1
|
Luo X, Yan S, Chen G, Wang Y, Zhang X, Lan J, Chen J, Yao X. A cavity induced mode hybridization plasmonic sensor for portable detection of exosomes. Biosens Bioelectron 2024; 261:116492. [PMID: 38870828 DOI: 10.1016/j.bios.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/20/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Exosomes have been considered as promising biomarkers for cancer diagnosis due to their abundant information from originating cells. However, sensitive and reliable detection of exosomes is still facing technically challenges due to the lack of a sensing platform with high sensitivity and reproducibility. To address the challenges, here we propose a portable surface plasmon resonance (SPR) sensing of exosomes with a three-layer Au mirror/SiO2 spacer/Au nanohole sensor, fabricated by an economical polystyrene nanosphere self-assembly method. The SiO2 spacer can act as an optical cavity and induce mode hybridization, leading to excellent optimization of both sensitivity and full width at half maximum compared with normal single layer Au nanohole sensors. When modified with CD63 or EpCAM aptamers, a detection of limit (LOD) of as low as 600 particles/μL was achieved. The sensors showed good capability to distinguish between non-tumor derived L02 exosomes and tumor derived HepG2 exosomes. Additionally, high reproducibility was also achieved in detection of artificial serum samples with RSD as low as 2%, making it feasible for clinical applications. This mode hybridization plasmonic sensor provides an effective approach to optimize the detection sensitivity of exosomes, pushing SPR sensing one step further towards cancer diagnosis.
Collapse
Affiliation(s)
- Xinming Luo
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guanyu Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Yuxin Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Xi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China
| | - Jianming Lan
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China
| | - Jinghua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China.
| | - Xu Yao
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Zheng Y, Zhang L, Song Y, Zhang JK, Lu YN. Ultra-wide-angle multispectral narrow-band absorber for infrared spectral reconstruction. iScience 2024; 27:109700. [PMID: 39220407 PMCID: PMC11363499 DOI: 10.1016/j.isci.2024.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 09/04/2024] Open
Abstract
This paper presents the design of an ultra-wide-angle multispectral narrow-band absorber for reconstructing infrared spectra. The absorber offers several advantages, including polarization sensitivity, robustness against structural wear, wide azimuthal angle coverage, high narrow-band absorption, and adjustable working wavelength. To accomplish infrared spectrum reconstruction, an absorber is employed as a spectral sampling channel, eliminating the influence of slits or complex optical splitting elements in spectral imaging technology. Additionally, we propose using a truncation regularization algorithm based on the design matrix singular value ratio, namely IReg, which can enable high-precision spectral reconstruction under largely disturbed environments. The results demonstrate that, even when the number of absorption spectrum curve is reduced to a range of 1/2 to 1/3, high-precision spectral reconstruction is achievable for both flat and high-energy steep mid- and long-infrared spectral targets, while effectively accomplishing data dimension reduction.
Collapse
Affiliation(s)
- Yan Zheng
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130012, China
- National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun, Jilin 130061, China
| | - Liu Zhang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130012, China
- National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun, Jilin 130061, China
| | - Ying Song
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130012, China
- National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun, Jilin 130061, China
- Institute of Electronics and Computer, Jilin Jianzhu University, Changchun, Jilin 130024, China
| | - Jia-Kun Zhang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130012, China
- National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun, Jilin 130061, China
| | - Yong-Nan Lu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130012, China
- National Engineering Research Center of Geophysics Exploration Instruments, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
3
|
Li W, Zhan H, Huang N, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S. Scalable and Flexible Multi-Layer Prismatic Photonic Metamaterial Film for Efficient Daytime Radiative Cooling. SMALL METHODS 2024; 8:e2301258. [PMID: 38148329 DOI: 10.1002/smtd.202301258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Indexed: 12/28/2023]
Abstract
To maintain a comfortable indoor living environment in low latitude or tropical regions, humans consume significant amounts of electrical energy in air conditioning, leading to substantial CO2 emissions. Passive daytime radiative cooling (PDRC) allows objects to cool down during the daytime without any energy consumption by dissipating heat through the atmospheric transparency window (8-13 µm) to outer space, which has garnered significant attention. However, the practical applications of common PDRC materials are hindered by their poor optical selectivity and high-reflective silver backing. Additionally, the availability of artificial photon emitters with complex structures and excellent performance is also limited by their high cost. Herein, a novel multilayer prismatic photonic metamaterial film without any silver reflector, easily scalable and produced by a roll-to-roll method is demonstrated, which exhibits ≈96.4% sunlight reflectance (0.3-2.5 µm) and ≈97.2% emissivity in mid-infrared (IR) (8-13 µm). At an average solar intensity of ≈920 W m-2, it is on average 6.8 °C below ambient temperature during the day and theoretically yields a radiative cooling power of 88.9 W m-2. Furthermore, the film exhibits excellent hydrophobicity, superior flexibility, and robust mechanical strength, providing an attractive and viable pathway for practical applications addressing the pressing challenges of climate and energy issues.
Collapse
Affiliation(s)
- Wangchang Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huanchen Zhan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nengyan Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Xu ZH, Xu S, Qian C, Xu W, Ren H, Su W, Chen QD, Chen H, Sun HB. Chimera metasurface for multiterrain invisibility. Proc Natl Acad Sci U S A 2024; 121:e2309096120. [PMID: 38285934 PMCID: PMC10861904 DOI: 10.1073/pnas.2309096120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024] Open
Abstract
Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.
Collapse
Affiliation(s)
- Zhao-Hua Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Su Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Chao Qian
- Zhejiang University-University of Ilinois Urbana-Champaign Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou310027, China
- Zhejiang University-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
| | - Wenya Xu
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Hang Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Wenming Su
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Hongsheng Chen
- Zhejiang University-University of Ilinois Urbana-Champaign Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou310027, China
- Zhejiang University-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing100084, China
| |
Collapse
|
5
|
Chang L, Liu X, Luo J, Lee CY, Zhang J, Fan X, Zhang W. Physiochemical Coupled Dynamic Nanosphere Lithography Enabling Multiple Metastructures from Single Mask. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2310469. [PMID: 38193751 DOI: 10.1002/adma.202310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Metastructures are widely used in photonic devices, energy conversion, and biomedical applications. However, to fabricate multiple patterns continuously in single etching protocol with highly tunable photonic properties is challenging. Here, a simple and robust dynamic nanosphere lithography is proposed by inserting a spacer between the nanosphere assembly and the wafer. The nanosphere diameter decrease and uneven penetration of the spacer during etching lead to a dynamic masking process. Coupled anisotropic physical ion sputtering and ricocheting with isotropic chemical radical etching achieve highly tunable structures with various 3D patterns continuously forming through a single etching process. Specifically, the nanosphere diameters define the periodicity, the etched spacer forms the upper parts, and the wafer forms the lower parts. Each part of the structure is highly tunable through changing nanosphere diameter, spacer thickness, and etch conditions. Using this protocol, numerous structures of varying sizes including nanomushrooms, nanocones, nanopencils, and nanoneedles with diverse shapes are realized as proof of concepts. The broadband antireflection ability of the nanostructures and their use in surface-enhanced Raman spectroscopy are also demonstrated for practical application. This method substantially simplifies the fabrication procedure of various metastructures, paving the way for its application in multiple disciplines especially in photonic devices.
Collapse
Affiliation(s)
- Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Jie Luo
- College of Advanced Interdisciplinary Studies & Hunan Provincial, Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, 410073, China
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Jianfa Zhang
- College of Advanced Interdisciplinary Studies & Hunan Provincial, Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, 410073, China
| | - Xing Fan
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Chang WJ, Sakotic Z, Ware A, Green AM, Roman BJ, Kim K, Truskett TM, Wasserman D, Milliron DJ. Wavelength Tunable Infrared Perfect Absorption in Plasmonic Nanocrystal Monolayers. ACS NANO 2024; 18:972-982. [PMID: 38117550 DOI: 10.1021/acsnano.3c09772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The ability to efficiently absorb light in ultrathin (subwavelength) layers is essential for modern electro-optic devices, including detectors, sensors, and nonlinear modulators. Tailoring these ultrathin films' spectral, spatial, and polarimetric properties is highly desirable for many, if not all, of the above applications. Doing so, however, often requires costly lithographic techniques or exotic materials, limiting scalability. Here we propose, demonstrate, and analyze a mid-infrared absorber architecture leveraging monolayer films of nanoplasmonic colloidal tin-doped indium oxide nanocrystals (ITO NCs). We fabricate a series of ITO NC monolayer films using the liquid-air interface method; by synthetically varying the Sn dopant concentration in the NCs, we achieve spectrally selective perfect absorption tunable between wavelengths of two and five micrometers. We achieve monolayer thickness-controlled coupling strength tuning by varying NC size, allowing access to different coupling regimes. Furthermore, we synthesize a bilayer film that enables broadband absorption covering the entire midwave IR region (λ = 3-5 μm). We demonstrate a scalable platform, with perfect absorption in monolayer films only hundredths of a wavelength in thickness, enabling strong light-matter interaction, with potential applications for molecular detection and ultrafast nonlinear optical applications.
Collapse
Affiliation(s)
- Woo Je Chang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zarko Sakotic
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| | - Alexander Ware
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| | - Allison M Green
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin J Roman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kihoon Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel Wasserman
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
8
|
Armelles G, Domínguez-Vázquez JM, Conca A, Alvaro R, Cebollada A, Martín-González M. Multiresonant plasmon excitation in slit antennas on metallic and hyperbolic metamaterials. OPTICS EXPRESS 2023; 31:31039-31050. [PMID: 37710632 DOI: 10.1364/oe.498187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
A comparative study of the optical properties of random and ordered arrays of metallic and hyperbolic slit antennas is presented. The metallic slits are fabricated on Au layers, whereas the hyperbolic ones are fabricated on Au/MgO multilayers. The random arrays show, for both types of antennas, similar slit plasmon resonances whose positions depend on the internal structure of the supporting layer. On the other hand, the spectra of the ordered arrays of the hyperbolic slits present additional resonances related to the excitation of Bloch plasmon polaritons in the hyperbolic layer. By varying the slit length and periodicity, an analysis of the interaction between slit localized resonance and Bloch plasmon polaritons is also presented.
Collapse
|
9
|
Zhang L, Lu W, Zhu L, Xu H, Wang H, Pan H, An Z. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing. OPTICS EXPRESS 2023; 31:31024-31038. [PMID: 37710631 DOI: 10.1364/oe.498114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Metamaterial perfect absorbers (MPAs) show great potential in achieving exceptional sensing performance, particularly in the realm of surface-enhanced infrared absorption (SEIRA) spectroscopy. To this aim, it is highly desirable for the localized hotspots to be readily exposed and accessible to analyte with strong mode confinement to enhance absorption. Here, we propose a quasi-three-dimensional MPA based on cross-shaped coupled complementary plasmonic arrays for highly sensitive refractive index sensing and molecular vibrational sensing. Dual-band perfect absorption can be approached with the two plasmonic resonances corresponding to the electric dipole-like mode of cross antenna array and the magnetic dipole-like mode of cross hole array, respectively. Large portions of the electric field of the hotspots are exposed and concentrated in the gap between the elevated cross antenna and its complementary structure on the substrate, leading to improved sensing sensitivities. An ultrathin polymethyl methacrylate (PMMA) film induces a significant redshift of the magnetic dipole-like mode with an 11.8 nm resonance shift per each nanometer polymer thickness. The value is comparable to the reported sensitivity of single molecule layer sensors. Additionally, the simultaneous detection of the C = O and C-H vibrations of PMMA molecules is enabled with the two plasmonic resonances adjusted by changing the lengths of the two cross branches. Remarkably, the observed mode splitting and anti-crossing behavior imply the strong interaction between plasmonic resonance and molecular vibration. Our dual-band MPA based on coupled complementary plasmonic arrays opens a new avenue for developing highly sensitive sensors for the detection of refractive index and multispectral molecular vibrations.
Collapse
|
10
|
He M, Nolen JR, Nordlander J, Cleri A, Lu G, Arnaud T, McIlwaine NS, Diaz-Granados K, Janzen E, Folland TG, Edgar JH, Maria JP, Caldwell JD. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209909. [PMID: 36843308 DOI: 10.1002/adma.202209909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Indexed: 05/19/2023]
Abstract
Wavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q-factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q-factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow-band and nondispersive WS-absorbers are needed. Moreover, an open-source algorithm is developed to inversely design THP-absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP-absorbers can realize same spectral resonances with fewer DBR layers than a TPP-absorber, thus reducing the fabrication complexity and enabling more cost-effective, lithography-free, wafer-scale WS-absorberss for applications such as free-space communications and gas sensing.
Collapse
Affiliation(s)
- Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
| | - Joshua Ryan Nolen
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Josh Nordlander
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Angela Cleri
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
| | - Thiago Arnaud
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
- Research Experience for Undergraduates (REU) program, Vanderbilt Institute for Nanoscale Science and Engineering (VINSE), Nashville, TN, 37240, USA
| | - Nathaniel S McIlwaine
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, 52242, USA
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Jon-Paul Maria
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37240, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37240, USA
- Sensorium Technological Laboratories, Nashville, TN, 37205, USA
| |
Collapse
|
11
|
Zhang Y, Chen G, Zhao J, Niu C, Wang Z. Low loss sensitivity of the anapole mode in localized defective nanoparticles. APPLIED OPTICS 2023; 62:2952-2959. [PMID: 37133140 DOI: 10.1364/ao.485449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The excitation of a nonradiating anapole in a high-index dielectric nanosphere is an effective pathway for enhancing light absorption. Here, we investigate the effect of localized lossy defects on the nanoparticle based on Mie scattering and multipole expansion theories and find its low sensitivity to absorption loss. The scattering intensity can be switched by tailoring the defect distribution of the nanosphere. For a high-index nanosphere with homogeneous loss distributions, the scattering abilities of all resonant modes reduce rapidly. By introducing loss in the strong field regions of the nanosphere, we achieve independent tuning of other resonant modes without breaking the anapole mode. As the loss increases, the electromagnetic scattering coefficients of the anapole and other resonant modes show opposite trends, along with strongly suppressed corresponding multipole scattering. While regions with strong electric fields are more susceptible to loss, the anapole's inability to emit or absorb light as a dark mode makes it hard to change. Our findings provide new opportunities for the design of multi-wavelength scattering regulation nanophotonic devices via local loss manipulation on dielectric nanoparticles.
Collapse
|
12
|
Baldi A, Askes SHC. Pulsed Photothermal Heterogeneous Catalysis. ACS Catal 2023; 13:3419-3432. [PMID: 36910867 PMCID: PMC9990069 DOI: 10.1021/acscatal.2c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Anthropogenic climate change urgently calls for the greening and intensification of the chemical industry. Most chemical reactors make use of catalysts to increase their conversion yields, but their operation at steady-state temperatures limits their rate, selectivity, and energy efficiency. Here, we show how to break such a steady-state paradigm using ultrashort light pulses and photothermal nanoparticle arrays to modulate the temperature of catalytic sites at timescales typical of chemical processes. Using heat dissipation and time-dependent microkinetic modeling for a number of catalytic landscapes, we numerically demonstrate that pulsed photothermal catalysis can result in a favorable, dynamic mode of operation with higher energy efficiency, higher catalyst activity than for any steady-state temperature, reactor operation at room temperature, resilience against catalyst poisons, and access to adsorbed reagent distributions that are normally out of reach. Our work identifies the key experimental parameters controlling reaction rates in pulsed heterogeneous catalysis and provides specific recommendations to explore its potential in real experiments, paving the way to a more energy-efficient and process-intensive operation of catalytic reactors.
Collapse
Affiliation(s)
- Andrea Baldi
- Department of Physics and
Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Sven H. C. Askes
- Department of Physics and
Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
13
|
Schwanninger R, Koepfli SM, Yarema O, Dorodnyy A, Yarema M, Moser A, Nashashibi S, Fedoryshyn Y, Wood V, Leuthold J. Highly Responsive Mid-Infrared Metamaterial Enhanced Heterostructure Photodetector Formed out of Sintered PbSe/PbS Colloidal Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10847-10857. [PMID: 36795914 PMCID: PMC9982815 DOI: 10.1021/acsami.2c23050] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Efficient and simple-to-fabricate light detectors in the mid infrared (MIR) spectral range are of great importance for various applications in existing and emerging technologies. Here, we demonstrate compact and efficient photodetectors operating at room temperature in a wavelength range of 2710-4250 nm with responsivities as high as 375 and 4 A/W. Key to the high performance is the combination of a sintered colloidal quantum dot (CQD) lead selenide (PbSe) and lead sulfide (PbS) heterojunction photoconductor with a metallic metasurface perfect absorber. The combination of this photoconductor stack with the metallic metasurface perfect absorber provides an overall ∼20-fold increase of the responsivity compared against reference sintered PbSe photoconductors. More precisely, the introduction of a PbSe/PbS heterojunction increases the responsivity by a factor of ∼2 and the metallic metasurface enhances the responsivity by an order of magnitude. The metasurface not only enhances the light-matter interaction but also acts as an electrode to the detector. Furthermore, fabrication of our devices relies on simple and inexpensive methods. This is in contrast to most of the currently available (state-of-the-art) MIR photodetectors that rely on rather expensive as well as nontrivial fabrication technologies that often require cooling for efficient operation.
Collapse
Affiliation(s)
| | - Stefan M. Koepfli
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Olesya Yarema
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexander Dorodnyy
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Maksym Yarema
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Annina Moser
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Shadi Nashashibi
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Yuriy Fedoryshyn
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| | - Vanessa Wood
- Institute
for Electronics, ETH Zurich, 8092 Zurich, Switzerland
| | - Juerg Leuthold
- Institute
of Electromagnetic Fields, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Wang L, Fu Q, Wen F, Zhou X, Ding X, Wang Y. A Thermally Controlled Multifunctional Metamaterial Absorber with Switchable Wideband Absorption and Transmission at THz Band. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020846. [PMID: 36676582 PMCID: PMC9866849 DOI: 10.3390/ma16020846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/12/2023]
Abstract
This paper proposes a thermally controlled multifunctional metamaterial absorber with switchable wideband absorption and transmission at the THz band based on resistive film and vanadium dioxide (VO2). The function of the absorber can be adjusted by changing the phase transition characteristics of VO2. When VO2 is in a metallic state, the absorber can achieve wideband absorption with above 90% absorption from 3.31 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles. When VO2 is in an insulating state, the metamaterial acts in transmission mode with a transmission coefficient of up to 61% at 5.15 THz. The transmission region is inside the absorption band, which is very important for practical applications. It has the advantages of having a simple structure, wideband absorption, and switchable absorption/transmission with potential application value in the fields of stealth of communication equipment and radar at the THz band.
Collapse
Affiliation(s)
- Liansheng Wang
- Science and Technology Department, Sanya University, Sanya 572022, China
| | - Quanhong Fu
- Science Department, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fusan Wen
- Science and Technology Department, Sanya University, Sanya 572022, China
| | - Xia Zhou
- Hainan Zhongnanbiao Institute of Quality Science, Sanya 572022, China
| | - Xueyong Ding
- Science and Technology Department, Sanya University, Sanya 572022, China
| | - Yuan Wang
- Science and Technology Department, Sanya University, Sanya 572022, China
| |
Collapse
|
15
|
Qian Q, Sun P, Zhang C, Liu T, Chen H, Li F, Cheng L, Zhao L, Li X, Wang C. A broadband and polarization-independent metasurface perfect absorber for hot-electron photoconversion. NANOSCALE 2022; 14:14801-14806. [PMID: 36193682 DOI: 10.1039/d2nr04663f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report an ultra-broadband metasurface perfect absorber from the UV to NIR region based on TiN nanostructures. A polarization-independent experimental average absorption of 0.900 (0.921 in simulation) at the wavelength band from 300 nm to 1500 nm is realized with only an 82 nm-thick TiN layer with TiO2 and MgF2 on top, which is efficiently fabricated by utilizing double-beam UV interference lithography followed by sputter coating deposition. A TiN-TiO2 hot-electron photoelectric conversion system is also simulated. An IPCE of 4% is realized at the wavelength of 710 nm and the average IPCE is 2.86% in the wavelength range of 400 nm to 1500 nm. The demonstrated device suggests an efficient way of designing and fabricating broadband perfect absorbers, which has great application potential in efficient hot-electron optoelectronic and photocatalytic systems.
Collapse
Affiliation(s)
- Qinyu Qian
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Peiqing Sun
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Cheng Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Tingting Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Haitao Chen
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Fan Li
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Liwen Cheng
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Liang Zhao
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Chinhua Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
16
|
Ziaee Bideskan M, Habibzadeh-Sharif A, Eskandari M. Dual-band wide-angle perfect absorber based on the relative displacement of graphene nanoribbons in the mid-infrared range. OPTICS EXPRESS 2022; 30:35698-35711. [PMID: 36258515 DOI: 10.1364/oe.463592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a novel graphene-based dual-band perfect electromagnetic absorber operating in the mid-infrared regime has been proposed. The absorber has a periodic structure which its unit cell consists of a sliver substrate and two graphene nanoribbons (GNRs) of equal width separated with a dielectric spacer. Two distinct absorption peaks at 10 and 11.33 µm with absorption of 99.68% and 99.31%, respectively have been achieved due to a lateral displacement of the GNRs. Since graphene surface conductivity is tunable, the absorption performance can be tuned independently for each resonance by adjusting the chemical potential of GNRs. Also, it has been proved that performance of the proposed absorber is independent of the incident angle and its operation is satisfactory when the incident angle varies from normal to ±75°. To simulate and analyze the spectral behavior of the designed absorber, the semi-analytical method of lines (MoL) has been extended. Also, the finite element method (FEM) has been applied in order to validate and confirm the results.
Collapse
|
17
|
Luo P, Lan G, Nong J, Zhang X, Xu T, Wei W. Broadband coherent perfect absorption employing an inverse-designed metasurface via genetic algorithm. OPTICS EXPRESS 2022; 30:34429-34440. [PMID: 36242455 DOI: 10.1364/oe.468842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Coherent perfect absorption (CPA) possesses the unique characteristics of flexibly and actively molding the flow of light. However, restricted by the low design efficiency and limited geometry variety of metamaterial structures, the common CPA metamaterial absorbers based on artificial design show poor performance in bandwidth operation. Here, we proposed a tungsten-based metamaterial absorber to achieve broadband CPA via employing genetic algorithm inverse design. Under the irradiation of two coherent beams, the high coherent absorption (>90%) can be achieved within a wide range from 1.32 to 3.28 µm. By simply adjusting the relative intensity or phase difference of the two coherent beams, the absorption intensity can be continuously modulated to realize the transition between coherent perfect absorption and coherent perfect transparency. Moreover, the coherent absorption maintains greater than 90% over a broad range of incident angles for both TM and TE polarizations. The scattering matrix theorem is applied to explain the physical mechanism of CPA, and the analytical results exhibit good consistency with the numerical calculations. Such a tungsten-based CPA metamaterial absorber with broadband tunability and exceptional angular stability is expected to be utilized in optical signal processing chips, all-optical modulators, and optical switchers.
Collapse
|
18
|
Shao T, Wang X, Dong H, Liu S, Duan D, Li Y, Song P, Jiang H, Hou Z, Gao C, Xiong Y. A Stacked Plasmonic Metamaterial with Strong Localized Electric Field Enables Highly Efficient Broadband Light-Driven CO 2 Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202367. [PMID: 35522089 DOI: 10.1002/adma.202202367] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Light utilization largely governs the performance of CO2 photoconversion, whereas most of the materials that are implemented in such an application are restricted in a narrow spectral absorption range. Plasmonic metamaterials with a designable regular pattern and facile tunability are excellent candidates for maximizing light absorption to generate substantial hot electrons and thermal energy. Herein, a concept of coupling a Au-based stacked plasmonic metamaterial with single Cu atoms in alloy, as light absorber and catalytic sites, respectively, is reported for gas-phase light-driven catalytic CO2 hydrogenation. The metamaterial structure works in a broad spectral range (370-1040 nm) to generate high surface temperature for photothermal catalysis, and also induces strong localized electric field in favor of transfer of hot electrons and reduced energy barrier in CO2 hydrogenation. This work unravels the significant role of a strong localized electric field in photothermal catalysis and demonstrates a scalable fabrication approach to light-driven catalysts based on plasmonic metamaterials.
Collapse
Affiliation(s)
- Tianyi Shao
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui, 230031, P. R. China
| | - Xiaonong Wang
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hanxiao Dong
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shengkun Liu
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Delong Duan
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yaping Li
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Huijun Jiang
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhonghuai Hou
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Gao
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yujie Xiong
- School of Chemistry and Materials Science, USTC Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui, 230031, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| |
Collapse
|
19
|
Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107351. [PMID: 35271744 DOI: 10.1002/adma.202107351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The indispensable requirement for sustainable development of human society has forced almost all countries to seek highly efficient and cost-effective ways to harvest and convert solar energy. Though continuous progress has advanced, it remains a daunting challenge to achieve full-spectrum solar absorption and maximize the conversion efficiency of sunlight. Recently, thermoplasmonics has emerged as a promising solution, which involves several beneficial effects including enhanced light absorption and scattering, generation and relaxation of hot carriers, as well as localized/collective heating, offering tremendous opportunities for optimized energy conversion. Besides, all these functionalities can be tailored via elaborated designs of materials and nanostructures. Here, first the fundamental physics governing thermoplasmonics is presented and then the strategies for both material selection and nanostructured designs toward more efficient energy conversion are summarized. Based on this, recent progress in thermoplasmonic applications including solar evaporation, photothermal chemistry, and thermophotovoltaic is reviewed. Finally, the corresponding challenges and prospects are discussed.
Collapse
Affiliation(s)
- Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyu Li
- National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Wang
- Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Ma L, Xu H, Lu Z, Tan J. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17727-17738. [PMID: 35389630 DOI: 10.1021/acsami.1c24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The demand for optically transparent microwave absorbers has attracted increasing interest among researchers in recent years. However, integrating broadband microwave absorption and high optical transparency remains a challenge. This report demonstrates a scheme for broadband microwave absorbers, featuring a 90% absorption bandwidth of 10 GHz covering a frequency range of 25.2-35.2 GHz and high compatibility with good optical transparency in a wide band from the visible to infrared. The absorber is based on a Jaumann structure composed of two graphene sheets sandwiched by dielectric and backed by an arrayed-metallic-rings sheet. Guided by derived formulas, this absorber exhibits complete absorption if the sheet resistance of graphene is close to 500 Ω sq-1. The bandwidth and center frequency of the absorption spectra can be readily tuned simply via changes in the thickness of the dielectric between the graphene films and arrayed-metallic-rings sheet. Moreover, the absorber is insensitive to the incident angle of radiation and can achieve broadband and near-unity absorption even at oblique incidence. The graphene-based absorber proposed herein provides a viable solution for effectively integrating broadband and near-unity microwave absorption with high optical transparency, thereby enabling widespread applications in optics, communications, and solar cells.
Collapse
Affiliation(s)
- Limin Ma
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
- Nondestructive Detection and Monitoring Technology for High Speed Transportation Facilities, Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
| | - Han Xu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
| | - Zhengang Lu
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, People's Republic of China
| | - Jiubin Tan
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
21
|
Han C, Zhang B, Wang H, Xu J, Ding J. Predicting the eigenstructures of metamaterials with QR-code meta-atoms by deep learning. OPTICS LETTERS 2022; 47:1863-1866. [PMID: 35363755 DOI: 10.1364/ol.454036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Deep neural networks (DNNs) facilitate the reverse design of metamaterial perfect absorbers (MPAs), usually by predicting the MPA structure from the input absorptivity. However, this suffers from the difficulty that the spectrum that actually exists is unknown before the structure is known. We propose an MPA structure with quick response (QR)-code meta-atoms and construct a novel DNN to predict and reverse design the eigenstructures by inputting designated eigenfrequencies. In addition, the meta-atom has a tremendous number of degrees of freedom, providing rich properties such as multiple absorption peaks. This work paves the way for the study of eigenproblems of complicated metamaterials and metasurfaces.
Collapse
|
22
|
Dong X, Li H, Gao L, Chen C, Shi X, Du Y, Deng H. Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107156. [PMID: 35146894 DOI: 10.1002/smll.202107156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Solar desalination has been recognized as an emerging strategy for solving the pressing global freshwater crisis. However, salt crystallization at the photothermal interface frequently causes evaporator failure. In addition, arbitrary discharge of concentrated brine produced during desalination results in potential ecological impacts as well as wastage of valuable minerals. In the present work, a suspended-type evaporator (STEs) constructed using Janus fibrous mats is reported. The fibrous structure wicks brine to the evaporation layer and the salt gets confined in the evaporation layer until crystallization for zero liquid discharge due to the suspended design. Enhanced evaporation is observed because STEs have an additional low-resistance vapor escape path directly from the evaporation layer to the atmosphere compared to traditional floating Janus evaporators. Moreover, owing to the drastically different wettability on both sides, the evaporator allows salt crystallization only on the hydrophilic bottom layer, thus eliminating salt accumulation at the hydrophobic photothermal interface. With this unique structural design, the proposed evaporator not only maintains a high evaporation rate of 1.94 kg m-2 h-1 , but also demonstrates zero liquid discharged salt resistance and ideal recovery of the mineral in brine.
Collapse
Affiliation(s)
- Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hao Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Lingfei Gao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
23
|
Yang K, Yao X, Liu B, Ren B. Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007988. [PMID: 34048123 DOI: 10.1002/adma.202007988] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Indexed: 05/18/2023]
Abstract
The vast development of nanofabrication has spurred recent progress for the manipulation of light down to a region much smaller than the wavelength. Metallic plasmonic array structures are demonstrated to be the most powerful platform to realize controllable light-matter interactions and have found wide applications due to their rich and tunable optical performance through the morphology and parameter engineering. Here, various light-management mechanisms that may exist on metallic plasmonic array structures are described. Then, the typical techniques for fabrication of metallic plasmonic arrays are summarized. Next, some recent applications of plasmonic arrays are reviewed, including plasmonic sensing, surface-enhanced spectroscopies, plasmonic nanolasing, and perfect light absorption. Lastly, the existing challenges and perspectives for metallic plasmonic arrays are discussed. The aim is to provide guidance for future development of metallic plasmonic array structures.
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bowen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
24
|
Ma Z, Fan H, Zhou H, Huang M, Luo J. Broadband perfect transparency-to-absorption switching in tilted anisotropic metamaterials based on the anomalous Brewster effect. OPTICS EXPRESS 2021; 29:39186-39199. [PMID: 34809288 DOI: 10.1364/oe.443790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Dynamically switchable light transmission/absorption functionality is highly desirable in sensing and functional devices. However, the operating bandwidth of the newly emerging schemes using resonant meta-structures is inherently limited. In this work, we design and numerically demonstrate a non-resonant tilted anisotropic metamaterial consisting of phase-change materials. When the phase transition of the phase-change material from amorphous phase to crystalline phase occurs, the functionality of the metamaterial can be switched from perfect transparency to perfect absorption for transverse-magnetic polarization under oblique incidence over a broad spectrum. Such a remarkable phenomenon originates in the anomalous Brewster effect, which enables broadband reflectionless transmission/absorption of light under the anomalous Brewster's angle. Moreover, gradient metamaterials exhibiting dynamically controllable functionality for incident light with an almost arbitrary wavefront are demonstrated. The proposed metamaterials are simple but highly efficient, which may find applications in sensing and advanced and intelligent optical devices.
Collapse
|
25
|
Chen X, He D, Wu J. High-absorption grating-insulator-metal structures. APPLIED OPTICS 2021; 60:7480-7484. [PMID: 34613037 DOI: 10.1364/ao.427301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
A thin grating-insulator-metal (GIM) structure consisting of a top metal grating layer on a dielectric layer and a bottom metal layer is proposed, which shows a broadband high absorption at a small thickness. This phenomenon is attributed to the appropriate effective surface permittivity of the top grating layer and the cavity resonance of the middle insulator layer. By optimizing the structural and material parameters, the materials of the GIM structure from top to bottom are Mn, Al2O3, and Mn with thicknesses of 10, 70, and 70 nm, respectively. The structure with these optimum parameters is fabricated and characterized, and an improved performance with absorption exceeding 90% in the visible region is obtained using Mn as the metal layers. The experimental results are in good agreement with the numerical values, depicting an ultrabroad absorption bandwidth. The conclusions presented here could have potential applications in optical devices used for optical displacement detection and visible light absorption.
Collapse
|
26
|
Li Z, Sun X, Ma C, Li J, Li X, Guan BO, Chen K. Ultra-narrow-band metamaterial perfect absorber based on surface lattice resonance in a WS 2 nanodisk array. OPTICS EXPRESS 2021; 29:27084-27091. [PMID: 34615130 DOI: 10.1364/oe.434349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Metamaterial perfect absorbers (MPAs) are attractive platforms for the unique manipulation of electromagnetic waves from near-field to far-field. Narrow-band MPAs are particularly intriguing for their potential applications as thermal emitters or biosensors. In this work, we proposed ultra-narrow-band MPAs based on surface lattice resonance (SLR) modes of WS2 nanodisk arrays on gold films. The SLR modes stem from the coupling between the magnetic dipole modes of individual nanodisks and the Rayleigh anomaly of the array giving rise to high quality-factor resonances. With proper design of the nanodisk array, an ultra-narrow-band of 15 nm is achieved in the near infrared wavelength range. The underneath gold film provides the loss channel converting the incident light within the narrow band into heat in the gold film, effectively creating a perfect absorber. Systematic numerical simulations were performed to investigate the effects of the geometrical parameters on their optical properties, demonstrating the great tunability of this type of MPAs as well as their potential for engineering light-matter interactions.
Collapse
|
27
|
Song YN, Lei MQ, Han DL, Huang YC, Wang SP, Shi JY, Li Y, Xu L, Lei J, Li ZM. Multifunctional Membrane for Thermal Management Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19301-19311. [PMID: 33856189 DOI: 10.1021/acsami.1c02667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.
Collapse
Affiliation(s)
- Ying-Nan Song
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mao-Qin Lei
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dong-Lin Han
- China Tobacco Sichuan Industrial Company, Ltd., Chengdu 610065, China
| | - Yu-Chuan Huang
- Sichuan Sanlian New Material Company Limited, Chengdu 610065, China
| | - Shuai-Peng Wang
- China Tobacco Sichuan Industrial Company, Ltd., Chengdu 610065, China
| | - Jian-Yang Shi
- Sichuan Sanlian New Material Company Limited, Chengdu 610065, China
| | - Yue Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Behera JK, Liu K, Lian M, Cao T. A reconfigurable hyperbolic metamaterial perfect absorber. NANOSCALE ADVANCES 2021; 3:1758-1766. [PMID: 36132556 PMCID: PMC9417818 DOI: 10.1039/d0na00787k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Metamaterial (MM) perfect absorbers are realised over various spectra from visible to microwave. Recently, different approaches have been explored to integrate tunability into MM absorbers. Particularly, tuning has been illustrated through electrical-, thermal-, and photo-induced changes to the permittivity of the active medium within MM absorbers. However, the intricate design, expensive nanofabrication process, and the volatile nature of the active medium limit the widespread applications of MM absorbers. Metal-dielectric stack layered hyperbolic metamaterials (HMMs) have recently attracted much attention due to their extraordinary optical properties and rather simple design. Herein, we experimentally realised a reconfigurable HMM perfect absorber based on alternating gold (Au) and Ge2Sb2Te5 (GST225) layers for the near-infrared (N-IR) region. It shows that a red-shift of 500 nm of the absorptance peak can be obtained by changing the GST225 state from amorphous to crystalline. The nearly perfect absorptance is omnidirectional and polarisation-independent. Additionally, the absorptance peak can be reversibly switched in just five nanoseconds by re-amorphising the GST225, enabling a dynamically reconfigurable HMM absorber. Experimental data are validated numerically using the finite-difference time-domain method. The absorber fabricated using our strategy has advantages of being reconfigurable, uncomplicated, and lithography-free over conventional MM absorbers, which may open up a new path for applications in energy harvesting, photodetectors, biochemical sensing, and thermal camouflage techniques.
Collapse
Affiliation(s)
- Jitendra K Behera
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Kuan Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Meng Lian
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
29
|
Zhou Q, Li H, Li D, Wang B, Wang H, Bai J, Ma S, Wang G. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. J Colloid Interface Sci 2021; 592:77-86. [PMID: 33647564 DOI: 10.1016/j.jcis.2021.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
Owing to the shortage of clean water as the global problem, the exploration of photothermal substances with high performance solar steam generation for sustainable water purification is essential and urgent. Herein, we demonstrate the assembly of two-dimensional graphene into one-dimensional rough, loose, and porous fibers and further use the assembled fibers to fabricate Janus membrane evaporator. The specific configuration guarantees an enhanced light harvesting property through multiple reflections, and improves the vapor transport ability through the constructed interlaced network. As a result, the as-obtained evaporator exhibits high solar absorbance, superior photothermal property and energy conversion efficiency, which is much higher than those of other reported Janus membrane evaporators and also better than the fabricated carbon nanotube-, and graphene sheet-based Janus membrane evaporator. The water purification results indicate that the fabricated graphene fiber-based Janus membrane is highly effective in seawater desalination without obvious salt accumulation and heavy metal wastewater purification. This study proposes a neotype graphene assembly for the fabrication of Janus membrane evaporator, which has potential applications in desalination and wastewater decontamination.
Collapse
Affiliation(s)
- Qingxin Zhou
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China
| | - Hao Li
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China
| | - Dingding Li
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China
| | - Beibei Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China
| | - Jinbo Bai
- Laboratoire Mécanique des Sols, Structures et Matériaux (MSSMat), CNRS UMR 8579, Ecole Centrale Supélec, Université Paris-Saclay, 8-10 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
| | - Shenghua Ma
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150001, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China.
| | - Gang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, PR China; Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China.
| |
Collapse
|
30
|
Wang D, Luo J, Sun Z, Lai Y. Transforming zero-index media into geometry-invariant coherent perfect absorbers via embedded conductive films. OPTICS EXPRESS 2021; 29:5247-5258. [PMID: 33726064 DOI: 10.1364/oe.416632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, we demonstrate an approach to realize geometry-invariant multi-channel coherent perfect absorbers by embedding ultrathin conductive films in zero-index media. Coherent perfect absorption can be achieved for waves incidents from an arbitrary number of input channels as long as the total width of the channels equals to a critical value that is only determined by the length and material parameters of the conductive films instead of their shapes and positions. The absorption attributes to induced currents in the conductive films by the electric fields of incidence, and the shape- and position-independent characteristics originate from the uniformly distributed electric fields inside the zero-index media. By using dielectric photonic crystals and photonic-doped zero-index media, we numerically demonstrate such an interesting transformation from zero-index media to coherent perfect absorbers. Furthermore, ultrathin coherent perfect absorbers based on zero-index media are also demonstrated in waveguides. Our work reveals a unique mechanism to change the material responses between zero-index media and coherent perfect absorbers.
Collapse
|
31
|
Chen Y, Dang B, Fu J, Wang C, Li C, Sun Q, Li H. Cellulose-Based Hybrid Structural Material for Radiative Cooling. NANO LETTERS 2021; 21:397-404. [PMID: 33301320 DOI: 10.1021/acs.nanolett.0c03738] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structural materials with excellent mechanical properties are vitally important for architectural application. However, the traditional structural materials with complex manufacturing processes cannot effectively regulate heat flow, causing a large impact on global energy consumption. Here, we processed a high-performance and inexpensive cooling structural material by bottom-up assembling delignified biomass cellulose fiber and inorganic microspheres into a 3D network bulk followed by a hot-pressing process; we constructed a cooling lignocellulosic bulk that exhibits strong mechanical strength more than eight times that of the pure wood fiber bulk and greater specific strength than the majority of structural materials. The cellulose acts as a photonic solar reflector and thermal emitter, enabling a material that can accomplish 24-h continuous cooling with an average dT of 6 and 8 °C during day and night, respectively. Combined with excellent fire-retardant and outdoor antibacterial performance, it will pave the way for the design of high-performance cooling structural materials.
Collapse
Affiliation(s)
- Yipeng Chen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinzhou Fu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Wang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Caicai Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Research Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
32
|
Yao Y, Zhou J, Liu Z, Liu X, Fu G, Liu G. Refractory materials and plasmonics based perfect absorbers. NANOTECHNOLOGY 2021; 32:132002. [PMID: 33302265 DOI: 10.1088/1361-6528/abd275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In the past decades, metamaterial light absorbers have attracted tremendous attention due to their impressive absorption efficiency and significant potential for multiple kinds of applications. However, the conventional noble metals based metamaterial and nanomaterial absorbers always suffer from the structural damage by the local high temperature resulting from the strong plasmonic photo-thermal effects. To address this challenge, intensive research has been conducted to develop the absorbers which can realize efficient light absorption and simultaneously keep the structural stability under high temperatures. In this review, we present detail discussion on the refractory materials which can provide robust thermal stability and high performance for light absorption. Moreover, promising theoretical designs and experimental demonstrations that possess excellent features are also reviewed, including broadband strong light absorption, high temperature durability, and even the easy-to-fabricate configuration. Some applications challenges and prospects of refractory materials based plasmonic perfect absorbers are also introduced and discussed.
Collapse
Affiliation(s)
- Yu Yao
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Jin Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Zhengqi Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Xiaoshan Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Guolan Fu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Guiqiang Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| |
Collapse
|
33
|
Zhang H, Liu Z, Zhong H, Liu G, Liu X, Wang J. Metal-free plasmonic refractory core-shell nanowires for tunable all-dielectric broadband perfect absorbers. OPTICS EXPRESS 2020; 28:37049-37057. [PMID: 33379786 DOI: 10.1364/oe.405625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this work, we numerically demonstrate a new facile strategy for all-dielectric broadband optical perfect absorbers. A monolayer refractory titanium oxide and nitride (TiN/TiO2) core-shell nanowires array is used to form the grating on the opaque TiN substrate. Multiple resonant absorption bands are observed in the adjacent wavelength range, which therefore leads to the formation of an ultra-broadband absorption window from the visible to the infrared regime. The maximal absorption reaches 95.6% and the average absorption efficiency in the whole range (0.5-1.8 µm) is up to 85.4%. Moreover, the absorption bandwidth can be feasibly adjusted while the absorption efficiency can be still maintained in a high level via tuning the polarization state. Furthermore, the absorption window is observed to be highly adjustable in the wavelength range, showing a nearly linear relationship to the shell's index. These features not only confirm the achievement of the broadband perfect absorption but also introduce feasible ways to artificially manipulate the absorption properties, which will hold wide applications in metal-free plasmonic optoelectronic devices such as the solar harvesting, photo-detection, and thermal generation and its related bio-medical techniques.
Collapse
|
34
|
Lee J, Kim J, Lee M. High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge 2Sb 2Te 5 absorption layer. NANOSCALE ADVANCES 2020; 2:4930-4937. [PMID: 36132919 PMCID: PMC9418997 DOI: 10.1039/d0na00626b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 05/02/2023]
Abstract
A thin film cavity formed by stacking metal-insulator-metal (MIM) continuous layers is of significant interest as a lithography-free and scalable color-filtering structure. Such a cavity can selectively transmit a certain frequency range of incident light, thus producing vivid transmission colors. However, the generation of reflection colors with high purity and reflectivity is a challenge because a cavity in reflection mode resonantly absorbs a narrow range of wavelengths and reflects the remaining spectrum. This study shows that highly pure and reflective colors can be obtained by embedding an ultrathin Ge2Sb2Te5 layer within the cavity. Because the MIM structure exhibits a nonuniform intensity distribution across the insulator layer, the approach is to place the Ge2Sb2Te5 layer in a high-intensity region within the insulator and thereby create another absorption band in addition to the cavity resonance mode. When combined with the refractive-index engineering of the metal layer, this approach leads to red, green, and blue colors having a bandwidth of ∼100 nm and a reflection efficiency of 90%. The results of the study may be effectively utilized in numerous applications, including reflective color filters, colorimetric sensors, and surface decorations.
Collapse
Affiliation(s)
- Junho Lee
- Department of Materials Science and Engineering, Yonsei University Seoul 120-749 Korea
| | - Jaeyong Kim
- Department of Materials Science and Engineering, Yonsei University Seoul 120-749 Korea
| | - Myeongkyu Lee
- Department of Materials Science and Engineering, Yonsei University Seoul 120-749 Korea
| |
Collapse
|
35
|
Liu Z, Zhong H, Liu G, Liu X, Wang Y, Wang J. Multi-resonant refractory prismoid for full-spectrum solar energy perfect absorbers. OPTICS EXPRESS 2020; 28:31763-31774. [PMID: 33115142 DOI: 10.1364/oe.405012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this work, a feasible way for perfect absorption in the whole solar radiance range is numerically demonstrated via the multiple resonances in a 600-nm-thick refractory prismoid. Under the standard AM 1.5 illumination, the measured solar energy absorption efficiency reaches 99.66% in the wavelength range from 280 nm to 4000 nm, which indicates only a rather small part of solar light (0.34%) escaped. The record harvesting efficiency directly results from the near-unity absorption for the multi-layer refractory resonators, which can simultaneously benefit from the multi-resonant behaviors of the structure and the broadband resonant modes by the material intrinsic features. The absorption including the intensity and frequency range can be adjusted via the structural features. These findings can hold wide applications in solar energy related optoelectronics such as the thermal-photovoltaics, photo-thermal technology, semiconductor assisted photo-detection, ideal thermal emitters, etc.
Collapse
|
36
|
Xu J, Ren Z, Dong B, Liu X, Wang C, Tian Y, Lee C. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy. ACS NANO 2020; 14:12159-12172. [PMID: 32812748 DOI: 10.1021/acsnano.0c05794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most effective surface-enhanced infrared absorption (SEIRA) techniques, metal-insulator-metal structured metamaterial perfect absorbers possess an ultrahigh sensitivity and selectivity in molecular infrared fingerprint detection. However, most of the localized electromagnetic fields (i.e., hotspots) are confined in the dielectric layer, hindering the interaction between analytes and hotspots. By replacing the dielectric layer with the nanofluidic channel, we develop a sapphire (Al2O3)-based mid-infrared (MIR) hybrid nanofluidic-SEIRA (HN-SEIRA) platform for liquid sensors with the aid of a low-temperature interfacial heterogeneous sapphire wafer direct bonding technique. The robust atomic bonding interface is confirmed by transmission electron microscope observation. We also establish a design methodology for the HN-SEIRA sensor using coupled-mode theory to carry out the loss engineering and experimentally validate its feasibility through the accurate nanogap control. Thanks to the capillary force, liquid analytes can be driven into sensing hotspots without external actuation systems. Besides, we demonstrate an in situ real-time dynamic monitoring process for the acetone molecular diffusion in deionized water. A small concentration change of 0.29% is distinguished and an ultrahigh sensitivity (0.8364 pmol-1 %) is achieved. With the aid of IR fingerprint absorption, our HN-SEIRA platform brings the selectivity of liquid molecules with similar refractive indexes. It also resolves water absorption issues in traditional IR liquid sensors thanks to the sub-nm long light path. Considering the wide transparency window of Al2O3 in MIR (up to 5.2 μm), the HN-SEIRA platform covers more IR absorption range for liquid sensing compared to fused glass commonly used in micro/nanofluidics. Leveraging the aforementioned advantages, our work provides insights into developing a MIR real-time liquid sensing platform with intrinsic IR fingerprint selectivity, label-free ultrahigh sensitivity, and ultralow analyte volume, demonstrating a way toward quantitative molecule identification and dynamic analysis for the chemical and biological reaction processes.
Collapse
Affiliation(s)
- Jikai Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
37
|
Tang P, Liu G, Liu X, Fu G, Liu Z, Wang J. Plasmonic wavy surface for ultrathin semiconductor black absorbers. OPTICS EXPRESS 2020; 28:27764-27773. [PMID: 32988062 DOI: 10.1364/oe.402234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
In this work, we propose and demonstrate a near-unity light absorber in the ultra-violet to near-infrared range (300-1100 nm) with the average efficiency up to 97.7%, suggesting the achievement of black absorber. The absorber consists of a wavy surface geometry, which is formed by the triple-layer of ITO (indium tin oxide)-Ge (germanium)-Cu (copper) films. Moreover, the minimal absorption is even above 90% in the wide wavelength range from 300 nm to 1015 nm, suggesting an ultra-broadband near-perfect absorption window covering the main operation range for the conventional semiconductors. Strong plasmonic resonances and the near-field coupling effects located in the spatially geometrical structure are the key contributions for the broadband absorption. The absorption properties can be well maintained during the tuning of the polarization and incident angles, indicating the high tolerance in complex electromagnetic surroundings. These findings pave new ways for achieving high-performance optoelectronic devices based on the light absorption over the full-spectrum energy gap range.
Collapse
|
38
|
Meng Z, Cao H, Liu R, Wu X. An Electrically Tunable Dual-Wavelength Refractive Index Sensor Based on a Metagrating Structure Integrating Epsilon-Near-Zero Materials. SENSORS 2020; 20:s20082301. [PMID: 32316493 PMCID: PMC7219054 DOI: 10.3390/s20082301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a reconfigurable sensing platform based on an asymmetrical metal-insulator-metal stacked structure integrating an indium tin oxide (ITO) ultrathin film is proposed and investigated numerically. The epsilon-near-zero (ENZ) mode and antisymmetric mode can be resonantly excited, generating near-perfect absorption of over 99.7% at 1144 and 1404 nm, respectively. The absorptivity for the ENZ mode can be modulated from 90.2% to 98.0% by varying the ENZ wavelength of ITO by applying different voltages. To obtain a highly sensitive biosensor, we show that the proposed structure has a full-width at half-maximum (FWHM) of 8.65 nm and a figure-of-merit (FOM) of 24.7 with a sensitivity of 213.3 nm/RI (refractive index) for the glucose solution. Our proposed device has potential for developing tunable biosensors for real-time health monitoring.
Collapse
Affiliation(s)
- Zhenya Meng
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Hailin Cao
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
- Correspondence:
| | - Run Liu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaodong Wu
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
39
|
Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens Bioelectron 2020; 150:111905. [DOI: 10.1016/j.bios.2019.111905] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
|