1
|
Lee YJ, Kim YH, Lee EK. PEDOT:PSS-Based Prolonged Long-Term Decay Synaptic OECT with Proton-Permeable Material, Nafion. Macromol Rapid Commun 2024; 45:e2400165. [PMID: 38924243 DOI: 10.1002/marc.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a conductive polymer, has gained popularity as the channel layer in organic electrochemical transistors (OECTs) due to its high conductivity and straightforward processing. However, difficulties arise in controlling its conductivity through gate voltage, presenting a challenge. To address this issue, aromatic amidine base, diazabicyclo[4.3.0]non-5-ene (DBN), is used to stabilize the doping state of the PEDOT chain through a reliable chemical de-doping process. Furthermore, the addition of the proton-penetrable material Nafion to the PEDOT:PSS channel layer induces phase separation between the substances. By utilizing a solution containing both PEDOT:PSS and Nafion as the channel layer of OECTs, the efficiency of ion movement into the channel from the electrolyte is enhanced, resulting in improved OECT performance. The inclusion of Nafion in the OECTs' channel layer modifies ion movement dynamics, allowing for the adjustment of synaptic properties such as pulse-paired facilitation, memory level, short-term plasticity, and long-term plasticity. This research aims to introduce new possibilities in the field of neuromorphic computing and contribute to biomimetic technology through the enhancement of electronic component performance.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yong Hyun Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
2
|
Kim Y, Kimpel J, Giovannitti A, Müller C. Small signal analysis for the characterization of organic electrochemical transistors. Nat Commun 2024; 15:7606. [PMID: 39218920 PMCID: PMC11366767 DOI: 10.1038/s41467-024-51883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
A method for the characterization of organic electrochemical transistors (OECTs) based on small signal analysis is presented that allows to determine the electronic mobility as a function of continuous gate potential using a standard two-channel AC potentiostat. Vector analysis in the frequency domain allows to exclude parasitic components in both ionic and electronic conduction regardless of film thickness, thus resulting in a standard deviation as low as 4%. Besides the electronic mobility, small signal analysis of OECTs also provides information about a wide range of other parameters including the conductance, transconductance, conductivity and volumetric capacitance through a single measurement. General applicability of small signal analysis is demonstrated by characterizing devices based on n-type, p-type, and ambipolar materials operating in accumulation or depletion modes. Accurate benchmarking of organic mixed ionic-electronic conductors through small signal analysis can be anticipated to guide both materials development and the design of bioelectronic devices.
Collapse
Affiliation(s)
- Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Alexander Giovannitti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
3
|
Li N, Wang Y, Zhao W, Chen Z, Liu P, Zhou W, Jiang F, Liu C, Xu J. Effect of Aggregation Structure on Capacitive Energy Storage in Conducting Polymer Films. Chemphyschem 2024; 25:e202400103. [PMID: 38606697 DOI: 10.1002/cphc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Conducting polymers (CPs), a significant class of electrochemical capacitor electrode materials, exhibit exceptional capacitive energy storage performance in aqueous electrolytes. Current research primarily concentrates on enhancing the electrical conductivity and capacitive performance of CPs via molecular design and structural control. However, the absence of a comprehensive understanding of the impact of molecular chain spatial order on ion/electron transport and capacitive performance impedes the development and optimization of advanced electrode materials. Here, a solvent treatment strategy is employed to modulate the molecular chain spatial order of PEDOT : PSS films. The results of electrochemical performance tests and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) show that Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT : PSS) films with both face-on and edge-on orientations exhibit exceptional electronic conductivity and ion diffusion efficiency, with capacitive performance 1.33 times higher than that of PEDOT : PSS films with only edge-on orientation. Consequently, molecular chain orientations conducive to charge transport not only enhance inter-chain coupling, but also effectively reduce ion transport resistance, enabling efficient capacitive energy storage. This research provides novel insights for the design and development of higher performance CPs-based electrode materials.
Collapse
Affiliation(s)
- Na Li
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- School of Chemistry and Chemical Engineering, department of chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Yeye Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wendi Zhao
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- School of Chemistry and Chemical Engineering, department of chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Zhihong Chen
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- School of Chemistry and Chemical Engineering, department of chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Peipei Liu
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Fengxing Jiang
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Congcong Liu
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII) to the Jiangxi Province Key Laboratory of Flexible Electronics (2024SSY03021), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
4
|
Zhao C, Yang J, Ma W. Transient Response and Ionic Dynamics in Organic Electrochemical Transistors. NANO-MICRO LETTERS 2024; 16:233. [PMID: 38954272 PMCID: PMC11219702 DOI: 10.1007/s40820-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jintao Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
5
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
6
|
Zhang Z, Li P, Xiong M, Zhang L, Chen J, Lei X, Pan X, Wang X, Deng XY, Shen W, Mei Z, Liu KK, Liu G, Huang Z, Lv S, Shao Y, Lei T. Continuous production of ultratough semiconducting polymer fibers with high electronic performance. SCIENCE ADVANCES 2024; 10:eadk0647. [PMID: 38569023 PMCID: PMC10990280 DOI: 10.1126/sciadv.adk0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.
Collapse
Affiliation(s)
- Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Miao Xiong
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Liang Zhang
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Weiyu Shen
- College of Engineering, Peking University, Beijing 100871, China
| | - Zi Mei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kai-Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhen Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shixian Lv
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanlong Shao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Paleti SHK, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem Soc Rev 2024; 53:1702-1729. [PMID: 38265833 PMCID: PMC10876084 DOI: 10.1039/d3cs00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/25/2024]
Abstract
Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties. In addition, different methods for the mechanical characterization of thin films and bulk materials such as fibers are summarized. Then, the review discusses how chemical and electrochemical doping alter the mechanical properties in terms of stiffness and ductility. Finally, the mechanical response of (doped) conjugated polymers is discussed in the context of (1) organic photovoltaics, representing thin-film devices with a relatively low charge-carrier density, (2) organic thermoelectrics, where chemical doping is used to realize thin films or bulk materials with a high doping level, and (3) organic electrochemical transistors, where electrochemical doping allows high charge-carrier densities to be reached, albeit accompanied by significant swelling. In the future, chemical and electrochemical doping may not only allow modulation and optimization of the electrical and electrochemical behavior of conjugated polymers, but also facilitate the design of materials with a tunable mechanical response.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
8
|
Huang Z, Li P, Lei Y, Deng XY, Chen YN, Tian S, Pan X, Lei X, Song C, Zheng Y, Wang JY, Zhang Z, Lei T. Azonia-Naphthalene: A Cationic Hydrophilic Building Block for Stable N-Type Organic Mixed Ionic-Electronic Conductors. Angew Chem Int Ed Engl 2024; 63:e202313260. [PMID: 37938169 DOI: 10.1002/anie.202313260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Conjugated polymers that can efficiently transport both ionic and electronic charges have broad applications in next-generation optoelectronic, bioelectronic, and energy storage devices. To date, almost all the conjugated polymers have hydrophobic backbones, which impedes efficient ion diffusion/transport in aqueous media. Here, we design and synthesize a novel hydrophilic polymer building block, 4a-azonia-naphthalene (AN), drawing inspiration from biological systems. Because of the strong electron-withdrawing ability of AN, the AN-based polymers show typical n-type charge transport behaviors. We find that cationic aromatics exhibit strong cation-π interactions, leading to smaller π-π stacking distance, interesting ion diffusion behavior, and good morphology stability. Additionally, AN enhances the hydrophilicity and ionic-electronic coupling of the polymer, which can help to improve ion diffusion/injection speed, and operational stability of organic electrochemical transistors (OECTs). The integration of cationic building blocks will undoubtedly enrich the material library for high-performance n-type conjugated polymers.
Collapse
Affiliation(s)
- Zhen Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuqiu Lei
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Nan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuangyan Tian
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Cheng Song
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yuting Zheng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Huang M, Lee S, Jo IY, Park H, Shim BS, Yoon MH. One-step wet-spinning of conducting polymer and cellulose nanofiber composites for fiber-type organic electrochemical transistors. Carbohydr Polym 2024; 324:121559. [PMID: 37985121 DOI: 10.1016/j.carbpol.2023.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Considering that textile-based sensors are suitable for monitoring/communicating human vital health information, organic electrochemical transistors (OECTs) are considered as an efficient device platform for augmenting the capabilities and effectiveness of smart textile applications in diverse areas. Herein, we investigated the fabrication process and properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-TEMPO-oxidized cellulose nanofiber (CNF) composites as active channel materials for fiber-type OECTs. Utilizing highly crystalline, mechanically rigid, and chemically robust CNFs directly extracted from biomass-derived tunicate, we fabricated PEDOT:PSS-CNF composite fibers with varying CNF portions (0, 5, 10, 20, and 30 %) through a simple one-step wet-spinning process using sulfuric acid-based coagulation media. The addition of CNFs significantly improved the mechanical strength of the composite fibers with Young's modulus up to 13.4 ± 2.1 GPa. Moreover, the fiber-type OECT devices based on the PEDOT:PSS(80 %)-CNF(20 %) composite showed highest carrier mobility (4.0 ± 0.2 cm2 V-1 s-1) with the marginal trade-off in volumetric capacitance (57.1 ± 3.7 F/cm3), resulting in the decent benchmark performance parameter (μ·C*) of 229 F cm-1 V-1 s-1. Our findings suggest that the synergistic interaction between PEDOT:PSS and CNFs leads to a significant improvement in fiber properties, and the resulting composite fibers hold great potentials for use in eco-friendly wearable/textile electronics.
Collapse
Affiliation(s)
- Minhu Huang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyunbeen Park
- Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Bong Sup Shim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea; Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
10
|
Tropp J, Collins CP, Xie X, Daso RE, Mehta AS, Patel SP, Reddy MM, Levin SE, Sun C, Rivnay J. Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306691. [PMID: 37680065 PMCID: PMC11294187 DOI: 10.1002/adma.202306691] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.
Collapse
Affiliation(s)
- Joshua Tropp
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Caralyn P. Collins
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Xinran Xie
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Rachel E. Daso
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Shiv P. Patel
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Manideep M. Reddy
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| | - Sophia E. Levin
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering Northwestern University, Evanston, IL 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
11
|
Duan Y, Rahmanudin A, Chen S, Kim N, Mohammadi M, Tybrandt K, Jonsson MP. Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303949. [PMID: 37528506 DOI: 10.1002/adma.202303949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Indexed: 08/03/2023]
Abstract
A wide range of nanophotonic applications rely on polarization-dependent plasmonic resonances, which usually requires metallic nanostructures that have anisotropic shape. This work demonstrates polarization-dependent plasmonic resonances instead by breaking symmetry via material permittivity. The study shows that molecular alignment of a conducting polymer can lead to a material with polarization-dependent plasma frequency and corresponding in-plane hyperbolic permittivity region. This result is not expected based only on anisotropic charge mobility but implies that also the effective mass of the charge carriers becomes anisotropic upon polymer alignment. This unique feature is used to demonstrate circularly symmetric nanoantennas that provide different plasmonic resonances parallel and perpendicular to the alignment direction. The nanoantennas are further tuneable via the redox state of the polymer. Importantly, polymer alignment could blueshift the plasma wavelength and resonances by several hundreds of nanometers, forming a novel approach toward reaching the ultimate goal of redox-tunable conducting polymer nanoantennas for visible light.
Collapse
Affiliation(s)
- Yulong Duan
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Shangzhi Chen
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE-601 74, Sweden
| |
Collapse
|
12
|
Alarcon-Espejo P, Sarabia-Riquelme R, Matrone GM, Shahi M, Mahmoudi S, Rupasinghe GS, Le VN, Mantica AM, Qian D, Balk TJ, Rivnay J, Weisenberger M, Paterson AF. High-Hole-Mobility Fiber Organic Electrochemical Transistors for Next-Generation Adaptive Neuromorphic Bio-Hybrid Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305371. [PMID: 37824715 DOI: 10.1002/adma.202305371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Indexed: 10/14/2023]
Abstract
The latest developments in fiber design and materials science are paving the way for fibers to evolve from parts in passive components to functional parts in active fabrics. Designing conformable, organic electrochemical transistor (OECT) structures using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) fibers has excellent potential for low-cost wearable bioelectronics, bio-hybrid devices, and adaptive neuromorphic technologies. However, to achieve high-performance, stable devices from PEDOT:PSS fibers, approaches are required to form electrodes on fibers with small diameters and poor wettability, that leads to irregular coatings. Additionally, PEDOT:PSS-fiber fabrication needs to move away from small batch processing to roll-to-roll or continuous processing. Here, it is shown that synergistic effects from a superior electrode/organic interface, and exceptional fiber alignment from continuous processing, enable PEDOT:PSS fiber-OECTs with stable contacts, high µC* product (1570.5 F cm-1 V-1 s-1 ), and high hole mobility over 45 cm2 V-1 s-1 . Fiber-electrochemical neuromorphic organic devices (fiber-ENODes) are developed to demonstrate that the high mobility fibers are promising building blocks for future bio-hybrid technologies. The fiber-ENODes demonstrate synaptic weight update in response to dopamine, as well as a form factor closely matching the neuronal axon terminal.
Collapse
Affiliation(s)
- Paula Alarcon-Espejo
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Ruben Sarabia-Riquelme
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Maryam Shahi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Siamak Mahmoudi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Gehan S Rupasinghe
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Vianna N Le
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Antonio M Mantica
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Dali Qian
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - T John Balk
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew Weisenberger
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Alexandra F Paterson
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
13
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304390. [PMID: 38528843 PMCID: PMC10962556 DOI: 10.1002/ange.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 03/27/2024]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1.
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
14
|
Halaksa R, Kim JH, Thorley KJ, Gilhooly‐Finn PA, Ahn H, Savva A, Yoon M, Nielsen CB. The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors. Angew Chem Int Ed Engl 2023; 62:e202304390. [PMID: 37204070 PMCID: PMC10962546 DOI: 10.1002/anie.202304390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V-1 cm-1 s-1 .
Collapse
Affiliation(s)
- Roman Halaksa
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Ji Hwan Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Karl J. Thorley
- Center for Applied Energy ResearchUniversity of KentuckyLexingtonKY40511USA
| | | | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECHPohang37673Republic of Korea
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Christian B. Nielsen
- Department of ChemistryQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
15
|
Wu R, Paulsen BD, Ma Q, McCulloch I, Rivnay J. Quantitative Composition and Mesoscale Ion Distribution in p-Type Organic Mixed Ionic-Electronic Conductors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326843 DOI: 10.1021/acsami.3c04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the ionic composition and distribution in organic mixed ionic-electronic conductors (OMIECs) is crucial for understanding their structure-property relationships. Despite this, direct measurements of OMIEC ionic composition and distribution are not common. In this work, we investigated the ionic composition and mesoscopic structure of three typical p-type OMIEC materials: an ethylene glycol-treated crosslinked OMIEC with a large excess fixed anionic charge (EG/GOPS-PEDOT:PSS), an acid-treated OMIEC with a tunable fixed anionic charge (crys-PEDOT:PSS), and a single-component OMIEC without any fixed anionic charge (pg2T-TT). A combination of X-ray fluorescence (XRF) and X-ray photoelectron spectroscopies, gravimetry, coulometry, and grazing incidence small-angle X-ray scattering (GISAXS) techniques was employed to characterize these OMIECs following electrolyte exposure and electrochemical cycling. In particular, XRF provided quantitative ion-to-monomer compositions for these OMIECs from passive ion uptake following aqueous electrolyte exposure and potential-driven ion uptake/expulsion following electrochemical doping and dedoping. Single-ion (cation) transport in EG/GOPS-PEDOT:PSS due to Donnan exclusion was directly confirmed, while significant fixed anion concentrations in crys-PEDOT:PSS doping and dedoping were shown to occur through mixed anion and cation transport. Controlling the fixed anionic (PSS-) charge density in crys-PEDOT:PSS mapped the strength of Donnan exclusion in OMIEC systems following a Donnan-Gibbs model. Anion transport dominated pg2T-TT doping and dedoping, but a surprising degree of anionic charge trapping (∼1020 cm-3) was observed. GISAXS revealed minimal ion segregation both between PEDOT- and PSS-rich domains in EG/GOPS-PEDOT:PSS and between amorphous and semicrystalline domains in pg2T-TT but showed significant ion segregation in crys-PEDOT:PSS at length scales of tens of nm, ascribed to inter-nanofibril void space. These results bring new clarity to the ionic composition and distribution of OMIECs which are crucial for accurately connecting the structure and properties of these materials.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
16
|
Duan J, Zhu G, Chen J, Zhang C, Zhu X, Liao H, Li Z, Hu H, McCulloch I, Nielsen CB, Yue W. Highly Efficient Mixed Conduction in a Fused Oligomer n-Type Organic Semiconductor Enabled by 3D Transport Pathways. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300252. [PMID: 36918256 DOI: 10.1002/adma.202300252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Indexed: 05/17/2023]
Abstract
Tailoring organic semiconductors to facilitate mixed conduction of ionic and electronic charges when interfaced with an aqueous media has spurred many recent advances in organic bioelectronics. The field is still restricted, however, by very few n-type (electron-transporting) organic semiconductors with adequate performance metrics. Here, a new electron-deficient, fused polycyclic aromatic system, TNR, is reported with excellent n-type mixed conduction properties including a µC* figure-of-merit value exceeding 30 F cm-1 V-1 s-1 for the best performing derivative. Comprising three naphthalene bis-isatin moieties, this new molecular design builds on successful small-molecule mixed conductors; by extending the molecular scaffold into the oligomer domain, good film-forming properties, strong π-π interactions, and consequently excellent charge-transport properties are obtained. Through judicious optimization of the side chains, the linear oligoether and branched alkyl chain derivative bgTNR is obtained which shows superior mixed conduction in an organic electrochemical transistor configuration including an electron mobility around 0.3 cm2 V-1 s-1 . By optimizing the side chains, the dominant molecular packing can be changed from a preferential edge-on orientation (with high charge-transport anisotropy) to an oblique orientation that can support 3D transport pathways which in turn ensure highly efficient mixed conduction properties across the bulk semiconductor film.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chenyang Zhang
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
19
|
The effect of residual palladium on the performance of organic electrochemical transistors. Nat Commun 2022; 13:7964. [PMID: 36575179 PMCID: PMC9794802 DOI: 10.1038/s41467-022-35573-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer's molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.
Collapse
|
20
|
He H, Chen R, Yue S, Yu S, Wei J, Ouyang J. Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. SCIENCE ADVANCES 2022; 8:eabq8160. [PMID: 36427298 PMCID: PMC9699665 DOI: 10.1126/sciadv.abq8160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
High mechanical ductility and high mechanical strength are important for materials including polymers. Current methods to increase the ductility of polymers such as plasticization always cause a remarkable drop in the ultimate tensile strength. There is no report on the ductilization of polymers that can notably increase the elongation at break while not lowering the ultimate tensile strength. Here, we report the salt-induced ductilization of an intrinsically conducting polymer, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Treating highly conductive PEDOT:PSS with a salt such as sodium perchlorate can enhance its elongation at break from 8.5 to 53.2%, whereas it hardly affects the tensile strength. Moreover, the resistance of the ductilized PEDOT:PSS films is insensitive to the tensile strain before fracture and slightly increases by only ~6% during the cyclic tensile testing with the strain up to 30%. These effects are ascribed to the decrease in the Coulomb attraction between PEDOT+ and PSS- by the salt ions.
Collapse
Affiliation(s)
- Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Shizhong Yue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
| | - Suzhu Yu
- Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore
- Harbin Institute of Technology, University Town of Shenzhen, Shenzhen 518055, P. R. China
| | - Jun Wei
- Harbin Institute of Technology, University Town of Shenzhen, Shenzhen 518055, P. R. China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117579, Singapore
- NUS Research Institute, No 16 South Huashan Road, Liangjiang New Area, Chongqing, China
| |
Collapse
|
21
|
Li X, Liu Y, Gao M, Cai K. Construction of hierarchical polypyrrole coated copper-catecholate grown on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers for high-performance supercapacitors. J Colloid Interface Sci 2022; 627:142-150. [PMID: 35842964 DOI: 10.1016/j.jcis.2022.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Fiber-shaped supercapacitors (FSCs) are considered as the optimal candidate for wearable energy devices, due to their high safety, excellent electrochemical stability, workability and body adaptability. However, the specific capacitances of today's FSCs such as carbon nanotube fibers and graphene fibers, are still not high enough for practical applications due to the limitation of their energy storage mode. So, we design a ternary composite fiber-shaped electrode: First, a kind of metal organic framework (MOF), copper-catecholate (Cu-CAT) nanorods, are in-situ grown on a wet-spun poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) fiber at the ambient temperature. Second, polypyrrole (PPy) is electrodeposited on the surface of the Cu-CAT/PEDOT:PSS fiber to obtain PPy@Cu-CAT@PEDOT:PSS fiber (PPy@Cu-CAT@PF). The growing Cu-CAT with high porosity anchored on the fiber surface provides electrochemical activate sites and the encapsulation of PPy effectively provides a continuous charge transfer path and improve its cycling stability. Notably, the PPy@Cu-CAT@PF electrode exhibits a satisfactory areal capacitance of 669.93 mF cm-2 at 2 mA cm-2, which remains 61.66% even at a high current density of 20 mA cm-2. Furthermore, the assembled symmetric FSC displays excellent electrochemical properties and outstanding mechanical flexibility, demonstrating its feasibility as a wearable supercapacitor.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yuexin Liu
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingyuan Gao
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Kefeng Cai
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Key Laboratory of Development and Application for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
22
|
Chen R, He H, Hong XZ, Le Q, Sun K, Ouyang J. PEDOT:PSS as Stretchable Conductors with Good Wettability on the Substrate through the Simultaneous Plasticization and Secondary Doping with a Cationic or Anionic Surfactant. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Hao He
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xian Zheng Hong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Qiujian Le
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Kuan Sun
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 401123, China
| |
Collapse
|
23
|
Feng K, Shan W, Wang J, Lee JW, Yang W, Wu W, Wang Y, Kim BJ, Guo X, Guo H. Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201340. [PMID: 35429014 DOI: 10.1002/adma.202201340] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
n-Type organic mixed ionic-electronic conductors (OMIECs) with high electron mobility are scarce and highly challenging to develop. As a result, the figure-of-merit (µC*) of n-type organic electrochemical transistors (OECTs) lags far behind the p-type analogs, restraining the development of OECT-based low-power complementary circuits and biosensors. Here, two n-type donor-acceptor (D-A) polymers based on fused bithiophene imide dimer f-BTI2 as the acceptor unit and thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. The cyanation of TVT enables polymer f-BTI2g-TVTCN with simultaneously enhanced ion-uptake ability, film structural order, and charge-transport property. As a result, it is able to obtain a high volumetric capacitance (C*) of 170 ± 22 F cm-3 and a record OECT electron mobility (μe,OECT ) of 0.24 cm2 V-1 s-1 for f-BTI2g-TVTCN, subsequently achieving a state-of-the-art µC* of 41.3 F cm-1 V-1 s-1 and geometry-normalized transconductance (gm,norm ) of 12.8 S cm-1 in n-type accumulation-mode OECTs. In contrast, only a moderate µC* of 1.50 F cm-1 V-1 s-1 is measured for the non-cyanated polymer f-BTI2g-TVT. These remarkable results demonstrate the great power of cyano functionalization of polymer semiconductors in developing n-type OMIECs with substantial electron mobility in aqueous environment for high-performance n-type OECTs.
Collapse
Affiliation(s)
- Kui Feng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wentao Shan
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
24
|
Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022; 13:2101. [PMID: 35440125 PMCID: PMC9018749 DOI: 10.1038/s41467-022-29773-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.
Collapse
|
25
|
Parr ZS, Borges-González J, Rashid RB, Thorley KJ, Meli D, Paulsen BD, Strzalka J, Rivnay J, Nielsen CB. From p- to n-Type Mixed Conduction in Isoindigo-Based Polymers through Molecular Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107829. [PMID: 35075720 DOI: 10.1002/adma.202107829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine-tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure-property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular-design strategies for isoindigo-based mixed conductors that can support efficient p-type, n-type, and ambipolar transistor operation in an aqueous environment.
Collapse
Affiliation(s)
- Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jorge Borges-González
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karl J Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40511, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
26
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
27
|
Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon J, Kim B, Lee W, Koh W, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105420. [PMID: 35001517 PMCID: PMC8922117 DOI: 10.1002/advs.202105420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Deokjae Heo
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR ProjectYonsei University College of DentistrySeoul03722Republic of Korea
| | - Byeong‐Su Kim
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangmin Lee
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
28
|
He Y, Kukhta NA, Marks A, Luscombe CK. The effect of side chain engineering on conjugated polymers in organic electrochemical transistors for bioelectronic applications. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2314-2332. [PMID: 35310858 PMCID: PMC8852261 DOI: 10.1039/d1tc05229b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 05/08/2023]
Abstract
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs' electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic-electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.
Collapse
Affiliation(s)
- Yifei He
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
| | - Adam Marks
- Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Christine K Luscombe
- Materials Science and Engineering Department, University of Washington Seattle Washington 98195-2120 USA
- Department of Chemistry, University of Washington, Seattle Washington 98195 USA
| |
Collapse
|
29
|
Kim Y, Kim G, Ding B, Jeong D, Lee I, Park S, Kim BJ, McCulloch I, Heeney M, Yoon MH. High-Current-Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107355. [PMID: 34852181 DOI: 10.1002/adma.202107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Owing to their outstanding electrical/electrochemical performance, operational stability, mechanical flexibility, and decent biocompatibility, organic mixed ionic-electronic conductors have shown great potential as implantable electrodes for neural recording/stimulation and as active channels for signal switching/amplifying transistors. Nonetheless, no studies exist on a general design rule for high-performance electrochemical diodes, which are essential for highly functional circuit architectures. In this work, generalizable electrochemical diodes with a very high current density over 30 kA cm-2 are designed by introducing an asymmetric active layer based on organic mixed ionic-electronic conductors. The underlying mechanism on polarity-sensitive balanced ionic doping/dedoping is elucidated by numerical device analysis and in operando spectroelectrochemical potential mapping, while the general material requirements for electrochemical diode operation are deduced using various types of conjugated polymers. In parallel, analog signal rectification and digital logic processing circuits are successfully demonstrated to show the broad impact of circuits incorporating organic electrochemical diodes. It is expected that organic electrochemical diodes will play vital roles in realizing multifunctional soft bioelectronic circuitry in combination with organic electrochemical transistors.
Collapse
Affiliation(s)
- Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gunwoo Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bowen Ding
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Inho Lee
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Iain McCulloch
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
30
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
31
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
32
|
Ding B, Kim G, Kim Y, Eisner FD, Gutiérrez‐Fernández E, Martín J, Yoon M, Heeney M. Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor-Acceptor Conjugated Polymers. Angew Chem Int Ed Engl 2021; 60:19679-19684. [PMID: 34228896 PMCID: PMC8457089 DOI: 10.1002/anie.202106084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/20/2021] [Indexed: 01/11/2023]
Abstract
Two new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p-type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm-3 . However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm-1 , owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Bowen Ding
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research Hub (White City Campus)80 Wood Lane Shepherd's BushLondonW12 0BZUK
| | - Gunwoo Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Youngseok Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Flurin D. Eisner
- Department of Physics and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - Edgar Gutiérrez‐Fernández
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUManuel de Lardizabal 3Donostia—San SebastiánSpain
| | - Jaime Martín
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUManuel de Lardizabal 3Donostia—San SebastiánSpain
- Grupo de PolímerosDepartamento de Física e Ciencias da TerraUniversidade da CoruñaCentro de Investigacións Tecnolóxicas (CIT)Esteiro15471FerrolSpain
| | - Myung‐Han Yoon
- School of Materials Science and EngineeringGwangju Institute of Science and Technology123 Cheomdangwagi-ro, Buk-guGwangju61005Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research Hub (White City Campus)80 Wood Lane Shepherd's BushLondonW12 0BZUK
| |
Collapse
|
33
|
Luo X, Shen H, Perera K, Tran DT, Boudouris BW, Mei J. Designing Donor-Acceptor Copolymers for Stable and High-Performance Organic Electrochemical Transistors. ACS Macro Lett 2021; 10:1061-1067. [PMID: 35549113 DOI: 10.1021/acsmacrolett.1c00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organic electrochemical transistors (OECTs) are oft-used for bioelectronic applications, and a variety of OECT channel materials have been developed in recent years. However, the majority of these materials are still limited by long-term performance and stability challenges. To resolve these issues, we implemented a next-generation design of polymers for OECTs. Specifically, diketopyrrolopyrrole (DPP) building blocks were copolymerized with propylene dioxythiophene-based (Pro-based) monomers to create a donor-acceptor-type conjugated polymer (PProDOT-DPP). These PProDOT-DPP macromolecules were synthesized using a straightforward direct arylation polymerization synthetic route. The PProDOT-DPP polymer thin film exhibited excellent electrochemical response, low oxidation potential, and high crystallinity, as evidenced by spectroelectrochemical measurements and grazing incidence wide-angle X-ray scattering measurements. Thus, the resultant polymer thin films had high charge mobility and volumetric capacitance values (i.e., μC* as high as 310 F cm-1 V-1 s-1) when they were used as the active layer materials in OECT devices, which places PProDOT-DPP among the highest performing accumulation-mode OECT polymers reported to date. The performance of the PProDOT-DPP thin films was also retained for 100 cycles and over 2000 s of ON-OFF cycling, indicating the robust stability of the materials. Therefore, this effort provides a clear roadmap for the design of electrochemically active macromolecules for accumulation-mode OECTs, where crystalline acceptor cores are incorporated into an all-donor polymer. We anticipate that this will ultimately inspire future polymer designs to enable OECTs with both high electrical performance and operational stability.
Collapse
Affiliation(s)
- Xuyi Luo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hongguang Shen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dung Trong Tran
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Ding B, Kim G, Kim Y, Eisner FD, Gutiérrez‐Fernández E, Martín J, Yoon M, Heeney M. Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bowen Ding
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub (White City Campus) 80 Wood Lane Shepherd's Bush London W12 0BZ UK
| | - Gunwoo Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Youngseok Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Flurin D. Eisner
- Department of Physics and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Edgar Gutiérrez‐Fernández
- POLYMAT and Polymer Science and Technology Department Faculty of Chemistry University of the Basque Country UPV/EHU Manuel de Lardizabal 3 Donostia—San Sebastián Spain
| | - Jaime Martín
- POLYMAT and Polymer Science and Technology Department Faculty of Chemistry University of the Basque Country UPV/EHU Manuel de Lardizabal 3 Donostia—San Sebastián Spain
- Grupo de Polímeros Departamento de Física e Ciencias da Terra Universidade da Coruña Centro de Investigacións Tecnolóxicas (CIT) Esteiro 15471 Ferrol Spain
| | - Myung‐Han Yoon
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub (White City Campus) 80 Wood Lane Shepherd's Bush London W12 0BZ UK
| |
Collapse
|
35
|
Giridharagopal R, Guo J, Kong J, Ginger DS. Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34616-34624. [PMID: 34270213 DOI: 10.1021/acsami.1c08176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors are believed to face an inherent material design tension between optimizing for ion mobility and for electronic mobility. These devices transduce ion uptake into electrical current, thereby requiring high ion mobility for efficient electrochemical doping and rapid turn-on kinetics and high electronic mobility for the maximum transconductance. Here, we explore a facile route to improve operational kinetics and volumetric capacitance in a high-mobility conjugated polymer (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)], DPP-DTT) by employing a nanowire morphology. For equivalent thicknesses, the DPP-DTT nanowire films exhibit consistently faster kinetics (∼6-10× faster) compared to a neat DPP-DTT film. The nanowire architectures show ∼4× higher volumetric capacitance, increasing from 7.1 to 27.7 F/cm3, consistent with the porous structure better enabling ion uptake throughout the film. The nanowires also exhibit a small but energetically favorable shift in a threshold voltage of ∼17 mV, making the nanostructured system both faster and energetically easier to electrochemically dope compared to neat films. We explain the variation using two atomic force microscopy methods: in situ electrochemical strain microscopy and nanoinfrared imaging via photoinduced force microscopy. These data show that the nanowire film's structure allows greater swelling and ion uptake throughout the active layer, indicating that the nanowire architecture exhibits volumetric operation, whereas the neat film is largely operating via the field effect. We propose that for higher-mobility materials, casting the active layer in a nanowire form may offer faster kinetics, enhanced volumetric capacitance, and possibly lower threshold voltage while maintaining desirable device performance.
Collapse
Affiliation(s)
- Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|