pang CS, Wu P, Hung TYT, Li MY, Liew SL, Cheng CC, Wang H, Wong HSP, Li LJ, Radu I, Chen Z, Appenzeller J. Statistical Assessment of High-Performance Scaled Double-Gate Transistors from Monolayer WS 2. ACS NANO 2022; 16:14942-14950. [PMID: 36094410 DOI: 10.1021/acsnano.2c05902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scaling of monolayer transition metal dichalcogenide (TMD) field-effect transistors (FETs) is an important step toward evaluating the application space of TMD materials. Although some work on ultrashort channel monolayer (ML) TMD FETs has been published, there exist no comprehensive studies that assess their performance in a statistically relevant manner, providing critical insights into the impact of the device geometry. Part of the reason for the absence of such a study is the substantial variability of TMD devices when processes are not carefully controlled. In this work, we show a statistical study of ultrashort channel double-gated ML WS2 FETs exhibiting excellent device performance and limited device-to-device variations. From a detailed analysis of cross-sectional scanning transmission electron microscopy (STEM) images and careful technology computer aided design (TCAD) simulations, we evaluated, in particular, an unexpected deterioration of the subthreshold characteristics for our shortest devices. Two potential candidates for the observed behavior were identified, i.e., buckling of the TMD on the substrate and loss of gate control due to the source geometry and the high-k dielectric between the metal gate and the metal source electrode.
Collapse
|
37
|
Choi MS, Ali N, Ngo TD, Choi H, Oh B, Yang H, Yoo WJ. Recent Progress in 1D Contacts for 2D-Material-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202408. [PMID: 35594170 DOI: 10.1002/adma.202202408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have intensively examined 2D materials (2DMs) as promising materials for use in future quantum devices due to their atomic thinness. However, a major limitation occurs when 2DMs are in contact with metals: a van der Waals (vdW) gap is generated at the 2DM-metal interfaces, which induces metal-induced gap states that are responsible for an uncontrollable Schottky barrier (SB), Fermi-level pinning (FLP), and high contact resistance (RC ), thereby substantially lowering the electronic mobility of 2DM-based devices. Here, vdW-gap-free 1D edge contact is reviewed for use in 2D devices with substantially suppressed carrier scattering of 2DMs with hexagonal boron nitride (hBN) encapsulation. The 1D contact further enables uniform carrier transport across multilayered 2DM channels, high-density transistor integration independent of scaling, and the fabrication of double-gate transistors suitable for demonstrating unique quantum phenomena of 2DMs. The existing 1D contact methods are reviewed first. As a promising technology toward the large-scale production of 2D devices, seamless lateral contacts are reviewed in detail. The electronic, optoelectronic, and quantum devices developed via 1D contacts are subsequently discussed. Finally, the challenges regarding the reliability of 1D contacts are addressed, followed by an outlook of 1D contact methods.
Collapse
Affiliation(s)
- Min Sup Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Nasir Ali
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Byungdu Oh
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
38
|
Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length. Nat Commun 2022; 13:4916. [PMID: 35995776 PMCID: PMC9395343 DOI: 10.1038/s41467-022-32582-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
The edge-to-edge connected metal-semiconductor junction (MSJ) for two-dimensional (2D) transistors has the potential to reduce the contact length while improving the performance of the devices. However, typical 2D materials are thermally and chemically unstable, which impedes the reproducible achievement of high-quality edge contacts. Here we present a scalable synthetic strategy to fabricate low-resistance edge contacts to atomic transistors using a thermally stable 2D metal, PtTe2. The use of PtTe2 as an epitaxial template enables the lateral growth of monolayer MoS2 to achieve a PtTe2-MoS2 MSJ with the thinnest possible, seamless atomic interface. The synthesized lateral heterojunction enables the reduced dimensions of Schottky barriers and enhanced carrier injection compared to counterparts composed of a vertical 3D metal contact. Furthermore, facile position-selected growth of PtTe2-MoS2 MSJ arrays using conventional lithography can facilitate the design of device layouts with high processability, while providing low contact resistivity and ultrashort transfer length on wafer scales.
Collapse
|
39
|
Zhang X, Yu H, Tang W, Wei X, Gao L, Hong M, Liao Q, Kang Z, Zhang Z, Zhang Y. All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109521. [PMID: 35165952 DOI: 10.1002/adma.202109521] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin 2D semiconductor devices are considered to have beyond-silicon potential but are severely troubled by the high Schottky barriers of the metal-semiconductor contacts, especially for p-type semiconductors. Due to the severe Fermi-level pinning effect and the lack of conventional semimetals with high work functions, their Schottky hole barriers are hardly removed. Here, an all-van-der-Waals barrier-free hole contact between p-type tellurene semiconductor and layered 1T'-WS2 semimetal is reported, which achieves a zero Schottky barrier height of 3 ± 9 meV and a high field-effect mobility of ≈1304 cm2 V-1 s-1 . The formation of such contacts can be attributed to the higher work function of ≈4.95 eV of the 1T'-WS2 semimetal, which is in sharp contrast with low work function (4.1-4.7 eV) of conventional semimetals. The study defines an available strategy for eliminating the Schottky barrier of metal-semiconductor contacts, facilitating 2D-semiconductor-based electronics and optoelectronics to extend Moore's law.
Collapse
Affiliation(s)
- Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenhui Tang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaofu Wei
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Li Gao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
40
|
Yuan X, Zhang N, Zhang T, Meng L, Zhang J, Shao J, Liu M, Hu H, Wang L. Influence of metal-semiconductor junction on the performances of mixed-dimensional MoS 2/Ge heterostructure avalanche photodetector. OPTICS EXPRESS 2022; 30:20250-20260. [PMID: 36224775 DOI: 10.1364/oe.458528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 06/16/2023]
Abstract
The two-dimensional/three-dimensional van der Waals heterostructures provide novel optoelectronic properties for the next-generation of information devices. Herein, MoS2/Ge heterojunction avalanche photodetectors are readily obtained. The device with an Ag electrode at MoS2 side exhibits more stable rectification characteristics than that with an Au electrode. The rectification radio greater than 103 and a significant avalanche breakdown are observed in the device. The responsivity of 170 and 4 A/W and the maximum gain of 320 and 13 are obtained under 532 and 1550 nm illumination, respectively. Such photoelectric properties are attributed to the carrier multiplication at a Ge/MoS2 junction due to an avalanche breakdown. The mechanism is confirmed by the Sentaurus TCAD-simulated I-V characteristics.
Collapse
|
41
|
Li H, Cheng M, Wang P, Du R, Song L, He J, Shi J. Reducing Contact Resistance and Boosting Device Performance of Monolayer MoS 2 by In Situ Fe Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200885. [PMID: 35257429 DOI: 10.1002/adma.202200885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
2D semiconductors are emerging as plausible candidates for next-generation "More-than-Moore" nanoelectronics to tackle the scaling challenge of transistors. Wafer-scale 2D semiconductors, such as MoS2 and WS2 , have been successfully synthesized recently; nevertheless, the absence of effective doping technology fundamentally results in energy barriers and high contact resistances at the metal-semiconductor interfaces, and thus restrict their practical applications. Herein, a controllable doping strategy in centimeter-sized monolayer MoS2 films is developed to address this critical issue and boost the device performance. The ultralow contact resistance and perfect Ohmic contact with metal electrodes are uncovered in monolayer Fe-doped MoS2 , which deliver excellent device performance featured with ultrahigh electron mobility and outstanding on/off current ratio. Impurity scattering is suppressed significantly thanks to the ultralow electron effective mass and appropriate doping site. Particularly, unidirectionally aligned monolayer Fe-doped MoS2 domains are prepared on 2 in. commercial c-plane sapphire, suggesting the feasibility of synthesizing wafer-scale 2D single-crystal semiconductors with outstanding device performance. This work presents the potential of high-performance monolayer transistors and enables further device downscaling and extension of Moore's law.
Collapse
Affiliation(s)
- Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Mo Cheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Peng Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruofan Du
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
42
|
Wu Q, Bagheri Tagani M, Zhang L, Wang J, Xia Y, Zhang L, Xie SY, Tian Y, Yin LJ, Zhang W, Rudenko AN, Wee ATS, Wong PKJ, Qin Z. Electronic Tuning in WSe 2/Au via van der Waals Interface Twisting and Intercalation. ACS NANO 2022; 16:6541-6551. [PMID: 35285624 DOI: 10.1021/acsnano.2c00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The transition metal dichalcogenide (TMD)-metal interfaces constitute an active part of TMD-based electronic devices with optimized performances. Despite their decisive role, current strategies for nanoscale electronic tuning remain limited. Here, we demonstrate electronic tuning in the WSe2/Au interface by twist engineering, capable of modulating the WSe2 carrier doping from an intrinsic p-type to n-type. Scanning tunneling microscope/spectroscopy gives direct evidence of enhanced interfacial interaction induced doping in WSe2 as the twist angle with respect to the topmost (100) lattice of gold changing from 15 to 0°. Taking advantage of the strong coupling interface achieved this way, we have moved a step further to realize an n-p-n-type WSe2 homojunction. The intrinsic doping of WSe2 can be recovered by germanium intercalation. Density functional theory calculations confirm that twist angle and intercalation-dependent charge transfer related doping are involved in our observations. Our work offers ways for electronically tuning the metal-2D semiconductor interface.
Collapse
Affiliation(s)
- Qilong Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Meysam Bagheri Tagani
- Department of Physics, University of Guilan, P.O. Box 41335-1914, Rasht 32504550, Iran
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Jing Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Yu Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Sheng-Yi Xie
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| | - Wen Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi & NPU Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Alexander N Rudenko
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre (GRC), National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Ping Kwan Johnny Wong
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, Shaanxi & NPU Chongqing Technology Innovation Center, Chongqing 400000, PR China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, PR China
| |
Collapse
|
43
|
Han B, Zhao Y, Ma C, Wang C, Tian X, Wang Y, Hu W, Samorì P. Asymmetric Chemical Functionalization of Top-Contact Electrodes: Tuning the Charge Injection for High-Performance MoS 2 Field-Effect Transistors and Schottky Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109445. [PMID: 35061928 DOI: 10.1002/adma.202109445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The fabrication of high-performance (opto-)electronic devices based on 2D channel materials requires the optimization of the charge injection at electrode-semiconductor interfaces. While chemical functionalization with chemisorbed self-assembled monolayers has been extensively exploited to adjust the work function of metallic electrodes in bottom-contact devices, such a strategy has not been demonstrated for the top-contact configuration, despite the latter being known to offer enhanced charge-injection characteristics. Here, a novel contact engineering method is developed to functionalize gold electrodes in top-contact field-effect transistors (FETs) via the transfer of chemically pre-modified electrodes. The source and drain Au electrodes of the molybdenum disulfide (MoS2 ) FETs are functionalized with thiolated molecules possessing different dipole moments. While the modification of the electrodes with electron-donating molecules yields a marked improvement of device performance, the asymmetric functionalization of the source and drain electrodes with different molecules with opposed dipole moment enables the fabrication of a high-performance Schottky diode with a rectification ratio of ≈103 . This unprecedented strategy to tune the charge injection in top-contact MoS2 FETs is of general applicability for the fabrication of high-performance (opto-)electronic devices, in which asymmetric charge injection is required, enabling tailoring of the device characteristics on demand.
Collapse
Affiliation(s)
- Bin Han
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Yuda Zhao
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Chun Ma
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Can Wang
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Xinzi Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Ye Wang
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
44
|
Zheng Y, Cao B, Tang X, Wu Q, Wang W, Li G. Vertical 1D/2D Heterojunction Architectures for Self-Powered Photodetection Application: GaN Nanorods Grown on Transition Metal Dichalcogenides. ACS NANO 2022; 16:2798-2810. [PMID: 35084838 DOI: 10.1021/acsnano.1c09791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Van der Waals (vdW) heterojunctions based on two-dimensional (2D) transition metal dichalcogenide (TMD) materials have attracted the attention of researchers to conduct fundamental investigations on emerging physical phenomena and expanding diverse nano-optoelectronic devices. Herein, the quasi-van der Waals epitaxial (QvdWE) growth of vertically aligned one-dimensional (1D) GaN nanorod arrays (NRAs) on TMDs/Si substrates is reported, and their vdW heterojunctions in the applications of high-performance self-powered photodetection are demonstrated accordingly. Such 1D/2D hybrid systems fully combine the advantages of the strong light absorption of 1D GaN nanoarrays and the excellent electrical properties of 2D TMD materials, boosting the photogenerated current density, which demonstrates a light on/off ratio above 105. The device exhibits a competitive photovoltaic photoresponsivity over 10 A W-1 under a weak detectable light signal without any external bias, which is attributed to the efficient photogenerated charge separation under the strong built-in potential from the type-II band alignment of GaN NRAs/TMDs. This work presents a QvdWE route to prepare 1D/2D heterostructures for the fabrication of self-powered photodetectors, which shows promising potentials for practical applications of space communications, sensing networks, and environmental monitoring.
Collapse
Affiliation(s)
- Yulin Zheng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Cao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xin Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qing Wu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Luo X, Peng Z, Wang Z, Dong M. Layer-by-Layer Growth of AA-Stacking MoS 2 for Tunable Broadband Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59154-59163. [PMID: 34856097 DOI: 10.1021/acsami.1c19906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stacking configuration has been considered as an important additional degree of freedom to tune the physical property of layered materials, such as superconductivity and interlayer excitons. However, the facile growth of highly uniform stacking configuration is still a challenge. Herein, the AA-stacking MoS2 domains with a ratio up to 99.5% has been grown by using the modified chemical vapor deposition through introducing NaCl molecules in the confined space. By tuning the growth time, MoS2 domains would transit from an AA-stacking bilayer to an AAAAA-stacking five-layer. The epitaxial growth mechanism has been insightfully studied, revealing that the critical nucleation size of the AA-stacking bilayer is 5.0 ± 3.0 μm. Through investigation of the photoluminescence, the photoemission, especially the indirect photoexcitation, is dependent on both the stacking fashion and layer number. Furthermore, by studying the gate-tuned MoS2 phototransistors, we found a significant dependence on the stacking configuration of MoS2 of the photoexcitation and a different gate tunable photoresponse. The AAA-stacking trilayer MoS2 phototransistor delivers a photoresponse of 978.14 A W-1 at 550 nm. By correction of the external quantum efficiency with external field and illumination power density, it has been found that the photoresponse tunability is dependent on the layer number due to the strong photogating effect. This strategy provides a general avenue for the epitaxial growth of van der Waals film which will further facilitate the applications in a tunable photodetector.
Collapse
Affiliation(s)
- Xiai Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenghan Peng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
46
|
Ni J, Fu Q, Ostrikov KK, Gu X, Nan H, Xiao S. Status and prospects of Ohmic contacts on two-dimensional semiconductors. NANOTECHNOLOGY 2021; 33:062005. [PMID: 34649226 DOI: 10.1088/1361-6528/ac2fe1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, two-dimensional materials have received more and more attention in the development of semiconductor devices, and their practical applications in optoelectronic devices have also developed rapidly. However, there are still some factors that limit the performance of two-dimensional semiconductor material devices, and one of the most important is Ohmic contact. Here, we elaborate on a variety of approaches to achieve Ohmic contacts on two-dimensional materials and reveal their physical mechanisms. For the work function mismatch problem, we summarize the comparison of barrier heights between different metals and 2D semiconductors. We also examine different methods to solve the problem of Fermi level pinning. For the novel 2D metal-semiconductor contact methods, we analyse their effects on reducing contact resistance from two different perspectives: homojunction and heterojunction. Finally, the challenges of 2D semiconductors in achieving Ohmic contacts are outlined.
Collapse
Affiliation(s)
- Junhao Ni
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Quangui Fu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
47
|
Lee JH, Song J, Shin DH, Park S, Kim HR, Cho SP, Hong BH. Gradual Edge Contact between Mo and MoS 2 Formed by Graphene-Masked Sulfurization for High-Performance Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54536-54542. [PMID: 34730950 DOI: 10.1021/acsami.1c15648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional materials have attracted great attention for their outstanding electronic properties. In particular, molybdenum disulfide (MoS2) shows great potential as a next-generation semiconductor due to its tunable direct bandgap with a high on-off ratio and extraordinary stability. However, the performance of MoS2 synthesized by physical vapor deposition has been limited by contact resistance between an electrode and MoS2, which determines overall device characteristics. Here, in order to reduce the contact resistance, we use in situ sulfurization of Mo by H2S gas treatment masked by a patterned graphene gas barrier, so that the Mo channel area can be selectively formed, resulting in a gradual edge contact between Mo and MoS2. Compared with field-effect transistors with a top contact between the Au/Ti electrode and the MoS2 channel, a gradual edge contact between the Mo electrode and the MoS2 channel provides a considerably enhanced electrical performance.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Dong Heon Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Seoungwoong Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Hwa Rang Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Sung-Pyo Cho
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| |
Collapse
|
48
|
Shao Z, Liu W, Zhang Y, Yang X, Zhong M. Insights on interfacial charge transfer across MoS2/TiO2-NTAs nanoheterostructures for enhanced photodegradation and biosensing&gas-sensing performance. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Tan P, Ding K, Zhang X, Ni Z, Ostrikov KK, Gu X, Nan H, Xiao S. Bidirectional doping of two-dimensional thin-layer transition metal dichalcogenides using soft ammonia plasma. NANOSCALE 2021; 13:15278-15284. [PMID: 34486617 DOI: 10.1039/d1nr03917b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenide (TMD) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still a challenge. Herein, we develop a soft plasma doping concept and demonstrate both n-type and p-type doping for TMDs including MoS2 and WS2 through adjusting the plasma working parameters. In particular, p-type doping of MoS2 can be realized when the radio frequency (RF) power is relatively small and the processing time is short: the off-state current increases from ∼10-10 A to ∼10-8 A, the threshold voltage is positively shifted from -26.2 V to 8.3 V, and the mobility increases from 7.05 cm2 V-1 s-1 to 16.52 cm2 V-1 s-1. Under a relatively large RF power and long processing time, n-type doping was realized for MoS2: the threshold voltage was negatively shifted from 6.8 V to -13.3 V and the mobility is reduced from 10.32 cm2 V-1 s-1 to 3.2 cm2 V-1 s-1. For the former, suitable plasma treatment can promote the substitution of N elements for S vacancies and lead to p-type doping, thus reducing the defect density and increasing the mobility value. For the latter, due to excessive plasma treatment, more S vacancies will be produced, leading to heavier n-type doping as well as a decrease in mobility. We confirm the results by systematically analyzing the optical, compositional, thickness and structural characteristics of the samples before and after such soft plasma treatments via Raman, photoluminescence (PL), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. Due to its nondestructive and expandable nature and compatibility with the current microelectronics industry, this potentially generic method may be used as a reliable technology for the development of diverse and functional TMD-based devices.
Collapse
Affiliation(s)
- Pu Tan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Kaixuan Ding
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiumei Zhang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Zhenhua Ni
- Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
50
|
Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. SENSORS 2021; 21:s21186146. [PMID: 34577354 PMCID: PMC8473289 DOI: 10.3390/s21186146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Light loss is one of the main factors affecting the quantum efficiency of photodetectors. Many researchers have attempted to use various methods to improve the quantum efficiency of silicon-based photodetectors. Herein, we designed highly anti-reflective silicon nanometer truncated cone arrays (Si NTCAs) as a light-trapping layer in combination with graphene to construct a high-performance graphene/Si NTCAs photodetector. This heterojunction structure overcomes the weak light absorption and severe surface recombination in traditional silicon-based photodetectors. At the same time, graphene can be used both as a broad-spectrum absorption layer and as a transparent electrode to improve the response speed of heterojunction devices. Due to these two mechanisms, this photodetector had a high quantum efficiency of 97% at a wavelength of 780 nm and a short rise/fall time of 60/105µs. This device design promotes the development of silicon-based photodetectors and provides new possibilities for integrated photoelectric systems.
Collapse
|