1
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
2
|
Neumann M, di Marco G, Iudin D, Viola M, van Nostrum CF, van Ravensteijn BGP, Vermonden T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023; 56:8377-8392. [PMID: 38024154 PMCID: PMC10653276 DOI: 10.1021/acs.macromol.3c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers. The resulting swelling-shrinking, shape-morphing, as well as patterns have been shown to influence cell function in a spatiotemporally controlled manner. Furthermore, the use of stimuli-responsive hydrogels as bioinks in 4D bioprinting is very promising as they allow the biofabrication of complex microstructures. This perspective discusses recent cutting-edge advances as well as current challenges in the field of smart biomaterials for tissue engineering. Additionally, emerging trends and potential future directions are addressed.
Collapse
Affiliation(s)
- Myriam Neumann
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Greta di Marco
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Dmitrii Iudin
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Martina Viola
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Bas G. P. van Ravensteijn
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
3
|
Wang D, Chen Z, Li M, Hou Z, Zhan C, Zheng Q, Wang D, Wang X, Cheng M, Hu W, Dong B, Shi F, Sitti M. Bioinspired rotary flight of light-driven composite films. Nat Commun 2023; 14:5070. [PMID: 37604907 PMCID: PMC10442326 DOI: 10.1038/s41467-023-40827-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Light-driven actuators have great potential in different types of applications. However, it is still challenging to apply them in flying devices owing to their slow response, small deflection and force output and low frequency response. Herein, inspired by the structure of vine maple seeds, we report a helicopter-like rotary flying photoactuator (in response to 0.6 W/cm2 near-infrared (NIR) light) with ultrafast rotation (~7200 revolutions per minute) and rapid response (~650 ms). This photoactuator is operated based on a fundamentally different mechanism that depends on the synergistic interactions between the photothermal graphene and the hygroscopic agar/silk fibroin components, the subsequent aerodynamically favorable airscrew formation, the jet propulsion, and the aerodynamics-based flying. The soft helicopter-like photoactuator exhibits controlled flight and steering behaviors, making it promising for applications in soft robotics and other miniature devices.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaomin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Zhen Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Changsong Zhan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qijun Zheng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Dalei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
4
|
Yuan Z, Guo Q, Jin D, Zhang P, Yang W. Biohybrid Soft Robots Powered by Myocyte: Current Progress and Future Perspectives. MICROMACHINES 2023; 14:1643. [PMID: 37630179 PMCID: PMC10456826 DOI: 10.3390/mi14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Myocyte-driven robots, a type of biological actuator that combines myocytes with abiotic systems, have gained significant attention due to their high energy efficiency, sensitivity, biocompatibility, and self-healing capabilities. These robots have a unique advantage in simulating the structure and function of human tissues and organs. This review covers the research progress in this field, detailing the benefits of myocyte-driven robots over traditional methods, the materials used in their fabrication (including myocytes and extracellular materials), and their properties and manufacturing techniques. Additionally, the review explores various control methods, robot structures, and motion types. Lastly, the potential applications and key challenges faced by myocyte-driven robots are discussed and summarized.
Collapse
Affiliation(s)
- Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Qinghao Guo
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Delu Jin
- School of Human Ities and Social Science, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Peifan Zhang
- Control Science and Engineering, Naval Aviation University, Yantai 264001, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| |
Collapse
|
5
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
6
|
Zhao S, Chen J, Wu L, Tao X, Yaqub N, Chang J. Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles. Int J Mol Sci 2023; 24:11520. [PMID: 37511279 PMCID: PMC10380861 DOI: 10.3390/ijms241411520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle, which comprises a significant portion of the body, is responsible for vital functions such as movement, metabolism, and overall health. However, severe injuries often result in volumetric muscle loss (VML) and compromise the regenerative capacity of the muscle. Tissue-engineered muscles offer a potential solution to address lost or damaged muscle tissue, thereby restoring muscle function and improving patients' quality of life. Induced pluripotent stem cells (iPSCs) have emerged as a valuable cell source for muscle tissue engineering due to their pluripotency and self-renewal capacity, enabling the construction of tissue-engineered artificial skeletal muscles with applications in transplantation, disease modelling, and bio-hybrid robots. Next-generation iPSC-based models have the potential to revolutionize drug discovery by offering personalized muscle cells for testing, reducing reliance on animal models. This review provides a comprehensive overview of iPSCs in tissue-engineered artificial skeletal muscles, highlighting the advancements, applications, advantages, and challenges for clinical translation. We also discussed overcoming limitations and considerations in differentiation protocols, characterization methods, large-scale production, and translational regulations. By tackling these challenges, iPSCs can unlock transformative advancements in muscle tissue engineering and therapeutic interventions for the future.
Collapse
Affiliation(s)
- Shudong Zhao
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Jishizhan Chen
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Lei Wu
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Xin Tao
- Department of iPS Cell Applications, Kobe University, Kobe 657-8501, Japan
| | - Naheem Yaqub
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Jinke Chang
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| |
Collapse
|
7
|
Chen H, Li N, Gu Z, Gu H, Wang J. Magnetic photonic crystals for biomedical applications. SMART MEDICINE 2023; 2:e20220039. [PMID: 39188282 PMCID: PMC11235834 DOI: 10.1002/smmd.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 08/28/2024]
Abstract
Magnetic photonic crystals (PhCs), as a representative responsive structural color material, have attracted increasing research focus due to merits such as brilliant refraction colors, instant responsiveness, and excellent manipuility, thus having been widely applied for color displaying, three-dimensional printing, sensing, and so on. Featured with traits such as contactless manner, flexible orientations, and adjustable intensity of external magnetism, magnetic PhCs have shown great superiority especially in the field of biomedical applications such as bioimaging and auxiliary clinical diagnosis. In this review, we summarize the current advancements of magnetic PhCs. We first introduce the fundamental principles and typical characteristics of PhCs. Afterward, we present several typical self-assembly strategies with their frontiers in practical applications. Finally, we analyze the current situations of magnetic PhCs and put forward the prospective challenges and future development directions.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ning Li
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
8
|
Tan Y, Lu T, Chen Y, Witman N, Yan B, Yang L, Liu M, Gong Y, Ai X, Luo R, Wang H, Wang W, Fu W. Engineering a conduction-consistent cardiac patch with graphene oxide modified butterfly wings and human pluripotent stem cell-derived cardiomyocytes. Bioeng Transl Med 2023; 8:e10522. [PMID: 37206241 PMCID: PMC10189447 DOI: 10.1002/btm2.10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Engineering a conduction-consistent cardiac patch has direct implications to biomedical research. However, there is difficulty in obtaining and maintaining a system that allows researchers to study physiologically relevant cardiac development, maturation, and drug screening due to the issues around inconsistent contractions of cardiomyocytes. Butterfly wings have special nanostructures arranged in parallel, which could help generate the alignment of cardiomyocytes to better mimic the natural heart tissue structure. Here, we construct a conduction-consistent human cardiac muscle patch by assembling human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on graphene oxide (GO) modified butterfly wings. We also show this system functions as a versatile model to study human cardiomyogenesis by assembling human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) on the GO modified butterfly wings. The GO modified butterfly wing platform facilitated the parallel orientation of hiPSC-CMs, enhanced relative maturation as well as improved conduction consistency of the cardiomyocytes. In addition, GO modified butterfly wings enhanced the proliferation and maturation characteristics of the hiPSC-CPCs. In accordance with data obtained from RNA-sequencing and gene signatures, assembling hiPSC-CPCs on GO modified butterfly wings stimulated the differentiation of the progenitors into relatively mature hiPSC-CMs. These characteristics and capabilities of GO modified butterfly wings make them an ideal platform for heart research and drug screening.
Collapse
Affiliation(s)
- Yao Tan
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tingting Lu
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ying Chen
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Nevin Witman
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Bingqian Yan
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Li Yang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Minglu Liu
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Huijing Wang
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Wang
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Tissue EngineeringShanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Chen H, Miao S, Zhao Y, Luo Z, Shang L. Rotary Structural Color Spindles from Droplet Confined Magnetic Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207270. [PMID: 36651011 PMCID: PMC10015863 DOI: 10.1002/advs.202207270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Structural colors materials are profoundly explored owing to their fantastic optical properties and widespread applications. Development of structural color materials bearing flexible morphologies and versatile functionalities is highly anticipated. Here, a droplet-confined, magnetic-induced self-assembly strategy for generating rotary structural color spindles (SCSPs) by fast solvent extraction is proposed. The as-prepared SCSPs exhibit an orderly close-packed lattice structure, thus appearing brilliant structural colors that serve as encoding tags for multiplexed bioassays. Besides, benefitting from the abundant specific surface area, biomarkers can be labeled on the SCSPs with high efficiency for specific detection of analytes in clinical samples. Moreover, the directional magnetic moment arrangement enables contactless magnetic manipulation of the SCSPs, and the resultant rotary motions of the SCSPs generates turbulence in the detection solution, thus significantly improving the detection efficiency and shortening the detection time. Based on these merits, a portable point-of-care-testing strip integrating the rotary SCSPs is further constructed and the capability and advantages of this platform for multiplexed detection of tumor-related exosomes in clinical samples are demonstrated. This study offers a new way for the control of bottom-up self-assembly and extends the configuration and application values of colloidal crystal structural colors materials.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Shuangshuang Miao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
10
|
Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, Zhou J, Feng Z, Liu Z, Mao S, Qiu Y, Wang H, Zhu Z. Spinal cord conduits for spinal cord injury regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Wang F, Wu Y, Nestler B. Wetting Effect on Patterned Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210745. [PMID: 36779433 DOI: 10.1002/adma.202210745] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Indexed: 05/10/2023]
Abstract
A droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie-Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie-Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Yanchen Wu
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany
| |
Collapse
|
12
|
Lin B, Yuan L, Gao B, He B. Patterned Duplex Fabric Based on Genetically Modified Spidroin for Smart Wound Management. Adv Healthc Mater 2023; 12:e2202213. [PMID: 36349744 DOI: 10.1002/adhm.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Collapse
Affiliation(s)
- Baoyang Lin
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
13
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
14
|
Chen J, Jiang J, Weber J, Gimenez-Pinto V, Peng C. Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4538-4548. [PMID: 36637983 DOI: 10.1021/acsami.2c20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Programming shape changes in soft materials requires precise control of the directionality and magnitude of their mechanical response. Among ordered soft materials, liquid crystal elastomers (LCEs) exhibit remarkable and programmable shape shifting when their molecular order changes. In this work, we synthesized, remotely programmed, and modeled reversible and complex morphing in monolithic LCE kirigami encoded with predesigned topological patterns in its microstructure. We obtained a rich variety of out-of-plane shape transformations, including auxetic structures and undulating morphologies, by combining different topological microstructures and kirigami geometries. The spatiotemporal shape-shifting behaviors are well recapitulated by elastodynamics simulations, revealing that the complex shape changes arise from integrating the custom-cut geometry with local director profiles defined by topological defects inscribed in the material. Different functionalities, such as a bioinspired fluttering butterfly, a flower bud, dual-rotation light mills, and dual-mode locomotion, are further realized. Our proposed LCE kirigami with topological patterns opens opportunities for the future development of multifunctional devices for soft robotics, flexible electronics, and biomedicine.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinghua Jiang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jada Weber
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Vianney Gimenez-Pinto
- Physics and Chemistry, Department of Science, Technology and Mathematics, Lincoln University of Missouri, Jefferson City, Missouri 65101, United States
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
15
|
Sun S, Chen C, Zhang J, Hu J. Biodegradable smart materials with self-healing and shape memory function for wound healing. RSC Adv 2023; 13:3155-3163. [PMID: 36756444 PMCID: PMC9869863 DOI: 10.1039/d2ra07493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Notwithstanding the rapid development of suture elastomers to meet the needs of practical surgery, utilizing the elastomers' self-healing function as a surgical suture to facilitate the healing of wounds has not been addressed. Here, a biodegradable aliphatic polycarbonate smart elastomer, mPEG113-b-PMBC n , was synthesized from aliphatic polycarbonate monomer with methoxy polyethylene glycol (mPEG113, 5.0 kDa) as initiator, which exhibited excellent mechanical properties, highly efficient self-repairing, and remarkable shape memory behavior. The polymers possess outstanding self-healing ability for 150 min. Meanwhile, after 46.33 ± 1.18 s, the temporary shape of the obtained polymer had been recovered. The results of biocompatibility tests reveal that the polymers have excellent biocompatibility and can be regarded as good biomedical materials. Then, in vivo experiments were used to prove the self-healing knotting ability of the polymers and quickly close a wound surface using a programmed shape at physiological temperature. The results demonstrated that the injury wound can be effectively healed compared with traditional sutures, which will offer new study suggestions for subsequent healing areas.
Collapse
Affiliation(s)
- Siqin Sun
- Department of Chemistry, College of Science, Northeastern University Shenyang 110819 P. R. China
| | - Chaoxian Chen
- Department of Chemistry, College of Science, Northeastern University Shenyang 110819 P. R. China .,Department of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University Beijing 100871 P. R. China
| | - Jianghong Zhang
- Department of Chemistry, College of Science, Northeastern University Shenyang 110819 P. R. China
| | - Jianshe Hu
- Department of Chemistry, College of Science, Northeastern University Shenyang 110819 P. R. China
| |
Collapse
|
16
|
Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
17
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Wang J, Liu Q, Gong J, Wan Z, Zhou J, Chang C, Zhang D. Micropatterned Hydrogels with Highly Ordered Cellulose Nanocrystals for Visually Monitoring Cardiomyocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202235. [PMID: 36089663 DOI: 10.1002/smll.202202235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cardiac microphysiological systems are accurate in vitro platforms that reveal the biological mechanisms underlying cardiopathy, accelerating pharmaceutical research in this field. Current cardiac microphysiological devices and organs-on-chips consist of several layers prepared with complex, multi-step processes. Incorporating inorganic photonic crystals may cause long-term biocompatibility issues. Herein, micropatterned hydrogels with anisotropic structural colors are prepared by locking shear-oriented tunicate cellulose nanocrystals (TCNCs) in hydrogel networks through in situ polymerization, allowing the visualization and monitoring of cardiomyocytes. The anisotropic hydrogels are composed of highly ordered TCNCs with bright interference color and micro-grooved methacrylated gelatin with excellent biocompatibility. The microgroove patterns induce cardiomyocyte alignment and the autonomous beating of cardiomyocytes causes the hydrogels to deform, dynamically shifting the interference color. These micropatterned hydrogels could noninvasively monitor real-time changes of cardiomyocytes under pharmaceutical treatment and electrical stimulation through wavelength shifts in the transmittance spectra. This system provides a new way to detect the beat rate of cardiac tissue and it may contribute to high throughput develop.
Collapse
Affiliation(s)
- Junmei Wang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Qian Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jixing Gong
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Zhongjun Wan
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Donghui Zhang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
19
|
Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, Chen X, Guo J, Cheng H, Xia L, Lu W, Zhang C, Xie J, Wang H, Chai R. GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology 2022; 20:460. [PMID: 36307790 PMCID: PMC9617371 DOI: 10.1186/s12951-022-01669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Repair of spinal cord injury (SCI) depends on microenvironment improvement and the reconnection between injured axons and regenerated neurons. Here, we fabricate a GelMA-MXene hydrogel nerve conduit with electrical conductivity and internal-facing longitudinal grooves and explore its function in SCI repair. It is found that the resultant grooved GelMA-MXene hydrogel could effectively promote the neural stem cells (NSCs) adhesion, directed proliferation and differentiation in vitro. Additionally, when the GelMA-MXene conduit loaded with NSCs (GMN) is implanted into the injured spinal cord site, effective repair capability for the complete transection of SCI was demonstrated. The GMN group shows remarkable nerve recovery and significantly higher BBB scores in comparison to the other groups. Therefore, GMN with the microgroove structure and loaded with NSCs is a promising strategy in treating SCI.
Collapse
Affiliation(s)
- Jiaying Cai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhichun Huang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lin Xia
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| | - Huan Wang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100086, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
20
|
Criscione J, Rezaei Z, Hernandez Cantu CM, Murphy S, Shin SR, Kim DH. Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening. Biosens Bioelectron 2022; 220:114840. [DOI: 10.1016/j.bios.2022.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
21
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
22
|
Tetsuka H, Pirrami L, Wang T, Demarchi D, Shin SR. Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2202674. [PMID: 36313126 PMCID: PMC9603592 DOI: 10.1002/adfm.202202674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The integration of flexible and stretchable electronics into biohybrid soft robotics can spur the development of new approaches to fabricate biohybrid soft machines, thus enabling a wide variety of innovative applications. Inspired by flexible and stretchable wireless-based bioelectronic devices, we have developed untethered biohybrid soft robots that can execute swimming motions, which are remotely controllable by the wireless transmission of electrical power into a cell simulator. To this end, wirelessly-powered, stretchable, and lightweight cell stimulators were designed to be integrated into muscle bodies without impeding the robots' underwater swimming abilities. The cell stimulators function by generating controlled monophasic pulses of up to ∼9 V in biological environments. By differentiating induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) directly on the cell stimulators using an accordion-inspired, three-dimensional (3D) printing construct, we have replicated the native myofiber architecture with comparable robustness and enhanced contractibility. Wirelessly modulated electrical frequencies enabled us to control the speed and direction of the biohybrid soft robots. A maximum locomotion speed of ∼580 μm/s was achieved in robots possessing a large body size by adjusting the pacing frequency. This innovative approach will provide a platform for building untethered and biohybrid systems for various biomedical applications.
Collapse
Affiliation(s)
- Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts, 02139 USA
- Future Mobility Research Department, Toyota Research Institute of North America, Toyota Motor North America, 1555 Woodridge Avenue, Ann Arbor, Michigan, 48105 USA
| | - Lorenzo Pirrami
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg-1700, Switzerland
| | - Ting Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts, 02139 USA
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts, 02139 USA
| |
Collapse
|
23
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
24
|
Zhou L, Fei J, Fang W, Shao L, Liu Q, He H, Ma M, Shi Y, Chen S, Wang X. A true color palette: binary metastable photonic pigments. NANOSCALE HORIZONS 2022; 7:890-898. [PMID: 35815919 DOI: 10.1039/d2nh00232a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Different from the traditional concept that binary photonic crystals can only reproduce mixed colors due to the simple superposition of the photonic band gaps, precisely addressable "true colors" obtained from volume fraction deviation of binary photonic crystals with metastable structures are reported here. Inspired by the mussels' adhesion and longhorn beetles' photonic scales, a binary metastable amorphous photonic crystal was obtained by enhancing the driving forces and customizing the surface roughness of building blocks to regulate the thermodynamic and dynamic factors simultaneously. By controlling the volume fraction of two building blocks, the tunable photonic bandgap varies linearly in the visible region. Furthermore, the "true violet" that cannot be obtained by conventional color mixing is reproduced with the particular ultraviolet characteristics of red photonic pigment's metastable structures, which complement the palette effect of "true colors". Meanwhile, due to the self-adhesion and post-modification of building blocks, the stability of photonic pigments is further improved. The binary photonic pigments not only solve the dilemma of mixed colors, but also realize the tunability and multiplicity of "true colors", offering a new choice for the color palette of the world.
Collapse
Affiliation(s)
- Likang Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junhao Fei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wei Fang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Luqing Shao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianjiang Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Crossing Phylums: Butterfly Wing as a Natural Perfusable Three-Dimensional (3D) Bioconstruct for Bone Tissue Engineering. J Funct Biomater 2022; 13:jfb13020068. [PMID: 35735923 PMCID: PMC9225241 DOI: 10.3390/jfb13020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the advent of promising technologies in tissue engineering, finding a biomimetic 3D bio-construct capable of enhancing cell attachment, maintenance, and function is still a challenge in producing tailorable scaffolds for bone regeneration. Here, osteostimulatory effects of the butterfly wings as a naturally porous and non-toxic chitinous scaffold on mesenchymal stromal cells are assessed. The topographical characterization of the butterfly wings implied their ability to mimic bone tissue microenvironment, whereas their regenerative potential was validated after a 14-day cell culture. In vivo analysis showed that the scaffold induced no major inflammatory response in Wistar rats. Topographical features of the bioconstruct upregulated the osteogenic genes, including COL1A1, ALP, BGLAP, SPP1, SP7, and AML3 in differentiated cells compared to the cells cultured in the culture plate. However, butterfly wings were shown to provide a biomimetic microstructure and proper bone regenerative capacity through a unique combination of various structural and material properties. Therefore, this novel platform can be confidently recommended for bone tissue engineering applications.
Collapse
|
26
|
Qi Y, Zhou C, Qiu Y, Cao X, Niu W, Wu S, Zheng Y, Ma W, Ye H, Zhang S. Biomimetic Janus photonic soft actuator with structural color self-reporting. MATERIALS HORIZONS 2022; 9:1243-1252. [PMID: 35080571 DOI: 10.1039/d1mh01693h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators with variable signal/color play an important role in the fields of targeted locomotion, artificial phototropism, drug screening, cargo transportation, and interactive sensing. The ability to achieve rapid response, large curvature, wide bending angle, and full-color display continues to be an unresolved challenge for artificial actuating materials. Inspired by the angle-dependent structural color of broad-tailed hummingbird and the Janus wettability of the lotus leaf, a Janus photonic soft actuator (JPSA) was fabricated by integrating an underwater super-oleophilic copper micro-nano array and oil-phobic inverse opal through a Laplace channel. The JPSA exhibits unidirectional permeability to underwater oil droplets. Attractively, with the combination of a swellable super-oleophilic surface and photonic crystals, JPSAs were endowed with oil-controlled reversible bending behavior with self-reporting angle-dependent color indication. We described for the first time the directional actuating mechanism induced by underwater oil unidirectional penetration and revealed the corresponding actuating kinetics and the inner-stress distribution/transfer by using structural color. As an extension of such theory, a rapid responsive JPSA with a wide bending angle and full-color self-reporting is further fabricated. This work provides an efficient strategy for oil directional transportation and separation in aqueous media and inspires the fabrication of a soft actuator/sensor with structural color self-reporting.
Collapse
Affiliation(s)
- Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Changtong Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Yisong Qiu
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Xianfei Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Yonggang Zheng
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Hongfei Ye
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| |
Collapse
|
27
|
Zhu Y, Sun L, Wang Y, Cai L, Zhang Z, Shang Y, Zhao Y. A Biomimetic Human Lung-on-a-Chip with Colorful Display of Microphysiological Breath. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108972. [PMID: 35065539 DOI: 10.1002/adma.202108972] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Lung-on-a-chip models hold great promise for disease modeling and drug screening. Herein, inspired by the iridescence phenomenon of soap bubbles, a novel biomimetic 3D microphysiological lung-on-a-chip system with breathing visualization is presented. The system, with an array of pulmonary alveoli at the physiological scale, is constructed and coated with structural color materials. Cyclic deformation is induced by regular airflow, resembling the expansion and contraction of the alveoli during rhythmic breathing. As the deformation is accompanied with corresponding synchronous shifts in the structural color, the constructed system offers self-reporting of the cell mechanics and enables real-time monitoring of the cultivation process. Using this system, the dynamic relationships between the color atlas and disease symptoms, showing the essential role of mechanical stretching in the phenotypes of idiopathic pulmonary fibrosis, are investigated. These features make this human lung system ideal in biological study, disease monitoring, and drug discovery.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuohao Zhang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yixuan Shang
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
28
|
Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Wu G, Wu J, Li Z, Shi S, Wu D, Wang X, Xu H, Liu H, Huang Y, Wang R, Shen J, Dong Z, Wang S. Development of digital organ-on-a-chip to assess hepatotoxicity and extracellular vesicle-based anti-liver cancer immunotherapy. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00188-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractOrgan-on-a-chip systems have been increasingly recognized as attractive platforms to assess toxicity and to develop new therapeutic agents. However, current organ-on-a-chip platforms are limited by a “single pot” design, which inevitably requires holistic analysis and limits parallel processing. Here, we developed a digital organ-on-a-chip by combining a microwell array with cellular microspheres, which significantly increased the parallelism over traditional organ-on-a-chip for drug development. Up to 127 uniform liver cancer microspheres in this digital organ-on-a-chip format served as individual analytical units, allowing for analysis with high consistency and quick response. Our platform displayed evident anti-cancer efficacy at a concentration of 10 μM for sorafenib, and had greater alignment than the “single pot” organ-on-a-chip with a previous in vivo study. In addition, this digital organ-on-a-chip demonstrated the treatment efficacy of natural killer cell-derived extracellular vesicles for liver cancer at 50 μg/mL. The successful development of this digital organ-on-a-chip platform provides high-parallelism and a low-variability analytical tool for toxicity assessment and the exploration of new anticancer modalities, thereby accelerating the joint endeavor to combat cancer.
Graphic abstract
Collapse
|
30
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
31
|
Hu Y, Chen Z, Wang H, Guo J, Cai J, Chen X, Wei H, Qi J, Wang Q, Liu H, Zhao Y, Chai R. Conductive Nerve Guidance Conduits Based on Morpho Butterfly Wings for Peripheral Nerve Repair. ACS NANO 2022; 16:1868-1879. [PMID: 35112853 DOI: 10.1021/acsnano.1c11627] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral nerve injury (PNI), causing loss of sensory and motor function, is a complex and challenging disease in the clinic due to the restricted regeneration capacity. Nerve guidance conduits (NGCs) have become a promising substitute for peripheral nerve regeneration, but their efficacy is often limited. Here, inspired by the physiological structures of peripheral nerves, we present a conductive topological scaffold for nerve repair by modifying Morpho butterfly wing with reduced graphene oxide (rGO) nanosheets and methacrylated gelatin (GelMA) hydrogel encapsulated brain-derived neurotrophic factor (BDNF). Benefiting from the biocompatibility of GelMA hydrogel, the conductivity of rGO and parallel nanoridge structures of wing scales, PC12 cells, and neural stem cells grown on the modified wing have an increased neurite length with guided cellular orientation. In addition, the NGCs are successfully obtained by manually rolling up the scaffolds and exhibited great performance in repairing 10 mm sciatic nerve defects in rats, and we believe that the NGCs can be applied in reparing longer nerve defects in the future by further optimization. We also demonstrate the feasibility of electrically conductive NGCs based on the rGO/BDNF/GelMA-integrated Morpho butterfly wing as functional nerve regeneration conduits, which may have potential value for application in repairing peripheral nerve injuries.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiaying Cai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou, 510005, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100086, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
32
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
33
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
34
|
He Y, Yu Y, Yang Y, Gu Y, Mao T, Shen Y, Liu Q, Liu R, Ding J. Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer. Bioact Mater 2021; 15:288-304. [PMID: 35356817 PMCID: PMC8935092 DOI: 10.1016/j.bioactmat.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
While most studies of mechanical stimulation of cells are focused on two-dimensional (2D) and three-dimensional (3D) systems, it is rare to study the effects of cyclic stretching on cells under a quasi-3D microenvironment as a linkage between 2D and 3D. Herein, we report a new method to prepare an elastic membrane with topographic microstructures and integrate the membrane into a microfluidic chip. The fabrication difficulty lay not only in the preparation of microstructures but also in the alignment and bonding of the patterned membrane to other layers. To resolve the problem, we designed and assembled a fast aligner that is cost-effective and convenient to operate. To enable quasi-3D microenvironment of cells, we fabricated polydimethylsiloxane (PDMS) microwell arrays (formed by micropillars of a few microns in diameter) with the microwell diameters close to the cell sizes. An appropriate plasma treatment was found to afford a coating-free approach to enable cell adhesion on PDMS. We examined three types of cells in 2D, quasi-3D, and 3D microenvironments; the cell adhesion results showed that quasi-3D cells behaved between 2D and 3D cells. We also constructed transgenic human mesenchymal stem cells (hMSCs); under cyclic stretching, the visualizable live hMSCs in microwells were found to orientate differently from in a 3D Matrigel matrix and migrate differently from on a 2D flat plate. This study not only provides valuable tools for microfabrication of a microfluidic device for cell studies, but also inspires further studies of the topological effects of biomaterials on cells. A microfluidic platform for quasi-3D cell studies was presented as a linkage between 2D and 3D cell-material research systems. The fabrication difficulty was overcome by designing an effective aligner that can be easily assembled. Cell behaviors can be enhanced with a proper quasi-3D biomaterial microenvironment. A new transgenic cell line and systematic 3D approaches were developed to visualize and digitalize the quasi-3D cells.
Collapse
Affiliation(s)
- Yingning He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuqian Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yexin Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tianjiao Mao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Corresponding author.
| |
Collapse
|
35
|
Hasselmann S, Hahn L, Lorson T, Schätzlein E, Sébastien I, Beudert M, Lühmann T, Neubauer JC, Sextl G, Luxenhofer R, Heinrich D. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. MATERIALS HORIZONS 2021; 8:3334-3344. [PMID: 34617095 DOI: 10.1039/d1mh00925g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Hasselmann
- Fraunhofer Project Center for Stem Cell Process Engineering Neunerplatz 2, Würzburg 97082, Germany
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Eva Schätzlein
- East Bavarian Technical University of Applied Sciences, Prüfeninger Str. 58, Regensburg 93049, Germany
| | - Isabelle Sébastien
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Gerhard Sextl
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki, Helsinki 00014, Finland.
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, Heilbad Heiligenstadt 37308, Germany
- Faculty for Mathematics and Natural Sciences, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
36
|
Kim M, Lee H, Krecker MC, Bukharina D, Nepal D, Bunning TJ, Tsukruk VV. Switchable Photonic Bio-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103674. [PMID: 34476859 DOI: 10.1002/adma.202103674] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.
Collapse
Affiliation(s)
- Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michelle C Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
Guo M, Wang Y, Gao B, He B. Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management. ACS NANO 2021; 15:15316-15327. [PMID: 34533924 DOI: 10.1021/acsnano.1c06279] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intelligent management beyond therapeutic drug treating holds significant prospects in facilitating the recovery of intractable chronic wounds. Here, inspired by the flat and inclined structure of shark teeth, we present a shark tooth-inspired microneedle patch for intelligent wound management. By simply replicating negative molds fabricated by laser engraving and using origami, such a biomimetic microneedle patch can be fabricated easily and rapidly. The biomimetic structures endow the microneedle patch with stable adhesion during the long-term recovery process of chronic wounds. Porous ordered structures and a temperature-responsive hydrogel are utilized to construct a controllable drug release system on the microneedle patch. The microfluidic channel composed of microneedle arrays and porous ordered structures enables a microneedle patch with the capacity to analyze several inflammatory factors. In addition, MXene electronics was patterned on the microneedle patch in order to achieve sensitive motion monitoring. Also, it was demonstrated from invivo diabetic rat experiments that recovery of full-thickness cutaneous wounds including stripe-shaped and circular wounds can be facilitated by employing the drug-loaded biomimetic microneedle patch.
Collapse
Affiliation(s)
- Maoze Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yuqiu Wang
- College of Biotechnology and Pharmaceutical Engineering and School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
- College of Biotechnology and Pharmaceutical Engineering and School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
38
|
Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, Si M, Le X, Yin G, Theato P, Chen T. Aggregation‐Induced Emissive Carbon Dots Gels for Octopus‐Inspired Shape/Color Synergistically Adjustable Actuators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory Institute for Biological Interfaces III Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesser Str. 18 76131 Karlsruhe Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
39
|
Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, Si M, Le X, Yin G, Theato P, Chen T. Aggregation-Induced Emissive Carbon Dots Gels for Octopus-Inspired Shape/Color Synergistically Adjustable Actuators. Angew Chem Int Ed Engl 2021; 60:21890-21898. [PMID: 34312961 DOI: 10.1002/anie.202107281] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Some living organisms such as the octopus have fantastic abilities to simultaneously swim away and alter body color/morphology for disguise and self-protection, especially when there is a threat perception. However, it is still quite challenging to construct artificial soft actuators with octopus-like synergistic shape/color change and directional locomotion behaviors, but such systems could enhance the functions of soft robotics dramatically. Herein, we proposed to utilize unique hydrophobic carbon dots (CDs) with rotatable surficial groups to construct the aggregation-induced emission (AIE) active glycol CDs polymer gel, which could be further employed to be interfacially bonded to an elastomer to produce anisotropic bilayer soft actuator. When putting the actuator on a water surface, glycol spontaneously diffused out from the gel layer to allow water intake, resulting in a color change from a blue dispersion fluorescence to red AIE and a shape deformation, as well as a large surface tension gradient that can promote its autonomous locomotion. Based on these findings, artificial soft swimming robots with octopus-like synergistic shape/color change and directional swimming motion were demonstrated. This study provides an elegant strategy to develop advanced multi-functional bio-inspired intelligent soft robotics.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Wei H, Chen Z, Hu Y, Cao W, Ma X, Zhang C, Gao X, Qian X, Zhao Y, Chai R. Topographically Conductive Butterfly Wing Substrates for Directed Spiral Ganglion Neuron Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102062. [PMID: 34411420 DOI: 10.1002/smll.202102062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Spiral ganglion neuron (SGN) degeneration can lead to severe hearing loss, and the directional regeneration of SGNs has shown great potential for improving the efficacy of auditory therapy. Here, a novel 3D conductive microstructure with surface topologies is presented by integrating superaligned carbon-nanotube sheets (SA-CNTs) onto Morpho Menelaus butterfly wings for SGN culture. The parallel groove-like topological structures of M. Menelaus wings induce the cultured cells to grow along the direction of its ridges. The excellent conductivity of SA-CNTs significantly improves the efficiency of cellular information conduction. When integrating the SA-CNTs with M. Menelaus wings, the SA-CNTs are aligned in parallel with the M. Menelaus ridges, which further strengthens the consistency of the surface topography in the composite substrate. The SA-CNTs integrated onto butterfly wings provide powerful physical signals and regulate the behavior of SGNs, including cell survival, adhesion, neurite outgrowth, and synapse formation. These features indicate the possibility of directed regeneration after auditory nerve injury.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - XiaoFeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| |
Collapse
|
41
|
Chen Z, Anandakrishnan N, Xu Y, Zhao R. Compressive Buckling Fabrication of 3D Cell-Laden Microstructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101027. [PMID: 34263550 PMCID: PMC8425919 DOI: 10.1002/advs.202101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Tissue architecture is a prerequisite for its biological functions. Recapitulating the three-dimensional (3D) tissue structure represents one of the biggest challenges in tissue engineering. Two-dimensional (2D) tissue fabrication methods are currently in the main stage for tissue engineering and disease modeling. However, due to their planar nature, the created models only represent very limited out-of-plane tissue structure. Here compressive buckling principle is harnessed to create 3D biomimetic cell-laden microstructures from microfabricated planar patterns. This method allows out-of-plane delivery of cells and extracellular matrix patterns with high spatial precision. As a proof of principle, a variety of polymeric 3D miniature structures including a box, an octopus, a pyramid, and continuous waves are fabricated. A mineralized bone tissue model with spatially distributed cell-laden lacunae structures is fabricated to demonstrate the fabrication power of the method. It is expected that this novel approach will help to significantly expand the utility of the established 2D fabrication techniques for 3D tissue fabrication. Given the widespread of 2D fabrication methods in biomedical research and the high demand for biomimetic 3D structures, this method is expected to bridge the gap between 2D and 3D tissue fabrication and open up new possibilities in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Nanditha Anandakrishnan
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ying Xu
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
42
|
Chen S, Haehnle B, Van der Laan X, Kuehne AJC, Botiz I, Stavrinou PN, Stingelin N. Understanding hierarchical spheres-in-grating assembly for bio-inspired colouration. MATERIALS HORIZONS 2021; 8:2230-2237. [PMID: 34846427 DOI: 10.1039/d1mh00358e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vivid iridescent response from particular butterflies is as an excellent example of how micro-engineered hierarchical architectures that combine physical structures and pigmentary inclusions create unique colouration. To date, however, detailed knowledge is missing to replicate such sophisticated structures in a robust, reliable manner. Here, we deliver spheres-in-grating assemblies with colouration effects as found in nature, exploiting embossed polymer gratings and self-assembled light-absorbing micro-spheres.
Collapse
Affiliation(s)
- Shengyang Chen
- Department of Materials and Centre of Plastic Electronics, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang W, Qian H, Wang J, Ren K, Ji J. Periodic Stratified Porous Structures in Dynamic Polyelectrolyte Films Through Standing-Wave Optical Crosslinking for Structural Color. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100402. [PMID: 34047069 PMCID: PMC8336486 DOI: 10.1002/advs.202100402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Periodic porous structures have been introduced into functional films to meet the requirements of various applications. Though many approaches have been developed to generate desired structures in polymeric films, few of them can effectively and dynamically achieve periodic porous structures. Here, a facile way is proposed to introduce periodic stratified porous structures into polyelectrolyte films. A photo-crosslinkable polyelectrolyte film of poly(ethylenimine) (PEI) and photoreactive poly(acrylic acid) derivative (PAA-N3 ) is prepared by layer-by-layer (LbL) self-assembly. Stratified crosslinking of the PEI/PAA-N3 film is generated basing on standing-wave optics. The periodic stratified porous structure is constructed by forming pores in noncrosslinked regions in the film. Thanks to the dynamic mobility of polyelectrolytes, this structural controlment can be repeated several times. The size of pores corresponding to the layer spacing of the film contributes to the structural colors. Furthermore, structural color patterns are fabricated in the film by selective photo-crosslinking using photomasks. Although the large-scale structural controlment in thick (micron-scale and above) films needs to be explored further, this work highlights the periodic structural controlment in polymeric films and thus presents an approach for application potentials in sensor, detection, and ink-free printing.
Collapse
Affiliation(s)
- Wei‐Pin Huang
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Hong‐Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Ke‐Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310016China
| |
Collapse
|
44
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
45
|
Core/shell colloidal nanoparticles based multifunctional and robust photonic paper via drop-casting self-assembly for reversible mechanochromic and writing. J Colloid Interface Sci 2021; 603:834-843. [PMID: 34237601 DOI: 10.1016/j.jcis.2021.06.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Photonic crystals film that possesses periodic dielectric structure have shown great prospect in developing environmentally friendly paper alternatives due to the unique properties of dye free and non-photobleaching, but their practical application is limited by the weak interaction between colloidal particles. Although some progress has been obtained, it is still a challenge to develop photonic paper with the desired mechanical and optical properties. Herein, multifunctional hard core/soft shell nanoparticles with controlled size are fabricated by semi-continuous seed emulsion polymerization method. Compared with convention colloidal particles, these core/shell nanoparticles can facile self-assemble into large-scale dense ordered structure film via dried at room temperature due to the relatively low glass transition temperature (Tg) of the shell layers. The facile fabrication route enables the continuous high-through put production of the photonic papers. The as-formed papers not only possess the capacity to solvent (water/ethanol) rewritable and multicolor painting, but also can rapidly reversible mechanochromic. Moreover, due to the good compatibility of core/shell interface, these photonic films possess excellent mechanical properties, demonstrating that this multifunctional film makes the fabrication of novel robust rewritable papers possible and enables visual monitoring of deformation degree.
Collapse
|
46
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
47
|
Zeng Z, Liang J, Yu R, Liu J, Cao M, Wang S, Xia Y. Programmable Color in a Free-Standing Photonic Microgel Film with Ultra-Fast Response. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25563-25570. [PMID: 34013715 DOI: 10.1021/acsami.1c07099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a free-standing microgel film with programmable and angle-independent structural color is prepared via a simple but effective method. Dried poly(styrene-N-isopropylacrylamide-acrylic acid) (pStNIPAAmAA) microgels were stabilized by inter-microgel crosslinking, and thus, only microgels were used to build the optical hydrogel. The free-standing microgel film displayed tunable structural color by the swelling/deswelling of the microgels under external stimuli, such as temperature, pH, ionic strength, and organic solvent. Moreover, the structural color of the film is angle-independent for the disordered microgel arrays. It is worth noting that programmable color stripes which have the panther chameleon's ability to change skin color are successfully fabricated by patterning microgels with different thermoresponsivities. More importantly, the microgel film has an ultrafast response to temperature (1.41 s from 20 to 40 °C) and pH (2.24 s from pH 8.3 to pH 2.0), much faster than that of most optical materials reported in previous studies.
Collapse
Affiliation(s)
- Zhujun Zeng
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinhui Liang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ronghua Yu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiahui Liu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Meiwen Cao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shengjie Wang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongqing Xia
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
48
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
49
|
Xu YT, Mody UV, MacLachlan MJ. Tuning the photonic properties of graphene oxide suspensions with nanostructured additives. NANOSCALE 2021; 13:7558-7565. [PMID: 33876810 DOI: 10.1039/d1nr01677f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photonic materials that can selectively reflect light across the visible spectrum are valuable for applications in optical devices, sensors, and decoration. Although two-dimensional (2D) colloids that stack into layers with spacing of hundreds of nanometers are able to selectively diffract light, controlling their separation in solution has proven challenging. In this work, we investigate the role of additives to control the photonic properties of hybrid colloidal suspensions of graphene oxide (GO). We discovered that low concentrations of colloidal additives like cellulose nanocrystals (CNCs) and clay nanoparticles (hectorite) added to GO suspensions lead to dramatic color changes. These hybrid colloidal suspensions demonstrate tunable structural colors and temperature-sensitive properties that likely originate from the entropically driven ejection of guests between the sheets, and from the interactions between colloidal electrical double layers and additional counterions. On the other hand, blending polymeric or molecular additives with GO suspensions either deteriorates or does not impact the photonic properties. These results are helpful to understand the interaction between GO suspensions and additives over different length scales, and open a path to advancing photonic materials based on hybrid colloidal suspensions.
Collapse
Affiliation(s)
- Yi-Tao Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Urmi Vijay Mody
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada. and Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z1, Canada and WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan and Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
50
|
Osotsi MI, Zhang W, Zada I, Gu J, Liu Q, Zhang D. Butterfly wing architectures inspire sensor and energy applications. Natl Sci Rev 2021; 8:nwaa107. [PMID: 34691587 PMCID: PMC8288439 DOI: 10.1093/nsr/nwaa107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biological systems are constantly developing efficient mechanisms to counter adverse effects of increasing human population and depleting energy resources. Their intelligent mechanisms are characterized by the ability to detect changes in the environment, store and evaluate information, and respond to external stimuli. Bio-inspired replication into man-made functional materials guarantees enhancement of characteristics and performance. Specifically, butterfly architectures have inspired the fabrication of sensor and energy materials by replicating their unique micro/nanostructures, light-trapping mechanisms and selective responses to external stimuli. These bio-inspired sensor and energy materials have shown improved performance in harnessing renewable energy, environmental remediation and health monitoring. Therefore, this review highlights recent progress reported on the classification of butterfly wing scale architectures and explores several bio-inspired sensor and energy applications.
Collapse
|