1
|
Chen Y, Zhang Q, Shen J, Liu Z, Cui X, Ma L, Zheng Y, Wang L, Ying T. Magnetically actuated cisplatin-loaded nanoparticle collectives enhance drug penetration for potentiated ovarian cancer chemotherapy. J Colloid Interface Sci 2025; 678:108-118. [PMID: 39182385 DOI: 10.1016/j.jcis.2024.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chemotherapy is the main clinical treatment for ovarian cancer, but still faces challenges of low drug targeting efficiency and insufficient drug permeability. Drug-loaded nanoparticle collectives, which are actuated by magnetic field, could be targeted to a designated location and achieve targeted drug delivery. In this work, we report a strategy that utilizes magnetic mesoporous silica nanoparticles loaded with cis-diaminodichloroplatinum (Fe3O4@SiO2-CDDP) for targeted delivery of chemotherapeutic drugs and enhances penetration into deep tumors. The Fe3O4@SiO2-CDDP collectives actively moved to the target tumor site, and this movement was regulated by a magnetic actuation system. Under the action of a torque-force hybrid magnetic field (TFMF), Fe3O4@SiO2-CDDP could further penetrate into the interior of tumors and achieve pH-responsive drug release in the tumor environment. The feasibility of this strategy was verified in three-dimensional cell spheres in vitro and in a tumor-bearing mouse model in vivo. This magnetically actuated nanoparticle collectives enhanced drug penetration strategy provides a new paradigm for targeted drug delivery and potentiated tumor therapy.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiang Zhang
- Department of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiran Liu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaoyu Cui
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Ma
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
2
|
Delgado-Corrales BJ, Chopra V, Chauhan G. Gold nanostars and nanourchins for enhanced photothermal therapy, bioimaging, and theranostics. J Mater Chem B 2025; 13:399-428. [PMID: 39575861 DOI: 10.1039/d4tb01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Photothermal therapy (PTT), a recently emerging method for eradicating tumors, utilizes hyperthermia induced by photo-absorbing materials to generate heat within cancer cells. Gold nanoparticles (AuNPs) have gained reliability for in vitro and in vivo applications in PTT due to their strong light absorbance, stability, and biocompatibility. Yet, their potential is limited by their spherical shape, impacting their size capabilities, electromagnetic enhancement effects, and localized surface plasmon resonance (LSPR). Anisotropic shapes have been tested and implemented in this treatment to overcome the limitations of spherical AuNPs. Nanostars (AuNSs) and nanourchins (AuNUs) offer unique properties, such as increased local electron density, improved catalytic activity, and an enhanced electromagnetic field, which have proven to be effective in PTT. Additionally, these shapes can easily reach the NIR-I and NIR-II window while exhibiting improved biological properties, including low cytotoxicity and high cellular uptake. This work covers the critical characteristics of AuNS and AuNUs, highlighting rough surface photothermal conversion enhancement, significantly impacting recent PTT and its synergy with other treatments. Additionally, the bioimaging and theranostic applications of these nanomaterials are discussed, highlighting their multifaceted utility in advanced cancer therapies.
Collapse
Affiliation(s)
- Beverly Jazmine Delgado-Corrales
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Vianni Chopra
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
3
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024; 7:8126-8148. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Wahane A, Kasina V, Pathuri M, Marro-Wilson C, Gupta A, Slack FJ, Bahal R. Development of bioconjugate-based delivery systems for nucleic acids. RNA (NEW YORK, N.Y.) 2024; 31:1-13. [PMID: 39477529 DOI: 10.1261/rna.080273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acids are a class of drugs that can modulate gene and protein expression by various mechanisms, namely, RNAi, mRNA degradation by RNase H cleavage, splice modulation, and steric blocking of protein binding or mRNA translation, thus exhibiting immense potential to treat various genetic and rare diseases. Unlike protein-targeted therapeutics, the clinical use of nucleic acids relies on Watson-Crick sequence recognition to regulate aberrant gene expression and impede protein translation. Though promising, targeted delivery remains a bottleneck for the clinical adoption of nucleic acid-based therapeutics. To overcome the delivery challenges associated with nucleic acids, various chemical modifications and bioconjugation-based delivery strategies have been explored. Currently, liver targeting by N-acetyl galactosamine (GalNAc) conjugation has been at the forefront for the treatment of rare and various metabolic diseases, which has led to FDA approval of four nucleic acid drugs. In addition, various other bioconjugation strategies have been explored to facilitate active organ and cell-enriched targeting. This review briefly covers the different classes of nucleic acids, their mechanisms of action, and their challenges. We also elaborate on recent advances in bioconjugation strategies in developing a diverse set of ligands for targeted delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Vishal Kasina
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mounika Pathuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ciara Marro-Wilson
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
5
|
Hu J, Zhu J, Chen T, Zhao Y, Xu Q, Wang Y. Cuproptosis in cancer therapy: mechanisms, therapeutic application and future prospects. J Mater Chem B 2024; 12:12191-12206. [PMID: 39526989 DOI: 10.1039/d4tb01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cuproptosis is a regulated form of cell death induced by the accumulation of metal ions and is closely linked to aspects of cellular drug resistance, cellular metabolism, and signalling pathways. Due to its crucial role in regulating physiological and pathological processes, cuproptosis has gained increasing significance as a potential target for anticancer drug development. In this review, we introduce the definition of cuproptosis and provide a comprehensive discussion of the mechanisms of cuproptosis. In addition, the methods for the detection of cuproptosis are summarized, and recent advances in cuproptosis in cancer therapy are reviewed, mainly in terms of elesclomol (ES)-mediated cuproptosis and disulfiram (DSF)-mediated cuproptosis, which provided practical value for applications. Finally, the current challenges and future development of cuproptosis-mediated cancer therapy are discussed. In summary, this review highlights recent progress on cuproptosis in cancer therapy, offering novel ideas and strategies for future research and applications.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
İlem-Özdemir D, Santos-Oliveira R. Can radiopharmaceuticals be delivered by quantum dots? Expert Opin Drug Deliv 2024; 21:1689-1691. [PMID: 39420518 DOI: 10.1080/17425247.2024.2419446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Cheng X, He C, Huang J, Li J, Hu Z, Wang L, Wei T, Cui L, Lu M, Mi P, Xu J. A Tumor-Homing Nanoframework for Synergistic Microwave Tumor Ablation and Provoking Strong Anticancer Immunity Against Metastasis. ACS NANO 2024; 18:29121-29139. [PMID: 39387481 DOI: 10.1021/acsnano.4c10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microwave thermotherapy (MT) is a clinical local tumor ablation modality, but its applications are limited by its therapeutic efficacy and safety. Therefore, developing sensitizers to optimize the outcomes of MT is in demand in clinical practice. Herein, we engineered a special nanoframework (i.e., FdMI) based on a fucoidan-decorated zirconium metal-organic framework incorporating manganese ions and liquid physisorption for microwave tumor ablation. The monodisperse nanoframework exhibited both microwave thermal effects and microwave dynamic effects, which could effectively kill cancer cells by efficient intracellular drug delivery. Through fucoidan-mediated targeting of P-selectin in the tumor microenvironment (TME), the FdMI effectively accumulated in tumor regions, leading to significant eradication of orthotropic triple-negative breast cancer (TNBC) and aggressive Hepa1-6 liver tumors by the synergistic effects of microwave thermotherapy/dynamic therapy (MT/MDT). The eradication of primary tumors could activate systemic immune responses, which effectively inhibited distant TNBC tumors and lung metastasis of Hepa1-6 liver tumors, respectively. This work not only engineered nanoparticle sensitizers for tumor-targeted synergistic MT/MDT but also demonstrated that nanocarrier-based microwave tumor ablation could stimulate antitumor immunity to effectively inhibit distant and metastatic tumors, demonstrating the high potential for effectively managing advanced malignant tumors.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Chuanshi He
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jiangbo Huang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Juan Li
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ziyue Hu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Lu Wang
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ting Wei
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Likun Cui
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Man Lu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Jinshun Xu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
8
|
Wang Z, Su Q, Deng W, Wang X, Zhou H, Zhang M, Lin W, Xiao J, Duan X. Morphology-Mediated Tumor Deep Penetration for Enhanced Near Infrared II Photothermal and Chemotherapy of Colorectal Cancer. ACS NANO 2024; 18:28038-28051. [PMID: 39363419 DOI: 10.1021/acsnano.4c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The low permeability and heterogeneous distribution of drugs (including nanomedicines) have limited their deep penetration into solid tumors. Herein we report the design of gold nanoparticles with virus-like spikes (AuNVs) to mimic viral shapes and facilitate tumor penetration. Mechanistic studies revealed that AuNVs mainly entered cells through macropinocytosis, then transported to the Golgi/endoplasmic reticulum system via Rab11-regulated pathway, and finally exocytosed through recycling endosomes, leading to high cellular uptake, effective transcytosis, and deep tumor penetration compared to gold nanospheres (AuNPs) and gold nanostars (AuNSs). The high tumor accumulation and deep tumor penetration of mitoxantrone (MTO) facilitated by AuNVs endowed effective chemophotothermal therapy when exposed to a near-infrared II laser, significantly reducing tumor sizes in a mouse model of colorectal cancer. This study reveals a potent mechanism of viral-like structures in tissue penetration and highlights their potential as effective drug delivery carriers.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao Wang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenbin Lin
- Departments of Chemistry and Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research, Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
10
|
Tobi A, Haugas M, Rabi K, Sethi J, Põšnograjeva K, Paiste P, Jagomäe T, Pleiko K, Lingasamy P, Teesalu T. Protease-activated CendR peptides targeting tenascin-C: mitigating off-target tissue accumulation. Drug Deliv Transl Res 2024; 14:2945-2961. [PMID: 39012578 PMCID: PMC11384632 DOI: 10.1007/s13346-024-01670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
To achieve precision and selectivity, anticancer compounds and nanoparticles (NPs) can be targeted with affinity ligands that engage with malignancy-associated molecules in the blood vessels. While tumor-penetrating C-end Rule (CendR) peptides hold promise for precision tumor delivery, C-terminally exposed CendR peptides can accumulate undesirably in non-malignant tissues expressing neuropilin-1 (NRP-1), such as the lungs. One example of such promiscuous peptides is PL3 (sequence: AGRGRLVR), a peptide that engages with NRP-1 through its C-terminal CendR element, RLVR.Here, we report the development of PL3 derivatives that bind to NRP-1 only after proteolytic processing by urokinase-type plasminogen activator (uPA), while maintaining binding to the other receptor of the peptide, the C-domain of tenascin-C (TNC-C). Through a rational design approach and screening of a uPA-treated peptide-phage library (PL3 peptide followed by four random amino acids) on the recombinant NRP-1, derivatives of the PL3 peptide capable of binding to NRP-1 only post-uPA processing were successfully identified. In vitro cleavage, binding, and internalization assays, along with in vivo biodistribution studies in orthotopic glioblastoma-bearing mice, confirmed the efficacy of two novel peptides, PL3uCendR (AGRGRLVR↓SAGGSVA) and SKLG (AGRGRLVR↓SKLG), which exhibit uPA-dependent binding to NRP-1, reducing off-target binding to healthy NRP-1-expressing tissues. Our study not only unveils novel uPA-dependent TNC-C targeting CendR peptides but also introduces a broader paradigm and establishes a technology for screening proteolytically activated tumor-penetrating peptides.
Collapse
Affiliation(s)
- Allan Tobi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Kristina Rabi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Jhalak Sethi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Kristina Põšnograjeva
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Karlis Pleiko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Prakash Lingasamy
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
11
|
Norimatsu J, Mizuno HL, Watanabe T, Obara T, Nakakido M, Tsumoto K, Cabral H, Kuroda D, Anraku Y. Triphenylphosphonium-modified catiomers enhance in vivo mRNA delivery through stabilized polyion complexation. MATERIALS HORIZONS 2024; 11:4711-4721. [PMID: 38988276 DOI: 10.1039/d4mh00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Nanocarriers based on cationic materials play a central role in the success of mRNA-based therapies. Traditionally, amine-bearing lipids and polymers have been successfully employed for creating mRNA-loaded nanocarriers, though they still present challenges, such as physical and biological instability, limiting both delivery efficiency and therapeutic potential. Non-amine cations could be a promising avenue in addressing these limitations. However, such alternatives remain notably underexplored. Herein, we introduced triphenylphosphonium (TPP) as an alternative cationic moiety for mRNA delivery, leveraging its advantageous properties for nucleic acid complexation. Through the modification of amine-bearing catiomers, we replaced traditional amine-based counterparts with TPP to create innovative polymeric micelles as mRNA nanocarriers. A comprehensive analysis, encompassing physicochemical, thermodynamic, and computational approaches, revealed that the TPP substitution significantly influenced polymer self-assembly, mRNA binding, and the overall stability of mRNA-loaded polymeric micelles. Upon intravenous injection, TPP-bearing micelles demonstrated a remarkable increase in mRNA bioavailability, facilitating efficient protein production in solid tumors. These findings provide a compelling rationale for substituting amines with TPP, emphasizing their potential for advancing mRNA therapeutics.
Collapse
Affiliation(s)
- Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hayato L Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takayoshi Watanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takumi Obara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Daisuke Kuroda
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| |
Collapse
|
12
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Ou Z, You Y, Yi H, Liu X, Tong Y, Liu D, Wang J. Key Lipoprotein Receptor Targeted Echinacoside-Liposomes Effective Against Parkinson's Disease in Mice Model. Int J Nanomedicine 2024; 19:8463-8483. [PMID: 39185346 PMCID: PMC11342948 DOI: 10.2147/ijn.s468942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra. The precise molecular mechanisms underlying neuronal loss in PD remain unknown, and there are currently no effective treatments for PD-associated neurodegeneration. Echinacoside (ECH) is known for its neuroprotective effects, which include scavenging cellular reactive oxygen species and promoting mitochondrial fusion. However, the blood-brain barrier (BBB) limits the bioavailability of ECH in the brain, posing a significant challenge to its use in PD treatment. Methods We synthesized and characterized PEGylated ECH liposomes (ECH@Lip) and peptide angiopep-2 (ANG) modified liposomes (ECH@ANG-Lip). The density of ANG in ANG-Lip was optimized using bEnd.3 cells. The brain-targeting ability of the liposomes was assessed in vitro using a transwell BBB model and in vivo using an imaging system and LC-MS. We evaluated the enhanced neuroprotective properties of this formulation in a the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Results The ECH@ANG-Lip demonstrated significantly higher whole-brain uptake compared to ECH@Lip and free ECH. Furthermore, ECH@ANG-Lip was more effective in mitigating MPTP-induced behavioral impairment, oxidative stress, dopamine depletion, and dopaminergic neuron death than both ECH@Lip and free ECH. Conclusion The formulation used in our study significantly enhanced the neuroprotective efficacy of ECH in the MPTP-induced PD model. Thus, ECH@ANG-Lip shows considerable potential for improving the bioavailability of ECH and providing neuroprotective effects in the brain.
Collapse
Affiliation(s)
- Zemin Ou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yan Tong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Dewen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinyu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
15
|
Du Q, Liu Y, Fan M, Wei S, Ismail M, Zheng M. PEG length effect of peptide-functional liposome for blood brain barrier (BBB) penetration and brain targeting. J Control Release 2024; 372:85-94. [PMID: 38838784 DOI: 10.1016/j.jconrel.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Nanoparticles, in particular PEGylated, show great potential for in vivo brain targeted drug delivery. Nevertheless, how polyethylene glycol (PEG) length of nanoparticles affects their blood brain barrier (BBB) penetration or brain targeting is still unclear. In this study, we investigated the power of PEG chain-lengths (2, 3.4, 5, 10 kDa) in BBB penetration and brain targeting using Angiopep-2 peptide decorated liposomes. We found that PEG chain-length is critical, where the shorter PEG enabled the Angiopep-2 decorated liposomes to display more potent in vitro cell uptake via endocytosis. In contrast, their in vitro BBB penetration via transcytosis was much weaker relative to the liposomes with longer PEG chains, which result from their ineffective BBB exocytosis. Interestingly, the in vivo brain targeting aligns with the in vitro BBB penetration, as the long chain PEG-modified liposomes exerted superior brain accumulation both in normal or orthotropic glioblastoma (GBM) bearing mice, which could be ascribed to the combinational effect of prolonged circulation and enhanced BBB penetration of long chain PEG attached liposomes. These results demonstrate the crucial role of PEG length of nanoparticles for BBB penetration and brain targeting, providing guidance for PEG length selection in the design of nanocarrier for brain diseases treatment.
Collapse
Affiliation(s)
- Qiuli Du
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yang Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengyu Fan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sijun Wei
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
16
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
17
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
19
|
Zhao D, Li Z, Ji DK, Xia Q. Recent Progress of Multifunctional Molecular Probes for Triple-Negative Breast Cancer Theranostics. Pharmaceutics 2024; 16:803. [PMID: 38931924 PMCID: PMC11207493 DOI: 10.3390/pharmaceutics16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer (BC) poses a significant threat to women's health, with triple-negative breast cancer (TNBC) representing one of the most challenging and aggressive subtypes due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Traditional TNBC treatments often encounter issues such as low drug efficiency, limited tumor enrichment, and substantial side effects. Therefore, it is crucial to explore novel diagnostic and treatment systems for TNBC. Multifunctional molecular probes (MMPs), which integrate target recognition as well as diagnostic and therapeutic functions, introduce advanced molecular tools for TNBC theranostics. Using an MMP system, molecular drugs can be precisely delivered to the tumor site through a targeted ligand. Real-time dynamic monitoring of drug release achieved using imaging technology allows for the evaluation of drug enrichment at the tumor site. This approach enables accurate drug release, thereby improving the therapeutic effect. Therefore, this review summarizes the recent advancements in MMPs for TNBC theranostics, encompassing the design and synthesis of MMPs as well as their applications in the field of TNBC theranostics.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Xia
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
20
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Fang W, Yu K, Zhang S, Jiang L, Zheng H, Huang Q, Li F. Shape Matters: Impact of Mesoporous Silica Nanoparticle Morphology on Anti-Tumor Efficacy. Pharmaceutics 2024; 16:632. [PMID: 38794294 PMCID: PMC11125244 DOI: 10.3390/pharmaceutics16050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
A nanoparticle's shape is a critical determinant of its biological interactions and therapeutic effectiveness. This study investigates the influence of shape on the performance of mesoporous silica nanoparticles (MSNs) in anticancer therapy. MSNs with spherical, rod-like, and hexagonal-plate-like shapes were synthesized, with particle sizes of around 240 nm, and their other surface properties were characterized. The drug loading capacities of the three shapes were controlled to be 47.46%, 49.41%, and 46.65%, respectively. The effects of shape on the release behaviors, cellular uptake mechanisms, and pharmacological behaviors of MSNs were systematically investigated. Through a series of in vitro studies using 4T1 cells and in vivo evaluations in 4T1 tumor-bearing mice, the release kinetics, cellular behaviors, pharmacological effects, circulation profiles, and therapeutic efficacy of MSNs were comprehensively assessed. Notably, hexagonal-plate-shaped MSNs loaded with PTX exhibited a prolonged circulation time (t1/2 = 13.59 ± 0.96 h), which was approximately 1.3 times that of spherical MSNs (t1/2 = 10.16 ± 0.38 h) and 1.5 times that of rod-shaped MSNs (t1/2 = 8.76 ± 1.37 h). This research underscores the significance of nanoparticles' shapes in dictating their biological interactions and therapeutic outcomes, providing valuable insights for the rational design of targeted drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Songhan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiaoling Huang
- Hangzhou Third People’s Hospital, Hangzhou 310009, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
22
|
Di J, Huang P, Chen X. Targeting Strategies for Site-Specific mRNA Delivery. Bioconjug Chem 2024; 35:453-456. [PMID: 38491941 DOI: 10.1021/acs.bioconjchem.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
mRNA therapeutics hold great promise for disease treatment, yet a key challenge lies in achieving site-specific mRNA delivery to maximize therapeutic efficacy while minimizing off-target side effects. This viewpoint delves into multiple complementary targeting strategies to achieve precise site-specific mRNA delivery, covering topics of administration routes, passive targeting, and active targeting. It highlights the critical importance of rationally designed nanocarriers for obtaining desired therapeutic effects and accelerating the clinical translation of mRNA therapeutics.
Collapse
Affiliation(s)
- Jiaxing Di
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
23
|
Chen P, Yang W, Mochida Y, Li S, Hong T, Kinoh H, Kataoka K, Cabral H. Selective Intracellular Delivery of Antibodies in Cancer Cells with Nanocarriers Sensing Endo/Lysosomal Enzymatic Activity. Angew Chem Int Ed Engl 2024; 63:e202317817. [PMID: 38342757 DOI: 10.1002/anie.202317817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Mochida
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shangwei Li
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
24
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
25
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
26
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
27
|
Liu L, Wang Z, Yap PL, Zhang Q, Ni Y, Losic D. Inhibition of α-glucosidase activity by curcumin loaded on ZnO@rGO nanocarrier for potential treatment of diabetes mellitus. LUMINESCENCE 2024; 39:e4668. [PMID: 38286596 DOI: 10.1002/bio.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Linghong Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Li Y, Wu Y, Fang Z, Zhang Y, Ding H, Ren L, Zhang L, Gong Q, Gu Z, Luo K. Dendritic Nanomedicine with Boronate Bonds for Augmented Chemo-Immunotherapy via Synergistic Modulation of Tumor Immune Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307263. [PMID: 37743633 DOI: 10.1002/adma.202307263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Unsatisfied tumor accumulation of chemotherapeutic drugs and a complicated immunosuppressive microenvironment diminish the immune response rate and the therapeutic effect. Surface modification of these drugs with target ligands can promote their cellular internalization, but the modified drugs may be subjected to unexpected immune recognition and clearance. Herein, a phenylboronic acid (PBA) group-shieldable dendritic nanomedicine that integrates an immunogenic cell death (ICD)-inducing agent (epirubicin, Epi) and an indoleamine 2,3-dioxgenase 1 (IDO1) inhibitor (NLG919) is reported for tumor chemo-immunotherapy. This NLG919-loaded Epi-conjugated PEGylated dendrimers bridged with boronate bonds (NLG919@Epi-DBP) maintains a stable nanostructure during circulation. Under a moderate acidic condition, the PBA group exposes to the sialic acid residue on the tumor cell membrane to enhance the internalization and penetration of NLG919@Epi-DBP. At pH 5.0, NLG919@Epi-DBP rapidly disassembles to release the incorporated Epi and NLG919. Epi triggers robust ICD of tumor cells that evokes strong immune response. In addition, inhibition of the IDO1 activity downregulates the metabolism of L-tryptophan to kynurenine, leading to a reduction in the recruitment of immunosuppressive cells and modulation of the tumor immune microenvironment. Collectively, this promising strategy has been demonstrated to evoke robust immune response as well as remodel the immunosuppressive microenvironment for an enhanced chemo-immunotherapeutic effect.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahui Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
29
|
Han D, Wang M, Dong N, Zhang J, Li D, Ma X, Ma Y, Wang S, Zhu Y, Wang C. Selective homing of brain-derived reconstituted lipid nanoparticles to cerebral ischemic area enables improved ischemic stroke treatment. J Control Release 2024; 365:957-968. [PMID: 38104776 DOI: 10.1016/j.jconrel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Lipid nanoparticles (LNPs) hold great promise as carriers for developing drug delivery systems (DDSs) aimed at managing ischemic stroke (IS). Previous research has highlighted the vital role played by the lipid composition and biophysical characteristics of LNPs, influencing their interactions with cells and tissues. This understanding presents an opportunity to engineer LNPs tailored specifically for enhanced IS treatment. We previously introduced the innovative concept of reconstituted lipid nanoparticles (rLNPs), which not only retain the advantages of conventional LNPs but also incorporate lipids from the originating cell or tissue. Brain-derived rLNPs (B-rLNPs) exhibit significantly superior accumulation within the cerebral ischemic region when compared to liver-derived rLNPs (L-rLNPs). The homing effect of B-rLNPs was then employed to construct 3-n-butylphthalide (NBP) loaded DDS (B-rLNPs/NBP) for the treatment of IS. Our results demonstrated that compared with free NBP, B-rLNPs/NBP can significantly reduce infarct volume, neurological deficits, blood-brain barrier (BBB) leakage rate, brain water content, neutrophil infiltration, alleviate pathological structures, and improve the motor function in MCAO/R model. We also proved that B-rLNPs/NBP showed further reinforced protective effects on the same model than free NBP through the regulation of TLR4/MyD88/NF-κB (anti-inflammation) and Bax/Bcl-2 (anti-apoptosis) pathways. This study offers a promising tool towards improved IS treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Meihua Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ying Ma
- Jiangsu Institute for Food and Drug Control, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
30
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
31
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
32
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
33
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Ni D, Guo B, Zhong Z, Chen Y, Yang G, Yang J, Zhong Z, Meng F. Integrin-targeting disulfide-crosslinked micellar docetaxel eradicates lung and prostate cancer patient-derived xenografts. Acta Biomater 2023; 170:228-239. [PMID: 37634830 DOI: 10.1016/j.actbio.2023.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Actively targeted nanomedicines though conceptually attractive for tumor therapy are extremely hard to realize due to problems of premature drug leakage, excessive liver accretion, inadequate tumor uptake, and/or retarded drug release inside tumor cells. Here, we systemically studied the influence of disulfide crosslinking on the in vitro and in vivo performance of integrin-targeting micellar docetaxel (t-MDTX). Of note, t-M5DTX with a high disulfide content was clearly advantageous in terms of stability, intracellular drug release, anti-tumor activity toward αVβ3-overexpressing A549 cells, blood circulation and therapeutic efficacy in orthotopic A549-luc lung tumor-bearing mice. t-MDTX induced extraordinary tumor targetability with tumor-to-normal tissue ratios of 1.7-8.3. Further studies indicated that t-M5DTX could effectively eradicate αVβ3-overexpressing lung and prostate cancer patient-derived xenografts (PDX), in which ca. 80% mice became tumor-free. This integrin-targeting disulfide-crosslinked micellar docetaxel emerges as a promising actively targeted nanoformulation for tumor therapy. STATEMENT OF SIGNIFICANCE: Nanomedicines have a great potential in treating advanced tumor patients; however, their tumor-targeting ability and therapeutic efficacy remain unsatisfactory. In addition to PEGylation and ligand selection, particle size, stability and drug release behavior are also critical to their performance in vivo. In this paper, we find that small and cRGD-guided disulfide-crosslinked micellar docetaxel (t-MDTX) induces superior tumor uptake and retention but without increasing liver burden, leading to extraordinary selectivity and inhibition of αvβ3 overexpressing lung tumors. t-MDTX is further shown to effectively treat αvβ3-positive patient-derived tumor models, lending it a high potential for clinical translation.
Collapse
Affiliation(s)
- Dawei Ni
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | | | - Yu Chen
- GenePharma, Suzhou 215123, PR China
| | - Guang Yang
- Department of Oncology, Suzhou BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Suzhou 215009, PR China
| | - Jiangtao Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
35
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Lin W, Fang J, Wei S, He G, Liu J, Li X, Peng X, Li D, Yang S, Li X, Yang L, Li H. Extracellular vesicle-cell adhesion molecules in tumours: biofunctions and clinical applications. Cell Commun Signal 2023; 21:246. [PMID: 37735659 PMCID: PMC10512615 DOI: 10.1186/s12964-023-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
Cell adhesion molecule (CAM) is an umbrella term for several families of molecules, including the cadherin family, integrin family, selectin family, immunoglobulin superfamily, and some currently unclassified adhesion molecules. Extracellular vesicles (EVs) are important information mediators in cell-to-cell communication. Recent evidence has confirmed that CAMs transported by EVs interact with recipient cells to influence EV distribution in vivo and regulate multiple cellular processes. This review focuses on the loading of CAMs onto EVs, the roles of CAMs in regulating EV distribution, and the known and possible mechanisms of these actions. Moreover, herein, we summarize the impacts of CAMs transported by EVs to the tumour microenvironment (TME) on the malignant behaviour of tumour cells (proliferation, metastasis, immune escape, and so on). In addition, from the standpoint of clinical applications, the significance and challenges of using of EV-CAMs in the diagnosis and therapy of tumours are discussed. Finally, considering recent advances in the understanding of EV-CAMs, we outline significant challenges in this field that require urgent attention to advance research and promote the clinical applications of EV-CAMs. Video Abstract.
Collapse
Affiliation(s)
- Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
37
|
Gatto MS, Najahi-Missaoui W. Lyophilization of Nanoparticles, Does It Really Work? Overview of the Current Status and Challenges. Int J Mol Sci 2023; 24:14041. [PMID: 37762348 PMCID: PMC10530935 DOI: 10.3390/ijms241814041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticles are being increasingly used as drug delivery systems to enhance the delivery to and uptake by target cells and to reduce off-target toxicity of free drugs. However, although the advantages of nanoparticles as drug carriers are clear, there are still some limitations, especially in maintaining their long-term stability. Lyophilization, also known as freeze-drying, has been heavily investigated as a solution to this problem. This strategy has been shown to be effective in increasing both the long-term stability of nanoparticles and the shelf life of the drug product. However, the process is still in need of improvement in several aspects, such as the process parameters, formulation factors, and characterization techniques. This review summarizes the advantages and limitations of nanoparticles for the treatment of disease, advantages and limitations, and the status of the lyophilization of nanoparticles for therapeutic use and provides insight into both the advantages and the limitations.
Collapse
Affiliation(s)
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
38
|
Zhang W, Zhu D, Tong Z, Peng B, Cheng X, Esser L, Voelcker NH. Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood-Brain Barrier by Porous Silicon Nanoparticles. Pharmaceutics 2023; 15:2271. [PMID: 37765240 PMCID: PMC10534822 DOI: 10.3390/pharmaceutics15092271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 09/29/2023] Open
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant challenge with regard to drug delivery to the brain. By incorporating targeting ligands, and by carefully adjusting particle sizes, nanocarriers can be customized to improve drug delivery. Among these targeting ligands, transferrin stands out due to the high expression level of its receptor (i.e., transferrin receptor) on the BBB. Porous silicon nanoparticles (pSiNPs) are a promising drug nanocarrier to the brain due to their biodegradability, biocompatibility, and exceptional drug-loading capacity. However, an in-depth understanding of the optimal nanoparticle size and transferrin surface density, in order to maximize BBB penetration, is still lacking. To address this gap, a diverse library of pSiNPs was synthesized using bifunctional poly(ethylene glycol) linkers with methoxy or/and carboxyl terminal groups. These variations allowed us to explore different transferrin surface densities in addition to particle sizes. The effects of these parameters on the cellular association, uptake, and transcytosis in immortalized human brain microvascular endothelial cells (hCMEC/D3) were investigated using multiple in vitro systems of increasing degrees of complexity. These systems included the following: a 2D cell culture, a static Transwell model, and a dynamic BBB-on-a-chip model. Our results revealed the significant impact of both the ligand surface density and size of pSiNPs on their ability to penetrate the BBB, wherein intermediate-level transferrin densities and smaller pSiNPs exhibited the highest BBB transportation efficiency in vitro. Moreover, notable discrepancies emerged between the tested in vitro assays, further emphasizing the necessity of using more physiologically relevant assays, such as a microfluidic BBB-on-a-chip model, for nanocarrier testing and evaluation.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
| | - Douer Zhu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
| | - Bo Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi’an 710072, China
| | - Xuan Cheng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia;
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia;
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia (Z.T.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
39
|
Shaik BB, Katari NK, Jonnalagadda SB. Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review. Ther Deliv 2023; 14:595-613. [PMID: 37877308 DOI: 10.4155/tde-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Cancer disease is one of the most frequent life-threatening, with a high fatality rate worldwide. However, recent immunotherapy studies in various tumours have yielded unsatisfactory outcomes, with just a few individuals experiencing long-term responses. To overcome these issues, nowadays internal stimuli-responsive nanocarriers have been widely exploited to transport a wide range of active substances, including peptides, genes and medicines. These nanosystems could be chemically adjusted to produce target-based drug release at the target location, minimizing pathological and physiological difficulties while increasing therapeutic efficiency. This review highlights the various types of internal stimuli-responsive nanocarriers and applications in cancer diagnosis. This study can provide inspiration and impetus for exploiting more promising internal stimuli-responsive nanosystems for drug delivery.
Collapse
Affiliation(s)
- Baji Baba Shaik
- Department of Chemistry, School of Science, GITAM (Deemed to be) University, Hyderabad, Telangana, 502329, India
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science, GITAM (Deemed to be) University, Hyderabad, Telangana, 502329, India
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| | - Sreekanth B Jonnalagadda
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, Kwa-Zulu Natal, South Africa
| |
Collapse
|
40
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
41
|
Li F, Gong J, Shi T, Ren X, Cui X, Xiao L, Liu J, Qiu F. The design and straightforward synthesis of multifunctional DNA microgels for the improved targeted delivery of antitumor drugs. Int J Pharm 2023; 643:123242. [PMID: 37467815 DOI: 10.1016/j.ijpharm.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Multifunctional drug delivery platforms represent ideal approaches to reliably targeting pharmacological agents of interest to the complex tumor microenvironment (TME), yet the complicated synthesis processes, high costs, and toxicities associated with these agents have hindered their clinical application to date. In this study, the properties of the TME are leveraged to develop a multifunctional pNAB/AS DNA microgel that is able to actively target tumors. This microgel is generated by a straightforward one-step free radical precipitation polymerization procedure, exhibiting extremely high drug encapsulation efficiency (∼90%), and is responsive to three environmental stimuli including temperature, reduction, and an acidic pH while showing minimal drug leakage under physiological conditions. Through a synergistic combination of appropriate size and aptamer recognition, this microgel is able to reliably facilitate intratumoral drug accumulation and nuclear drug delivery. Critically, pNAB/AS-Dox treatment is associated with specific antitumor activity in vitro and in vivo while retaining a good biosafety profile and causing lower levels of off-target toxicity as compared to free drug treatment. Together, these findings emphasize the potential value of this multifunctional pNAB/AS DNA microgel as a platform amenable to targeted drug delivery to the TME, providing a foundation for further efforts to readily develop multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Li Xiao
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
42
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|
43
|
Liang D, Kuang G, Chen X, Lu J, Shang L, Sun W. Near-infrared light-responsive Nitric oxide microcarrier for multimodal tumor therapy. SMART MEDICINE 2023; 2:e20230016. [PMID: 39188343 PMCID: PMC11236066 DOI: 10.1002/smmd.20230016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 08/28/2024]
Abstract
Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior. Besides, the photothermal performance of the microcarriers accelerates the release of DOX. All these contribute to the excellent tumor-killing effect of the microcarriers by combining multiple therapeutic strategies including NO therapy, photothermal therapy, and chemotherapy. Moreover, it was demonstrated that the NIR-responsive NO delivery microcarriers could significantly inhibit tumor growth without apparent side effects in vivo. Therefore, it is believed that the novel NIR-responsive NO microcarriers are promising candidates in clinical tumor therapy applications.
Collapse
Affiliation(s)
- Danna Liang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Gaizhen Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiang Chen
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jianhua Lu
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Luoran Shang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
44
|
Schlichtmann BW, Palanisamy BN, Malovic E, Nethi SK, Padhi P, Hepker M, Wurtz J, John M, Ban B, Anantharam V, Kanthasamy AG, Narasimhan B, Mallapragada SK. Aggregation-Inhibiting scFv-Based Therapies Protect Mice against AAV1/2-Induced A53T-α-Synuclein Overexpression. Biomolecules 2023; 13:1203. [PMID: 37627268 PMCID: PMC10452369 DOI: 10.3390/biom13081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, there is no cure for Parkinson's disease (PD). There is a pressing need for anti-neurodegenerative therapeutics that can slow or halt PD progression by targeting underlying disease mechanisms. Specifically, preventing the build-up of alpha-synuclein (αSyn) and its aggregated and mutated forms is a key therapeutic target. In this study, an adeno-associated viral vector loaded with the A53T gene mutation was used to induce rapid αSyn-associated PD pathogenesis in C57BL/6 mice. We tested the ability of a novel therapeutic, a single chain fragment variable (scFv) antibody with specificity only for pathologic forms of αSyn, to protect against αSyn-induced neurodegeneration, after unilateral viral vector injection in the substantia nigra. Additionally, polyanhydride nanoparticles, which provide sustained release of therapeutics with dose-sparing properties, were used as a delivery platform for the scFv. Through bi-weekly behavioral assessments and across multiple post-mortem immunochemical analyses, we found that the scFv-based therapies allowed the mice to recover motor activity and reduce overall αSyn expression in the substantia nigra. In summary, these novel scFv-based therapies, which are specific exclusively for pathological aggregates of αSyn, show early promise in blocking PD progression in a surrogate mouse PD model.
Collapse
Affiliation(s)
- Benjamin W. Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Bharathi N. Palanisamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Emir Malovic
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Susheel K. Nethi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Piyush Padhi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Monica Hepker
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Joseph Wurtz
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Manohar John
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PathoVacs, Incorporated, Ames, IA 50011, USA
| | - Bhupal Ban
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN 46202, USA;
| | - Vellareddy Anantharam
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| |
Collapse
|
45
|
Zhang S, Wang Y, Zhang S, Huang C, Ding Q, Xia J, Wu D, Gao W. Emerging Anesthetic Nanomedicines: Current State and Challenges. Int J Nanomedicine 2023; 18:3913-3935. [PMID: 37489141 PMCID: PMC10363368 DOI: 10.2147/ijn.s417855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Anesthetics, which include both local and general varieties, are a unique class of drugs widely utilized in clinical surgery to alleviate pain and promote relaxation in patients. Although numerous anesthetics and their traditional formulations are available in the market, only a select few exhibit excellent anesthetic properties that meet clinical requirements. The main challenges are the potential toxic and adverse effects of anesthetics, as well as the presence of the blood-brain barrier (BBB), which makes it difficult for most general anesthetics to effectively penetrate to the brain. Loading anesthetics onto nanocarriers as anesthetic nanomedicines might address these challenges and improve anesthesia effectiveness, reduce toxic and adverse effects, while significantly enhance the efficiency of general anesthetics passing through the BBB. Consequently, anesthetic nanomedicines play a crucial role in the field of anesthesia. Despite their significance, research on anesthetic nanomedicines is still in its infancy, especially when compared to other types of nanomedicines in terms of depth and breadth. Although local anesthetic nanomedicines have received considerable attention and essentially meet clinical needs, there are few reported instances of nanomedicines for general anesthetics. Given the extensive usage of anesthetics and the many of them need for improved performance, emerging anesthetic nanomedicines face both unparalleled opportunities and considerable challenges in terms of theory and technology. Thus, a comprehensive summary with systematic analyses of anesthetic nanomedicines is urgently required. This review provides a comprehensive summary of the classification, properties, and research status of anesthetic nanomedicines, along with an exploration of their opportunities and challenges. In addition, future research directions and development prospects are discussed. It is hoped that researchers from diverse disciplines will collaborate to study anesthetic nanomedicines and develop them as a valuable anesthetic dosage form for clinical surgery.
Collapse
Affiliation(s)
- Shuo Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Yishu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Shuai Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Chengqi Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Qiyang Ding
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Ji Xia
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| |
Collapse
|
46
|
Abstract
Theranostic nanoparticles' potential in tumor treatment has been widely acknowledged thanks to their capability of integrating multifaceted functionalities into a single nanosystem. Theranostic nanoparticles are typically equipped with an inorganic core with exploitable physical properties for imaging and therapeutic functions, bioinert coatings for improved biocompatibility and immunological stealth, controlled drug-loading-release modules, and the ability to recognize specific cell type for uptake. Integrating multiple functionalities in a single nanosized construct require sophisticated molecular design and precise execution of assembly procedures. Underlying the multifunctionality of theranostic nanoparticles, ligand chemistry plays a decisive role in translating theoretical designs into fully functionalized theranostic nanoparticles. The ligand hierarchy in theranostic nanoparticles is usually threefold. As they serve to passivate the nanoparticle's surface, capping ligands form the first layer directly interfacing with the crystalline lattice of the inorganic core. The size and shape of nanoparticles are largely determined by the molecular property of capping ligands so that they have profound influences on the nanoparticles' surface chemistry and physical properties. Capping ligands are mostly chemically inert, which necessitates the presence of additional ligands for drug loading and tumor targeting. The second layer is commonly utilized for drug loading. Therapeutic drugs can either be covalently conjugated onto the capping layer or noncovalently loaded onto nanoparticles via drug-loading ligands. Drug-loading ligands need to be equally versatile in properties to accommodate the diversity of drugs. Biodegradable moieties are often incorporated into drug-loading ligands to enable smart drug release. With the aid of targeting ligands which usually stand the tallest on the nanoparticle surface to seek and bind to their corresponding receptors on the target, theranostic nanoparticles can preferentially accumulate at the tumor site to attain a higher precision and quantity for drug delivery. In this Account, the properties and utilities of representative capping ligands, drug-loading ligands, and targeting ligands are reviewed. Since these types of ligands are often assembled in close vicinity to each other, it is essential for them to be chemically compatible and able to function in tandem with each other. Relevant conjugation strategies and critical factors with a significant impact on ligands' performance on nanoparticles are discussed. Representative theranostic nanoparticles are presented to showcase how different types of ligands function synergistically from a single nanosystem. Finally, the technological outlook of evolving ligand chemistry on theranostic nanoparticles is provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
47
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
48
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
49
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|