1
|
Zhou Z, Wu Y, He J, Frauenheim T, Prezhdo OV. Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation. J Am Chem Soc 2024; 146:29905-29912. [PMID: 39417599 PMCID: PMC11528416 DOI: 10.1021/jacs.4c12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Slowing hot carrier (HC) cooling and improving HC extraction are considered two pivotal factors for enhancing power conversion efficiency in emerging HC photovoltaic applications of perovskites and other materials. Employing ab initio quantum dynamics simulations, we demonstrate the simultaneous slow cooling and efficient extraction of hot electrons at the C60/CsPbI3 interface through dipolar surface passivation with phenethylammonium and 4-fluorophenethylammonium ligands. The passivation effectively suppresses I-Pb lattice vibrations, weakens the hot electron-phonon interaction in CsPbI3, and thus slows down the HC cooling. At the same time, the dipolar surface passivation elevates the LUMO + 1 state in C60 and reduces the energy gap for HC extraction. Concurrently, higher-frequency vibrations of the dipolar layer enhance the coupling between C60 and CsPbI3, promoting efficient HC extraction further. These phenomena are intensified with increased polarity of the dipolar layer. Furthermore, we find that dipolar passivation has the opposite influence on cold electron collection at the band edge, underscoring the fact that the observed improvement in photovoltaic performance stems preferentially from the effective utilization of HCs rather than cold electrons. The work provides a new strategy for achieving high-performance HC perovskite solar cells.
Collapse
Affiliation(s)
- Zhaobo Zhou
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Yang Wu
- Bremen
Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- School
of Science, Constructor University, Bremen 28759, Germany
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Oleg V. Prezhdo
- Departments
of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Zhang W, Guo X, Cui Z, Yuan H, Li Y, Li W, Li X, Fang J. Strategies for Improving Efficiency and Stability of Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311025. [PMID: 38427593 DOI: 10.1002/adma.202311025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Perovskite solar cells (PSCs) have attracted widespread research and commercialization attention because of their high power conversion efficiency (PCE) and low fabrication cost. The long-term stability of PSCs should satisfy industrial requirements for photovoltaic devices. Inverted PSCs with a p-i-n architecture exhibit considerable advantages because of their excellent stability and competitive efficiency. The continuously broken-through PCE of inverted PSCs shows huge application potential. This review summarizes the developments and outlines the characteristics of inverted PSCs including charge transport layers (CTLs), perovskite compositions, and interfacial regulation strategies. The latest effective CTLs, interfacial modification, and stability promotion strategies especially under light, thermal, and bias conditions are emphatically analyzed. Furthermore, the applications of the inverted structure in high-efficiency and stable tandem, flexible photovoltaic devices, and modules and their main obstacles are systematically introduced. Finally, the remaining challenges faced by inverted devices are discussed, and several directions for advancing inverted PSCs are proposed according to their development status and industrialization requirements.
Collapse
Affiliation(s)
- Wenxiao Zhang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuemin Guo
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Zhengbo Cui
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Haobo Yuan
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Yunfei Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Wen Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Xiaodong Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Junfeng Fang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
González J, Danelon JG, Da Silva JLF, Lima MP. Elucidating Black α-CsPbI 3 Perovskite Stabilization via PPD Bication-Conjugated Molecule Surface Passivation: Ab Initio Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39251-39265. [PMID: 39021197 PMCID: PMC11299153 DOI: 10.1021/acsami.4c05092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The cubic α-CsPbI3 phase stands out as one of the most promising perovskite compounds for solar cell applications due to its suitable electronic band gap of 1.7 eV. However, it exhibits structural instability under operational conditions, often transforming into the hexagonal non-perovskite δ-CsPbI3 phase, which is unsuitable for solar cell applications because of the large band gap (e.g., ∼2.9 eV). Thus, there is growing interest in identifying possible mechanisms for increasing the stability of the cubic α-CsPbI3 phase. Here, we report a theoretical investigation, based on density functional theory calculations, of the surface passivation of the α-, γ-, and δ-CsPbI3(100) surfaces using the C6H4(NH3)2 [p-phenylenediamine (PPD)] and Cs species as passivation agents. Our calculations and analyses corroborate recent experimental findings, showing that PPD passivation effectively stabilizes the cubic α-CsPbI3 perovskite against the cubic-to-hexagonal phase transition. The PPD molecule exhibits covalent-dominating bonds with the substrate, which makes it more resistant to distortion than the ionic bonds dominant in perovskite bulks. By contrasting these results with the natural Cs passivation, we highlight the superior stability of the PPD passivation, as evidenced by the negative surface formation energies, unlike the positive values observed for the Cs passivation. This disparity is due to the covalent characteristics of the molecule/surface interaction of PPD, as opposed to the purely ionic interaction seen with the Cs passivation. Notably, the PPD passivation maintains the optoelectronic properties of the perovskites because the electronic states derived from the PPD molecules are localized far from the band gap region, which is crucial for optoelectronic applications.
Collapse
Affiliation(s)
- José
E. González
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - João G. Danelon
- Department
of Physics, Federal University of São
Carlos, 13565-905 São Carlos, SP, Brazil
| | - Juarez L. F. Da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Matheus P. Lima
- Department
of Physics, Federal University of São
Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
4
|
Wu Z, Sang S, Zheng J, Gao Q, Huang B, Li F, Sun K, Chen S. Crystallization Kinetics of Hybrid Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202319170. [PMID: 38230504 DOI: 10.1002/anie.202319170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Metal halide perovskites (MHPs) are considered ideal photovoltaic materials due to their variable crystal material composition and excellent photoelectric properties. However, this variability in composition leads to complex crystallization processes in the manufacturing of Metal halide perovskite (MHP) thin films, resulting in reduced crystallinity and subsequent performance loss in the final device. Thus, understanding and controlling the crystallization dynamics of perovskite materials are essential for improving the stability and performance of PSCs (Perovskite Solar Cells). To investigate the impact of crystallization characteristics on the properties of MHP films and identify corresponding modulation strategies, we primarily discuss the relevant aspects of MHP crystallization kinetics, systematically summarize theoretical methods, and outline modulation techniques for MHP crystallization, including solution engineering, additive engineering, and component engineering, which helps highlight the prospects and current challenges in perovskite crystallization kinetics.
Collapse
Affiliation(s)
- Zhiwei Wu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering Chongqing University, Chongqing, 400044, China
| | - Shuyang Sang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering Chongqing University, Chongqing, 400044, China
| | - Junjian Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering Chongqing University, Chongqing, 400044, China
| | | | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering Chongqing University, Chongqing, 400044, China
| | - Shanshan Chen
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering Chongqing University, Chongqing, 400044, China
| |
Collapse
|
5
|
Du Y, Tian Q, Wang S, Yin L, Ma C, Wang Z, Lang L, Yang Y, Zhao K, Liu SF. Crystallization Control Based on the Regulation of Solvent-Perovskite Coordination for High-Performance Ambient Printable FAPbI 3 Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307583. [PMID: 37824785 DOI: 10.1002/adma.202307583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The critical requirement for ambient-printed formamidinium lead iodide (FAPbI3 ) lies in the control of nucleation-growth kinetics and defect formation behavior, which are extensively influenced by interactions between the solvent and perovskite. Here, a strategy is developed that combines a cosolvent and an additive to efficiently tailor the coordination between the solvent and perovskite. Through in situ characterizations, the direct crystallization from the sol-gel phase to α-FAPbI3 is illustrated. When the solvent exhibits strong interactions with the perovskite, the sol-gel phases cannot effectively transform into α-FAPbI3 , resulting in a lower nucleation rate and confined crystal growth directions. Consequently, it becomes challenging to fabricate high-quality void-free perovskite films. Conversely, weaker solvent-perovskite coordination promotes direct crystallization from sol-gel phases to α-FAPbI3 . This process exhibits more balanced nucleation-growth kinetics and restrains the formation of defects and microstrains in situ. This strategy leads to improved structural and optoelectronic properties within the FAPbI3 films, characterized by more compact grain stacking, smoother surface morphology, released lattice strain, and fewer defects. The ambient-printed FAPbI3 perovskite solar cells fabricated using this strategy exhibit a remarkable power conversion efficiency of 24%, with significantly reduced efficiency deviation and negligible decreases in the stabilized output.
Collapse
Affiliation(s)
- Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Qingwen Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Lei Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Zhiteng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Lei Lang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
6
|
Iqbal Z, Félix R, Musiienko A, Thiesbrummel J, Köbler H, Gutierrez-Partida E, Gries TW, Hüsam E, Saleh A, Wilks RG, Zhang J, Stolterfoht M, Neher D, Albrecht S, Bär M, Abate A, Wang Q. Unveiling the Potential of Ambient Air Annealing for Highly Efficient Inorganic CsPbI 3 Perovskite Solar Cells. J Am Chem Soc 2024; 146:4642-4651. [PMID: 38335142 PMCID: PMC10885157 DOI: 10.1021/jacs.3c11711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Here, we report a detailed surface analysis of dry- and ambient air-annealed CsPbI3 films and their subsequent modified interfaces in perovskite solar cells. We revealed that annealing in ambient air does not adversely affect the optoelectronic properties of the semiconducting film; instead, ambient air-annealed samples undergo a surface modification, causing an enhancement of band bending, as determined by hard X-ray photoelectron spectroscopy measurements. We observe interface charge carrier dynamics changes, improving the charge carrier extraction in CsPbI3 perovskite solar cells. Optical spectroscopic measurements show that trap state density is decreased due to ambient air annealing. As a result, air-annealed CsPbI3-based n-i-p structure devices achieved a 19.8% power conversion efficiency with a 1.23 V open circuit voltage.
Collapse
Affiliation(s)
- Zafar Iqbal
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Roberto Félix
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Artem Musiienko
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Jarla Thiesbrummel
- Institute
for Physics and Astronomy, University of
Potsdam, Karl-Liebknecht-Straße
24−25, 14476 Potsdam-Golm, Germany
- Clarendon
Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Hans Köbler
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Emilio Gutierrez-Partida
- Institute
for Physics and Astronomy, University of
Potsdam, Karl-Liebknecht-Straße
24−25, 14476 Potsdam-Golm, Germany
| | - Thomas W. Gries
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Elif Hüsam
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ahmed Saleh
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Regan G. Wilks
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jiahuan Zhang
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam, Karl-Liebknecht-Straße
24−25, 14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Dieter Neher
- Institute
for Physics and Astronomy, University of
Potsdam, Karl-Liebknecht-Straße
24−25, 14476 Potsdam-Golm, Germany
| | - Steve Albrecht
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcus Bär
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Egerland Street 3, 91058 Erlangen, Germany
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Albert-Einstein-Street 15, 12489 Berlin, Germany
- Energy
Materials In-situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Antonio Abate
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Department
of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Qiong Wang
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
7
|
Yin L, Huang W, Fang J, Ding Z, Jin C, Du Y, Lang L, Yang T, Wang S, Cai W, Liu C, Zhao G, Yang Y, Liu SF, Bu T, Zhao K. Crystallization Control for Ambient Printed FA-Based Lead Triiodide Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303384. [PMID: 37572021 DOI: 10.1002/adma.202303384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Upscalable printing of high-performance and stable perovskite solar cells (PSCs) is highly desired for commercialization. However, the efficiencies of printed PSCs lag behind those of their lab-scale spin-coated counterparts owing to the lack of systematic understanding and control over perovskite crystallization dynamics. Here, the controlled crystallization dynamics achieved using an additive 1-butylpyridine tetrafluoroborate (BPyBF4 ) for high-quality ambient printed α-formamidinium lead triiodide (FAPbI3 ) perovskite films are reported. Using in situ grazing-incidence wide-angle X-ray scattering and optical diagnostics, the spontaneous formation of α-FAPbI3 from precursors during printing without the involvement of δ-FAPbI3 is demonstrated. The addition of BPyBF4 delays the crystallization onset of α-FAPbI3 , enhances the conversion from sol-gel to perovskite, and reduces stacking defects during printing. Therefore, the altered crystallization results in fewer voids, larger grains, and less trap-induced recombination loss within printed films. The printed PSCs yield high power conversion efficiencies of 23.50% and 21.60% for a 0.09 cm-2 area device and a 5 cm × 5 cm-area module, respectively. Improved device stability is further demonstrated, i.e., approximately 94% of the initial efficiency is retained for over 2400 h under ambient conditions without encapsulation. This study provides an effective crystallization control method for the ambient printing manufacture of large-area high-performance PSCs.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chengkai Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Lang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chou Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tongle Bu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Li T, Li W, Wang K, Cao L, Chen Y, Wang H, Fu M, Tong Y. Interface Engineering with Formamidinium Salts for Improving Ambient-Processed Inverted CsPbI 3 Photovoltaic Performance: Intermediate- vs Post-Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51350-51359. [PMID: 37883207 DOI: 10.1021/acsami.3c10768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Inverted all-inorganic perovskite solar cells (PSCs) have attracted increasing attention owing to excellent thermal stability, easy fabrication, and adaptable application as top cell in tandem solar cells. Apart from efficiency, ambient processing is desirable for practical production. To avoid water invasion in ambient air, surface engineering for perovskites is reported as a valid approach. However, most were performed by post-treatment, which hardly regulates the formation process of perovskite crystals. This work demonstrates a simple but effective surface intermediate-treatment strategy to stabilize CsPbI3 perovskites fabricated in ambient air and compares the different effects yielded on the inverted PSCs. By using formamidinium (FA) salts for intermediate-treatment, the strong interaction between FA cation and [PbI6]4- octahedron improves the moisture resistance, and compared with the post-treatment strategy, the accelerated crystallization rate and the shortened exposure time to moisture reduce the devastation by water during film fabrication process further. Moreover, the greatly passivated defects and optimized energy level matching between perovskite and PCBM suppress the nonradiative recombination. Resultantly, the optimized device shows enhanced efficiency from 11.39% to 15.45%, and long-term stability is improved, with 97.6% efficiency remaining after storage for 1600 h. Therefore, we believe that this work can provide a promising guideline for fabricating all-inorganic inverted PSCs in a low-cost manufacturing scheme.
Collapse
Affiliation(s)
- Tianxiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Wan Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
| | - Li Cao
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
| | - Maosen Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China
| |
Collapse
|
9
|
Gao L, Hao K, Hu P, Zhang J, Yang F, Huang S, Su H, Zheng X, Que M. Bottom Distribution of F-Based Additives in Perovskite Films and Their Effects on Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50148-50154. [PMID: 37856670 DOI: 10.1021/acsami.3c09294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Various additives have been introduced to assist in film preparation and defect passivation. Herein, fluoroiodobenzene (FIB) molecules with different numbers of F atoms were incorporated into perovskite films to optimize the film quality as well as passivate defects. Based on the calculation and experimental results, it was found that the FIB additives were inclined to exist at the bottom of the film because of the strong affinity between F atoms stemming from FIB molecules and O atoms stemming from TiO2, especially for molecules with more F atoms. By optimization of the FIB molecule, the perovskite film crystallinity was significantly improved, the carrier lifetimes were prolonged, and the charge extraction ability was also enhanced. The device with FIB with one F atom achieved a photoelectrical conversion efficiency as high as 22.89% with a Voc of 1.118 V, fill factor (FF) of 80.44%, and Jsc of 25.45 mA cm-2, which was much higher than that of the control device with an efficiency of 20.87%. Furthermore, FIB molecules with three and five F atoms also achieved higher efficiency than that of the control device. The devices with FIB molecules showed better stability than the devices without additives. The unencapsulated devices with FIB additives held 90% of their original efficiencies in an ambient environment with a temperature of 15-25 °C and a relative humidity of 20-30%, while the control device dropped to 76% after more than 1000 h.
Collapse
Affiliation(s)
- Lili Gao
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Ke Hao
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Ping Hu
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Jing Zhang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Fan Yang
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Sheng Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P. R. China
| | - Hang Su
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Xinxin Zheng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| |
Collapse
|
10
|
Iqbal Z, Zu F, Musiienko A, Gutierrez-Partida E, Köbler H, Gries TW, Sannino GV, Canil L, Koch N, Stolterfoht M, Neher D, Pavone M, Muñoz-García AB, Abate A, Wang Q. Interface Modification for Energy Level Alignment and Charge Extraction in CsPbI 3 Perovskite Solar Cells. ACS ENERGY LETTERS 2023; 8:4304-4314. [PMID: 37854052 PMCID: PMC10580311 DOI: 10.1021/acsenergylett.3c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
In perovskite solar cells (PSCs) energy level alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3 perovskite and its hole-selective contact (spiro-OMeTAD), realized by the dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, with n-octylammonium iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and a high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by a transient surface photovoltage (trSPV) technique accomplished by a charge transport simulation.
Collapse
Affiliation(s)
- Zafar Iqbal
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Fengshuo Zu
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Artem Musiienko
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Emilio Gutierrez-Partida
- Institute
for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Hans Köbler
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Thomas W. Gries
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Gennaro V. Sannino
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Department
of Physics “Ettore Pancini”, University of Naples Federico II, Comp. Univ. Monte S. Angelo, via Cintia 26, 80126 Naples, Italy
| | - Laura Canil
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Norbert Koch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- The
Chinese University of Hong Kong, Electronic
Engineering Department, Shatin N.T., Hong Kong 999077, People’s
Republic of China
| | - Dieter Neher
- Institute
for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Michele Pavone
- Department
of Chemical Sciences, University of Naples
Federico II, Comp. Univ.
Monte S. Angelo, Via Cintia 26, 80126 Naples, Italy
| | - Ana Belen Muñoz-García
- Department
of Physics “Ettore Pancini”, University of Naples Federico II, Comp. Univ. Monte S. Angelo, via Cintia 26, 80126 Naples, Italy
| | - Antonio Abate
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Department
of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- Department
of Chemical Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Qiong Wang
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH. Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
11
|
Zakaria Y, Aïssa B, Fix T, Ahzi S, Mansour S, Slaoui A. Moderate temperature deposition of RF magnetron sputtered SnO 2-based electron transporting layer for triple cation perovskite solar cells. Sci Rep 2023; 13:9100. [PMID: 37277370 DOI: 10.1038/s41598-023-35651-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The perovskite solar cells (PSCs) are still facing the two main challenges of stability and scalability to meet the requirements for their potential commercialization. Therefore, developing a uniform, efficient, high quality and cost-effective electron transport layer (ETL) thin film to achieve a stable PSC is one of the key factors to address these main issues. Magnetron sputtering deposition has been widely used for its high quality thin film deposition as well as its ability to deposit films uniformly on large area at the industrial scale. In this work, we report on the composition, structural, chemical state, and electronic properties of moderate temperature radio frequency (RF) sputtered SnO2. Ar and O2 are employed as plasma-sputtering and reactive gases, respectively. We demonstrate the possibility to grow a high quality and stable SnO2 thin films with high transport properties by reactive RF magnetron sputtering. Our findings show that PSC devices based on the sputtered SnO2 ETL have reached a power conversion efficiency up to 17.10% and an average operational lifetime over 200 h. These uniform sputtered SnO2 thin films with improved characteristics are promising for large photovoltaic modules and advanced optoelectronic devices.
Collapse
Affiliation(s)
- Y Zakaria
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Laboratoire ICube‑CNRS, Université de Strasbourg, 67037, Strasbourg, France
| | - B Aïssa
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| | - T Fix
- Laboratoire ICube‑CNRS, Université de Strasbourg, 67037, Strasbourg, France
| | - S Ahzi
- Laboratoire ICube‑CNRS, Université de Strasbourg, 67037, Strasbourg, France
| | - S Mansour
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - A Slaoui
- Laboratoire ICube‑CNRS, Université de Strasbourg, 67037, Strasbourg, France
| |
Collapse
|
12
|
Zhang Z, Fu J, Chen Q, Zhang J, Huang Z, Cao J, Ji W, Zhang L, Wang A, Zhou Y, Dong B, Song B. Dopant-Free Polymer Hole Transport Materials for Highly Stable and Efficient CsPbI 3 Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206952. [PMID: 36541718 DOI: 10.1002/smll.202206952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.
Collapse
Affiliation(s)
- Zelong Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jianfei Fu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiaoyun Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiajia Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhezhi Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ji Cao
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxi Ji
- Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China
| | - Longgui Zhang
- Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China
| | - Ailian Wang
- Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China
| | - Yi Zhou
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bin Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Bo Song
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
Yang W, Yu H, Dai L, Zhang Z, Gu A, Ban H, Sun Q, Chen S, Shen Y, Wang M. Fabrication of High-Quality CsPbI 3 Perovskite Films with Phosphorus Pentachloride Additive for Highly Stable Solar Cells. CHEMSUSCHEM 2023; 16:e202202061. [PMID: 36469039 DOI: 10.1002/cssc.202202061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Fully inorganic perovskite cesium lead triiodide (CsPbI3 ) has garnered much attention from researcher for photovoltaic application because of its excellent thermal stability compared with the inorganic-organic hybrid counterparts, along with the potential to serve as the top cell in tandem devices with silicon solar cell. However, the active α-phase cubic CsPbI3 spontaneously tends to transform into the non-perovskite δ-CsPbI3 when subjected to ambient condition. This work proposes an effective method to fabricate high-quality and stable α-phase cubic CsPbI3 films by introducing phosphorus pentachloride (PCl5 ) as an additive. PCl5 acts as colloidal binder for modulating crystallization dynamics of perovskites, resulting in high-quality film and a significantly suppressed phase transition. Finally, highly stable CsPbI3 perovskite solar cells can be achieved with a power conversion efficiency up to 17.85 %, and a long-term stability in N2 filled glove box.
Collapse
Affiliation(s)
- Wanpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haixuan Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Letian Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiguo Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Anjie Gu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huaxia Ban
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuangyin Chen
- Institute of New Energy, Wuhan, 430074, P. R. China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Du Y, Tian Q, Wang S, Yang T, Yin L, Zhang H, Cai W, Wu Y, Huang W, Zhang L, Zhao K, Liu SF. Manipulating the Formation of 2D/3D Heterostructure in Stable High-Performance Printable CsPbI 3 Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206451. [PMID: 36427296 DOI: 10.1002/adma.202206451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Manipulating the formation process of the 2D/3D perovskite heterostructure, including its nucleation/growth dynamics and phase transition pathway, plays a critical role in controlling the charge transport between 2D and 3D crystals, and consequently, the scalable fabrication of efficient and stable perovskite solar cells. Herein, the structural evolution and phase transition pathways of the ligand-dependent 2D perovskite atop the 3D surface are revealed using time-resolved X-ray scattering. The results show that the ligand size and shape have a critical influence on the final 2D structure. In particular, ligands with smaller sizes and more reactive sites tend to form the n = 1 phase. Increasing the ligand size and decreasing the reactive sites promote the transformation from 3D to n = 3 and n < 3 phases. These findings are useful for the rational design of the phase distribution in 2D perovskites to balance the charge transport and stability of the perovskite films. Finally, solar cells based on ambient-printed CsPbI3 with n-butylammonium iodide treatment achieve an improved efficiency of 20.33%, which is the highest reported value for printed inorganic perovskite solar cells.
Collapse
Affiliation(s)
- Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qingwen Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lei Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
15
|
Wang H, Liu H, Dong Z, Wei X, Li W, Zhu L, Zhu C, Bai Y, Chen H. Dimethyl sulfoxide: a promising solvent for inorganic CsPbI 3 perovskite. Sci Bull (Beijing) 2023; 68:192-202. [PMID: 36681587 DOI: 10.1016/j.scib.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Inorganic CsPbI3 perovskite is an important photovoltaic material due to its suitable band gap and high chemical stability. However, it is a challenge to grow high-quality CsPbI3 perovskite because the stability of perovskite phase is low and is sensitive to solvent. So far, most of CsPbI3 perovskites in high-performance perovskite solar cells (PSCs) were prepared from N,N-dimethylformamide, a highly toxic solvent, and no successful case has been reported for dimethyl sulfoxide (DMSO), which is environmentally-friendly with considerably higher complexation capability. Herein, we reveal that forming DMSO-based adduct is the main cause for limiting the quality of CsPbI3 perovskite from DMSO-based solutions, which would inhibit the formation of DMAPbI3 (DMA = dimethylammonium, (CH3)2NH2+) intermediate. Then, by introducing a vacuum treatment, DMSO molecules could be efficiently extracted from the adduct to induce the formation of DMAPbI3 intermediate. After annealing, the intermediate is transitioned to the CsPbI3 perovskite with enhanced crystallinity, high orientation, low defect density, and high uniformity. By using the CsPbI3 perovskite as a light absorber, the PSCs based on carbon electrode (C-PSCs) achieve an efficiency of 16.7%, a new record for inorganic C-PSCs.
Collapse
Affiliation(s)
- Hailiang Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Huicong Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zijing Dong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xueyuan Wei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weiping Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Liqun Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Bai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haining Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
16
|
Watanabe S, Hayashida T, Iwai M, Inomata Y, Kunitake M, Kida T. Single Crystallization of Cs 4PbBr 6 Perovskite from Supersaturated Organic Solutions Optimized Through Solubility Studies. ACS OMEGA 2023; 8:2455-2461. [PMID: 36687048 PMCID: PMC9850476 DOI: 10.1021/acsomega.2c06945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate the fabrication of millimeter-sized single crystals of 0D-Cs4PbBr6 grown in a supersaturated solution consisting of organic solvents without HBr (aq). One of the precursors, CsBr, was dissolved in ethylene glycol (EG) mixed with dimethyl sulfoxide, which is a good solvent for the other precursor, PbBr2. At a solvent ratio of 20 vol % EG, the solubility of cesium bromide decreased and the title compound, Cs4PbBr6, was selectively formed, whereas, with an EG ratio of 80 vol %, 3D-CsPbBr3 was formed. A phase diagram (solubility curve) of Cs4PbBr6 in the mixed solvent containing 20 vol % EG was obtained by visually observing dissolution and crystal precipitation while changing the temperature. Because the solubility was proportional to the temperature, the solubility curve demonstrated an upper critical solution phenomenon. The solubility near the boiling point of the solution (150 °C) was approximately 0.14 M. A single crystal of Cs4PbBr6 was formed by growing a seed crystal in a supersaturated solution on the low-temperature side of the solubility curve. X-ray analysis established the crystal structure; a fluorescence emission at 520 nm with a full width at half maximum of 20 nm confirms the composition of the single crystal to be Cs4PbBr6.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Faculty
of Advanced Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| | - Taiki Hayashida
- Faculty
of Advanced Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| | - Masaru Iwai
- Faculty
of Advanced Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| | - Yusuke Inomata
- Faculty
of Advanced Science and Technology, Kumamoto
University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| | - Masashi Kunitake
- Institute
of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| | - Tetsuya Kida
- Institute
of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto 860-8555, Japan
| |
Collapse
|
17
|
Lu H, Li T, Ma S, Xue X, Wen Q, Feng Y, Zhang X, Zhang L, Wu Z, Wang K, Liu SF. Lewis Acid-Base Adducts for Efficient and Stable Cesium-Based Lead Iodide-Rich Perovskite Solar Cells. SMALL METHODS 2022; 6:e2201117. [PMID: 36372547 DOI: 10.1002/smtd.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
All-inorganic cesium-lead-iodide (CsPbI3 Br3- x (2 < x < 3)) perovskite presents preeminent photovoltaic performance and chemical stability. Unfortunately, this kind of material suffers from phase transition to a nonperovskite phase under oxidative chemical stresses. Herein, the introduction of a low concentration of Lewis acid-base adducts (LABAs) is reported to synergistically reduce defect density, optimize interfacial energy alignment, and improve device stability of CsPbI2.75 Br0.24 Cl0.01 (CsPbTh3 ) solar cells. Both theoretical simulations and experimental measurements reveal that the noncoordinating anions, PF6 - , as a Lewis base can more effectively bind with undercoordinated Pb2+ to passivate iodide vacancy defects than the BF4 - and absorbed I- , and thus the point defects are well suppressed. In addition, N-propyl-methyl piperidinium (NPMP+ ) is selected to assemble with PF6 - in CsPbTh3 film. The NPMP+ can regulate the crystal growth and finally homogenize the grain size and decrease the trap density. Consequently, the LABAs strategy can improve the power conversion efficiency of CsPbTh3 solar cells to 19.02% under 1-sun illumination (100 mW cm-2 ). Fortunately, the NPMP+ and PF6 - -treated CsPbTh3 film shows great phase stability after storage in ambient air for 250 days, and the power conversion efficiency of corresponding solar cells is almost 76% of the initial value after 60 days aging under ambient conditions.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Tong Li
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Simin Ma
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Xiaoyang Xue
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Qian Wen
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Yajuan Feng
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Xu Zhang
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhiqiang Wu
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, P. R. China
| | - Kang Wang
- Key Laboratory of Powder Material & Advanced Ceramics International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, School of Materials Science & Engineering, North Minzu University, Yinchuan, 750021, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
18
|
Liu X, Li H, Cui Q, Wang S, Ma C, Li N, Bu N, Yang T, Song X, Liu Y, Yang Z, Zhao K, Liu S(F. Molecular Doping of Flexible Lead‐Free Perovskite‐Polymer Thick Membranes for High‐Performance X‐Ray Detection. Angew Chem Int Ed Engl 2022; 61:e202209320. [DOI: 10.1002/anie.202209320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
- Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Department of Chemical Physics Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) University of Science and Technology of China (USTC) Hefei 230026 P. R. China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Nuo Bu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xin Song
- Solar and Photovoltaic Engineering Research Center (SPERC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
- Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
19
|
Fu S, Le J, Guo X, Sun N, Zhang W, Song W, Fang J. Polishing the Lead-Poor Surface for Efficient Inverted CsPbI 3 Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205066. [PMID: 35916039 DOI: 10.1002/adma.202205066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Triiodide cesium lead perovskite (CsPbI3 ) has promising prospects in the development of efficient and stable photovoltaics in both single-junction and tandem structures. However, achieving inverted devices that provide good stability and are compatible to tandem devices remains a challenge, and the deep insights are still not understood. This study finds that the surface components of CsPbI3 are intrinsically lead-poor and the relevant traps are of p-type with localized states. These deep-energy-level p traps induce inferior transfer or electrons and serious nonradiative recombination at the CsPbI3 /PCBM interface, leading to the considerable open-circuit voltage (Voc ) loss and reduction of fill factor (FF). Compared to molecular passivation, polishing treatment with 1,4-butanediamine can eliminate the nonstoichiometric components and root these intrinsically lead-poor traps for superior electron transfer. The polishing treatment significantly improves the FF and Voc of the inverted CsPbI3 photovoltaics, creating an efficiency promotion from 12.64% to 19.84%. Moreover, 95% of the initial efficiency of the optimized devices is maintained after the output operation for 1000 h.
Collapse
Affiliation(s)
- Sheng Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xueming Guo
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Nannan Sun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenxiao Zhang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Junfeng Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
20
|
Liu X, Li H, Cui Q, Wang S, Ma C, Li N, Bu N, Yang T, Song X, Liu Y, Yang Z, Zhao K, Liu S(F. Molecular Doping of Flexible Lead‐Free Perovskite‐Polymer Thick Membranes for High‐Performance X‐Ray Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinmei Liu
- Shaanxi Normal University School of Materials Science and Engineering No. 620, West Chang'an Street, Xi'an City, Shaanxi Province CHINA
| | - Haojin Li
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Qingyue Cui
- University of Science and Technology of China School of Chemistry and Materials CHINA
| | - Shumei Wang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Chuang Ma
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Nan Li
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Nuo Bu
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Tinghuan Yang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Xin Song
- King Abdullah University of Science and Technology Division of Physical Sciences and Engineering SAUDI ARABIA
| | - Yucheng Liu
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Zhou Yang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Kui Zhao
- Shaanxi Normal University Materials Science and Engineering No. 620, West Chang'an Avenue, Chang'an District 710000 Xi'an CHINA
| | | |
Collapse
|
21
|
Liu Q, Cai W, Wang W, Wang H, Zhong Y, Zhao K. Controlling Phase Transition toward Future Low-Cost and Eco-friendly Printing of Perovskite Solar Cells. J Phys Chem Lett 2022; 13:6503-6513. [PMID: 35820200 DOI: 10.1021/acs.jpclett.2c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite solar cells (PSCs) have grown increasingly popular over the past few years and are considered to be game-changers in the energy conversion market. It has became vital to transfer the deep understanding of the perovskite film formation process during lab-scale fabrication to large-scale production. Complex phase transition during film formation has been revealed by in situ strategies. However, there is still debate which phase transition is the right route for a future scalable approach. Herein, we briefly summarize perovskite crystallization during scalable printing processes. The critical information about the intermediates involved in phase transition from precursors to perovskite crystals are discussed because it deeply impacts the morphology of printed films. Finally, important strategies to control phase transition and challenges toward future low-temperature and eco-friendly printing of perovskite solar cells are proposed. The information provided by this Perspective will assist the screening and development of the perovskite phase transition for future cost-efficient printed perovskite panels.
Collapse
Affiliation(s)
- Qiuju Liu
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Weiyan Wang
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Haiqiao Wang
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Yufei Zhong
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo 315100, P.R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
22
|
Fu S, Sun N, Le J, Zhang W, Miao R, Zhang W, Kuang Y, Song W, Fang J. Tailoring Defects Regulation in Air-Fabricated CsPbI 3 for Efficient Inverted All-Inorganic Perovskite Solar Cells with Voc of 1.225 V. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30937-30945. [PMID: 35767458 DOI: 10.1021/acsami.2c07420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Air fabrication of CsPbI3 perovskite photovoltaics has been attractive and fast-moving owing to its compatibility to low-cost and up-scalable fabrication. However, due to the inevitable erosions, undesirable traps are formed in air-fabricated CsPbI3 crystals and seriously hinder photovoltaic performance with poor reproduction. Here, 3, 5-difluorobenzoic acid hydrazide (FBJ) is incorporated as trap regulation against external erosions in air-fabricated CsPbI3. Theoretical simulations reveal that FBJ molecules feature stronger absorbance on CsPbI3 than water, which can regulate trap formations for water erosions. In addition, FBJ with solid bonding interaction to CsPbI3 can enlarge formation energy of various defects during crystallization and further suppress traps. Moreover, profiling to reductive hydrazine groups, FBJ inhibits traps for oxidation erosions. Consequently, a champion efficiency of 19.27% with an impressive Voc of 1.225 V is realized with the inverted CsPbI3 devices. Moreover, the optimized devices present superior stability and contain 97.4% after operating at 60 °C for 600 h.
Collapse
Affiliation(s)
- Sheng Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physics and Electronics Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Sun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenxiao Zhang
- School of Physics and Electronics Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Renjie Miao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yongbo Kuang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junfeng Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physics and Electronics Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Li T, Wu Y, Liu Z, Yang Y, Luo H, Li L, Chen P, Gao X, Tan H. Cesium acetate-assisted crystallization for high-performance inverted CsPbI 3perovskite solar cells. NANOTECHNOLOGY 2022; 33:375205. [PMID: 35675793 DOI: 10.1088/1361-6528/ac76d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Efficient inverted (p-i-n) type CsPbI3perovskite solar cells (PSCs) have revealed promising applications due to their excellent thermal and photostability. Regulating the nucleation and crystallization of perovskite film is an important route to improving the performance of CsPbI3PSCs. Herein, we explored cesium acetate (CsAc) as additive to manipulate the crystallization process of CsPbI3perovskite films. By involving in the intermediate phase DMA1-xCsxPbI3-yAcyof perovskite, the pseudo-halide acetate (Ac-) can retard the ion exchange reaction between DMA+and Cs+, leading to a perovskite with dense morphology, low defect density, and a long carrier lifetime. As a result, the optimal CsPbI3PSCs yielded a high power conversion efficiency of 18.3%. Moreover, the encapsulated devices showed excellent operational stability and the devices retained their initial performance following 500 h of operation at the maximum power point under one-sun illumination in ambient conditions.
Collapse
Affiliation(s)
- Tiantian Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yue Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhou Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuanbo Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Haowen Luo
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ludong Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, People's Republic of China
| | - Peng Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueping Gao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
24
|
Parida B, Singh A, Kalathil Soopy AK, Sangaraju S, Sundaray M, Mishra S, Liu S(F, Najar A. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200308. [PMID: 35274476 PMCID: PMC9109066 DOI: 10.1002/advs.202200308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Indexed: 06/01/2023]
Abstract
Just over a decade, perovskite solar cells (PSCs) have been emerged as a next-generation photovoltaic technology due to their skyrocketing power conversion efficiency (PCE), low cost, and easy manufacturing techniques compared to Si solar cells. Several methods and procedures have been developed to fabricate high-quality perovskite films to improve the scalability and commercialize PSCs. Recently, several printing technologies such as blade-coating, slot-die coating, spray coating, flexographic printing, gravure printing, screen printing, and inkjet printing have been found to be very effective in controlling film formation and improving the PCE of over 21%. This review summarizes the intensive research efforts given for these printing techniques to scale up the perovskite films as well as the hole transport layer (HTL), the electron transport layer (ETL), and electrodes for PSCs. In the end, this review presents a description of the future research scope to overcome the challenges being faced in the printing techniques for the commercialization of PSCs.
Collapse
Affiliation(s)
- Bhaskar Parida
- Department of PhysicsCollege of ScienceUnited Arab Emirates UniversityAl Ain15551UAE
| | - Arjun Singh
- Department of Applied SciencesThe Northcap UniversityGurugram122017India
| | | | - Sambasivam Sangaraju
- Department of PhysicsCollege of ScienceUnited Arab Emirates UniversityAl Ain15551UAE
| | - Madhulita Sundaray
- Department of Humanities and SciencesKG Reddy College of Engineering and TechnologyHyderabad501504India
| | - Satrujit Mishra
- Department of PhysicsParala Maharaja Engineering CollegeBerhampurOdisha761003India
| | - Shengzhong (Frank) Liu
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'anShaanxi710119China
| | - Adel Najar
- Department of PhysicsCollege of ScienceUnited Arab Emirates UniversityAl Ain15551UAE
| |
Collapse
|
25
|
Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T. Quantifying Efficiency Limitations in All-Inorganic Halide Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108132. [PMID: 35014106 DOI: 10.1002/adma.202108132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
While halide perovskites have excellent optoelectronic properties, their poor stability is a major obstacle toward commercialization. There is a strong interest to move away from organic A-site cations such as methylammonium and formamidinium toward Cs with the aim of improving thermal stability of the perovskite layers. While the optoelectronic properties and the device performance of Cs-based all-inorganic lead-halide perovskites are very good, they are still trailing behind those of perovskites that use organic cations. Here, the state-of-the-art of all-inorganic perovskites for photovoltaic applications is reviewed by performing detailed meta-analyses of key performance parameters on the cell and material level. Key material properties such as carrier mobilities, external photoluminescence quantum efficiency, and photoluminescence lifetime are discussed and what is known about defect tolerance in all-inorganic is compared relative to hybrid (organic-inorganic) perovskites. Subsequently, a unified approach is adopted for analyzing performance losses in perovskite solar cells based on breaking down the losses into several figures of merit representing recombination losses, resistive losses, and optical losses. Based on this detailed loss analysis, guidelines are eventually developed for future performance improvement of all-inorganic perovskite solar cells.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaic Technology, School of Physics, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Genghua Yan
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaic Technology, School of Physics, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ruijiang Hong
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaic Technology, School of Physics, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zongcun Liang
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaic Technology, School of Physics, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Thomas Kirchartz
- IEK5-Photovoltaik, Forschungszentrum Jülich, 52425, Jülich, Germany
- Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| |
Collapse
|
26
|
Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15093216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Technological advancement is accompanied by excessive consumption of fossil fuels and affluent uses of chemical substances in many sectors, including transportation and manufacturing companies, and so on. Being an exhaustible resource, the excessive use of fossil fuels and of chemical substances may lead to a serious energy crisis in the long run, and it may additionally impose environmental pollution. Attempts have been made in the solution of such serious issues from every nook and corner. Nonetheless, no method has been found to be a panacea in waste water treatment and subsequent beneficiaries. One of the attempts in the solution to such issues is the application of photocatalytic technology, which could serve as a dual function in environmental remediation and clean energy production. A photocatalytic fuel cell is a tool developed for the recovery of energy from organic wastes. A rational cell construction needs the fabrication of photoelectrodes, the design of a photoanode and a photocathode chamber, in addition to an ion-transport membrane for pollution treatment and electricity generation. In this review, comprehensive fundamental assessments and recent developments in the design of photocatalytic fuel cells, their applications, future prospects, and challenges are covered.
Collapse
|
27
|
Alberti A. Mesoporous Materials and Nanoscale Phenomena in Hybrid Photovoltaics. NANOMATERIALS 2022; 12:nano12081307. [PMID: 35458013 PMCID: PMC9030743 DOI: 10.3390/nano12081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Alessandra Alberti
- Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), 95121 Catania, Italy
| |
Collapse
|
28
|
Zimmermann I, Provost M, Mejaouri S, Al Atem M, Blaizot A, Duchatelet A, Collin S, Rousset J. Industrially Compatible Fabrication Process of Perovskite-Based Mini-Modules Coupling Sequential Slot-Die Coating and Chemical Bath Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11636-11644. [PMID: 35213136 DOI: 10.1021/acsami.1c24558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To upscale the emerging perovskite photovoltaic technology to larger-size modules, industrially relevant deposition techniques need to be developed. In this work, the deposition of tin oxide used as an electron extraction layer is established using chemical bath deposition (CBD), a low-cost and solution-based fabrication process. Applying this simple low-temperature deposition method, highly homogeneous SnO2 films are obtained in a reproducible manner. Moreover, the perovskite layer is prepared by sequentially slot-die coating on top of the n-type contact. The symbiosis of these two industrially relevant deposition techniques allows for the growth of high-quality dense perovskite layers with large grains. The uniformity of the perovskite film is further confirmed by scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM) analysis coupled with energy dispersive X-ray spectroscopy (EDX) and cathodoluminescence measurements allowing us to probe the elemental composition at the nanoscale. Perovskite solar cells fabricated from CBD SnO2 and slot-die-coated perovskite show power conversion efficiencies up to 19.2%. Furthermore, mini-modules with an aperture area of 40 cm2 demonstrate efficiencies of 17% (18.1% on active area).
Collapse
Affiliation(s)
- Iwan Zimmermann
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Marion Provost
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Salim Mejaouri
- EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
| | - Marc Al Atem
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Alexandre Blaizot
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | | | - Stéphane Collin
- C2N, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, CNRS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Jean Rousset
- Institut Photovoltaïque d'Île-de-France (IPVF), 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
- EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
| |
Collapse
|
29
|
Du Y, Tian Q, Chang X, Fang J, Gu X, He X, Ren X, Zhao K, Liu SF. Ionic Liquid Treatment for Highest-Efficiency Ambient Printed Stable All-Inorganic CsPbI 3 Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106750. [PMID: 34964993 DOI: 10.1002/adma.202106750] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
All-inorganic cesium lead triiodide (CsPbI3 ) perovskite is well known for its unparalleled stability at high temperatures up to 500 °C and under oxidative chemical stresses. However, upscaling solar cells via ambient printing suffers from imperfect crystal quality and defects caused by uncontrollable crystallization. Here, the incorporation of a low concentration of novel ionic liquid is reported as being promising for managing defects in CsPbI3 films, interfacial energy alignment, and device stability of solar cells fabricated via ambient blade-coating. Both theoretical simulations and experimental measurements reveal that the ionic liquid successfully regulates the perovskite thin-film growth to decrease perovskite grain boundaries, strongly coordinates with the undercoordinated Pb2+ to passivate iodide vacancy defects, aligns the interface to decrease the energy barrier at the electron-transporting layer, and relaxes the lattice strain to promote phase stability. Consequently, ambient printed CsPbI3 solar cells with power conversion efficiency as high as 20.01% under 1 sun illumination (100 mW cm-2 ) and 37.24% under indoor light illumination (1000 lux, 365 µW cm-2 ) are achieved; both are the highest for printed all-inorganic cells for corresponding applications. Furthermore, the bare cells show an impressive long-term ambient stability with only ≈5% PCE degradation after 1000 h aging under ambient conditions.
Collapse
Affiliation(s)
- Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Qingwen Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaoming Chang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaojing Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xilai He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, Zhongshan Road, Dalian, Liaoning, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
30
|
Abstract
The A cation in ABX3 organic-inorganic lead halide perovskites (OLHPs) was conventionally believed to hardly affect their optoelectronic properties. However, more recent developments have unraveled the critical role of the A cation in the regulation of the physicochemical and optoelectronic properties of OLHPs. We review the important breakthroughs enabled by the versatility of the A cation and highlight potential opportunities and unanswered questions related to the A cation in OLHPs.
Collapse
Affiliation(s)
- Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shaun Tan
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yang Yang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
31
|
Mahato S, Ghorai A, Mondal A, Srivastava SK, Modak M, Das S, Ray SK. Atomic-Scale Imaging and Nano-Scale Mapping of Cubic α-CsPbI 3 Perovskite Nanocrystals for Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9711-9723. [PMID: 35133121 DOI: 10.1021/acsami.1c20794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal synthesized cubic α-CsPbI3 perovskite nanocrystals having a smaller lattice constant (a = 6.2315 Å) compared to the standard structure, and nanoscale mapping of their surfaces are reported to achieve superior photovoltaic performance under 45-55% humidity conditions. Atomic scale transmission electron microscopic images have been utilized to probe the precise arrangement of Cs, Pb, and I atoms in a unit cell of α-CsPbI3 NCs, which is well supported by the VESTA structure. Theoretical calculation using density functional theory of our experimental structure reveals the realization of direct band to band transition with a lower band gap, a higher absorption coefficient, and stronger covalent bonding between the Pb and I atoms in the [PbI6]4- octahedral, as compared to reported standard structure. Nanoscale surface mapping using Kelvin probe force microscopy yielding contact potential difference (CPD) and conductive atomic force microscopy for current mapping have been employed on α-CsPbI3 NCs films deposited on different DMSO doped PEDOT:PSS layers. The difference of CPD value under dark and light illumination suggests that the hole injection strongly depends on the interfaces with PEDOT:PSS layer. The carrier transport through grain interiors and grain boundaries in α-CsPbI3 probed by the single-point c-AFM measurements reveal the excellent photosensitivity under the light conditions. Finally, inverted perovskite solar cells, employing α-CsPbI3 NCs film as an absorber layer and PEDOT:PSS layer as a hole transport layer, have been optimized to achieve the highest power conversion efficiency of 10.6%, showing their potential for future earth abundant, low cost, and air stable inverted perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Somnath Mahato
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Arup Ghorai
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Ajoy Mondal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Mantu Modak
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
| | - Shreyasi Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
32
|
SunLi Z, Liu Y, Li S, Ren J, Wu Y, Sun Q, Cui Y, Chen M, Hao Y. 2D Perovsktie Substrate-Assisted CsPbI 3 Film Growth for High-Efficiency Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7417-7427. [PMID: 35077148 DOI: 10.1021/acsami.1c20968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-quality perovskite films are beneficial for fabricating perovskite solar cells (PSCs) with excellent photoelectric performance. The substrate on which the perovskite film grows plays a profound role in improving the crystallization quality of the perovskite film. Here, we proposed a novel method for optimizing CsPbI3 perovskite films, that is, two-dimensional (2D) perovskite substrate-assisted growth (2D-PSAG) method. The prepared PEA2PbI4 2D perovskite with proper wettability and roughness is used as a substrate to fabricate the high-quality CsPbI3 film. Moreover, it is found that PEA cations show a vertical gradient distribution within the whole CsPbI3 film because of their bottom-up self-diffusion. Also, PEA cations induce the moderate distortion of [PbI6]4- octahedron and slight lattice contraction of CsPbI3 by chemically bonding between Pb and N atoms. Surprisingly, the trace amounts of PEA cations lead to a bottom-up gradient phase transition from γ-CsPbI3 to β-CsPbI3. Therefore, the energy-level alignment becomes more matched at the interface of the perovskite layer/hole transport layer (poly3-hexylthiophene, P3HT), which denotes a large improvement of hole transport and extraction in PSCs made with the 2D-PSAG method. As a result, the CsPbI3-based PSCs with P3HT as a hole transport layer exhibit a champion efficiency of 17.13%, while the control device exhibits a PCE of only 14.16%. The PSCs made by the 2D-PSAG method retain above 70% of the initial PCE value after storage of 9 days in air (RH 10-20%), while the control device decomposes completely after 9 days. The improved stability could originate from the steric effects of PEA cations and the high crystallization quality of the mixed-phase CsPbI3 film. Therefore, 2D-PSAG is a novel and promising strategy to develop all-inorganic PSCs with high performance and stability.
Collapse
Affiliation(s)
- Zetong SunLi
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yifan Liu
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiqi Li
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jingkun Ren
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yukun Wu
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qinjun Sun
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanxia Cui
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ming Chen
- College of Physics and Electronics Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yuying Hao
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
33
|
Zhong H, Li W, Huang Y, Cao D, Zhang C, Bao H, Guo Z, Wan L, Zhang X, Zhang X, Li Y, Ren X, Wang X, Eder D, Wang K, Liu SF, Wang S. All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO 2 Electron Transport Film and CsPbI 3. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5183-5193. [PMID: 35073689 DOI: 10.1021/acsami.1c18375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All-inorganic CsPbI3 perovskites have great potential in tandem cells in combination with other photovoltaic devices. However, CsPbI3 perovskite solar cells (PSCs) still face a huge challenge, resulting in a low power conversion efficiency (PCE) relative to organic-inorganic PSCs. In this work, we introduced tetrabutylammonium acetate (TBAAc) as a buffer layer between the SnO2 electron-transport layer (ETL) and CsPbI3 all-inorganic perovskite film interface for the first time. TBAAc not only improved the conductivity of SnO2 ETL but also formed a 1D TBAPbI3 layer between the SnO2 ETL and the 3D CsPbI3 all-inorganic perovskite film, thereby enhancing the stability and passivating the surface defects of the CsPbI3 perovskite to fabricate high-efficiency carbon-counter electrode (CE)-based CsPbI3 solar cells. We fabricated carbon-CE-based hole-transporting layer ( HTL)-free PSCs with an FTO/SnO2/TBAAc/CsPbI3/C structure. The open-circuit voltage (Voc), short circuit current density (Jsc), PCE, and fill factor of the champion CsPbI3 PSCs simultaneously enhanced to 1.08 V, 17.48 mA/cm2, 12.79, and 67.8%, respectively. This PCE is currently one of the high efficiencies reported for the above planar-structured carbon-CE-based CsPbI3 PSCs to date. Moreover, the optimized device exhibits excellent stability, which retained over 83% of its initial PCE after 350 h. This work provides a facile way of simultaneous optimization of the SnO2 ETL and the CsPbI3 perovskite layer to fabricate stable and high-efficiency carbon-CE-based CsPbI3 PSCs.
Collapse
Affiliation(s)
- Hang Zhong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Wenbo Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yin Huang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Duoling Cao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Congqiang Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Huaxi Bao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Li Wan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xu Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuebin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaoming Ren
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, Vienna 1060, Austria
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shimin Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
34
|
Chen Y, Liu X, Zhao Y. Organic Matrix Assisted Low‐temperature Crystallization of Black Phase Inorganic Perovskites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuetian Chen
- School of Environmental Science and Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaomin Liu
- School of Environmental Science and Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Yixin Zhao
- School of Environmental Science and Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200240 China
| |
Collapse
|
35
|
Alberti A, Smecca E, Valastro S, Deretzis I, Mannino G, Bongiorno C, Fisicaro G, La Magna A. Perovskite Solar Cells from the viewpoint of innovation and sustainability. Phys Chem Chem Phys 2022; 24:21549-21566. [DOI: 10.1039/d2cp02891c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovation is seriously investing around the themes of climate change and sustainability. Commercial Photovoltaic (PV) has egregiously contributed to getting to 22.1% share of the gross final energy consumption in...
Collapse
|
36
|
Zhao XH, Wei XN, Tang TY, Xie Q, Gao LK, Lu LM, Hu DY, Li L, Tang YL. Theoretical prediction of the structural, electronic and optical properties of vacancy-ordered double perovskites Tl2TiX6 (X = Cl, Br, I). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhang X, Huang H, Ling X, Sun J, Jiang X, Wang Y, Xue D, Huang L, Chi L, Yuan J, Ma W. Homojunction Perovskite Quantum Dot Solar Cells with over 1 µm-Thick Photoactive Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105977. [PMID: 34695259 DOI: 10.1002/adma.202105977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/19/2021] [Indexed: 05/08/2023]
Abstract
The solution-processed solar cells based on colloidal quantum dots (QDs) reported so far generally suffer from poor thickness tolerance and it is difficult for them to be compatible with large-scale solution printing technology. However, the recently emerged perovskite QDs, with unique high defect tolerance, are particularly well-suited for efficient photovoltaics. Herein, efficient CsPbI3 perovskite QD solar cells are demonstrated first with over 1 µm-thick active layer by developing an internal P/N homojunction. Specifically, an organic dopant 2,2'-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6TCNNQ) is introduced into CsPbI3 QD arrays to prepare different carrier-type QD arrays. The detailed characterizations reveal successful charge-transfer doping of QDs and carrier-type transformation from n-type to p-type. Subsequently, the P/N homojunction perovskite QD solar cell is assembled using different carrier-type QDs, delivering an enhanced power conversion efficiency of 15.29%. Most importantly, this P/N homojunction strategy realizes remarkable thickness tolerance of QD solar cells, showing a record high efficiency of 12.28% for a 1.2 µm-thick QD active-layer and demonstrating great potential for the future printing manufacturing of QDs solar cells.
Collapse
Affiliation(s)
- Xuliang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Hehe Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Xufeng Ling
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianguo Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingyu Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Di Xue
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
38
|
Ren W, Liu Y, Wu Y, Sun Q, Cui Y, Hao Y. Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Phys Chem Chem Phys 2021; 23:23818-23826. [PMID: 34647116 DOI: 10.1039/d1cp03645a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, although the power conversion efficiency (PCE) of thermally stable all-inorganic CsPbI3 perovskite solar cells (PSCs) had shown a great progress, the most reported CsPbI3 PSCs suffered from the large open-circuit voltage (Voc) loss, which is related to severe nonradiative recombination and a mismatch in energy level at the transport layer/perovskite interface. In this work, europium acetate (EuAc3) as a multifunction interface material is chosen to modify the TiO2/perovskite interface, the crystal quality of CsPbI3 perovskite films is improved, and both bulk and interfacial defects are reduced effectively. Meanwhile, the energy levels arrangement between TiO2 and CsPbI3 perovskites is also optimized, corresponding the raised built-in electric field afford a strength force to accelerate the transport and extraction of charge carriers from CsPbI3 perovskites to TiO2. As a result, the performance of CsPbI3 PSCs is largely enhanced with the PCE of 16.76%. When an Ag electrode was replaced by Au, the PCE further improves to 17.92%, which is the highest for CsPbI3 PSCs with P3HT as the HTL ever reported. Besides, the CsPbI3 PSC with the EuAc3 modification layer maintains 84% of the initial PCE under continuous UV irradiation for 250 h in a nitrogen filled glovebox, being obviously higher than the control devices with only 40% of the initial PCE after UV irradiation for 100 h in the same environment.
Collapse
Affiliation(s)
- Weihua Ren
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| | - Yifan Liu
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| | - Yukun Wu
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| | - Qinjun Sun
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| | - Yanxia Cui
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| | - Yuying Hao
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030021, China.
| |
Collapse
|
39
|
Chen Y, Liu X, Zhao Y. Organic Matrix Assisted Low-temperature Crystallization of Black Phase Inorganic Perovskites. Angew Chem Int Ed Engl 2021; 61:e202110603. [PMID: 34491611 DOI: 10.1002/anie.202110603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Indexed: 11/10/2022]
Abstract
All-inorganic perovskites have attracted increasing attention for applications in perovskite solar cells (PSCs) and optoelectronics, including light-emitting devices (LEDs). Cesium lead halide perovskites with tunable I/Br ratios and a band gap aligning with the sunlight region are promising candidates for PSCs. Although impressive progress has been made to improve device efficiency from the initial 2.9 % with low phase stability to over 20 % with high stability, there are still questions regarding the perovskite crystal growth mechanism, especially at low temperatures. In this Minireview, we summarize recent developments in using an organic matrix, including the addition and use of organic ions, polymers, and solvent molecules, for the crystallization of black phase inorganic perovskites at temperatures lower than the phase transition point. We also discuss possible mechanisms for this low-temperature crystallization and their effect on the stability of black phase perovskites. We conclude with an outlook and perspective for further fabrication of large-scale inorganic perovskites for optoelectronic applications.
Collapse
Affiliation(s)
- Yuetian Chen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200240, China
| |
Collapse
|
40
|
Liu C, Igci C, Yang Y, Syzgantseva OA, Syzgantseva MA, Rakstys K, Kanda H, Shibayama N, Ding B, Zhang X, Jankauskas V, Ding Y, Dai S, Dyson PJ, Nazeeruddin MK. Dopant-Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2021; 60:20489-20497. [PMID: 34223674 PMCID: PMC8456866 DOI: 10.1002/anie.202107774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The emerging CsPbI3 perovskites are highly efficient and thermally stable materials for wide-band gap perovskite solar cells (PSCs), but the doped hole transport materials (HTMs) accelerate the undesirable phase transition of CsPbI3 in ambient. Herein, a dopant-free D-π-A type HTM named CI-TTIN-2F has been developed which overcomes this problem. The suitable optoelectronic properties and energy-level alignment endow CI-TTIN-2F with excellent charge collection properties. Moreover, CI-TTIN-2F provides multisite defect-healing effects on the defective sites of CsPbI3 surface. Inorganic CsPbI3 PSCs with CI-TTIN-2F HTM feature high efficiencies up to 15.9 %, along with 86 % efficiency retention after 1000 h under ambient conditions. Inorganic perovskite solar modules were also fabricated that exhibiting an efficiency of 11.0 % with a record area of 27 cm2 . This work confirms that using efficient dopant-free HTMs is an attractive strategy to stabilize inorganic PSCs for their future scale-up.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing102206P. R. China
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Cansu Igci
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Yi Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing102206P. R. China
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | | | | | - Kasparas Rakstys
- Department of Organic ChemistryKaunas University of TechnologyKaunas50254Lithuania
| | - Hiroyuki Kanda
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Naoyuki Shibayama
- Department of Biomedical EngineeringToin University of Yokohama1614 Kurogane, AobaYokohamaJapan
| | - Bin Ding
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Xianfu Zhang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing102206P. R. China
| | - Vygintas Jankauskas
- Department of Organic ChemistryKaunas University of TechnologyKaunas50254Lithuania
- Institute of Chemical PhysicsVilnius UniversitySauletekio al. 3Vilnius10257Lithuania
| | - Yong Ding
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing102206P. R. China
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Songyuan Dai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing102206P. R. China
| | - Paul J. Dyson
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional MaterialsInstitute of Chemical Sciences and EngineeringEPFL VALAIS1951SionSwitzerland
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong
| |
Collapse
|
41
|
Liu K, Fong PW, Liang Q, Li G. Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li H, Hao X, Chang B, Li Z, Wang L, Pan L, Chen X, Yin L. Stiffening the Pb-X Framework through a π-Conjugated Small-Molecule Cross-Linker for High-Performance Inorganic CsPbI 2Br Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40489-40501. [PMID: 34405676 DOI: 10.1021/acsami.1c06533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic CsPbI2Br perovskites have witnessed incredible advances as a promising representative for translucent and tandem solar cells, but unfortunately, they are still plagued by serious energy losses and undesired phase instability. Herein, a new type of π-conjugated small molecule of 4-guanidinobenzoic-acid-hydrochloride (4-GBACl) is demonstrated to effectively cross-link the Pb-X framework of perovskites. The strong coordination between 4-GBACl and the [PbX6]4- octahedron of perovskites effectively stiffens the Pb-X framework to suppress the ion migration, thus stabilizing the perovskite phase structure against light and thermal conditions. Apart from the physical barrier for phase instability resulting from the hydrophobic benzene ring at grain boundaries (GBs), guanidinium cations and -COOH and Cl- groups can simultaneously afford the passivation of positively and negatively charged defects at the GBs and surface, including undercoordinated halide species and undercoordinated Pb2+ ions, thereby effectively inhibiting the charge trapping/recombination centers. Two-dimensional confocal-fluorescence mapping images provide a visualized sight into the significantly suppressed nonradiative recombination and the prolonged carrier lifetime. It is suggested that the 4-GBACl additive plays multiple roles in grain cross-linking to regulate crystallization, distinctly reducing the trap-state density, ion migration inhibition, and moisture barrier in CsPbI2Br films. Consequently, the 4-GBACl-treated device exhibits a champion power conversion efficiency (PCE) of 15.59% accompanied with a considerably improved Voc of 1.28 V and maintains 88% of the initial PCE value after 1200 h aging under 20% relative humidity.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Xiaotao Hao
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, P. R.China
| | - Bohong Chang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Zihao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Lian Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Lu Pan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R.China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| |
Collapse
|
43
|
Liu C, Igci C, Yang Y, Syzgantseva OA, Syzgantseva MA, Rakstys K, Kanda H, Shibayama N, Ding B, Zhang X, Jankauskas V, Ding Y, Dai S, Dyson PJ, Nazeeruddin MK. Dopant‐Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 P. R. China
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Cansu Igci
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Yi Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 P. R. China
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Olga A. Syzgantseva
- Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Kasparas Rakstys
- Department of Organic Chemistry Kaunas University of Technology Kaunas 50254 Lithuania
| | - Hiroyuki Kanda
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Naoyuki Shibayama
- Department of Biomedical Engineering Toin University of Yokohama 1614 Kurogane, Aoba Yokohama Japan
| | - Bin Ding
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Xianfu Zhang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 P. R. China
| | - Vygintas Jankauskas
- Department of Organic Chemistry Kaunas University of Technology Kaunas 50254 Lithuania
- Institute of Chemical Physics Vilnius University Sauletekio al. 3 Vilnius 10257 Lithuania
| | - Yong Ding
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 P. R. China
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Songyuan Dai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 P. R. China
| | - Paul J. Dyson
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering EPFL VALAIS 1951 Sion Switzerland
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
| |
Collapse
|
44
|
Pintor Monroy MI, Goldberg I, Elkhouly K, Georgitzikis E, Clinckemalie L, Croes G, Annavarapu N, Qiu W, Debroye E, Kuang Y, Roeffaers MBJ, Hofkens J, Gehlhaar R, Genoe J. All-Evaporated, All-Inorganic CsPbI 3 Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications. ACS APPLIED ELECTRONIC MATERIALS 2021; 3:3023-3033. [PMID: 34337416 PMCID: PMC8320527 DOI: 10.1021/acsaelm.1c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Following the rapid increase of organic metal halide perovskites toward commercial application in thin-film solar cells, inorganic alternatives attracted great interest with their potential of longer device lifetime due to the stability improvement under increased temperatures and moisture ingress. Among them, cesium lead iodide (CsPbI3) has gained significant attention due to similar electronic and optical properties to methylammonium lead iodide (MAPbI3), with a band gap of 1.7 eV, high absorption coefficient, and large diffusion length, while also offering the advantage of being completely inorganic, providing a higher thermal stability and preventing material degradation. On a device level, however, it seems also essential to replace organic transport layers by inorganic counterparts to further prevent degradation. In addition, devices are mostly fabricated by spin coating, limiting their reproducibility and scalability; in this case, exploring all-evaporated devices allows us to improve the quality of the layers and to increase their reproducibility. In this work, we focus on the deposition of CsPbI3 by CsI and PbI2 co-evaporation. We fabricate devices with an all-inorganic, all-evaporated structure, employing NiO and TiO2 as transport layers, and evaluate these devices for both photodetector and solar cell applications. As a photodetector, low leakage current, high external quantum efficiency (EQE) and detectivity, and fast rise and decay times were obtained, while as a solar cell, acceptable efficiencies were achieved. These all-inorganic, all-evaporated devices represent one step forward toward higher stability and reproducibility while enabling large area compatibility and easier integration with other circuitry and, in future, the possible commercialization of perovskite-based technology.
Collapse
Affiliation(s)
- Maria Isabel Pintor Monroy
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| | - Iakov Goldberg
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| | - Karim Elkhouly
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| | | | - Lotte Clinckemalie
- Department of Chemistry, Faculty of Sciences,
KU Leuven, Celestijnenlaan 200F, 3001 Leuven,
Belgium
| | - Guillaume Croes
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| | - Nirav Annavarapu
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| | - Weiming Qiu
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Chemistry, Faculty of Sciences,
KU Leuven, Celestijnenlaan 200F, 3001 Leuven,
Belgium
| | - Elke Debroye
- Department of Chemistry, Faculty of Sciences,
KU Leuven, Celestijnenlaan 200F, 3001 Leuven,
Belgium
| | - Yinghuan Kuang
- imec, Partner in Solliance and
Energyville, Thin Film PV, Thor Park 8320, 3600 Genk,
Belgium
| | | | - Johan Hofkens
- Department of Chemistry, Faculty of Sciences,
KU Leuven, Celestijnenlaan 200F, 3001 Leuven,
Belgium
- Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Jan Genoe
- imec, Kapeldreef 75, 3001
Leuven, Belgium
- Department of Electrical Engineering (ESAT),
KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
| |
Collapse
|
45
|
Yu B, Shi J, Tan S, Cui Y, Zhao W, Wu H, Luo Y, Li D, Meng Q. Efficient (>20 %) and Stable All‐Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bingcheng Yu
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiangjian Shi
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
| | - Shan Tan
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqi Cui
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenyan Zhao
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
| | - Huijue Wu
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
| | - Yanhong Luo
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Dongmei Li
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Qingbo Meng
- Key Laboratory for Renewable Energy Chinese Academy of Sciences (CAS) Beijing Key Laboratory for New Energy Materials and Devices Beijing National Laboratory for Condensed Matter Physics Institute of Physics Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
46
|
Yu B, Shi J, Tan S, Cui Y, Zhao W, Wu H, Luo Y, Li D, Meng Q. Efficient (>20 %) and Stable All-Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts. Angew Chem Int Ed Engl 2021; 60:13436-13443. [PMID: 33792125 DOI: 10.1002/anie.202102466] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Indexed: 11/08/2022]
Abstract
Besides widely used surface passivation, engineering the film crystallization is an important and more fundamental route to improve the performance of all-inorganic perovskite solar cells. Herein, we have developed a urea-ammonium thiocyanate (UAT) molten salt modification strategy to fully release and exploit coordination activities of SCN- to deposit high-quality CsPbI3 film for efficient and stable all-inorganic solar cells. The UAT is derived by the hydrogen bond interactions between urea and NH4 + from NH4 SCN. With the UAT, the crystal quality of the CsPbI3 film has been significantly improved and a long single-exponential charge recombination lifetime of over 30 ns has been achieved. With these benefits, the cell efficiency has been promoted to over 20 % (steady-state efficiency of 19.2 %) with excellent operational stability over 1000 h. These results demonstrate a promising development route of the CsPbI3 related photoelectric devices.
Collapse
Affiliation(s)
- Bingcheng Yu
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangjian Shi
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China
| | - Shan Tan
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Cui
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Zhao
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China
| | - Huijue Wu
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China
| | - Yanhong Luo
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Dongmei Li
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Qingbo Meng
- Key Laboratory for Renewable Energy, Chinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
47
|
Du J, Duan J, Yang X, Duan Y, Zhou Q, Tang Q. p-Type Charge Transfer Doping of Graphene Oxide with (NiCo) 1-y Fe y O x for Air-Stable, All-Inorganic CsPbIBr 2 Perovskite Solar Cells. Angew Chem Int Ed Engl 2021; 60:10608-10613. [PMID: 33599353 DOI: 10.1002/anie.202016703] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Indexed: 12/21/2022]
Abstract
The precise regulation of interfacial charge distribution highly determines the power conversion efficiency of perovskite solar cells (PSCs). Herein, inorganic (NiCo)1-y Fey Ox nanoparticle decorated graphene oxide (GO) is successfully demonstrated as a hole booster for all-inorganic CsPbIBr2 PSC free of precious metal electrode. Arising from the spontaneous electron transfer induced p-type doping of GO from edged oxygen-containing functional groups to (NiCo)1-y Fey Ox , the best all-inorganic CsPbIBr2 PSC achieves an efficiency of 10.95 % under one standard sun owing to the eliminated paradox between charge extraction and charge localization in GO surface. Furthermore, the champion device exhibits an excellent long-term stability at 10 % relative humidity without encapsulation over 70 days because of the suppressed ions migration.
Collapse
Affiliation(s)
- Jian Du
- College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Jialong Duan
- College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiya Yang
- College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Yanyan Duan
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Material (SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Quanzhu Zhou
- BTR New Material Group Co., Ltd., Shenzhen, China
| | - Qunwei Tang
- College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
48
|
Wang J, Li J, Zhou Y, Yu C, Hua Y, Yu Y, Li R, Lin X, Chen R, Wu H, Xia H, Wang HL. Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. J Am Chem Soc 2021; 143:7759-7768. [PMID: 33904710 DOI: 10.1021/jacs.1c02118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-work-function (WF) metals (including silver (Ag), aluminum (Al), and copper (Cu)) used as external cathodes in inverted perovskite solar cells (PSCs) encounter oxidation caused by air exposure and halogen-diffusion-induced corrosion, which threaten the long-term stability of the device. The cathode interlayer (CIL) has shown promise in reducing the metal WF and thus boosting the device power conversion efficiency (PCE). However, it remains a challenge for current CIL materials to enable high-WF metals (e.g., Au) to be used as cathodes to achieve PSCs with a superior PCE and long-term stability. Here, we use a series of synthesized (carbolong-derived) organometallic complexes as CILs to tune the electrode WF in inverted PSCs. Density functional theory calculations and surface characterizations show that the organometallic complexes that contain anions and cations are prone to form anion-cation dipoles on the metal surface, hence drastically reducing the metal's WF. Photovoltaic devices based on a Ag cathode, which was modified with these organometallic complexes, received a boosted PCE up to 21.29% and a remarkable fill factor that reached 83.52%, which are attributed to the dipole-enhanced carrier transport. The environmental stability of PSCs was further improved after employing Au as a cathode with these organometallic complexes, and the modified devices exhibited no efficiency loss after 4080 h storage measurements.
Collapse
Affiliation(s)
- Jiantao Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China.,Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Jinhua Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Zhongshan West Road 135, Guangzhou 510275, China
| | - Chengzhuo Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yuhui Hua
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Yinye Yu
- School of Materials Science and Engineering, Sun Yat-sen University, Zhongshan West Road 135, Guangzhou 510275, China
| | - Ruxue Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Xiaosong Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Haiping Xia
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Xueyuan Avenue 1088, Shenzhen 518055, China
| |
Collapse
|
49
|
Du J, Duan J, Yang X, Duan Y, Zhou Q, Tang Q. p
‐Type Charge Transfer Doping of Graphene Oxide with (NiCo)
1−
y
Fe
y
O
x
for Air‐Stable, All‐Inorganic CsPbIBr
2
Perovskite Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jian Du
- College of Information Science and Technology Jinan University Guangzhou 510632 P. R. China
| | - Jialong Duan
- College of Information Science and Technology Jinan University Guangzhou 510632 P. R. China
| | - Xiya Yang
- College of Information Science and Technology Jinan University Guangzhou 510632 P. R. China
| | - Yanyan Duan
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Material (SCICDLCEM) School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | | | - Qunwei Tang
- College of Information Science and Technology Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
50
|
Xu P, Liu J, Huang J, Yu F, Li CH, Zheng YX. Interfacial engineering of CuSCN-based perovskite solar cells via PMMA interlayer toward enhanced efficiency and stability. NEW J CHEM 2021. [DOI: 10.1039/d1nj02454j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report a new interfacial engineering strategy to improve the photovoltaic performance of CuSCN-based perovskite solar cells.
Collapse
Affiliation(s)
- Pan Xu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jian Liu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jiahao Huang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Fan Yu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|