1
|
Bai J, He D, Dang B, Liu K, Yang Z, Wang J, Zhang X, Wang Y, Tao Y, Yang Y. Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero-Synapses for In-Sensor Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401060. [PMID: 39468917 DOI: 10.1002/adma.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/03/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics.
Collapse
Affiliation(s)
- Jinxuan Bai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Bingjie Dang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Keqin Liu
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Zhen Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Jiarong Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yaoyu Tao
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Yuchao Yang
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Guangdong Provincial Key Laboratory of In-Memory Computing Chips, School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
- Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
- Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing, 102206, China
| |
Collapse
|
2
|
Lim J, Joo SH, Kim H, Choi D. Overcoming the Tradeoff of Visible Transparency and Electrical Conductance via Dual Smoothing of Dielectric/Metal Interfaces in Cu-Thin-Layer-Based Transparent Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39444225 DOI: 10.1021/acsami.4c13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The rapid advancement of flexible optoelectronic devices, such as light-emitting diodes, solar cells, and electrochromic devices, necessitates the development of high-performance flexible transparent electrodes (TEs). Dielectric/metal/dielectric (DMD)-type TEs are promising alternatives to conventional indium tin oxide (ITO) due to the high electrical conductance, excellent visible transparency, and sufficient mechanical flexibility. However, the tradeoff between electrical conductance and visible transparency poses a challenge to performance enhancement. This study introduces an Ar-ion-mediated interface modification method to address this tradeoff by dual smoothing of dielectric/metal interfaces in TiOx/Cu/ZnO TEs. Implementing this dual smoothing methodology significantly enhances both electrical conductance and visible light transmittance, achieving a Haacke figure of merit 200% higher than that of an unmodified otherwise identical structure. The highest figure of merit is 0.113 Ω-1, a record high for Cu-thin-layer-based DMD TEs, far surpassing ITO electrode values. Further, the enhanced optoelectronic performance remains highly durable under severe and simultaneous electrical, thermal, and mechanical stresses, showcasing the potential for significant advances in flexible optoelectronics.
Collapse
Affiliation(s)
- Jaeun Lim
- School of Advanced Materials Engineering, Dong-Eui University, 176 Eomgwangro, Busan 47340, Republic of Korea
| | - Si Hyeon Joo
- School of Advanced Materials Engineering, Dong-Eui University, 176 Eomgwangro, Busan 47340, Republic of Korea
| | - Heechang Kim
- School of Advanced Materials Engineering, Dong-Eui University, 176 Eomgwangro, Busan 47340, Republic of Korea
| | - Dooho Choi
- School of Semiconductor & Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
3
|
Mao Z, Ren J, Li H. Constructing Multifunctional Composite Single Crystals via Polymer Gel Incorporation. Polymers (Basel) 2024; 16:2379. [PMID: 39204598 PMCID: PMC11358885 DOI: 10.3390/polym16162379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The non-uniformity of a single crystal can sometimes be found in biominerals, where surrounding biomacromolecules are incorporated into the growing crystals. This unique composite structure, combining heterogeneity and long-range ordering, enables the functionalization of single crystals. Polymer gel media are often used to prepare composite single crystals, in which the growing crystals incorporate gel networks and form a bi-continuous interpenetrating structure without any disruption to single crystallinity. Moreover, dyes and many kinds of nanoparticles can be occluded into single crystals under the guidance of gel incorporation. On this basis, the bio-inspired method has been applied in crystal morphology control, crystal dyeing, mechanical reinforcement, and organic bulk heterojunction-based optoelectronics. In this paper, the composite structure, the incorporation mechanisms, and the multiple functions of gel-incorporated single crystals are reviewed.
Collapse
Affiliation(s)
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
4
|
Tan L, Cappelleri DJ. Responsive Hydrogel-Based Modular Microrobots for Multi-Functional Micromanipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404311. [PMID: 39040007 DOI: 10.1002/smll.202404311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Microrobots show great potential in biomedical applications such as drug delivery and cell manipulations. However, current microrobots are mostly fabricated as a single entity and type and the tasks they can perform are limited. In this paper, modular microrobots, with an overall size of 120 µm × 200 µm, are proposed with responsive mating components, made from stimuli-responsive hydrogels, and application specific end-effectors for microassembly tasks. The modular microrobots are fabricated based on photolithography and two-photon polymerization together or separately. Two types of modular microrobots are created based on the location of the responsive mating component. The first type of modular microrobot has a mating component that can shrink upon stimulation, while the second type has a double bilayer structure that can realize an open and close motion. The exchange of end-effectors with an identical actuation base is demonstrated for both types of microrobots. Finally, different manipulation tasks are performed with different types of end-effectors.
Collapse
Affiliation(s)
- Liyuan Tan
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David J Cappelleri
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
6
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
8
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
9
|
Zhao Q, Zhu M, Tian G, Liang C, Liu Z, Huang J, Yu QY, Tang S, Chen J, Zhao X, Zeng Q, Guo C, Qi D. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Adv Healthc Mater 2023; 12:e2203344. [PMID: 36974567 DOI: 10.1002/adhm.202203344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Flexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced. Micropyramid-nanowire composite structures are constructed to increase the effective surface area of PEA, achieving an exponential reduction in impedance compared with gold (Au) and flat polypyrrole electrodes. Moreover, for the first time, a suspended umbrella structure to enable PEA with omnidirectional stretchability of up to ≈20% is designed. The PEA can withstand 1000 cycles of mechanical loads without decrease in performance. As a proof of concept, PEA is conformally attached to a rat heart and tibialis anterior muscle, and electrophysiological signals (electrocardiogram and electromyogram) of the rat are successfully recorded. This strategy provides a new perspective toward highly sensitive and omnidirectionally stretchable PEA that can facilitate the practical application of neural electrodes.
Collapse
Affiliation(s)
- Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Ming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qianheng Yuan Yu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xizheng Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Qi Zeng
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Chongshen Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, P. R. China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Chen Z, Nguyen K, Kowalik G, Shi X, Tian J, Doshi M, Alber BR, Guan X, Liu X, Ning X, Kay MW, Lu L. Transparent and Stretchable Au─Ag Nanowire Recording Microelectrode Arrays. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201716. [PMID: 38644939 PMCID: PMC11031257 DOI: 10.1002/admt.202201716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 04/23/2024]
Abstract
Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk-free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high-fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold-coated silver nanowires (Au─Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au─Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2-7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Khanh Nguyen
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xinyu Shi
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jinbi Tian
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Mitansh Doshi
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xun Guan
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xin Ning
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
11
|
Tian G, Yang D, Liang C, Liu Y, Chen J, Zhao Q, Tang S, Huang J, Xu P, Liu Z, Qi D. A Nonswelling Hydrogel with Regenerable High Wet Tissue Adhesion for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212302. [PMID: 36739173 DOI: 10.1002/adma.202212302] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Reducing the swelling of tissue-adhesive hydrogels is crucial for maintaining stable tissue adhesion and inhibiting tissue inflammation. However, reported strategies for reducing swelling always result in a simultaneous decrease in the tissue adhesive strength of the hydrogel. Furthermore, once the covalent bonds break in the currently reported hydrogels, they cannot be rebuilt, and the hydrogel loses its tissue adhesive ability. In this work, a nonswelling hydrogel (named as "PAACP") possessing regenerable high tissue adhesion is synthesized by copolymerizing and crosslinking poly(vinyl butyral) with acrylic acid, gelatin, and chitosan-grafted N-acetyl-l-cysteine. The tissue adhesive strength of the obtained PAACP reaches 211.4 kPa, which is approximately ten times higher than that of the reported nonswelling hydrogels, and the hydrogel can be reused for multiple cycles. The as-prepared hydrogel shows great potential in soft bioelectronics, as muscle fatigue is successfully monitored via the electrode array and strain sensor integrated on PAACP substrates. The success of these bioelectronics offers potential applicability in the long-term diagnosis of muscle-related health conditions and prosthetic manipulations.
Collapse
Affiliation(s)
- Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shuanglong Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianping Huang
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhiyuan Liu
- Biomedical Microdevices Research Laboratory, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
12
|
Feng Y, Song J, Han G, Zhou B, Liu C, Shen C. Transparent and Stretchable Electromagnetic Interference Shielding Film with Fence-like Aligned Silver Nanowire Conductive Network. SMALL METHODS 2023:e2201490. [PMID: 37086128 DOI: 10.1002/smtd.202201490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Flexible transparent conductive electrodes (TCEs) that can be used as electromagnetic interference (EMI) shielding materials have a great potential for use as electronic components in optical window and display applications. However, development of TCEs that display high shielding effectiveness (SE) and good stretchability for flexible electronic device applications has proven challenging. Herein, this study describes a stretchable polydimethylsiloxane (PDMS)/silver nanowire (AgNW) TCE with a fence-like aligned conductive network that is fabricated via pre-stretching method. The fence-like AgNW network endowed the PDMS/AgNW film with excellent optoelectronic properties, i.e., low sheet resistance of 7.68 Ω sq-1 at 73.7% optical transmittance, thus causing an effective EMI SE of 32.2 dB at X-band. More importantly, the fence-like aligned AgNW conductive network reveals a high stability toward tensile deformation, thus gives the PDMS/AgNW film stretch-stable conductivity and EMI shielding property in the strain range of 0-100%. Typically, the film can reserve ≈70% or 80% of its initial EMI SE when stretching at 100% strain or stretching/releasing (50% strain) for 128 cycles, respectively. Additionally, the film exhibits a low-voltage driven and stretchable Joule heating performance. With these overall performances, the PDMS/AgNW film should be well suited for use in flexible and stretchable optical electronic devices.
Collapse
Affiliation(s)
- Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Jianzhou Song
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Gaojie Han
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Bing Zhou
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
13
|
Hwang GS, Bae JY, Kim JW, Park SY, Kim J, Kang SK, Kim JY. Highly Elastic and Conductive Metallic Interconnect with Crystalline-Amorphous Nanolaminate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15863-15871. [PMID: 36920289 DOI: 10.1021/acsami.2c22833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanolaminate with alternating layers of nanocrystalline Cu and amorphous CuZrTi is suggested as highly stretchable and conductive interconnect material in stretchable devices. 50 nm nanocrystalline Cu and 20 nm amorphous CuZrTi are the optimum thicknesses of the constituent layers, which result in an elastic deformation limit of 3.33% similar to that of the monolithic amorphous CuZrTi film and an electrical conductivity of 11.83 S/μm corresponding to 70% of that of the monolithic nanocrystalline Cu film. The enhanced elastic deformability and conductivity of the nanolaminates enable the maintenance of the interconnect performance for cyclic stretching with a tensile strain of 114% in the form of a free-standing serpentine structure and a tensile strain of 30% in the form of an ordinary circular coil on an elastomer substrate.
Collapse
Affiliation(s)
- Gyeong-Seok Hwang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Young Bae
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon-Woo Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sun-Young Park
- Materials Safety Technology Development Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Jeonghyun Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
15
|
Kim S, Lee K, Lee Y, Youe W, Gwon J, Lee S. Transparent and Multi-Foldable Nanocellulose Paper Microsupercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203720. [PMID: 36257816 PMCID: PMC9731695 DOI: 10.1002/advs.202203720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Despite the ever-increasing demand for transparent power sources in wireless optoelectronics, most of them have still relied on synthetic chemicals, thus limiting their versatile applications. Here, a class of transparent nanocellulose paper microsupercapacitors (TNP-MSCs) as a beyond-synthetic-material strategy is demonstrated. Onto semi-interpenetrating polymer network-structured, thiol-modified transparent nanocellulose paper, a thin layer of silver nanowire and a conducting polymer (chosen as a pseudocapacitive electrode material) are consecutively introduced through microscale-patterned masks (which are fabricated by electrohydrodynamic jet printing) to produce a transparent conductive electrode (TNP-TCE) with planar interdigitated structure. This TNP-TCE, in combination with solid-state gel electrolytes, enables on-demand (in-series/in-parallel) cell configurations in a single body of TNP-MSC. Driven by this structural uniqueness and scalable microfabrication, the TNP-MSC exhibits improvements in optical transparency (T = 85%), areal capacitance (0.24 mF cm-2 ), controllable voltage (7.2 V per cell), and mechanical flexibility (origami airplane), which exceed those of previously reported transparent MSCs based on synthetic chemicals.
Collapse
Affiliation(s)
- Sang‐Woo Kim
- Department of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50, Eonyang‐eup, Ulju‐gunUlsan44919Republic of Korea
| | - Kwon‐Hyung Lee
- Department of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UNIST‐gil 50, Eonyang‐eup, Ulju‐gunUlsan44919Republic of Korea
| | - Yong‐Hyeok Lee
- Department of Chemical and Biomolecular EngineeringYonsei University50, Yonsei‐ro, Seodaemun‐guSeoul03772Republic of Korea
| | - Won‐Jae Youe
- Department of Forest ProductsNational Institute of Forest ScienceSeoul02455Republic of Korea
| | - Jae‐Gyoung Gwon
- Department of Forest ProductsNational Institute of Forest ScienceSeoul02455Republic of Korea
| | - Sang‐Young Lee
- Department of Chemical and Biomolecular EngineeringYonsei University50, Yonsei‐ro, Seodaemun‐guSeoul03772Republic of Korea
| |
Collapse
|
16
|
Kamiyama Y, Tamate R, Fujii K, Ueki T. Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers. SOFT MATTER 2022; 18:8582-8590. [PMID: 36367165 DOI: 10.1039/d2sm00853j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new class of ion gels, termed ultrahigh molecular weight (UHMW) gels, formed by physical entanglement of ultrahigh molecular weight polymers in ionic liquids, are synthesised using facile one step radical polymerisation with significantly low initiator conditions, and exhibit superior mechanical characteristics such as stretchability, recyclability, and room temperature self-healing ability. In this study, UHMW gels are synthesised using various combinations of monomer and IL structures, and the effect of their chemical structures on the physicochemical properties of UHMW gels are thoroughly investigated. UHMW polymers are prepared in situ for all combinations of ILs and monomers used in this study, indicating the wide applicability of this fabrication strategy. The structure-property relationships between chemical structures and mechanical properties of UHMW gels are investigated in detail. Furthermore, the differences in self-healing efficiency of UHMW gels depending on the chemical structure is discussed in terms of individual polymer conformation and polymer-polymer interaction based on molecular dynamics simulations.
Collapse
Affiliation(s)
- Yuji Kamiyama
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- PRESTO, JST., 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Kenta Fujii
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takeshi Ueki
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
17
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
18
|
Song H, Shin H, Seo H, Park W, Joo BJ, Kim J, Kim J, Kim HK, Kim J, Park J. Wireless Non-Invasive Monitoring of Cholesterol Using a Smart Contact Lens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203597. [PMID: 35975449 PMCID: PMC9534953 DOI: 10.1002/advs.202203597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Herein, a wireless and soft smart contact lens that enables real-time quantitative recording of cholesterol in tear fluids for the monitoring of patients with hyperlipidemia using a smartphone is reported. This contact lens incorporates an electrochemical biosensor for the continuous detection of cholesterol concentrations, stretchable antenna, and integrated circuits for wireless communication, which makes a smartphone the only device required to operate this lens remotely without obstructing the wearer's vision. The hyperlipidemia rabbit model is utilized to confirm the correlation between cholesterol levels in tear fluid and blood and to confirm the feasibility of this smart contact lens for diagnostic application of cholesterol-related diseases. Further in vivo tests with human subjects demonstrated its good biocompatibility, wearability, and reliability as a non-invasive healthcare device.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Haein Shin
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Byung Jun Joo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Jeongho Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jeonghyun Kim
- Department of Electronics Convergence EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Hong Kyun Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
- Department of OphthalmologyBio‐Medical InstituteSchool of MedicineKyungpook National University Hospital130 Dongdeok‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jayoung Kim
- Department of Medical EngineeringCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
- KIURI InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
19
|
Zhang Y, Wang K, Sun Y, Xu M, Cheng Z. Novel Biphasically and Reversibly Transparent Phase Change Material to Solve the Thermal Issues in Transparent Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31245-31256. [PMID: 35776859 DOI: 10.1021/acsami.2c04974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highly integrated transparent electronic systems are experiencing significant thermal bottlenecks due to the rapid growth of transparent electronics and the lack of suitable transparent thermal management solutions. Therefore, transparent thermal management materials are highly desirable in modern transparent electronics. Based on the phase change properties of polyethylene glycol (PEG) and the encapsulable properties of epoxy resin (EP), we synthesize a biphasically and reversibly transparent PEG/EP composite for thermal energy storage (TPE-TES). Energy-driven structural rearrangements in cross-linked networks are responsible for the high transparency with practical thickness. According to SEM and TEM investigations, PEG and EP achieve submicron phase dispersion, while TPE-TES forms a smooth and continuous surface that suppresses diffuse reflections and contributes to improved visible light penetration. The unique combination of phase change and optical transparency gives TPE-TES the ability to regulate thermal storage, rapid temperature change, and spatial temperature uniformity of transparent electronics. Due to its flexibility, stability, and processability, TPE-TES is also suitable and ideal as thin surface coating films or thick transparent flexible substrates for a wide range of applications in the integration of electronic devices.
Collapse
Affiliation(s)
- Yichun Zhang
- School of Micro-Nano Electronics, Zhejiang University, No.733, Jianshe 3rd Road, Hangzhou 311200, China
| | - Kejia Wang
- School of Micro-Nano Electronics, Zhejiang University, No.733, Jianshe 3rd Road, Hangzhou 311200, China
| | - Yishan Sun
- School of Micro-Nano Electronics, Zhejiang University, No.733, Jianshe 3rd Road, Hangzhou 311200, China
| | - Mingsheng Xu
- School of Micro-Nano Electronics, Zhejiang University, No.733, Jianshe 3rd Road, Hangzhou 311200, China
| | - Zhiyuan Cheng
- School of Micro-Nano Electronics, Zhejiang University, No.733, Jianshe 3rd Road, Hangzhou 311200, China
| |
Collapse
|
20
|
Zhang Y, Duan H, Li G, Peng M, Ma X, Li M, Yan S. Construction of liquid metal-based soft microfluidic sensors via soft lithography. J Nanobiotechnology 2022; 20:246. [PMID: 35643573 PMCID: PMC9148490 DOI: 10.1186/s12951-022-01471-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023] Open
Abstract
Background Liquid metal (LM) can be integrated into microfluidic channel, bringing new functionalities of microfluidics and opening a new window for soft microfluidic electronics, due to the superior advantages of the conductivity and deformability of LMs. However, patterning the LMs into microfluidic channels requires either selective surface wetting or complex fabrication process. Results In this work, we develop a method to pattern the LMs onto the soft elastomer via soft lithographic process for fabrication of soft microfluidic sensors without the surface modification, bulky facilities, and complicated processes. The combination of the interfacial hydrogen bond and surface tension enables the LM patterns transfer to the soft elastomer. The transferred LM patterns with an ellipse-like cross-section further improve the stability under the mechanical deformation. Three proof-of-concept experiments were conducted to demonstrate the utilization of this method for development of thermochromic sensors, self-powered capacity sensors and flexible biosensor for glucose detection. Conclusions In summary, the proposed method offers a new patterning method to obtain soft microfluidic sensors and brings new possibilities for microfluidics-related wearable devices. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01471-0.
Collapse
|
21
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
22
|
Li Z, Li H, Zhu X, Peng Z, Zhang G, Yang J, Wang F, Zhang Y, Sun L, Wang R, Zhang J, Yang Z, Yi H, Lan H. Directly Printed Embedded Metal Mesh for Flexible Transparent Electrode via Liquid Substrate Electric-Field-Driven Jet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105331. [PMID: 35233960 PMCID: PMC9108624 DOI: 10.1002/advs.202105331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Indexed: 05/22/2023]
Abstract
Flexible transparent electrodes (FTEs) with embedded metal meshes play an indispensable role in many optoelectronic devices due to their excellent mechanical stability and environmental adaptability. However, low-cost, simple, efficient, and environmental friendly integrated manufacturing of high-performance embedded metal meshes remains a huge challenge. Here, a facile and novel fabrication method is proposed for FTEs with an embedded metal mesh via liquid substrateelectric-field-driven microscale 3D printing process. This direct printing strategy avoids tedious processes and offers low-cost and high-volume production, enabling the fabrication of high-resolution, high-aspect ratio embedded metal meshes without sacrificing transparency. The final manufactured FTEs with 80 mm × 80 mm embedded metal mesh offers excellent optoelectronic performance with a sheet resistance (Rs ) of 6 Ω sq-1 and a transmittance (T) of 85.79%. The embedded metal structure still has excellent mechanical stability and good environmental suitability under different harsh working conditions. The practical feasibility of the FTEs is successfully demonstrated with a thermally driven 4D printing structure and a resistive transparent strain sensor. This method can be used to manufacture large areas with facile, high-efficiency, low-cost, and high-performance FTEs.
Collapse
Affiliation(s)
- Zhenghao Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Hongke Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jianjun Yang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Fei Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Yuan‐Fang Zhang
- Shien‐Ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Luanfa Sun
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Rui Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jinbao Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Zhongming Yang
- School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and ApplicationShandong UniversityQingdao266327China
| | - Hao Yi
- State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqing400044China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| |
Collapse
|
23
|
Li H, Li Z, Li N, Zhu X, Zhang YF, Sun L, Wang R, Zhang J, Yang Z, Yi H, Xu X, Lan H. 3D Printed High Performance Silver Mesh for Transparent Glass Heaters through Liquid Sacrificial Substrate Electric-Field-Driven Jet. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107811. [PMID: 35224846 DOI: 10.1002/smll.202107811] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Transparent glass with metal mesh is considered a promising strategy for high performance transparent glass heaters (TGHs). However, the realization of simple, low-cost manufacture of high performance TGHs still faces great challenges. Here, a technique for the fabrication of high performance TGHs is proposed using liquid sacrificial substrate electric-field-driven (LS-EFD) microscale 3D printing of thick film silver paste. The liquid sacrificial substrate not only significantly improves the aspect ratio (AR) of silver mesh, but also plays a positive role in printing stability. The fabricated TGHs with a line width of 35 µm, thickness of 12.3 µm, and pitch of 1000 µm exhibit a desirable optoelectronic performance with sheet resistance (Rs ) of 0.195 Ω sq-1 and transmittance (T) of 88.97%. A successful deicing test showcases the feasibility and practicality of the manufactured TGHs. Moreover, an interface evaporator is developed for the coordination of photothermal and electrothermal systems based on the high performance TGHs. The vapor generation rate of the device reaches 10.69 kg m-2 h-1 with a voltage of 2 V. The proposed technique is a promising strategy for the cost-effective and simple fabrication of high performance TGHs.
Collapse
Affiliation(s)
- Hongke Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Zhenghao Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Yuan-Fang Zhang
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Luanfa Sun
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Rui Wang
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Jinbao Zhang
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| | - Zhongming Yang
- School of Information Science & Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, 266237, China
| | - Hao Yi
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao, 266520, China
| |
Collapse
|
24
|
Kim J, Hwang I, Kim M, Jung H, Bae H, Lee Y. Simple, Fast, and Scalable Reverse-Offset Printing of Micropatterned Copper Nanowire Electrodes with Sub-10 μm Resolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5807-5814. [PMID: 35041372 DOI: 10.1021/acsami.1c21223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper nanowires (CuNWs) possess key characteristics for realizing flexible transparent electronics. High-quality CuNW micropatterns with high resolution and uniform thickness are required to realize integrated transparent electronic devices. However, patterning high-aspect-ratio CuNWs is challenging because of their long length, exceeding the target pattern dimension. This work reports a novel reverse-offset printing technology that enables the sub-10 μm high-resolution micropatterning of CuNW transparent conducting electrodes (TCEs). The CuNW ink for reverse-offset printing was formulated to control viscoelasticity, cohesive force, and adhesion by adjusting the ligands, solvents, surface energy modifiers, and leveling additives. An inexpensive commercial adhesive handroller achieved a simple, fast, and scalable micropatterning of CuNW TCEs. Easy production of high-quality CuNW micropatterns with various curvatures and shapes was possible, regardless of the printing direction. The reverse-offset-printed CuNW micropatterns exhibited a minimum of 7 μm line width and excellent pattern qualities such as fine line spacing, sharp edge definition, and outstanding pattern uniformity. In addition, they exhibited excellent sheet resistance, high optical transparency, outstanding mechanical durability, and long-term stability. Flexible light-emitting diode (LED) circuits, transparent heaters, and organic LEDs (OLEDs) can be fabricated using high-resolution reverse-offset-printed CuNW micropatterns for applications in flexible transparent electronic devices.
Collapse
Affiliation(s)
- Jongyoun Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Inkook Hwang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Minkyoung Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyejeong Bae
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
25
|
Zhai W, Zhu J, Wang Z, Zhao Y, Zhan P, Wang S, Zheng G, Shao C, Dai K, Liu C, Shen C. Stretchable, Sensitive Strain Sensors with a Wide Workable Range and Low Detection Limit for Wearable Electronic Skins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4562-4570. [PMID: 35020359 DOI: 10.1021/acsami.1c18233] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the rapid development of wearable electronics, a multifunctional and flexible strain sensor is urgently required. Even though enormous progress has been achieved in designing high-performance strain sensors, the conflict between high sensitivity and a large workable range still restricts their further advance. Herein, a "point to point" conductive network is proposed to design and fabricate a carbon black/polyaniline nanoparticles/thermoplastic polyurethane film (CPUF). The designed structure renders CPUF composites with a wide sensitive range (up to 680% strain), highly sensitive response with a low detection limit of 0.03% strain, and high gauge factor (GF) of 3030.8, together with good sensing stability, fast response/recovery time (80 ms/95 ms), and good durability even after 10000 stretching/releasing cycles. CPUF composites are assembled as wearable strain sensors with the ability of precisely detecting full-range human motions and organic solvents, showing a potential application in human-machine interaction and environmental monitoring.
Collapse
Affiliation(s)
- Wei Zhai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jingzhan Zhu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ziqi Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yi Zhao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Pengfei Zhan
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Shuo Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guoqiang Zheng
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chunguang Shao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changyu Shen
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
26
|
Shi J, Zhang J, Yang L, Qu M, Qi DC, Zhang KHL. Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006230. [PMID: 33797084 DOI: 10.1002/adma.202006230] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Wide bandgap oxide semiconductors constitute a unique class of materials that combine properties of electrical conductivity and optical transparency. They are being widely used as key materials in optoelectronic device applications, including flat-panel displays, solar cells, OLED, and emerging flexible and transparent electronics. In this article, an up-to-date review on both the fundamental understanding of materials physics of oxide semiconductors, and recent research progress on design of new materials and high-performing thin film transistor (TFT) devices in the context of fundamental understanding is presented. In particular, an in depth overview is first provided on current understanding of the electronic structures, defect and doping chemistry, optical and transport properties of oxide semiconductors, which provide essential guiding principles for new material design and device optimization. With these principles, recent advances in design of p-type oxide semiconductors, new approaches for achieving cost-effective transparent (flexible) electrodes, and the creation of high mobility 2D electron gas (2DEG) at oxide surfaces and interfaces with a wealth of fascinating physical properties of great potential for novel device design are then reviewed. Finally, recent progress and perspective of oxide TFT based on new oxide semiconductors, 2DEG, and low-temperature solution processed oxide semiconductor for flexible electronics will be reviewed.
Collapse
Affiliation(s)
- Jueli Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaye Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mei Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dong-Chen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
27
|
Sun F, Xu J, Liu T, Li F, Poo Y, Zhang Y, Xiong R, Huang C, Fu J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. MATERIALS HORIZONS 2021; 8:3356-3367. [PMID: 34657943 DOI: 10.1039/d1mh01199e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the operation reliability of flexible and optical electronics (FOEs) in dynamic and real-world environments, autonomous self-healing electromagnetic interference (EMI) shielding materials with high transparency, good stretchability and excellent tear-resistance are urgently required but always difficult to achieve due to the poor dynamics of their elastic substrates. Herein, we propose a facile strategy to design a highly dynamic polyurea elastomer (PDMS-MPI-HDI) featuring with ultrahigh optical transparency (>94%), ultralow elastic modulus (<1 MPa), high tear-resistant stretchability (800%), and ultrafast autonomous self-healing (100 s for scratch-healing). Taking PDMS-MPI-HDI as a substrate for embedding silver nanowires (Ag NWs), the first transparent, stretchable and self-healable EMI shielding materials (Ag NWs/PDMS-MPI-HDI) are presented. Failure behavior of Ag NWs/PDMS-MPI-HDI is highly tolerant of prefabricated cracks under deformation. Due to the robust interfacial adhesion between Ag NWs and PDMS-MPI-HDI, the fractured Ag NW network can autonomously self-reconstruct during the healing process of PDMS-MPI-HDI substrates, contributing to the complete restoration of EMI shielding effectiveness (SE) and full erasure of scratches at both the resting and stretching states. Besides, Ag NWs/PDMS-MPI-HDI exhibits fast autonomous self-healing at high (60 °C) and low (0 °C) temperatures, and in artificial sweat, which is essential for FOEs applicable in various practical environments.
Collapse
Affiliation(s)
- FuYao Sun
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - JianHua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - FeiFei Li
- School of Electronic Science and Engineering, Nanjing University, 210023, China.
| | - Yin Poo
- School of Electronic Science and Engineering, Nanjing University, 210023, China.
| | - YaNa Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - RanHua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
| | - ChaoBo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China.
| | - JiaJun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| |
Collapse
|
28
|
He J, Kovach A, Wang Y, Wang W, Wu W, Armani AM. Stretchable optical diffraction grating from poly(acrylic acid)/polyethylene oxide stereocomplex. OPTICS LETTERS 2021; 46:5493-5496. [PMID: 34724509 DOI: 10.1364/ol.432699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Advances in optical materials, which were initially static elements, have enabled dynamically tunable optical diffraction gratings to be designed. One common tuning strategy relies on mechanical deformation of the grating pitch to modify the diffraction pattern. In the present work, we demonstrate an all-polymer tunable diffraction grating fabricated using a modified replica molding process. The poly(acrylic acid) (PAA)/polyethylene oxide (PEO) polymer stereocomplex films exhibit optical transmittance at or above 80% from 500 nm to 1400 nm and stretchability over 800% strain with reversibility under 70% strain. The imprinted gratings are characterized at 633 nm and 1064 nm under a range of strain conditions. The measured tunability agrees with finite element method modeling.
Collapse
|
29
|
Park Y, Lee G, Jang J, Yun SM, Kim E, Park J. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv Healthc Mater 2021; 10:e2002280. [PMID: 33724723 DOI: 10.1002/adhm.202002280] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Wearable healthcare devices have garnered substantial interest for the realization of personal health management by monitoring the physiological parameters of individuals. Attaining the integrity between the devices and the biological interfaces is one of the greatest challenges to achieving high-quality body information in dynamic conditions. Liquid metals, which exist in the liquid phase at room temperatures, are advanced intensively as conductors for deformable devices because of their excellent stretchability and self-healing ability. The unique surface chemistry of liquid metals allows the development of various sensors and devices in wearable form. Also, the biocompatibility of liquid metals, which is verified through numerous biomedical applications, holds immense potential in uses on the surface and inside of a living body. Here, the recent progress of liquid metal-based wearable electronic devices for healthcare with respect to the featured properties and the processing technologies is discussed. Representative examples of applications such as biosensors, neural interfaces, and a soft interconnection for devices are reviewed. The current challenges and prospects for further development are also discussed, and the future directions of advances in the latest research are explored.
Collapse
Affiliation(s)
- Young‐Geun Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Ga‐Yeon Lee
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| | - Jiuk Jang
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Su Min Yun
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jang‐Ung Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
30
|
Ming X, Zhang C, Cai J, Zhu H, Zhang Q, Zhu S. Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31102-31110. [PMID: 34170105 DOI: 10.1021/acsami.1c05833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of soft electronics has revitalized the research of conducting elastomers. However, the design of conducting elastomers having high stretchability and good transparency still remains a considerable challenge. In this study, we develop a highly transparent, stretchable, and conducting ionoelastomer based on a poly(ionic liquid) in which cations are fixed to a stretchable elastomeric network and counter anions are mobile. The ionoelastomer solves the dilemma of simultaneous transparency and stretchability in the design of traditional conducting elastomers, possessing good transparency (96%) with an extraordinarily high stretchability, up to a limiting strain of 1460%. Moreover, this novel material is completely nonvolatile and nonhygroscopic, endowing the ionoelastomer with highly stable thermal, environmental, electrochemical, and mechanoelectrical properties. An underwater sensor based on the ionoelastomer is developed with good performance in an aqueous environment. Also, a transparent dielectric elastomer actuator (DEA) is demonstrated using the ionoelastomer. It is believed that the ionoelastomer would pave the way to develop exceptional conducting elastomers toward next-generation soft electronics.
Collapse
Affiliation(s)
- Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changgeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Junjie Cai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
31
|
Zhu Z, Jin L, Yu F, Wang F, Weng Z, Liu J, Han Z, Wang X. ZnO/CPAN Modified Contact Lens with Antibacterial and Harmful Light Reduction Capabilities. Adv Healthc Mater 2021; 10:e2100259. [PMID: 33871179 DOI: 10.1002/adhm.202100259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Compared with traditional glasses, the comfortable and convenient contact lens (CL) has seen an upsurge among the public. However, due to the lack of antibacterial properties of ordinary CLs, the risk of eye infection is greatly increased accordingly. On the other hand, ordinary CLs also cannot effectively reduce the short-wavelength blue light emitted from electronic products, such as mobile phones and computers. Aiming at the above two problems, zinc oxide (ZnO)/cyclized polyacrylonitrile (CPAN) composites are developed for CL modification. After loading with ZnO/CPAN (ZC), the CL shows a broad-spectrum antibacterial property. Further experiments also prove that it can block UVB, UVA, as well as blue light selectively, under the premise of ensuring hydrophilicity and certain transparency. Theoretically, this ZC-decorated CL can fundamentally reduce the damage to the eyes from harmful light emitted by light-emitting diodes and the secretion of pro-inflammatory factors, which is thus a promising eye protection strategy for modern society.
Collapse
Affiliation(s)
- Zhenling Zhu
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Liguo Jin
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Fen Yu
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Feifei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Zhenzhen Weng
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Jia Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Zhen Han
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Xiaolei Wang
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| |
Collapse
|
32
|
Zhang BC, Shi YH, Mao J, Huang SY, Shao ZB, Zheng CJ, Jie JS, Zhang XH. Single-Crystalline Silicon Frameworks: A New Platform for Transparent Flexible Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008171. [PMID: 33963781 DOI: 10.1002/adma.202008171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Single-crystalline silicon (sc-Si) is the dominant semiconductor material for the modern electronics industry. Despite their excellent photoelectric and electronic properties, the rigidity, brittleness, and nontransparency of commonly used silicon wafers limit their application in transparent flexible optoelectronics. In this study, a new type of Si microstructure, named single-crystalline Si frameworks (sc-SiFs), is developed, through a combination of wet-etching and microfabrication technologies. The sc-SiFs are self-supported, flexible, lightweight, tailorable, and highly transparent. They can withstand a small bending radius of less than 0.5 mm and have a transparency of up to 96% in all wavelength ranges, owing to the hollowed-out framework structures. Thus, the sc-SiFs provide a new platform for high-performance transparent flexible optoelectronics. Taking transparent flexible photodetectors (TFPDs) as an example, substrate-free and self-driven TFPDs are achieved based on the sc-SiFs. The devices exhibit superior performance compared to other reported TFPDs and reveal the great potential for integrated optoelectronic applications. The development of sc-SiFs paves the way toward the fabrication of high-performance transparent flexible devices for a host of applications, including e-skins, the Internet of Things, transparent flexible displays, and artificial visual cortexes.
Collapse
Affiliation(s)
- Bing-Chang Zhang
- School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yi-Hao Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jie Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Si-Yi Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhi-Bin Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Cai-Jun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 610054, P. R. China
| | - Jian-Sheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
33
|
Moisture-Assisted Formation of High-Quality Silver Nanowire Transparent Conductive Films with Low Junction Resistance. COATINGS 2021. [DOI: 10.3390/coatings11060671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silver nanowire (AgNWs) transparent conductive film (TCF) is considered to be the most favorable material to replace indium tin oxide (ITO) as the next-generation transparent conductive film. However, the disadvantages of AgNWs, such as easy oxidation and high wire-wire junction resistance, dramatically limit its commercial application. In this paper, moisture treatment was adopted, and water was dripped on the surface of AgNWs film or breathed on the surface so that the surface was covered with a layer of water vapor. The morphology of silver nanowire mesh nodes is complex, and the curvature is large. According to the capillary condensation theory, water molecules preferentially condense near the geometric surface with significant curvature. The capillary force is generated, making the wire-wire junction of AgNWs mesh bond tightly, resulting in good ohmic contact. The experimental results show that AgNWs-TCF treated by moisture has better conductivity, with an average sheet resistance of 20 Ω/sq and more uniform electrical properties. The bending test and adhesion test showed that AgNWs-TCF treated by moisture still exhibited good mechanical bending resistance and environmental stability.
Collapse
|
34
|
Shin H, Seo H, Chung WG, Joo BJ, Jang J, Park JU. Recent progress on wearable point-of-care devices for ocular systems. LAB ON A CHIP 2021; 21:1269-1286. [PMID: 33704299 DOI: 10.1039/d0lc01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eye is a complex sensory organ that contains abundant information for specific diseases and pathological responses. It has emerged as a facile biological interface for wearable healthcare platforms because of its excellent accessibility. Recent advances in electronic devices have led to the extensive research of point-of-care (POC) systems for diagnosing and monitoring diseases by detecting the biomarkers within the eye. Among these systems, contact lenses, which make direct contact with the ocular surfaces, have been utilized as one of the promising candidates for non-invasive POC testing of various diseases. The continuous and long-term measurement from the sensor allows the patients to manage their symptoms in an effective and convenient way. Herein, we review the progress of contact lens sensors in terms of the materials, methodologies, device designs, and target biomarkers. The anatomical structure and biological mechanisms of the eye are also discussed to provide a comprehensive understanding of the principles of contact lens sensors. Intraocular pressure and glucose, which are the representative biomarkers found in the eyes, can be measured with the biosensors integrated with contact lenses for the diagnosis of glaucoma and diabetes. Furthermore, contact lens sensors for various general pathologies as well as other ocular diseases are also considered, thereby providing the prospects for further developments of smart contact lenses as a future POC system.
Collapse
Affiliation(s)
- Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Zhao Q, Du X. Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. J Mater Chem B 2021; 8:3519-3526. [PMID: 31989133 DOI: 10.1039/c9tb02389e] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Point-of-care (POC) diagnosis is of great significance in offering precise and personalized treatment for patients with eye diseases. Contact lenses, as a kind of popular wearable device on the eye, provide a suitable platform for the integration of biosensors for the POC diagnosis of eye diseases. However, existing contact lens sensors usually involve complex electronics and circuits, the manufacturing of which is complicated and signal readout requires additional instruments. To realize the instrument-free detection of pathologically relevant signals of eye diseases, we successfully established a structurally coloured contact lens sensor with a tunable colour in this investigation, which can directly report changes in moisture and pressure that are critical signs for xerophthalmia and glaucoma diagnosis, respectively, by altering colours. Importantly, this structurally coloured contact lens sensor is made solely from a biocompatible hydrogel, without the addition of any chemical pigments, therefore exhibiting superior biosafety and wearing comfort for wearable applications. With both excellent biocompatibility and sensing capabilities, this structurally coloured contact lens sensors thus holds great promise for instrument-free ophthalmic health monitoring, which will benefit a large proportion of the population that have a high risk of eye disease.
Collapse
Affiliation(s)
- Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China.
| | | | | |
Collapse
|
36
|
Liu X, Ren Z, Liu F, Zhao L, Ling Q, Gu H. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14612-14622. [PMID: 33723988 DOI: 10.1021/acsami.1c03213] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrogel-based flexible strain sensors have shown great potential in body movement tracking, early disease diagnosis, noninvasive treatment, electronic skins, and soft robotics. The good self-healing, biocompatible, sensitive and stretchable properties are the focus of hydrogel-based flexible strain sensors. Dual network (DN) hydrogels are hopeful to fabricate self-healing hydrogels with the above properties. Here, multifunctional DN hydrogels are prepared via a combination of host-guest interaction of β-cyclodextrin and ferrocene with dynamic borate ester bonds of poly(vinyl alcohol) and borax. Carbon nanotubes are used to endow the DN hydrogels with good conductivity. The obtained DN composite hydrogels possess good biocompatibility, stretchability (436%), fracture strength (41.0 KPa), self-healing property (healing efficiency of 95%), and high tensile strain sensitivity (gauge factor of 5.9). The DN composite hydrogels are used as flexible strain sensors to detect different human motions. After cutting, the healed hydrogels also can monitor human motions and have good stability. In addition, the hydrogel sensors may track the respiratory movement of a pig lung in vitro. This work exhibits new ideas and approaches to develop multifunctional self-healing hydrogels for constructing flexible strain sensors.
Collapse
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
37
|
Patil JJ, Chae WH, Trebach A, Carter KJ, Lee E, Sannicolo T, Grossman JC. Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004356. [PMID: 33346400 DOI: 10.1002/adma.202004356] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Metal nanowire (MNW)-based transparent electrode technologies have significantly matured over the last decade to become a prominent low-cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost-effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano- to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW-encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Collapse
Affiliation(s)
- Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Woo Hyun Chae
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adam Trebach
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ki-Jana Carter
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eric Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Sannicolo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Abstract
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems. Herein, we discuss recent advances in wearable devices for non-invasive sensing, with focuses on materials design, nano/microfabrication, sensors, wireless technologies, and the integration of those.
Collapse
|
39
|
Tang Y, Yin W, Huang Y, Zhang G, Zhao Q, Li D. All solution-processed silver nanowires composite silica nanospheres antireflection structure with synergetic optoelectronic performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj02518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The silver nanowires/SNSs AR composite TCFs have demonstrated the synergetic effect on optoelectronic performance via a facile solution method, reaching sheet resistance of 49.43 Ω sq−1 dropped by 8.66% and transmittance of 99.84% increased by 6.94%.
Collapse
Affiliation(s)
- Yuxin Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Wanying Yin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ganghua Zhang
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, P. R. China
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Department of Electronic Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Dezeng Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
40
|
Du X, Jiang W, Zhang Y, Qiu J, Zhao Y, Tan Q, Qi S, Ye G, Zhang W, Liu N. Transparent and Stretchable Graphene Electrode by Intercalation Doping for Epidermal Electrophysiology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56361-56371. [PMID: 33270412 DOI: 10.1021/acsami.0c17658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epidermal electronics is regarded as the next-generation technology, and graphene is a promising electrode, which is a key building block of such devices. However, graphene has a tendency to crack at small strains with a rapidly increased resistance upon stretching. Here, to enable graphene applicable in epidermal electronics, we designed a novel graphene structure that is molybdenum chloride (MoCl5)-intercalated few-layer graphene (Mo-FLG) fabricated in a confined environment. In the case of bilayer graphene (BLG), MoCl5-intercalated bilayer graphene (Mo-BLG) exhibited a low sheet resistance of 40 Ω/square (sq) at a transmittance of 80%. Due to the self-barrier doping effect, the sheet resistance increased to only 60 Ω/sq after exposing to the atmosphere over 1 month. Transferred onto elastomer substrates, Mo-BLG can work as an electrode up to 80% strain and maintain a high conductivity that is durable over 2000 cycles at 30% strain. This mechano-electrostability is attributed to the special intercalated structure where the intercalated dopants act as lubricants to weaken the layer-layer interaction and allow a certain degree of sliding, as well as electrical crack-connectors to bridge the cracked domains at a high strain. Mo-BLG can be applied as epidermal electrodes to monitor electrophysiological signals such as electrocardiogram (ECG), electrooculogram (EOG), electroencephalography (EEG), and surface electromyogram (sEMG) with high signal-to-noise ratios (SNRs) comparable to commercial Ag/AgCl electrode. This is the first demonstration of epidermal electrodes based on intercalation-doped graphene applied in health monitoring, shedding light on the future development of graphene-based epidermal electronics.
Collapse
Affiliation(s)
- Xiaojia Du
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiakang Qiu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing Graphene Institute, Beijing 100094, China
| | - Yan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qishuo Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuyan Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guo Ye
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weifeng Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing Graphene Institute, Beijing 100094, China
| |
Collapse
|
41
|
Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. NANOSCALE 2020; 12:23546-23555. [PMID: 33074278 DOI: 10.1039/d0nr05486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Realizing intrinsically stretchable transistors with high current drivability, high mobility, small feature size, low power and the potential for mass production is essential for advancing stretchable electronics a critical step forward. However, it is challenging to realize these requirements simultaneously due to the limitations of the existing fabrication technologies when integrating intrinsically stretchable materials into transistors. Here, we propose a removal-transfer-photolithography method (RTPM), combined with adopting poly(urea-urethane) (PUU) as a dielectric, to realize integratable intrinsically stretchable carbon nanotube thin-film transistors (IIS-CNT-TFTs). The realized IIS-CNT-TFTs achieve excellent electrical and mechanical properties simultaneously, showing high field-effect-mobility up to 221 cm2 V-1 s-1 and high current density up to 810 μA mm-1 at a low driving voltage of -1 V, which are both the highest values for intrinsically stretchable transistors today to the best of our knowledge. At the same time, the transistors can survive 2000 cycles of repeated stretching by 50%, indicating their promising applicability to stretchable circuits, displays, and wearable electronics. The achieved intrinsically stretchable thin-film transistors show higher electrical performance, higher stretching durability, and smaller feature size simultaneously compared with the state-of-the-art works, providing a novel solution to integratable intrinsically stretchable electronics. Besides, the proposed RTPM involves adopting removable sacrificial layers to protect the PDMS substrate and PUU dielectric during the photolithography and patterning steps, and finally removing the sacrificial layers to improve the electrical and mechanical performance. This method is generally applicable to further enhance the performance of the existing transistors and devices with a similar structure in soft electronics.
Collapse
Affiliation(s)
- Weihong Huang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
42
|
Yang Y, Chen S, Li W, Li P, Ma J, Li B, Zhao X, Ju Z, Chang H, Xiao L, Xu H, Liu Y. Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS NANO 2020; 14:8754-8765. [PMID: 32538618 DOI: 10.1021/acsnano.0c03337] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanowire networks (MNNs) are promising as transparent electrode materials for a diverse range of optoelectronic devices and also work as active materials for electrical heating and electromagnetic interference (EMI) shielding applications. However, the relatively low performance and poor durability of MNNs are limiting the practical application of the resulting devices. Here, we report a controllable approach to enhance the conductivity and the stability of MNNs with their transmittance remaining unchanged, in which reduced graphene oxide conformally wrapped silver nanowire networks (AgNW@rGO networks) are synthesized by selective electrodeposition of GO nanosheets on AgNWs followed by a pulsed laser irradiation treatment. Experimental characterizations and finite-difference time-domain simulations indicate that pulsed laser irradiation at a specific wavelength not only reduces the GO but also welds the AgNWs together through a surface plasmon resonance process. As a result, the AgNW@rGO networks exhibit low sheet resistance of 3.3 Ω/□, average transmittance of 91.1%, and good flexibility. Wrapping with rGO improves the maximum electrical heating temperature of the AgNW network transparent heaters due to the effective suppression of the oxidation and the migration of surface silver atoms. In addition, excellent EMI shielding effectiveness of up to 35.5 dB in the 8.2-12.4 GHz frequency range is obtained as a consequence of the combined effects of dual reflection, conduction loss, and multiple dielectric polarization relaxation processes.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Sai Chen
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Wanli Li
- Center for Functional Sensor & Actuator and World Premier International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Ibaraki 3050044, Japan
| | - Peng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiangang Ma
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bingsheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongshi Ju
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Huicong Chang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Lin Xiao
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
43
|
Hiekel K, Jungblut S, Georgi M, Eychmüller A. Tailoring the Morphology and Fractal Dimension of 2D Mesh-like Gold Gels. Angew Chem Int Ed Engl 2020; 59:12048-12054. [PMID: 32315501 PMCID: PMC7383771 DOI: 10.1002/anie.202002951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 12/31/2022]
Abstract
As there is a great demand of 2D metal networks, especially out of gold for a plethora of applications we show a universal synthetic method via phase boundary gelation which allows the fabrication of networks displaying areas of up to 2 cm2. They are transferred to many different substrates: glass, glassy carbon, silicon, or polymers such as PDMS. In addition to the standardly used web thickness, the networks are parametrized by their fractal dimension. By variation of experimental conditions, we produced web thicknesses between 4.1 nm and 14.7 nm and fractal dimensions in the span of 1.56 to 1.76 which allows to tailor the structures to fit for various applications. Furthermore, the morphology can be tailored by stacking sheets of the networks. For each different metal network, we determined its optical transmission and sheet resistance. The obtained values of up to 97 % transparency and sheet resistances as low as 55.9 Ω/sq highlight the great potential of the obtained materials.
Collapse
Affiliation(s)
- Karl Hiekel
- Physical Chemistry, Technische Universität Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Swetlana Jungblut
- Physical Chemistry, Technische Universität Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Maximilian Georgi
- Physical Chemistry, Technische Universität Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Alexander Eychmüller
- Physical Chemistry, Technische Universität Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| |
Collapse
|
44
|
Hiekel K, Jungblut S, Georgi M, Eychmüller A. Tailoring the Morphology and Fractal Dimension of 2D Mesh‐like Gold Gels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karl Hiekel
- Physical Chemistry Technische Universität Dresden Bergstrasse 66b 01062 Dresden Germany
| | - Swetlana Jungblut
- Physical Chemistry Technische Universität Dresden Bergstrasse 66b 01062 Dresden Germany
| | - Maximilian Georgi
- Physical Chemistry Technische Universität Dresden Bergstrasse 66b 01062 Dresden Germany
| | - Alexander Eychmüller
- Physical Chemistry Technische Universität Dresden Bergstrasse 66b 01062 Dresden Germany
| |
Collapse
|
45
|
Fang Y, Li Y, Wang X, Zhou Z, Zhang K, Zhou J, Hu B. Cryo-Transferred Ultrathin and Stretchable Epidermal Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000450. [PMID: 32529803 DOI: 10.1002/smll.202000450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Indexed: 05/05/2023]
Abstract
A simple cryo-transfer method to fabricate ultrathin, stretchable, and conformal epidermal electrodes based on a combination of silver nanowires (AgNWs) network and elastomeric polymers is developed. This method can temporarily enable the soft elastomers with much higher elastic modulus and dimensional contraction through exploiting their glass-transition behaviors. During this process, a much higher Von Mises stress can be loaded on AgNWs than usual, and the generated strong grip force can facilitate the complete transfer of AgNWs. Afterward, the thawed AgNWs and elastomer composites quickly recover to their soft state at room temperature. The obtained ultrathin and soft electrode with a thickness of 8.4 µm and transmittance of 90.8% at a sheet resistance of 13.2 Ω sq-1 can tolerate a stretching strain of 70% and 50 000 repeated bending cycles, which meets rigorous requirements of epidermal applications. The as-prepared epidermal electrodes are effective and comfortable for electrophysiological signal monitoring, and while showing excellent performance exceeding the commercialized gel electrodes.
Collapse
Affiliation(s)
- Yunsheng Fang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengui Zhou
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kui Zhang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Zhou
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Hu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Jang J, Jun YS, Seo H, Kim M, Park JU. Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3624. [PMID: 32605148 PMCID: PMC7374490 DOI: 10.3390/s20133624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023]
Abstract
In recent years, to develop more spontaneous and instant interfaces between a system and users, technology has evolved toward designing efficient and simple gesture recognition (GR) techniques. As a tool for acquiring human motion, a tactile sensor system, which converts the human touch signal into a single datum and executes a command by translating a bundle of data into a text language or triggering a preset sequence as a haptic motion, has been developed. The tactile sensor aims to collect comprehensive data on various motions, from the touch of a fingertip to large body movements. The sensor devices have different characteristics that are important for target applications. Furthermore, devices can be fabricated using various principles, and include piezoelectric, capacitive, piezoresistive, and field-effect transistor types, depending on the parameters to be achieved. Here, we introduce tactile sensors consisting of field-effect transistors (FETs). GR requires a process involving the acquisition of a large amount of data in an array rather than a single sensor, suggesting the importance of fabricating a tactile sensor as an array. In this case, an FET-type pressure sensor can exploit the advantages of active-matrix sensor arrays that allow high-array uniformity, high spatial contrast, and facile integration with electrical circuitry. We envision that tactile sensors based on FETs will be beneficial for GR as well as future applications, and these sensors will provide substantial opportunities for next-generation motion sensing systems.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Yoon Sun Jun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Moohyun Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
47
|
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Indexed: 05/19/2023]
Abstract
Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Raza Qazi
- Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Biosciences, Center for Flexible and Wearable Electronics Advanced Research, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Pradhan S, Ventura L, Agostinacchio F, Xu M, Barbieri E, Motta A, Pugno NM, Yadavalli VK. Biofunctional Silk Kirigami With Engineered Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12436-12444. [PMID: 32096397 DOI: 10.1021/acsami.9b20691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of multifunctional materials that interface with living environments is a problem of great interest. A variety of structural design concepts have been integrated with functional materials to form biodevices and surfaces for health monitoring. In particular, approaches based on kirigami-inspired cuts can engineer flexibility in materials through the creation of patterned defects. Here, the fabrication of a biodegradable and biofunctional "silk kirigami" material is demonstrated. Mechanically flexible, free-standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. Using modeling techniques, it is shown how cuts can generate remarkable "self-shielding" leading to engineered elastic behavior and deformation. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Importantly, the silk kirigami sheets are biocompatible, can serve as substrates for cell culture, and be proteolytically resorbed. The unique properties of silk kirigami suggest a host of applications as transient, "green", functional biointerfaces, and flexible bioelectronics.
Collapse
Affiliation(s)
- Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Leonardo Ventura
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Francesca Agostinacchio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | - Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ettore Barbieri
- Japan Agency for Marine-Earth Science and Technology, Center for Mathematical Science and Advanced Technology, Computational Science and Engineering Group, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | - Nicola M Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy
- Fondazione Edoardo Amaldi, Via del Politecnico snc, 00133 Rome, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
49
|
Zhu L, Wang B, Handschuh-Wang S, Zhou X. Liquid Metal-Based Soft Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903841. [PMID: 31573755 DOI: 10.1002/smll.201903841] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Motivated by the increasing demand of wearable and soft electronics, liquid metal (LM)-based microfluidics has been subjected to tremendous development in the past decade, especially in electronics, robotics, and related fields, due to the unique advantages of LMs that combines the conductivity and deformability all-in-one. LMs can be integrated as the core component into microfluidic systems in the form of either droplets/marbles or composites embedded by polymer materials with isotropic and anisotropic distribution. The LM microfluidic systems are found to have broad applications in deformable antennas, soft diodes, biomedical sensing chips, transient circuits, mechanically adaptive materials, etc. Herein, the recent progress in the development of LM-based microfluidics and their potential applications are summarized. The current challenges toward industrial applications and future research orientation of this field are also summarized and discussed.
Collapse
Affiliation(s)
- Lifei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Guangdong Laboratory of ArtificialIntelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Guangdong Laboratory of ArtificialIntelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
50
|
Li Y, Si Y, Li L, Zhang N, Cen W, Wang H, Dai Y. A Facile Synthesis of A Novel Cu2Se@CMK-3 Nanocomposite for Rechargeable Sodium Batteries. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/678/1/012147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|