1
|
Zhang QR, Tian L, Zhou Y, Chen XB, Ma L, Zhou L, Wang QQ. Plasmon-mediated dual S-scheme charge transfer in Cu 2-xS/In 2S 3/Bi 2S 3 hollow polyhedrons for efficient Photothermal-Assisted photocatalysis. J Colloid Interface Sci 2025; 690:137280. [PMID: 40101628 DOI: 10.1016/j.jcis.2025.137280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Step-scheme (S-scheme) semiconductor junction has garnered considerable attention for its potential applications in photocatalytic energy conversion. However, the photocatalytic activity of S-scheme junctions is restricted by inadequate light absorption and low charge separation efficiency. Herein, a plasmon-mediated dual S-scheme junction is constructed by growing In2S3 and Bi2S3 nanoparticles on Cu2-xS hollow polyhedrons, exhibiting efficient photothermal-assisted photocatalysis. Due to the unique hollow polyhedron structure, the plasmon resonance, and the bandgap excitation, the Cu2-xS/In2S3/Bi2S3 hybrids show broad light absorption. Meanwhile, the plasmon-mediated dual S-scheme charge transfer, including the injection of plasmon-induced hot electrons from Cu2-xS to In2S3 and Bi2S3 as well as the transfer of plasmon-induced hot holes from the trap states of Cu2-xS to In2S3 and Bi2S3, enables the hybrids to have efficient charge separation. In addition, remarkable photothermal performance originates from the synergistic effect of plasmonic heating and lattice thermal vibration, which leads to a further increase in the local temperature and enhancement of charge transfer efficiency in the hybrids. As a result, the Cu2-xS/In2S3/Bi2S3 hybrids demonstrate outstanding performance in photothermal-assisted photocatalytic hydrogen generation, rivaling many similar photocatalysts. This work offers valuable insights for designing high-efficiency photocatalysts based on S-scheme junctions.
Collapse
Affiliation(s)
- Qi-Rui Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Tian
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yuan Zhou
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Li Zhou
- Department of Physics, Wuhan University, Wuhan 430072, PR China.
| | - Qu-Quan Wang
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Sato H, Saito H, Higashi T, Sugimoto T. Critical impacts of metal cocatalysts on oxidation kinetics and optimal reaction conditions of photocatalytic methane reforming. Chem Commun (Camb) 2025; 61:5942-5945. [PMID: 40131781 DOI: 10.1039/d4cc06774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Metal cocatalysts in photocatalysis are typically regarded as promoting only the reduction reactions. Here, we demonstrate that photocatalytic oxidation kinetics and optimal pressure of methane vary significantly with the loading amount of metal cocatalysts. These variations are well described by kinetic analyses treating molecular-level congestion of oxidation intermediates.
Collapse
Affiliation(s)
- Hiromasa Sato
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Taisuke Higashi
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | - Toshiki Sugimoto
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
- Graduate Institute for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Liu M, Yang W, Xiao R, Li J, Tan R, Qin Y, Bai Y, Zheng L, Hu L, Gu W, Zhu C. Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response. Natl Sci Rev 2025; 12:nwae465. [PMID: 39926201 PMCID: PMC11804805 DOI: 10.1093/nsr/nwae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025] Open
Abstract
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinli Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Jia J, Liu RK, Sun Q, Wang JX. Multifunctional ZnO-Loaded Colloidosomes with Multiple Synergies as a UV Filter. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2271-2280. [PMID: 39703000 DOI: 10.1021/acsami.4c18007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
ZnO nanoparticles with high safety and stability are often used as active ingredients in sunscreens to protect the skin from ultraviolet rays. However, ZnO nanoparticles are easy to agglomerate, which will significantly affect the ultraviolet absorption and bacteriostatic properties, and the reactive oxygen species induced by the photocatalytic activity may result in irreversible secondary damage to the skin. Herein, the ZnO nanoparticles are dispersed uniformly on the surface of latex particles, and these composite particles are used as shell materials to construct self-assembled colloidosomes by high-gravity technology, which can improve the application properties with synergistic enrichment of the hollow structure. The ultraviolet resistance of colloidosomes is significantly higher than that of the pure ZnO nanoparticles. The higher the loading capacity, the more obvious the inhibition effect of colloidosomes on the growth of Gram bacteria. Furthermore, the antioxidant anthocyanin is in situ encapsulated in colloidosomes, and at a concentration of 2 g/L, the high free radical scavenging rate of 78% can be achieved. The construction of multifunctional colloidosomes provides a route for sunscreen and cosmetics applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
5
|
Hu Y, Peng J, Liu R, Gao J, Hua G, Fan X, Wang S. Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis. Molecules 2024; 29:6063. [PMID: 39770151 PMCID: PMC11676642 DOI: 10.3390/molecules29246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
6
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Du X, Wang T, Li Y, Zhu A, Hu Y, Du A, Zhao Y, Xie W. Monitoring Hot Holes in Plasmonic Catalysis on Silver Nanoparticles by Using an Ion Label. NANO LETTERS 2024; 24:11648-11653. [PMID: 39225486 DOI: 10.1021/acs.nanolett.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO32- as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.
Collapse
Affiliation(s)
- Xiaomeng Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aonan Zhu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aoxuan Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Yan YQ, Wu YZ, Wu YH, Weng ZL, Liu SJ, Liu ZG, Lu KQ, Han B. Recent Advances of CeO 2-Based Composite Materials for Photocatalytic Applications. CHEMSUSCHEM 2024; 17:e202301778. [PMID: 38433647 DOI: 10.1002/cssc.202301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Photocatalysis has the advantages of practical, sustainable and environmental protection, so it plays a significant role in energy transformation and environmental utilization. CeO2 has attracted widespread attention for its unique 4 f electrons, rich defect structures, high oxygen storage capacity and great chemical stability. In this paper, we review the structure of CeO2 and the common methods for the preparation of CeO2-based composites in the first part. In particular, we highlight the co-precipitation method, template method, and sol-gel method methods. Then, in the second part, we introduce the application of CeO2-based composites in photocatalysis, including photocatalytic CO2 reduction, hydrogen production, degradation, selective organic reaction, and photocatalytic nitrogen fixation. In addition, we discuss several modification techniques to improve the photocatalytic performance of CeO2-based composites, such as elemental doping, defect engineering, constructing heterojunction and morphology regulation. Finally, the challenges faced by CeO2-based composites are analyzed and their development prospects are prospected. This review provides a systematic summary of the recent advance of CeO2-based composites in the field of photocatalysis, which can provide useful references for the rational design of efficient CeO2-based composite photocatalysts for sustainable development.
Collapse
Affiliation(s)
- Yu-Qing Yan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yu-Zheng Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong-Hui Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Zong-Lin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shi-Jie Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Zeng-Guang Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Rahmani Khalili N, Banitalebi Dehkordi A, Amiri A, Mohammadi Ziarani G, Badiei A, Cool P. Tailored Covalent Organic Framework Platform: From Multistimuli, Targeted Dual Drug Delivery by Architecturally Engineering to Enhance Photothermal Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28245-28262. [PMID: 38770930 DOI: 10.1021/acsami.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-β-cyclodextrin (β-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.
Collapse
Affiliation(s)
| | - Ali Banitalebi Dehkordi
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Wang X, Fan G, Guo S, Gao R, Guo Y, Han C, Gao Y, Zhang J, Gu X, Wu L. Regulated Dual Defects of Bridging Organic and Terminal Inorganic Ligands in Iron-based Metal-Organic Framework Nodes for Efficient Photocatalytic Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202404258. [PMID: 38454791 DOI: 10.1002/anie.202404258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.
Collapse
Affiliation(s)
- Xiaosong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Shoujun Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Rong Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chenhui Han
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yuliang Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Limin Wu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Ning Y, Wang S, Wang H, Quan W, Lv D, Yu S, Hu X, Tian H. Novel hollow core-shell Zn 0.5Cd 0.5S@ZnIn 2S 4/MoS 2 nanocages with Z-scheme heterojunction for enhanced photocatalysis of hydrogen generation. J Colloid Interface Sci 2024; 662:928-940. [PMID: 38382376 DOI: 10.1016/j.jcis.2024.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The development of low-cost and efficient metal sulfide photocatalysts through morphological and structural design is vital to the advancement of the hydrogen economy. However, metal sulfide semiconductor photocatalysts still suffer from low carrier separation and poor solar-to-hydrogen conversion efficiencies. Herein, two-dimensional ZnIn2S4 nanosheets were grown on Zn0.5Cd0.5S hollow nanocages to construct Zn0.5Cd0.5S@ZnIn2S4 hollow nanocages for the first time. Novel hollow core-shell Zn0.5Cd0.5S@ZnIn2S4/MoS2 nanocages with Z-scheme heterojunction structures were obtained by incorporating MoS2 nanosheet co-catalyst via the solvothermal method. The resulting Zn0.5Cd0.5S@ZnIn2S4/MoS2 exhibited unique structural and compositional advantages, leading to remarkable photocatalytic hydrogen evolution rates of up to 8.5 mmol·h-1·g-1 without the use of any precious metal co-catalysts. This rate was 10.6-fold and 7.1-fold higher compared to pure ZnIn2S4 and Zn0.5Cd0.5S, respectively. Moreover, the optimized Zn0.5Cd0.5S@ZnIn2S4/MoS2 photocatalyst outperformed numerous reported ZnIn2S4-based photocatalysts and some ZnIn2S4-based photocatalysts based on precious metal co-catalysts. The exceptional photocatalytic performance of Zn0.5Cd0.5S@ZnIn2S4/MoS2 can be attributed to the Z-scheme heterojunction of core-shell structure that enhanced charge carrier separation and transport, as well as the co-catalytic action of MoS2. Overall, the proposed Zn0.5Cd0.5S@ZnIn2S4/MoS2 with heterojunction structure is a promising candidate for the preparation of efficient photocatalysts for solar-to-hydrogen energy conversion.
Collapse
Affiliation(s)
- Yunqi Ning
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Shan Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hanbing Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Wei Quan
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Daqi Lv
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Shansheng Yu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China.
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Liu WR, Yu S, Liu Z, Jiang P, Wang K, Du HY, Hu ZY, Sun MH, Wang YL, Li Y, Chen LH, Su BL. Hierarchical Hollow TiO 2@Bi 2WO 6 with Light-Driven Excited Bi (3-x)+ Sites for Efficient Photothermal Catalytic CO 2 Reduction. Inorg Chem 2024; 63:6714-6722. [PMID: 38557020 DOI: 10.1021/acs.inorgchem.3c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 μmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Wen-Rui Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Peng Jiang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kun Wang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - He-You Du
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
13
|
Wang Y, Fu H, Chen Y, Wu B, Lin C, Wu X, Gao M, Lin T, Huang Y, Zhao C. Ultrathin Layered Structure and Oxygen Vacancies Mediated Efficient Charge Separation toward High Photocatalytic Activity in BiOIO 3 Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5977-5988. [PMID: 38266025 DOI: 10.1021/acsami.3c17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Previous bismuth-based photocatalysts usually employ a strong acid solution (e.g., HNO3 solution) to obtain an ultrathin structure toward high photocatalytic activity. In this work, the ultrathin layered BiOIO3 nanosheets are successfully synthesized using just the glucose hydrothermal solution. The high-concentration glucose solution shows the obvious acidity after the hydrothermal process, which leads to the quick decrease in thickness of BiOIO3 nanosheets from ∼45.58 to ∼5.74 nm. The ultrathin structure can greatly improve charge carriers' separation and transfer efficiency. The generation of reductive iodide ions brings about oxygen vacancies in the ultrathin nanosheets, then the defect energy level is formed, causing the decreased band gap and improving the visible light absorption. Compared to thick BiOIO3 nanosheet with little oxygen vacancies, much higher carrier separation efficiency and visible light absorption are achieved in the ultrathin nanosheets with oxygen vacancies, resulting in an excellent photocatalytic performance (0.1980 min-1 for RhB degradation), which is much higher than most other bismuth-based photocatalysts. The superoxide radicals (•O2-) and holes (h+) are the major active species responsible for high photocatalytic activity. This work affords an environmentally friendly strategy to synthesize ultrathin photocatalysts with superior photocatalytic properties.
Collapse
Affiliation(s)
- Yabin Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hanxin Fu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yan Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bo Wu
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, Chengdu 610041, China
| | - Cong Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiao Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Min Gao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tengfei Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanli Huang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| | - Chunlin Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
14
|
Wei Y, Zhao D, Wang D. Mesoscience in Hollow Multi-Shelled Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305408. [PMID: 38032116 PMCID: PMC10885658 DOI: 10.1002/advs.202305408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of mesoscale complexity in materials science underscores the significance of the compromise in competition principle, which gives rise to the emergence of mesoscience. This principle offers valuable insights into understanding the formation process, characteristics, and performance of complex material systems, ultimately guiding the future design of such intricate materials. Hollow multi-shelled structures (HoMS) represent a groundbreaking multifunctional structural system that encompasses several spatial regimes. A plethora of mesoscale cases within HoMS present remarkable opportunities for exploring, understanding, and utilizing mesoscience, varying from the formation process of HoMS, to the mesoscale structural parameters, and finally the distinctive mass/energy transfer behaviors exhibited by HoMS. The compromise in competition between the diffusion and reaction contributes to the successful formation of multi-shells of HoMS, allowing for precise regulation of the structural parameters by dynamically varying the interplay between two dominances. Moreover, the distinct roles played by the shells and cavities within HoMS significantly influence the energy/mass transfer processes with the unique temporal-spatial resolution, providing guidance for customizing the application performance. Hopefully, the empirical and theoretical anatomy of HoMS following mesoscience would fuel new discoveries within this promising and complex multifunctional material system.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Yang C, Yao H, Yang T, Li X, Zhu P, Jin Z. Self-induced electron attraction center formation with pyrophosphorylation strategy for photocatalytic hydrogen evolution. NANOSCALE 2024; 16:2361-2372. [PMID: 38198207 DOI: 10.1039/d3nr05385g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An integral approach towards augmenting the performance of photocatalytic hydrogen production lies in the induction of charge transfer mediators within the material matrix itself, thereby facilitating swift and efficient charge transfer processes. Here, CoTiO3 is induced to grow its electronic attraction center, CoP3, through a high-temperature phosphatization strategy. CoP3 acts as the active reduction site for the hydrogen evolution reaction and enhances the photocatalytic performance of the pristine catalyst. Compared with pure CoTiO3, the PCTO7 hybrid catalyst with the electronic attraction center CoP3 exhibits a superior photocatalytic performance and good stability. Experimental results show that the hydrogen evolution performance of the PCTO7 hybrid catalyst reaches 56.52 μmol, which is 78 times higher than that of the single catalyst CoTiO3 (0.72 μmol). These results demonstrate that the hybrid catalyst with the self-induced electronic attraction center has a higher light absorption capacity, faster charge carrier dynamics and improved photogenerated charge carrier separation and transfer than pure CoTiO3, resulting in excellent redox capability. DFT calculations provide evidence supporting the topological metal properties of CoP3 as the electron sink center. This study provides a feasible approach for enhancing the photocatalytic performance of a pristine catalyst employing a high-temperature phosphatization-induced electron sink center.
Collapse
Affiliation(s)
- Cheng Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| | - Huiqin Yao
- Department of Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Tingting Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Materials and Manufacturing Technology, North Minzu University, Yinchuan 750021, P.R.China
| | - Xiaohong Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| | - Pengfei Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shanxi, China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| |
Collapse
|
16
|
Yang C, Zhang J, Chang M, Tan J, Yuan M, Bian Y, Liu B, Liu Z, Wang M, Ding B, Ma P, Lin J. NIR-Activatable Heterostructured Nanoadjuvant CoP/NiCoP Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy and Photoimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308774. [PMID: 37917791 DOI: 10.1002/adma.202308774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
17
|
Zhang F, Li Y, Ding B, Shao G, Li N, Zhang P. Electrospinning Photocatalysis Meet In Situ Irradiated XPS: Recent Mechanisms Advances and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303867. [PMID: 37649219 DOI: 10.1002/smll.202303867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Producing solar fuels over photocatalysts under light irradiation is a considerable way to alleviate energy crises and environmental pollution. To develop the yields of solar fuels, photocatalysts with broad light absorption, fast charge carrier migration, and abundant reaction sites need to be designed. Electrospun 1D nanofibers with large specific areas and high porosity have been widely used in the efficient production of solar fuels. Nevertheless, it is challenging to do in-depth mechanism research on electrospun nanofiber-based photocatalysts since there are multiple charge transfer routes and various reaction sites in these systems. Here, the basic principles of electrospinning and photocatalysis are systemically discussed. Then, the different roles of electrospun nanofibers played in recent research to boost photocatalytic efficiency are highlighted. It is noteworthy that the working principles and main advantages of in situ irradiated photoelectron spectroscopy (ISI-XPS), a new technique to investigate migration routes of charge carriers and identify active sites in electrospun nanofibers based photocatalysts, are summarized for the first time. At last, a brief summary on the future orientation of photocatalysts based on electrospun nanofibers as well as the perspectives on the development of the ISI-XPS technique are also provided.
Collapse
Affiliation(s)
- Fei Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yukun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai, 201620, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
18
|
Chava RK, Kang M. Ordered and carbon-doped porous polymeric graphitic carbon nitride nanosheets toward enhanced visible light absorption and efficient photocatalytic H 2 evolution. NANOSCALE 2023; 15:18347-18358. [PMID: 37921504 DOI: 10.1039/d3nr04270g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
An effective and rational pathway to tune the electronic bandstructure and visible light absorption properties of low-cost organic graphitic carbon nitride (g-C3N4, GCN) photocatalysts is still very challenging. Here, an efficient strategy is validated to tailor the bandstructure of g-C3N4 and C-doping can be regulated by polymerizing melamine with malonic acid, which can greatly extend the photoresponse range to 900 nm. The optimized GCN exhibits an improved photocatalytic hydrogen production rate of 663.6 μmol g-1 h-1 under visible light irradiation and an apparent quantum yield of 11% at 420 nm, which is three times higher than that of traditional bulk g-C3N4. This superior performance is derived from the unique ordered and porous structure of GCN, which effectively improves its light absorption and provides a larger specific surface area. In addition, the introduction of malonic acid into melamine and the subsequent thermal polymerization reaction further optimize the band structure of GCN, extend its light absorption via C-doping, and improve the photoinduced charge separation, resulting in high photocatalytic performance. This strategy provides a novel platform to design highly efficient GCN-based photocatalysts with precisely tunable operation windows and enhanced charge separation.
Collapse
Affiliation(s)
- Rama Krishna Chava
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
19
|
Cheng S, Miao L, Xue K, Bao Z, Liang J, Li X, Zhu W, Chen Y, Yu Y. Self-assembly synthesis of hollow phosphorus-doped graphitic carbon nitride microboxes for the photodegradation of organic pollutants. Phys Chem Chem Phys 2023; 25:31020-31027. [PMID: 37938902 DOI: 10.1039/d3cp04262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The rational design of photocatalysts with efficiency and stability is highly desirable but remains challenging. Here, we report a supramolecular self-assembly strategy to construct hollow phosphorus-doped g-C3N4 microboxes (PCNMs). Considering the effects of multiple parameters on the structure and activity of samples, the orthogonal design is innovatively introduced to optimize technology parameters for screening high-performance g-C3N4. Under visible light irradiation (λ ≥ 420 nm), rhodamine B (RhB, 4 mg L-1) is completely degraded in just 80 seconds in the presence of the optimal PCNM. The kinetic rate constant of RhB degradation with the PCNM is 3.4633 min-1, demonstrating unprecedented activity that is about 112 times higher than that of bulk g-C3N4 (0.0309 min-1) synthesized by direct polycondensation of melamine. Additionally, the optimal PCNM also shows enhanced degradation efficiency for tetracycline. The outstanding properties are primarily attributed to the hollow architecture, high specific surface area, and phosphorus doping. This work advances the design of photocatalysts correlating various factors, opening an avenue for optimizing photocatalytic synthesis and activity.
Collapse
Affiliation(s)
- Si Cheng
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Lifeng Miao
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Kunze Xue
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhenhong Bao
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Jian Liang
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Xiaohong Li
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Wenjun Zhu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Yunxia Chen
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| | - Yongzhi Yu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, P. R. China.
| |
Collapse
|
20
|
Chen X, Chen B, Li D, Li L, Xu D, Shi W. Flame doping of indium ions into TiO 2 nanorod arrays for enhanced photochemical water oxidation. Dalton Trans 2023; 52:14747-14751. [PMID: 37814527 DOI: 10.1039/d3dt02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Indium (In) ions were diffused into a TiO2 (In-TiO2) photoelectrode via a facile and efficient flame doping method resulting in improved photo-induced carrier separation. The dopant concentration was systematically investigated, and a volcano-type relationship between the dopant concentration and photoelectrochemical (PEC) performance was observed. The optimum incident photon-to-current efficiency and photocurrent density of In-TiO2 were 38.6% and 0.70 mA cm-2 at 1.23 V, respectively, 2.1 and 11.2 times the values of pristine TiO2, respectively. In doping resulted in improved charge separation and lower surface adsorption energies for reactant molecules, as evidenced by experimental and computational methods.
Collapse
Affiliation(s)
- Xue Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| | - Biyi Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| | - Dan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang city 212013, P. R. China.
| |
Collapse
|
21
|
Xiao ST, Wu SM, Wu L, Dong Y, Liu JW, Wang LY, Chen XY, Wang YT, Tian G, Chang GG, Shalom M, Fornasiero P, Yang XY. Confined Heterojunction in Hollow-Structured TiO 2 and Its Directed Effect in Photodriven Seawater Splitting. ACS NANO 2023; 17:18217-18226. [PMID: 37668497 DOI: 10.1021/acsnano.3c05174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The high salinity of seawater often strongly affects the activity and stability of photocatalysts utilized for photodriven seawater splitting. The current investigation is focused on the photocatalyst H-TiO2/Cu2O, comprised of hydroxyl-enriched hollow mesoporous TiO2 microspheres containing incorporated Cu2O nanoparticles. The design of H-TiO2/Cu2O is based on the hypothesis that the respective hollow and mesoporous structure and hydrophilic surfaces of TiO2 microspheres would stabilize Cu2O nanoparticles in seawater and provide efficient and selective proton adsorption. H-TiO2/Cu2O shows hydrogen production performances of 45.7 mmol/(g·h) in simulated seawater and 17.9 mmol/(g·h) in natural seawater, respectively. An apparent quantum yield (AQY) in hydrogen production of 18.8% in water (and 14.9% in natural seawater) was obtained at 365 nm. Moreover, H-TiO2/Cu2O displays high stability and can maintain more than 90% hydrogen evolution activity in natural seawater for 30 h. A direct mass- and energy- transfer mechanism is proposed to clarify the superior performance of H-TiO2/Cu2O in seawater splitting.
Collapse
Affiliation(s)
- Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Lu Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yu Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Jia-Wen Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Li-Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin-Yi Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste and ICCOM-CNR and INSTM Trieste Research Units, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Sciences & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
22
|
Shaik MR, Aldhuwayhi FN, Al-Mohaimeed AM, Hatshan MR, Kuniyil M, Adil SF, Khan M. Morphology Controlled Deposition of Vanadium Oxide (VO x) Nanoparticles on the Surface of Highly Reduced Graphene Oxide for the Photocatalytic Degradation of Hazardous Organic Dyes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6340. [PMID: 37763616 PMCID: PMC10532889 DOI: 10.3390/ma16186340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Semiconducting nanomaterials based heterogeneous photocatalysis represent a low-cost, versatile technique for environmental remediation, including pollution mitigation, energy management and other environmental aspects. Herein, we demonstrate the syntheses of various heterogeneous photocatalysts based on highly reduced graphene oxide (HRG) and vanadium oxide (VOx)-based nanocomposites (HRG-VOx). Different shapes (rod, sheet and urchin forms) of VOx nanoparticles were successfully fabricated on the surface of HRG under solvo-/hydrothermal conditions by varying the amount of water and ethanol. The high concentration of water in the mixture resulted in the formation of rod-shaped VOx nanoparticles, whereas increasing the amount of ethanol led to the production of VOx sheets. The solvothermal condition using pure ethanol as solvent produced VOx nano-urchins on the surface of HRG. The as-prepared hybrid materials were characterized using various spectroscopic and microscopic techniques, including X-ray diffraction, UV-vis, FTIR, SEM and TEM analyses. The photocatalytic activities of different HRG-VOx nanocomposites were investigated for the photodegradation of methylene blue (MB) and methyl orange (MO). The experimental data revealed that all HRG-VOx composite-based photocatalysts demonstrated excellent performance toward the photocatalytic degradation of the organic dyes. Among all photocatalysts studied, the HRG-VOx nanocomposite consisting of urchin-shaped VOx nanoparticles (HRG-VOx-U) demonstrated superior photocatalytic properties towards the degradation of dyes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.S.); (F.N.A.); (A.M.A.-M.); (M.R.H.); (M.K.); (S.F.A.)
| |
Collapse
|
23
|
Pathak SS, Kedarnath G, Panchakarla LS. Mechanistic Study of Amphiphilic-Assisted Self-Assembled Cadmium Sulfide Quantum Dots into 3D Superstructures. J Phys Chem Lett 2023; 14:8114-8120. [PMID: 37668342 DOI: 10.1021/acs.jpclett.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Self-assembling of nanoparticles into complex superstructures is very challenging, which usually depends on postorganizing techniques or pre-existing templates such as polypeptide chains or DNA or external stimulus. Such self-assembled processes typically lead to close-packed structures. Here, it has been demonstrated that under carefully template-free reaction conditions CdS quantum dots (QDs) could be synthesized and simultaneously self-assembled into complex superstructures without compromising individual QD properties. The superstructures of CdS QDs attained by the chemical-based method demonstrate Stokes-shifted photoluminescence (PL) from trap states. Remarkably, the PL decay of superstructures exhibits a single-exponential feature. This behavior is unusual for the synthesized superstructures, indicating that the trap states are restricted to a narrow range. The growth mechanism of these superstructures is explained through the formation of liquid crystal phases (LCPs) with the help of a small-angle X-ray scattering (SAXS) analysis.
Collapse
Affiliation(s)
- Sushil Swaroop Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gotluru Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Leela S Panchakarla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Lv M, Liu H, He L, Zheng B, Tan Q, Hassan M, Chen F, Gong Z. Efficient photocatalytic degradation of ciprofloxacin by graphite felt-supported MnS/Polypyrrole composite: Dominant reactive species and reaction mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116218. [PMID: 37224952 DOI: 10.1016/j.envres.2023.116218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.
Collapse
Affiliation(s)
- Miao Lv
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongchang Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lei He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Binbin Zheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Muhammad Hassan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
25
|
Maro CAG, Gálvez HEG, Olivas ODJN, Morales ML, Hernández DV, Flores HG, Carmona VMO, Chinchillas MDJC. Peumus boldus Used in the Synthesis of ZnO Semiconductor Nanoparticles and Their Evaluation in Organic Contaminants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4344. [PMID: 37374529 DOI: 10.3390/ma16124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
The high demand for nanomaterials in the field of industry and science has forced researchers to develop new synthesis methods that are more efficient, economical, and environmentally friendly. At present, the application of green synthesis has taken a great advantage over conventional synthesis methods because it helps with the control of the characteristics and properties of the resulting nanomaterials. In this research, ZnO nanoparticles (NPs) were synthesized by biosynthesis using dried boldo (Peumus boldus) leaves. The resulting biosynthesized NPs had a high purity, quasi-spherical shape with average sizes ranging from 15 to 30 nm and a band gap of ~2.8-3.1 eV. These NPs were used in the photocatalytic activity of three organic dyes. The results showed degradation of 100% methylene blue (MB) in 180 min, 92% methyl orange (MO) in 180 min, and 100% Rhodamine B (RhB) in 30 min of exposure. These results show that the Peumus boldus leaf extract is effective in the biosynthesis of ZnO NPs with good photocatalytic properties.
Collapse
Affiliation(s)
- Caree Abigail García Maro
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | - Horacio Edgardo Garrafa Gálvez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | | | - Mizael Luque Morales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada C.P. 22860, Mexico
- Instituto Tecnológico Nacional, Campus Guasave, Guasave C.P. 81149, Mexico
| | - Diana Vargas Hernández
- Departamento de Investigación en Polímeros y Materiales, CONACYT-Universidad de Sonora, Blvd. Luis Encinas Johnson y Rosales S/N, Hermosillo 83000, Mexico
| | - Hugo Galindo Flores
- Departamento de Ingeniería y Tecnología, Universidad Autónoma de Occidente (UAdeO), Guasave 81048, Mexico
| | - Víctor Manuel Orozco Carmona
- Departamento de Metalurgia e Integridad Estructural, Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | | |
Collapse
|
26
|
Ravichandran J, Singh S. A review on potential sulfide-based ternary chalcogenides for emerging photo-assisted water purification applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69751-69773. [PMID: 37156955 DOI: 10.1007/s11356-023-27113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Sulfide-based ternary chalcogenides have been recognized widely as exceptional photocatalysts, thanks to their narrow band gap enabling them to harvest solar energy to the maximum extent. They provide excellent optical, electrical, and catalytic performance and are of abundant use as a heterogeneous catalyst. Among sulfide-based ternary chalcogenides, compounds exhibiting AB2X4 structure form a new class of materials with excellent stability in photocatalytic performance. In the AB2X4 family of compounds, ZnIn2S4 is one of the top performing photocatalyst for energy and environmental applications. However, to date, only limited information is available on the mechanism behind the photo-induced migration of charge carriers in ternary sulfide chalcogenides. Ternary sulfide chalcogenides with their visible region activity and substantial chemical stability greatly depend on crystal structure, morphology, and optical characteristics for their photocatalytic activity. Hence, in this review, a comprehensive assessment of the reported strategies for enhancement of the photocatalytic efficiency of this compound is presented. In addition, a meticulous investigation of the applicability of ternary sulfide chalcogenide compound ZnIn2S4, in particular, has been delivered. Also, the photocatalytic behavior of other sulfide-based ternary chalcogenides for water remediation applications has also been briefed. Finally, we conclude with an insight into the challenges and future advancements in the exploration of ZnIn2S4-based chalcogenide as a photocatalyst for various photo-responsive applications. It is believed that this review could contribute to a better understanding of ternary chalcogenide semiconductor photocatalysts for solar-driven water treatment applications.
Collapse
Affiliation(s)
- Janani Ravichandran
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, 600 025, India
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, 641402, India
| | - Shubra Singh
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, 600 025, India.
| |
Collapse
|
27
|
Biswal L, Mishra BP, Das S, Acharya L, Nayak S, Parida K. Nanoarchitecture of a Ti 3C 2@TiO 2 Hybrid for Photocatalytic Antibiotic Degradation and Hydrogen Evolution: Stability, Kinetics, and Mechanistic Insights. Inorg Chem 2023; 62:7584-7597. [PMID: 37126844 DOI: 10.1021/acs.inorgchem.3c01138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Designing of a visible-light-driven semiconductor-based heterojunction with suitable band alignment and well-defined interfacial contact is considered to be an effective strategy for the transformation of solar-to-chemical energy and environmental remediation. In this context, MXenes have received tremendous attention in the research community due to their merits of abundant derivatives, elemental composition, excellent metallic conductivity, and surface termination groups. Meanwhile, a facile synthetic strategy for MXene-derived TiO2 nanocomposites with stable framework and higher photocatalytic activity under visible-light irradiation still remains a challenge for researchers. Herein, we report a novel synthetic strategy of preparing a two-dimensional Ti3C2@TiO2 nanohybrid by a facile reflux method under acidic conditions. In this oxidation reaction, protonation of the hydroxyl terminal group of MXene creates Ti more electrophilic and susceptible to an oxidative nucleophilic addition reaction with the presence of both water and oxygen. The physicochemical properties of the nanohybrid Ti3C2@TiO2 were verified by varieties of characterization techniques. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analysis specifically elucidated the intimate interfacial interaction between Ti3C2 and TiO2. The optimized Ti3C2@TiO2-48 h photocatalyst exhibited the highest tetracycline hydrochloride (TCH, 90% in 90 min) degradation efficiency in comparison to pristine TiO2 with a rate constant (k) of 0.02463 min-1. The major contribution of •O2- and •OH radicals throughout photocatalytic TCH degradation was confirmed by the trapping experiment. Moreover, the photocatalyst showed the highest hydrogen generation rate of 140.8 μmol h-1 along with an apparent conversion efficiency of 2.2%. The excellent photocatalytic activity of Ti3C2@TiO2 originated from the superior electrical conductivity of cocatalyst Ti3C2, which facilitated spatial photogenerated e-/h+ separation and transfer at the Ti3C2 MXene@TiO2 interface. Overall, this research work will describe a promising protocol of designing MXene-derived photocatalysts toward efficient environmental remediation and wastewater treatment applications.
Collapse
Affiliation(s)
- Lijarani Biswal
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| | - Bhagyashree Priyadarshini Mishra
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| | - Sarmistha Das
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| | - Lopamudra Acharya
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| | - Susanginee Nayak
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar 751030, India
| |
Collapse
|
28
|
Tan H, Zheng D, Chen M, Li T, Lu F, Song Y, Chen Y, Gao W. Novel design constructed In 2S 3@SnO 2 hollow heterojunctions by insufficiently etched MOFs as framework for photoelectrochemical bioanalysis. Bioelectrochemistry 2023; 152:108443. [PMID: 37075689 DOI: 10.1016/j.bioelechem.2023.108443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Compared to sufficiently etched MOFs materials, insufficiently etched MOFs materials tend to display unsatisfactory performance due to their immature structure and have been eliminated from scientific research. Herein, this work reported a novel In2S3@SnO2 heterojunction (In2S3@SnO2-HSHT) materials, which were stably synthesized in high temperature aqueous environment and equipped extraordinary photoelectrochemical (PEC) properties, fabricated by a succinct hydrothermal synthesis method using insufficiently etched MIL-68 as a self-sacrificing template. Compared with the control groups and In2S3@SnO2 heterojunctions with collapse morphology synthesized by sufficiently etched MIL-68 in high temperature aqueous environment, In2S3@SnO2-HSHT synthesized from insufficiently etched MIL-68 as a template had a massively enhanced light-harvesting capability and generated more photoinduced charge carriers due to its well-preserved hollow structure. Therefore, based on outstanding PEC performance of In2S3@SnO2-HSHT, the established PEC label-free signal-off immunosensor to detect CYFRA 21-1, revealing vivid selectivity, stability, and reproducibility. This novel strategy adopted the insufficient chemical etching method neglected by the mainstream chemical etching approaches, which solved the challenge that the stability of the sufficient etched MOFs with hollow structure cannot be maintained under the subsequent high temperature aqueous reaction conditions, and was further applied to the design of hollow heterojunction materials for photoelectrochemical fields.
Collapse
Affiliation(s)
- Hongyang Tan
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Delun Zheng
- Department of Natural Sciences, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Min Chen
- Shantou Inspection and Testing Center, Shantou, Guangdong 515041, PR China
| | - Ting Li
- Guangdong Chaozhou Supervision & Inspection Institute of Quality & Metrology, Chaozhou, Guangdong 521011, PR China
| | - Fushen Lu
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yibing Song
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yaowen Chen
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
29
|
Wei G, Wang L, Ding Z, Yuan R, Long J, Xu C. Carbazole-Involved Conjugated Microporous Polymer Hollow Spheres for Selective Photocatalytic Oxidation of Benzyl Alcohol under Visible-Light Irradiation. J Colloid Interface Sci 2023; 642:648-657. [PMID: 37030201 DOI: 10.1016/j.jcis.2023.03.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Conjugated microporous polymers (CMPs) have been considered a type of promising visible-light-driven, organic photocatalysts. However, apart from designing high-performance CMPs from a molecular perspective, little attention is paid to improving the photocatalytic properties of these polymers through macrostructural regulation. Herein, we prepared a kind of hollow spherical CMPs involving carbazole monomers and studied their performance on the selective photocatalytic oxidation of benzyl alcohol under visible light irradiation. The results demonstrate that the introduction of a hollow spherical structure improves the physicochemical properties of the as-designed CMPs, including the specific surface areas, optoelectronic characteristics, as well as photocatalytic performance, etc. In particular, the hollow CMPs can more effectively oxidize benzyl alcohol compared to pristine ones under blue light illumination, and produce >1 mmol of benzaldehyde in 4.5 h with a yield of up to 9 mmol·g-1·h-1, which is almost 5 times higher than that of the pristine ones. Furthermore, such hollow architecture has a similar enhanced effect on the oxidation of some other aromatic alcohols. This work shows that the deliberate construction of specific macrostructures can better arouse the photocatalytic activity of the as-designed CMPs, which will contribute to the further use of these organic polymer semiconductors in photocatalysis areas.
Collapse
|
30
|
Yang C, Wang M, Chang M, Yuan M, Zhang W, Tan J, Ding B, Ma P, Lin J. Heterostructural Nanoadjuvant CuSe/CoSe 2 for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. J Am Chem Soc 2023; 145:7205-7217. [PMID: 36958054 DOI: 10.1021/jacs.2c12772] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The desirable curative effect in clinical immunotherapy has been challenging due to the immunosuppressive tumor microenvironment (TME) with high lactic acid (LA) metabolism in solid tumors. Although targeting metabolic reprogramming of tumor cells can restore the survival and function of immune cells in the TME, it is also plagued by insufficient immunogenicity. Herein, an activatable immunomodulatory nanoadjuvant CuSe/CoSe2@syrosingopine (CSC@Syro) is constructed for simultaneously relieving immunosuppressive TME and boosting tumor immune response. Specifically, CuSe/CoSe2 (CSC) exhibits TME-activated glutathione (GSH) depletion and hydroxyl radical (•OH) generation for potential ferroptosis. Meanwhile, the remarkable photothermal conversion efficiency and elevated photocatalytic ROS level both promote CSC heterostructures to induce robust immunogenic cell death (ICD). Besides, the loaded syrosingopine inhibitor achieves LA metabolism blockade in cancer cells by downregulating the expression of monocarboxylate transporter 4 (MCT4), which could sensitize ferroptosis by intracellular milieu acidification and neutralize the acidic TME to alleviate immunosuppression. Hence, advanced metabolic modulation confers the potentiated immune infiltration of ICD-stimulated T lymphocytes and further reinforces antitumor therapy. In brief, CSC@Syro-mediated synergistic therapy could elicit potent immunogenicity and suppress tumor proliferation and metastasis effectually by integrating the tumor metabolic regulation and ferroptosis with immunotherapy.
Collapse
Affiliation(s)
- Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Mengyu Chang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230023, P. R. China
| |
Collapse
|
31
|
Arjomandi-Behzad L, Alinejad Z, Zandragh MR, Golmohamadi A, Vojoudi H. Facile synthesis of hollow spherical g-C 3N 4@LDH/NCQDs ternary nanostructure for multifunctional antibacterial and photodegradation activities. iScience 2023; 26:106213. [PMID: 36909669 PMCID: PMC9993033 DOI: 10.1016/j.isci.2023.106213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Heterojunction nanostructure construction and morphology engineering are considered to be effective approaches to improve photocatalytic performance. Herein, ternary hierarchical hollow structures consisting of cobalt-aluminum-layered double hydroxide (CoAl-LDH) nanoplates grown on hollow carbon nitride spheres (HCNS) and decorated with N-doped carbon quantum dots (NCQDs) were prepared using a templating method and a subsequent solvothermal process. The obtained HCNS@LDH/NCQD composites presented an improved performance in photocatalytic degradation of tetracycline and inactivation of E. coli compared with pure HCNS and LDH under visible light illumination. The enhanced photocatalytic activity of the designed photocatalyst could be attributed to the following reasons: (1) A special hollow structure provides more active sites and has multiple capabilities of light reflection by helping with a high specific surface area that improves the harvesting efficiency of solar light and (2) the strong synergistic effect among the constituents, which promotes separation and transfer of charge carriers and broadens the photo-response range.
Collapse
Affiliation(s)
| | | | | | - Amir Golmohamadi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
| | - Hossein Vojoudi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
- Corresponding author
| |
Collapse
|
32
|
Liu M, Wen J, Qin Y, Li J, Tang Y, Jiao L, Wu Y, Fang Q, Zheng L, Cui X, Gu W, Zhu C, Hu L, Guo S. Metal atom doping-induced S-scheme heterojunction boosts the photoelectric response. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
33
|
Liu T, Shen H, Wang M, Feng Q, Chen L, Wang W, Zhang J. Fabrication of ZnIn2S4 nanosheets decorated hollow CdS nanostructure for efficient photocatalytic H2-evolution and antibiotic removal performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
34
|
Wang C, Liu Y, Li Y, Sun X, Xu L, Huang W. Facile defect construction of TiO2 nanotube for excellent photocatalytic degradation of tetracycline under visible light. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Chemical Etching and Phase Transformation of Nickel-Cobalt Prussian Blue Analogs for Improved Solar-Driven Water-Splitting Applications. J Colloid Interface Sci 2023; 641:861-874. [PMID: 36966575 DOI: 10.1016/j.jcis.2023.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Although Prussian blue and its analogs (PB/PBAs) have open framework structures, large surface areas, uniform metal active sites, and tunable compositions, and have been investigated for a long time, owing to their unfavorable visible light responsiveness, they rarely been reported in photocatalysis. This largely limits their applications in solar-to-chemical energy conversion. Here, a continuous-evolution strategy was conducted to convert the poor-performance NiCo PBA (NCP) toward high-efficiency complex photocatalytic nanomaterials. First, chemical etching was performed to transform raw NCP (NCP-0) to hollow-structured NCP (including NCP-30, and NCP-60) with enhanced diffusion, penetration, mass transmission of reaction species, and accessible surface area. Then, the resultant hollow NCP-60 frameworks were further converted into advanced functional nanomaterials including CoO/3NiO, NiCoP nanoparticles, and CoNi2S4 nanorods with a considerably improved photocatalytic H2 evolution performance. The hollow-structured NCP-60 particles exhibit an enhanced H2 evolution rate (1.28 mol g-1h-1) compared with the raw NCP-0 (0.64 mol g-1h-1). Furthermore, the H2 evolution rate of the resulting NiCoP nanoparticles reached 16.6 mol g-1h-1, 25 times that of the NCP-0, without any cocatalysts.
Collapse
|
36
|
Design of hollow nanostructured photocatalysts for clean energy production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Zhang J, Du C, Zhou C, Yang S. Highly efficient splitting of benzyl alcohol for the production of hydrogen and benzaldehyde using synergistic CuNi/CdS photocatalysts. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Plasma induced rich oxygen vacancies fiber-like ZnO for efficient photocatalytic CO2 reduction. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Hezam A, Alkanad K, Bajiri MA, Strunk J, Takahashi K, Drmosh QA, Al-Zaqri N, Krishnappagowda LN. 2D/1D MoS 2 /TiO 2 Heterostructure Photocatalyst with a Switchable CO 2 Reduction Product. SMALL METHODS 2023; 7:e2201103. [PMID: 36408777 DOI: 10.1002/smtd.202201103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Regulating the transfer pathway of charge carriers in heterostructure photocatalysts is of great importance for selective CO2 photoreduction. Herein, the charge transfer pathway and in turn the redox potential succeeded to regulate in 2D MoS2 /1D TiO2 heterostructure by varying the light wavelength range. Several in situ measurements and experiments confirm that charge transfer follows either an S-scheme mechanism under simulated solar irradiation or a heterojunction approach under visible light illumination, elucidating the switchable property of the MoS2 /TiO2 heterostructure. Replacing the simulated sunlight irradiation with the visible light illumination switches the photocatalytic CO2 reduction product from CO to CH4. 13 CO2 isotope labeling confirms that CO2 is the source of carbon for CH4 and CO products. The photoelectrochemical H2 generation further supports the switching property of MoS2 /TiO2 . Unlike previous studies, density functional theory calculations are used to investigate the band structure of Van der Waals MoS2 /TiO2 S scheme after contact, allowing to propose accurate charge transfer pathways, in which the theoretical results are well matched with the experimental results. This work opens the opportunity to develop photocatalysts with switchable charge transport and tunable redox potential for selective artificial photosynthesis.
Collapse
Affiliation(s)
- Abdo Hezam
- Leibniz-Institute for Catalysis, University of Rostock, 18059, Rostock, Germany
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577 451, India
| | - Jennifer Strunk
- Leibniz-Institute for Catalysis, University of Rostock, 18059, Rostock, Germany
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, Sapporo, 060-0815, Japan
| | - Qasem Ahmed Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia
| | | |
Collapse
|
40
|
Liu X, Xu J, Wu J, Liu Z, Xu S. 1D CdS modified 3D zinc cobalt oxide heterojunctions boost solar-driven photocatalytic performance. NEW J CHEM 2023. [DOI: 10.1039/d2nj05072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the process of photocatalysis, semiconductor materials generate photogenerated electrons and photogenerated holes when excited by sunlight, so as to participate in the process of photocatalytic decomposition of water to produce hydrogen.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Chemistry and Chemical Engineering North Minzu University, Yinchuan 750021, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering North Minzu University, Yinchuan 750021, P. R. China
- Key Laboratory of Chemical Engineering and Technology (North Minzu University), State Ethnic Affairs Commission, Yinchuan 750021, P. R. China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology Autonomous Region, North Minzu University, Yinchuan 750021, P. R. China
| | - Jiandong Wu
- School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhenlu Liu
- School of Chemistry and Chemical Engineering North Minzu University, Yinchuan 750021, P. R. China
| | - Shengming Xu
- School of Chemistry and Chemical Engineering North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
41
|
Efficient toluene oxidation by post plasma catalysis over hollow Co3O4 nanospheres. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Wang J, Zhu W, Zhang Y, Yang X, Bai G, Zhang Q, Chen Y, Lan X. Structural Engineering of Donor−π–Acceptor Conjugated Polymers for Facilitating Charge Separation: A Dual-Functional Photocatalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
43
|
Mao Z, Yang Z, Tao W, Tang Q, Xiao Y, Jiang Y, Guo S. Ultrafine Ag Nanoparticles Anchored on Hollow S-Doped CeO 2 Spheres for Synergistically Enhanced Tetracycline Degradation under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zifei Mao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Ziang Yang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Wei Tao
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Qiaoya Tang
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, People’s Republic of China
| | - Yong Jiang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, People’s Republic of China
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
44
|
Xiao H, Zhang Q, Ahmad M, Dong S, Zhang Y, Fang D, Wang X, Peng H, Lei Y, Wu G, Bai Y, Deng S, Ye F, Zeng Z. Carbonate Mediated Hole Transfer Boosting the Photocatalytic Degradation of Organic Pollutants over Carbon Nitride Nanosheets. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ding W, Luo JX, Gu Q, Liu ZH. Ultrathin 2D ZnGa-Borate-LDH nanosheets for boosting dye-sensitized photocatalytic coupled reaction of H2 production with pollutant degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
47
|
Confined cobalt oxide embedded into hierarchical bismuth tungstate in S-scheme micro-heterojunction for enhanced air purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Potassium-doped carbon nitride: Highly efficient photoredox catalyst for selective oxygen reduction and arylboronic acid hydroxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Wang Y, Fan G, Wang S, Li Y, Guo Y, Luan D, Gu X, Lou XWD. Implanting CoO x Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204865. [PMID: 36048463 DOI: 10.1002/adma.202204865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Despite suffering from slow charge-carrier mobility, photocatalysis is still an attractive and promising technology toward producing green fuels from solar energy. An effective approach is to design and fabricate advanced architectural materials as photocatalysts to enhance the performance of semiconductor-based photocatalytic systems. Herein, metal-organic-framework-derived hierarchically ordered porous nitrogen and carbon co-doped ZnO (N-C-ZnO) structures are developed as nanoreactors with decorated CoOx nanoclusters for CO2 -to-CO conversion driven by visible light. Introduction of hierarchical nanoarchitectures with highly ordered interconnected meso-macroporous channels shows beneficial properties for photocatalytic reduction reactions, including enhanced mobility of charge carriers throughout the highly accessible framework, maximized exposure of active sites, and inhibited recombination of photoinduced charge carriers. Density functional theory calculations further reveal the key role of CoOx nanoclusters with high affinity to CO2 molecules, and the CoO bonds formed on the surface of the composite exhibit stronger charge redistribution. As a result, the obtained CoOx /N-C-ZnO demonstrates enhanced photocatalysis performance in terms of high CO yield and long-term stability.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yunxiang Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
50
|
Wang L, Meng M, Zheng R, Li X, Yuan H. Synthesis of Two Porous CdS Rods by Anion Exchange Method and Their Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183190. [PMID: 36144983 PMCID: PMC9505071 DOI: 10.3390/nano12183190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 05/26/2023]
Abstract
Semiconductor materials with pore structure have excellent physicochemical properties for photocatalytic reactions. Here, the one-step vulcanization of Cd-based MOF solid rods was successfully developed to synthesize two kinds of CdS rods with pore structure: hollow rods (HRs) and mesoporous rods (MRs). Among the three catalysts, the CdS HRs showed the highest photocatalytic efficiency, which could remove about 96.0% of RhB in 30 min under visible light irradiation. The enhanced photocatalytic activity of CdS HRs benefits from its novel hollow structure, which enhances the visible light absorption capability and the separation efficiency of photogenerated electron-hole pairs. The successful synthesis of CdS HRs has guiding significance for the design and synthesis of other hollow structures with high photocatalytic activity.
Collapse
|