1
|
Mahapatra C, Jadhav S, Kumar P, Roy DN, Kumar A, Paul MK. Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis coinfection. Expert Rev Anti Infect Ther 2024:1-13. [PMID: 39466600 DOI: 10.1080/14787210.2024.2423359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, including the excision of infected tissue, remain a standard treatment option. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach. AREAS COVERED We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported. EXPERT OPINION The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Sakshi Jadhav
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Prasoon Kumar
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
2
|
Bright R, Sivanantha S, Hayles A, Phuoc Ton T, Ninan N, Luo X, Vasilev K, Truong VK. In Vitro Assessment of Gallium Nanoalloy Hydrogels for Antimicrobial and Wound Healing Applications. ACS APPLIED BIO MATERIALS 2024. [PMID: 39433303 DOI: 10.1021/acsabm.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic and recurring wounds pose a significant challenge in modern healthcare, leading to substantial morbidity. These wounds allow pathogens to colonize, potentially resulting in local and systemic infections. Current interventions need to be revised and become increasingly less reliable due to the emergence of antibiotic resistance. In the present study, we aim to address these issues by fabricating hydrogels impregnated with gallium-based nanoalloys for their antimicrobial activity. Gallium liquid metal nanoparticles (approximately 100 nm in diameter) were alloyed in different combinations with bismuth and silver ions through a galvanic replacement reaction. These multimetallic hydrogels showed favorable antibacterial activity against the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa, as observed with fluorescence microscopy and inhibition assays. The multimetallic hydrogels showed no toxicity against murine macrophages or human dermal fibroblasts and enhanced in vitro wound healing. The development of these innovative gallium-based hydrogels represents a promising strategy to combat chronic wounds and their associated complications, offering an effective alternative to current antimicrobial treatments amidst rising antibiotic resistance.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Soroopan Sivanantha
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tan Phuoc Ton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Xuan Luo
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
3
|
Liu X, Xu H, Li J, Liu Y, Fan H. Review of Liquid Metal Fiber Based Biosensors and Bioelectronics. BIOSENSORS 2024; 14:490. [PMID: 39451703 PMCID: PMC11506175 DOI: 10.3390/bios14100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Collapse
Affiliation(s)
| | | | | | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (X.L.); (J.L.)
| |
Collapse
|
4
|
Hou Z, Ren X, Sun Z, An R, Huang M, Gao C, Yin M, Liu G, He D, Du H, Tang R. Trash into Treasure: Nano-coating of Catheter Utilizes Urine to Deprive H 2S Against Persister and Rip Biofilm Matrix. Adv Healthc Mater 2024; 13:e2401067. [PMID: 39030869 DOI: 10.1002/adhm.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.
Collapse
Affiliation(s)
- Zhiming Hou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyu Ren
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Zhuangzhuang Sun
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Ruoqi An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mingzhi Huang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Cen Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mengying Yin
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Guangxiu Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Dengqi He
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongliang Du
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
5
|
Li N, Jiang X, Yu H, Sun D. A Liquid Metal-Based Temperature-Responsive Low-Toxic Smart Coating for Anti-Biofouling Applications in Marine Engineering. SMALL METHODS 2024:e2401028. [PMID: 39246115 DOI: 10.1002/smtd.202401028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Titanium alloys have been widely used in marine engineering fields. However, because of high biocompatibility, they are vulnerable to biofouling. In this work, based on the micro-arc oxidation technology and spontaneous galvanic replacement reaction, a temperature-responsive low-toxic smart coating consisting of liquid metal particles is designed to control the release of Ga3+, Cu2+, and Cu1+ ions in different temperatures. This technology can ensure the full release of active ingredients within the target temperature range, intelligently maintaining the excellent anti-biofouling performance, while saving active ingredients. After being immersed in culture media with Sulfate-Reducing Bacteria (SRB) for 14 days at 10, 20, and 30 °C, at the optimal activity temperature of 30 °C for SRB, the best sample releases the highest amounts of Ga3+, Cu2+, and Cu1+ ions, demonstrating a 99.9% bactericidal rate. When the temperature decreases to 10 °C, the activity level of SRB is very low, and the smart coating can also reduce the released ions correspondingly, still with a 97.3% bactericidal rate. The remarkable anti-biofouling performance is attributed to the physical damage and lethal ions interaction. Furthermore, the best sample exhibits good corrosion resistance. This work presents a design route for smart anti-biofouling coatings for temperature-responsive.
Collapse
Affiliation(s)
- Ningbo Li
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
- Nanotechnology Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongying Yu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dongbai Sun
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Liu M, Zou J, Li H, Zhou Y, Lv Q, Cheng Q, Liu J, Wang L, Wang Z. Orally administrated liquid metal agents for inflammation-targeted alleviation of inflammatory bowel diseases. SCIENCE ADVANCES 2024; 10:eadn1745. [PMID: 38996026 PMCID: PMC11244529 DOI: 10.1126/sciadv.adn1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.
Collapse
Affiliation(s)
- Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jinhui Zou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heli Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfan Zhou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jia Liu
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Jang H, Song W, Song H, Kang DK, Park S, Seong M, Jeong HE. Sustainable Biofilm Inhibition Using Chitosan-Mesoporous Nanoparticle-Based Hybrid Slippery Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27728-27740. [PMID: 38758746 DOI: 10.1021/acsami.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.
Collapse
Affiliation(s)
- Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wonwoo Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeonseok Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Xu BB, Jin N, Liu JC, Liao AQ, Lin HY, Qin XY. Arene-Arene Coupled Disulfamethazines (or Sulfadiazine)-Phenanthroline-Metal(II) Complexes were Synthesized by In Situ Reactions and Inhibited the Growth and Development of Triple-Negative Breast Cancer through the Synergistic Effect of Antiangiogenesis, Anti-Inflammation, Pro-Apoptosis, and Cuproptosis. J Med Chem 2024. [PMID: 38634624 DOI: 10.1021/acs.jmedchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.
Collapse
Affiliation(s)
- Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ji-Cheng Liu
- Nanning Institute for Food and Drug Control, Nanning, Guangxi 530007, China
| | - Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
9
|
Wang M, Lin Y. Gallium-based liquid metals as reaction media for nanomaterials synthesis. NANOSCALE 2024; 16:6915-6933. [PMID: 38501969 DOI: 10.1039/d3nr06566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Gallium-based liquid metals (LMs) and their alloys have gained prominence in the realm of flexible and stretchable electronics. Recent advances have expanded the interest to explore the electron-rich core and interface of LMs to synthesize various nanomaterials, where Ga-based LMs serve as versatile reaction media. In this paper, we delve into the latest developments within this burgeoning field. Our discussion begins by elucidating the unique attributes of LMs that render them suitable as reaction media, including their high metal solubility, low standard reduction potential, self-limiting oxidation and ultra-smooth and "layer" surface. We then provide a comprehensive categorized summary of utilizing these features to fabricate a variety of nanomaterials, including pure metallic materials (metal alloys, metal crystals, porous metals, high-entropy alloys and metallic single atoms), metal-inorganic compounds (2D metal oxides, 2D metallic inorganic compounds and 2D graphitic materials), as well as metal-organic composites (metal-organic frameworks). This paper concludes by discussing the current challenges in this field and exploring potential future directions. The versatility and unique properties of Ga-based LMs are poised to play a pivotal role in the future of nanomaterial science, paving the way for more efficient, sustainable, and innovative technological solutions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
10
|
Lee DU, Jeong SB, Lee BJ, Park SK, Kim HM, Shin JH, Lee SY, Kim G, Park J, Kim GM, Jung JH, Choi DY. Antimicrobial and Antifouling Effects of Petal-Like Nanostructure by Evaporation-Induced Self-Assembly for Personal Protective Equipment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306324. [PMID: 37990401 DOI: 10.1002/smll.202306324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen-laden droplets are highly sought. In this study, petal-like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation-induced self-assembly of octadecylamine, silica-alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible-light-activated antimicrobial and superhydrophobic-based antifouling activities. PNS-coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen-laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.
Collapse
Affiliation(s)
- Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Sang Bin Jeong
- Indoor Environment Center, Korea Testing Laboratory, Seoul, 08389, Republic of Korea
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Byeong Jin Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Seung Yeon Lee
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Gunwoo Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| |
Collapse
|
11
|
Kurtjak M, Maček Kržmanc M, Spreitzer M, Vukomanović M. Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action. Pharmaceutics 2024; 16:228. [PMID: 38399282 PMCID: PMC10893416 DOI: 10.3390/pharmaceutics16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.K.); (M.S.); (M.V.)
| | | | | | | |
Collapse
|
12
|
Li B, Yang W, Shu R, Yang H, Yang F, Dai W, Chen W, Chan YK, Bai D, Deng Y. Antibacterial and Angiogenic (2A) Bio-Heterojunctions Facilitate Infectious Ischemic Wound Regeneration via an Endogenous-Exogenous Bistimulatory Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307613. [PMID: 37848208 DOI: 10.1002/adma.202307613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
In infectious ischemic wounds, a lack of blood perfusion significantly worsens microbe-associated infection symptoms and frequently complicates healing. To overcome this daunting issue, antibacterial and angiogenic (2A) bio-heterojunctions (bio-HJs) consisting of CuS/MXene heterojunctions and a vascular endothelial growth factor (VEGF)-mimicking peptide (VMP) are devised and developed to accelerate infectious cutaneous regeneration by boosting angiogenesis via an endogenous-exogenous bistimulatory (EEB) strategy. Assisted by near-infrared irradiation, the bio-HJ platform exhibits versatile synergistic photothermal, photodynamic, and chemodynamic effects for robust antibacterial efficacy. In addition, copper ions liberated from 2A bio-HJs elevate VEGF secretion from fibroblasts, which provokes VEGF receptors (VEGFR) activation through an endogenous pathway, whereas VMP itself promotes an exogenous pathway to facilitate endothelial cell multiplication and tube formation by directly activating the VEGFR signaling pathway. Moreover, employing an in vivo model of infectious ischemic wounds, it is confirmed that the EEB strategy can considerably boost cutaneous regeneration through pathogen elimination, angiogenesis promotion, and collagen deposition. As envisaged, this work leads to the development of a powerful 2A bio-HJ platform that can serve as an effective remedy for bacterial invasion-induced ischemic wounds through the EEB strategy.
Collapse
Affiliation(s)
- Bin Li
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
13
|
Yan J, Wang J, Wang X, Pan D, Su C, Wang J, Wang M, Xiong J, Chen Y, Wang L, Xu Y, Chen C, Yang M, Gu Z. Activating Tumor-Selective Liquid Metal Nanomedicine through Galvanic Replacement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307817. [PMID: 37948543 DOI: 10.1002/adma.202307817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Advanced chemotherapeutic strategies including prodrug and nanocatalytic medicine have significantly advanced tumor-selective theranostics, but delicate prodrug screening, tedious synthesis, low degradability/biocompatibility of inorganic components, and unsatisfied reaction activity complicate treatment efficacies. Here, the intrinsic anticancer bioactivity of liquid metal nanodroplets (LMNDs) is explored through galvanic replacement. By utilizing a mechano-degradable ligand, the resultant size of the aqueous LMND is unexpectedly controlled as small as ≈20 nm (LMND20). It is demonstrated that LMND20 presents excellent tumor penetration and biocompatibility and activates tumor-selective carrier-to-drug conversion, synchronously depleting Cu2+ ions and producing Ga3+ ions through galvanic replacement. Together with abundant generation of reactive oxygen species, multiple anticancer pathways lead to selective apoptosis and anti-angiogenesis of breast cancer cells. Compared to the preclinical/clinical anticancer drugs of tetrathiomolybdate and Ga(NO3 )3 , LMND20 administration significantly improves the therapeutic efficacy and survival in a BCap-37 xenograft mouse model, yet without obvious side effects.
Collapse
Affiliation(s)
- Junjie Yan
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Wang
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Donghui Pan
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Chen Su
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Junxia Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Wang
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianjun Xiong
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Lizhen Wang
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Yuping Xu
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chongyang Chen
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Min Yang
- Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
14
|
Xu H, Lu J, Xi Y, Wang X, Liu J. Liquid metal biomaterials: translational medicines, challenges and perspectives. Natl Sci Rev 2024; 11:nwad302. [PMID: 38213519 PMCID: PMC10776368 DOI: 10.1093/nsr/nwad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Until now, significant healthcare challenges and growing urgent clinical requirements remain incompletely addressed by presently available biomedical materials. This is due to their inadequate mechanical compatibility, suboptimal physical and chemical properties, susceptibility to immune rejection, and concerns about long-term biological safety. As an alternative, liquid metal (LM) opens up a promising class of biomaterials with unique advantages like biocompatibility, flexibility, excellent electrical conductivity, and ease of functionalization. However, despite the unique advantages and successful explorations of LM in biomedical fields, widespread clinical translations and applications of LM-based medical products remain limited. This article summarizes the current status and future prospects of LM biomaterials, interprets their applications in healthcare, medical imaging, bone repair, nerve interface, and tumor therapy, etc. Opportunities to translate LM materials into medicine and obstacles encountered in practices are discussed. Following that, we outline a blueprint for LM clinics, emphasizing their potential in making new-generation artificial organs. Last, the core challenges of LM biomaterials in clinical translation, including bio-safety, material stability, and ethical concerns are also discussed. Overall, the current progress, translational medicine bottlenecks, and perspectives of LM biomaterials signify their immense potential to drive future medical breakthroughs and thus open up novel avenues for upcoming clinical practices.
Collapse
Affiliation(s)
- Hanchi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Jincheng Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Yikuang Xi
- Shanghai World Foreign Language Academy, Shanghai200233, China
| | - Xuelin Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
15
|
Qu C, Rozsa J, Running M, McNamara S, Walsh K. I-GLAD: a new strategy for fabricating antibacterial surfaces. DISCOVER NANO 2024; 19:17. [PMID: 38270785 PMCID: PMC10810768 DOI: 10.1186/s11671-024-03959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
The paper uses inverted glancing angle deposition (I-GLAD) for creating antibacterial surfaces. Antibacterial surfaces are found in nature, such as on insect wings, eyes, and plant leaves. Since the bactericidal mechanism is purely physical for these surfaces, the antimicrobial resistance of bacteria to traditional chemical antibiotics can be overcome. The technical problem is how to mimic, synthesize, and scale up the naturally occurring antibacterial surfaces for practical applications, given the fact that most of those surfaces are composed of three-dimensional hierarchical micro-nano structures. This paper proposes to use I-GLAD as a novel bottom-up nanofabrication technique to scale up bio-inspired nano-structured antibacterial surfaces. Our innovative I-GLAD nanofabrication technique includes traditional GLAD deposition processes alongside the crucial inverting process. Following fabrication, we explore the antibacterial efficacy of I-GLAD surfaces using two types of bacteria: Escherichia coli (E. coli), a gram-negative bacterium, and Staphylococcus aureus (S. aureus), a gram-positive bacterium. Scanning electron microscopy (SEM) shows the small tips and flexible D/P (feature size over period) ratio of I-GLAD nanoneedles, which is required to achieve the desired bactericidal mechanism. Antibacterial properties of the I-GLAD samples are validated by achieving flat growth curves of E. coli and S. aureus, and direct observation under SEM. The paper bridges the knowledge gaps of seeding techniques for GLAD, and the control/optimization of the I-GLAD process to tune the morphologies of the nano-protrusions. I-GLAD surfaces are effective against both gram-negative and gram-positive bacteria, and they have tremendous potentials in hospital settings and daily surfaces.
Collapse
Affiliation(s)
- Chuang Qu
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292, USA.
| | - Jesse Rozsa
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Mark Running
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Shamus McNamara
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Kevin Walsh
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
16
|
Leong M, Parker CJ, Shaw ZL, Huang LZY, Nisbet DR, Daeneke T, Elbourne A, Cheeseman S. Metallic Gallium Droplets Exhibit Poor Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:332-341. [PMID: 38111109 DOI: 10.1021/acsami.3c15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.
Collapse
Affiliation(s)
- Michelle Leong
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Caiden J Parker
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Louisa Z Y Huang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Torben Daeneke
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Bhagwat S, Hambitzer L, Prediger R, Zhu P, Hamza A, Kilian SK, Kluck S, Pezeshkpour P, Kotz-Helmer F, Rapp BE. Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:416. [PMID: 38257509 PMCID: PMC10819474 DOI: 10.3390/s24020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L-1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment.
Collapse
Affiliation(s)
- Sagar Bhagwat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Leonhard Hambitzer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Richard Prediger
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Pang Zhu
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Ahmed Hamza
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Sophia K. Kilian
- Hahn-Schickard, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany;
| | - Sebastian Kluck
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Pegah Pezeshkpour
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany; (S.B.); (L.H.); (R.P.); (P.Z.); (A.H.); (S.K.); (P.P.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
18
|
McHendrie R, Xiao W, Truong VK, Hashemi R. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications. Biomimetics (Basel) 2023; 8:573. [PMID: 38132512 PMCID: PMC10741799 DOI: 10.3390/biomimetics8080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young's moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Wenlong Xiao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| |
Collapse
|
19
|
Zhang T, Li Q, Meng F, Ren Y, Shi Z, Wen Y, Liu Q, Zhang Q. Highly Antibacterial and Self-Healing Janus Fabric for Effective Body Moisture/Thermal Management and Durable Waterproof. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38015072 DOI: 10.1021/acsami.3c11860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the development of many functional fabrics, they are unable to meet practical needs due to their monolithic functions and low durability. Therefore, a multifunctional waterborne polyurethane nanodroplet containing disulfide bonds (WSPU) was synthesized using a simple and environmentally friendly approach. The functional WSPU nanodroplet coating endowed fabrics with a variety of properties, including exceptional hydrophobicity, antibacterial properties, self-healing at room temperature, directional transport, etc. The functionalized fabric demonstrated durable mechanical and chemical stabilities due to the combined effects of disulfide bond reconstruction and hydrophobic chain migration. It exhibited the ability to regain its hydrophobic properties at room temperature after 50 friction cycles were performed without requiring external stimulation. Furthermore, the fabric maintained a water contact angle above 140°, even after being subjected to washing, boiling, and immersion in acid and alkali solutions. In addition, as a result of the fabric's Janus-like wettability, it performed various functions in accordance with varying weather conditions, in terms of wearing comfort and breathability. In hot weather or during exercise, the Janus fabric with the hydrophilic side facing outward enhances the process of sweat-directed perspiration, resulting in a notable cooling effect. On rainy days, the Janus fabric, when positioned with the hydrophobic side facing outward, exhibited excellent waterproof performance. This study presents an opportunity to explore the development of multifunctional fabrics through the combined effects of several functions.
Collapse
Affiliation(s)
- Tianli Zhang
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Li
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Fandong Meng
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yongyuan Ren
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Zhekun Shi
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yiqiang Wen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Quan Liu
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Qinghua Zhang
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| |
Collapse
|
20
|
Okatenko V, Boulanger C, Chen AN, Kumar K, Schouwink P, Loiudice A, Buonsanti R. Voltage-Driven Chemical Reactions Enable the Synthesis of Tunable Liquid Ga-Metal Nanoparticles. J Am Chem Soc 2023; 145:25401-25410. [PMID: 37948677 DOI: 10.1021/jacs.3c09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Coline Boulanger
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Krishna Kumar
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pascal Schouwink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
21
|
Yu D, Liu L, Yu J, Si Y, Ding B. Meta-Aerogel Electric Trap Enables Instant and Continuable Pathogen Killing in Face Masks. ACS NANO 2023; 17:20601-20610. [PMID: 37791722 DOI: 10.1021/acsnano.3c07538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The tremendous menace of the COVID-19 pandemic has underscored the urgency for antipathogen masks to stop the transmission of airborne infectious diseases. Most prevailing antipathogen masks manifest a slower sterilization rate that lags behind the pathogen momentum traversing the masks, thereby engendering an elevated susceptibility to infection. Here we tailor nanofibrous meta-aerogel electric traps, 3D-assembled from self-knotted carbon nanotube networks in an all rigid nanofibrous skeleton. This superior configuration revolves around the creation of numerous "dielectrophoretic-aerodynamic grippers", which are capable of directional manipulation of microbes toward the region of the lethal intensive electric field. Based on this, we present a disinfection unit comprising a pair of aerogel electrodes that demonstrate a rapid killing rate (>99.99% biocidal efficacy within 0.016 s) and long-term durability (12 h of continuous operation). Additionally, a microbutton lithium cell is employed as a power supply to fabricate an antipathogen face mask with this disinfection unit, which exhibits superior pathogen inactivation efficacy compared to commercial masks. This scalable biocidal protective equipment holds great potential for use in emergency medical services.
Collapse
Affiliation(s)
- Dingming Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Lifang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, People's Republic of China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, People's Republic of China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, People's Republic of China
| |
Collapse
|
22
|
Liu M, Liu X, Liu H, Han M, Ji S. Nonleaching Antimicrobial Cotton Fabrics Finished with Hyperbranched Polylysine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47978-47988. [PMID: 37792694 DOI: 10.1021/acsami.3c10587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The choice of the antimicrobial agent and finishing process is very important for the activity, durability, and safety of antimicrobial fabrics. Here, a novel antimicrobial cotton fabric (HPL-CF) was constructed by covalently bonding an antimicrobial agent, hyperbranched polylysine (HPL), onto the surface of a cotton fabric (CF) pretreated with a silane coupling agent, 3-chloropropyltrimethoxysilane (CPTMS). The multiple amino groups contained in the periphery of HPL make it possible to react with the CF to form multiple bonds, which is beneficial to improve the durability and safety of HPL-CFs. The obtained HPL-CFs exhibited excellent antimicrobial activities against Escherichia coli (E. coli, Gram-negative bacteria), Staphylococcus aureus (S. aureus, Gram-positive bacteria), and Candida albicans (C. albicans, fungi) even when the CF was treated with HPL solution at the concentration of 0.5 wt %. HPL2.0-CFs maintained 98, >99, and >99% of antimicrobial ratios for E. coli, S. aureus, and C. albicans, respectively, after 50 equiv of domestic laundering cycles, surpassing the requirements of the AAA class. The halo method, cell compatibility, and skin irritation assays all prove the fine safety of HPL-CFs. This work demonstrates the great advantages of applying HPL in the antimicrobial finishing of fabrics.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiao Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hui Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Lu G, Chen C, Wang Z, Wu X, Huang X, Luo J, Wang XL, He ML, Yao X. High-Performance Supramolecular Organogel Adhesives for Antimicrobial Applications in Diverse Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44194-44204. [PMID: 37677049 DOI: 10.1021/acsami.3c07295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Supramolecular organogel coatings that can disinfect the deposited microbial pathogens are emerging as an effective vehicle to prevent pathogen transmission. However, the development of anti-pathogen supramolecular adhesives with mechanical robustness and controlled oil inclusion is technically challenging. Here, we report supramolecular adhesives with mechanical integrity and robust interfacial adhesion over a wide range of biogenic antimicrobial oil. Bifunctional monomers are synthesized and assembled into linear polymers with semicrystalline stackings through hierarchical hydrogen bonds, where incorporated bioactive oil could regulate the semicrystalline stackings into nanosized crystalline domains through intermolecular hydrogen bonds. The abundant bonding motifs provided by the supramolecular cross-linked networks could accommodate oil molecules with high inclusion capability and provide more interfacial binding sites with high adhesion strength, and the nanosized crystalline domains could stabilize the organogel network and compensate for the interactions with oil molecules to enhance structural and mechanical stability. In addition, rapid healing, robust adhesion, and antimicrobial and antiviral properties of the resultant organogel coatings are demonstrated. This study paves the way for the development of high-performance antimicrobial supramolecular adhesives with controlled oil inclusion, showing potential applications in soft robotics, tissue engineering, and biomedical devices.
Collapse
Affiliation(s)
- Gang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhaoyue Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xuelian Wu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P. R. China
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, P. R. China
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xun-Li Wang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P. R. China
- Hong Kong Institute for Advanced Studies, City University of Hong Kong, Hong Kong 999077, P. R. China
- Center for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
24
|
Bell M, Ye K, Yap TF, Rajappan A, Liu Z, Tao YJ, Preston DJ. Rapid In Situ Thermal Decontamination of Wearable Composite Textile Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44521-44532. [PMID: 37695080 PMCID: PMC10521748 DOI: 10.1021/acsami.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Pandemics stress supply lines and generate shortages of personal protective equipment (PPE), in part because most PPE is single-use and disposable, resulting in a need for constant replenishment to cope with high-volume usage. To better prepare for the next pandemic and to reduce waste associated with disposable PPE, we present a composite textile material capable of thermally decontaminating its surface via Joule heating. This material can achieve high surface temperatures (>100 °C) and inactivate viruses quickly (<5 s of heating), as evidenced experimentally with the surrogate virus HCoV-OC43 and in agreement with analytical modeling for both HCoV-OC43 and SARS-CoV-2. Furthermore, it does not require doffing because it remains relatively cool near the skin (<40 °C). The material can be easily integrated into clothing and provides a rapid, reusable, in situ decontamination method capable of reducing PPE waste and mitigating the risk of supply line disruptions in times of need.
Collapse
Affiliation(s)
- Marquise
D. Bell
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kai Ye
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Te Faye Yap
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anoop Rajappan
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhen Liu
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yizhi Jane Tao
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Daniel J. Preston
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
25
|
Nefedova A, Rausalu K, Zusinaite E, Kisand V, Kook M, Smits K, Vanetsev A, Ivask A. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Heliyon 2023; 9:e20067. [PMID: 37810009 PMCID: PMC10559815 DOI: 10.1016/j.heliyon.2023.e20067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.
Collapse
Affiliation(s)
- Alexandra Nefedova
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Mati Kook
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Krisjanis Smits
- Institute Solid State Physics, University of Latvia, 8 Kengaraga street, Riga, LV-1063, Latvia
| | - Alexander Vanetsev
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| |
Collapse
|
26
|
Ershad F, Patel S, Yu C. Wearable bioelectronics fabricated in situ on skins. NPJ FLEXIBLE ELECTRONICS 2023; 7:32. [PMID: 38665149 PMCID: PMC11041641 DOI: 10.1038/s41528-023-00265-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/04/2023] [Indexed: 04/28/2024]
Abstract
In recent years, wearable bioelectronics has rapidly expanded for diagnosing, monitoring, and treating various pathological conditions from the skin surface. Although the devices are typically prefabricated as soft patches for general usage, there is a growing need for devices that are customized in situ to provide accurate data and precise treatment. In this perspective, the state-of-the-art in situ fabricated wearable bioelectronics are summarized, focusing primarily on Drawn-on-Skin (DoS) bioelectronics and other in situ fabrication methods. The advantages and limitations of these technologies are evaluated and potential future directions are suggested for the widespread adoption of these technologies in everyday life.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16801 USA
| | - Shubham Patel
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16801 USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16801 USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16801 USA
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16801 USA
| |
Collapse
|
27
|
Guo Z, Xie W, Gao X, Lu J, Ye J, Li Y, Fahad A, Zhang G, Zhao L. Nanoheterostructure by Liquid Metal Sandwich-Based Interfacial Galvanic Replacement for Cancer Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300751. [PMID: 36828793 DOI: 10.1002/smll.202300751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Nanoheterostructures with exquisite interface and heterostructure design find numerous applications in catalysis, plasmonics, electronics, and biomedicine. In the current study, series core-shell metal or metal oxide-based heterogeneous nanocomposite have been successfully fabricated by employing sandwiched liquid metal (LM) layer (i.e., LM oxide/LM/LM oxide) as interfacial galvanic replacement reaction environment. A self-limiting thin oxide layer, which would naturally occur at the metal-air interface under ambient conditions, could be readily delaminated onto the surface of core metal (Fe, Bi, carbonyl iron, Zn, Mo) or metal oxide (Fe3 O4 , Fe2 O3 , MoO3 , ZrO2 , TiO2 ) nano- or micro-particles by van der Waals (vdW) exfoliation. Further on, the sandwiched LM layer could be formed immediately and acted as the reaction site of galvanic replacement where metals (Au, Ag, and Cu) or metal oxide (MnO2 ) with higher reduction potential could be deposited as shell structure. Such strategy provides facile and versatile approaches to design and fabricate nanoheterostructures. As a model, nanocomposite of Fe@Sandwiched-GaIn-Au (Fe@SW-GaIn-Au) is constructed and their application in targeted magnetic resonance imaging (MRI) guided photothermal tumor ablation and chemodynamic therapy (CDT), as well as the enhanced radiotherapy (RT) against tumors, have been systematically investigated.
Collapse
Affiliation(s)
- Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Abdul Fahad
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guifeng Zhang
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Hussain F, Memon N, Khatri Z. Facile Process for the Development of Antiviral Cotton Fabrics with Nano-Embossed Copper Oxide. ACS OMEGA 2023; 8:18617-18625. [PMID: 37273634 PMCID: PMC10233694 DOI: 10.1021/acsomega.3c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Metallic or metal oxide-based nanoparticles have the potential to inactivate viruses. Among various metals, copper has shown edge over others. One of the rapidly evolving areas is to combine nanoscience for production of self-sanitizing antiviral surfaces. In this study, we designed antiviral-coated fabrics to combat the spread of viruses. Copper oxide nanoparticles were sonochemically synthesized and subsequently deposited using the dip-coat process to modify the surface of fabric. The morphology and structure of uncoated and coated fabrics were examined by scanning electron microscopy, X-ray diffraction, FTIR, and elemental analysis. The findings show that small, agglomerated rugby ball structures made of copper oxide (CuO) nanoparticles (16 ± 1.6 nm, according to the Scherrer equation) develop on the surface of fabric, resulting in nano-embossing and a hydrophobic (contact angle > 140°) surface. The CuO-coated fabric yielded the maximum zone of inhibition for antibacterial activity. The virucidal activity (against human adenovirus-B) of CuO nanoparticle-fabricated fabric against adenovirus shows decreased 99.99% according to the ISO 18184 testing standard. With the dip and dry approach, any textile industry can use the simple coating procedure without having to change its textile operations. This fabric can be widely used in the face mask, clothing, bedding, and aprons, and the coating remains efficient over more than 25 washes.
Collapse
Affiliation(s)
- Fayyaz
Salih Hussain
- National Center
of Excellence in Analytical Chemistry, University
of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Najma Memon
- National Center
of Excellence in Analytical Chemistry, University
of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Zeeshan Khatri
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan
| |
Collapse
|
29
|
Losada-Garcia N, Vazquez-Calvo A, Alcami A, Palomo JM. Preparation of Highly Stable and Cost-Efficient Antiviral Materials for Reducing Infections and Avoiding the Transmission of Viruses such as SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22580-22589. [PMID: 37116104 PMCID: PMC10176473 DOI: 10.1021/acsami.3c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The current global pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has demonstrated the necessity to develop novel materials with antimicrobial and antiviral activities to prevent the infection. One significant route for the spread of diseases is by the transmission of the virus through contact with contaminated surfaces. Antiviral surface treatments can help to reduce or even avoid these hazards. In particular, the development of active-virucidal fabrics or paints represents a very important challenge with multiple applications in hospitals, public transports, or schools. Modern, cutting-edge methods for creating antiviral surface coatings use either materials with a metal base or sophisticated synthetic polymers. Even if these methods are effective, they will still face significant obstacles in terms of large-scale applicability. Here, we describe the preparation of fabrics and paints treated with a scaled-up novel nanostructured biohybrid material composed of very small crystalline phosphate copper(II) nanoparticles, synthesized based on a technology that employs the use of a small amount of biological agent for its formation at room temperature in aqueous media. We demonstrate the efficient inactivation of the human coronavirus 229E (HCoV-229E), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and non-enveloped human rhinovirus 14 (HRV-14) (>99.9%) using an inexpensive, ecologically friendly coating agent. The reactive oxygen species produced during the oxidation of water or the more intensive reaction with hydrogen peroxide are believed to be the cause of the antiviral mechanism of the nanostructured material. In contrast to the release of a specific antiviral drug, this process does not consume the surface coating and does not need regeneration. A 12-month aging research that revealed no decline in antiviral activity is proof that the coating is durable in ambient circumstances. Also, the coated fabric can be reused after different washing cycles, even at moderate to high temperatures.
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie 2, 28049 Madrid, Spain
| | - Angela Vazquez-Calvo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
30
|
Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a Soft Future: Patterning Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205196. [PMID: 36044678 DOI: 10.1002/adma.202205196] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 05/12/2023]
Abstract
This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Omar M Awartani
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
31
|
Zhang L, Sang Y, Liu Z, Wang W, Liu Z, Deng Q, You Y, Ren J, Qu X. Liquid Metal as Bioinspired and Unusual Modulator in Bioorthogonal Catalysis for Tumor Inhibition Therapy. Angew Chem Int Ed Engl 2023; 62:e202218159. [PMID: 36578232 DOI: 10.1002/anie.202218159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Bioorthogonal catalysis mediated by Pd-based transition metal catalysts has sparked increasing interest in combating diseases. However, the catalytic and therapeutic efficiency of current Pd0 catalysts is unsatisfactory. Herein, inspired by the concept that ligands around metal sites could enable enzymes to catalyze astonishing reactions by changing their electronic environment, a LM-Pd catalyst with liquid metal (LM) as an unusual modulator has been designed to realize efficient bioorthogonal catalysis for tumor inhibition. The LM matrix can serve as a "ligand" to afford an electron-rich environment to stabilize the active Pd0 and promote nucleophilic turnover of the π-allylpalladium species to accelerate the uncaging process. Besides, the photothermal properties of LM can lead to the enhanced removal of tumor cells by photo-enhanced catalysis and photothermal effect. We believe that our work will broaden the application of LM and motivate the design of bioinspired bioorthogonal catalysts.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yanjuan Sang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China
| | - Zhenqi Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wenjie Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Qingqing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 130022, Changchun, Jilin, P. R. China.,University of Chinese Academy of Sciences, 100039, Beijing, China.,University of Science and Technology of China, 230026, Hefei, Anhui, China
| |
Collapse
|
32
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
33
|
Cao J, Li X, Liu Y, Zhu G, Li RW. Liquid Metal-Based Electronics for On-Skin Healthcare. BIOSENSORS 2023; 13:84. [PMID: 36671919 PMCID: PMC9856137 DOI: 10.3390/bios13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 05/28/2023]
Abstract
Wearable devices are receiving growing interest in modern technologies for realizing multiple on-skin purposes, including flexible display, flexible e-textiles, and, most importantly, flexible epidermal healthcare. A 'BEER' requirement, i.e., biocompatibility, electrical elasticity, and robustness, is first proposed here for all the on-skin healthcare electronics for epidermal applications. This requirement would guide the designing of the next-generation on-skin healthcare electronics. For conventional stretchable electronics, the rigid conductive materials, e.g., gold nanoparticles and silver nanofibers, would suffer from an easy-to-fail interface with elastic substrates due to a Young's modulus mismatch. Liquid metal (LM) with high conductivity and stretchability has emerged as a promising solution for robust stretchable epidermal electronics. In addition, the fundamental physical, chemical, and biocompatible properties of LM are illustrated. Furthermore, the fabrication strategies of LM are outlined for pure LM, LM composites, and LM circuits based on the surface tension control. Five dominant epidermal healthcare applications of LM are illustrated, including electrodes, interconnectors, mechanical sensors, thermal management, and biomedical and sustainable applications. Finally, the key challenges and perspectives of LM are identified for the future research vision.
Collapse
Affiliation(s)
- Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xin Li
- School of Integrated Circuits and Beijing National Research Centre for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guang Zhu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
34
|
Wang J, Cheng H, Cui Y, Yang Y, He H, Cai Y, Wang Z, Wang L, Hu Y. Liquid-Metal-Induced Hydrogen Insertion in Photoelectrodes for Enhanced Photoelectrochemical Water Oxidation. ACS NANO 2022; 16:21248-21258. [PMID: 36480658 DOI: 10.1021/acsnano.2c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fast charge separation and transfer (CST) is essential for achieving efficient solar conversion processes. This CST process requires not only a strong driving force but also a sufficient charge carrier concentration, which is not easily achievable with traditional methods. Herein, we report a rapid hydrogenation method enabled by gallium-based liquid metals (GBLMs) to modify the prototypical WO3 photoelectrode to enhance the CST for a PEC process. Protons in solution are controllably embedded into the WO3 photoanode accompanied by electron injection due to the strong reduction capability of GBLMs. This process dramatically increases the carrier concentration of the WO3 photoanode, leading to improved charge separation and transfer. The hydrogenated WO3 photoanode exhibits over a 229% improvement in photocurrent density with long-term stability. The effectiveness of GBLMs treatment in accelerating the CST process is further proved using other more general semiconductor photoelectrodes, including Nb2O5 and TiO2.
Collapse
Affiliation(s)
- Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Houyan Cheng
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuntao Cui
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yunfei Yang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng He
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yongfeng Cai
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
35
|
Liquid metals: Preparation, surface engineering, and biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Boarino A, Wang H, Olgiati F, Artusio F, Özkan M, Bertella S, Razza N, Cagno V, Luterbacher JS, Klok HA, Stellacci F. Lignin: A Sustainable Antiviral Coating Material. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:14001-14010. [PMID: 36312454 PMCID: PMC9597781 DOI: 10.1021/acssuschemeng.2c04284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Indexed: 05/15/2023]
Abstract
Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers. These approaches, however, even if successful, will have to face great challenges when it comes to large-scale applications and their environmental sustainability. Here, an antiviral surface coating was prepared by spin-coating lignin, a natural biomass residue of the paper production industry. We show effective inactivation of herpes simplex virus type 2 (>99% after 30 min) on a surface coating that is low-cost and environmentally sustainable. The antiviral mechanism of the lignin surface was investigated and is attributed to reactive oxygen species generated upon oxidation of lignin phenols. This mechanism does not consume the surface coating (as opposed to the release of a specific antiviral agent) and does not require regeneration. The coating is stable in ambient conditions, as demonstrated in a 6 month aging study that did not reveal any decrease in antiviral activity. This research suggests that natural compounds may be used for the development of affordable and sustainable antiviral coatings.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Fiora Artusio
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Stefania Bertella
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Nicolò Razza
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, Lausanne University Hospital,
University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Jeremy S. Luterbacher
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- Institute
of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale
de Lausanne (EPFL), Station
12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Centurion F, Hassan MM, Tang J, Allioux FM, Chakraborty S, Chen R, Mao G, Kumar N, Kalantar-Zadeh K, Rahim MA. Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings. NANOSCALE 2022; 14:14760-14769. [PMID: 36178260 DOI: 10.1039/d2nr02559k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of functional nanocoatings using natural compounds is a hallmark of sustainable strategies in the field of green synthesis. Herein, we report a surface-independent nanocoating strategy using natural polyphenols and gallium-based room temperature liquid metal nanoparticles. The nanocoating matrix is composed of tannic acid, crosslinked with group (IV) transition metal ions. Liquid gallium nanoparticles are incorporated into the coatings as a gallium ion releasing depot. The coating deposition is rapid and can be applied to a range of substrates including glass, plastics, paper, and metal surfaces, owing to the versatile adhesive nature of the catechol/gallol functional groups of tannic acid. The coating thickness can be controlled from 100 to 700 nm and the content of liquid gallium nanoparticles can be modulated. This enables the tunable release behaviour of gallium ions into the surrounding from the composite coatings. The coatings are highly biocompatible and display antioxidant and antibacterial properties that can be useful for diverse applications.
Collapse
Affiliation(s)
- Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Sudip Chakraborty
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Lee J, Bae J, Youn DY, Ahn J, Hwang WT, Bae H, Bae PK, Kim ID. Violacein-embedded nanofiber filters with antiviral and antibacterial activities. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 444:136460. [PMID: 35463870 PMCID: PMC9017092 DOI: 10.1016/j.cej.2022.136460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/09/2023]
Abstract
Most respiratory masks are made of fabrics, which only capture the infectious virus carriers into the matrix. However, these contagious viruses stay active for a long duration (∼7 days) within the fabric matrix possibly inducing post-contact transmissions. Moreover, conventional masks are vulnerable to bacterial growth with prolonged exposure to exhaled breaths. Herein, we combined violacein, a naturally-occurring antimicrobial agent, with porous nanofiber membranes to develop a series of functional filters that autonomously sterilizes viruses and bacteria. The violacein-embedded membrane inactivates viruses within 4 h (99.532 % reduction for influenza and 99.999 % for human coronavirus) and bacteria within 2 h (75.5 % reduction). Besides, its nanofiber structure physically filters out the nanoscale (<0.8 μm) and micron-scale (0.8 μm - 3 μm) particulates, providing high filtration efficiencies (99.7 % and 100 % for PM 1.0 and PM 10, respectively) with long-term stability (for 25 days). In addition, violacein provides additional UV-resistant property, which protects the skin from sunlight. The violacein-embedded membrane not only proved the sterile efficacy of microbe extracted pigments for biomedical products but also provided insights to advance the personal protective equipment (PPE) to fight against contagious pathogens.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA
| | - Doo-Young Youn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Hwang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunae Bae
- White BIO Technology, CJ CheilJedang Corporation, 55 Gwanggyo-ro, Suwon-si 16495, Gyeongggi-do, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Lee SH, Kang M, Jang H, Kondaveeti S, Sun K, Kim S, Park HH, Jeong HE. Bifunctional Amphiphilic Nanospikes with Antifogging and Antibiofouling Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39478-39488. [PMID: 35959590 DOI: 10.1021/acsami.2c08266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past few decades, extensive research efforts have been devoted to developing surfaces with unique functionalities, such as controlled wettability, antibiofouling, antifogging, and anti-icing behavior, for applications in a wide range of fields, including biomedical devices, optical instruments, microfluidics, and energy conservation and harvesting. However, many of the previously reported approaches have limitations with regard to eco-friendliness, multifunctionality, long-term stability and efficacy, and cost effectiveness. Herein, we propose a scalable bifunctional surface that simultaneously exhibits excellent antifogging and antibiofouling properties based on the synergistic integration of an eco-friendly and bio-friendly polyethylene glycol (PEG) hydrogel, oleamide (OA), and nanoscale architectures in a single flexible platform. We demonstrate that the PEG-OA-nanostructure hybrid exhibits excellent antifogging performance owing to its enhanced water absorption and spreading properties. We further show that the triple hybrid exhibits notable biofilm resistance without the use of toxic biocides or chemicals by integrating the "fouling-resistant" mechanism of the PEG hydrogel, the "fouling-release" mechanism of OA, and the "foulant-killing" mechanism of the nanostructures.
Collapse
Affiliation(s)
- Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, Jeonbuk 54538, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
41
|
Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-Metal-Coated Magnetic Particles toward Writable, Nonwettable, Stretchable Circuit Boards, and Directly Assembled Liquid Metal-Elastomer Conductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37110-37119. [PMID: 35930688 DOI: 10.1021/acsami.2c07618] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid metal is a promising conductor material for producing soft and stretchable circuit "boards" that can enable next-generation electronics by electrically connecting and mechanically supporting electronic components. While liquid metal in general can be used to fabricate soft and stretchable circuits, magnetic liquid metal is appealing because it can be used for self-healing electronics and actuators by external magnetic fields. Liquid metal can be rendered into particles that can then be used for sensors and catalysts through sonication. We used this feature to produce "novel" conductive and magnetic particles. Mixing ferromagnetic iron particles into the liquid metal (gallium) produces conductive ferrofluids that can be rendered into gallium-coated iron particles by sonication. The gallium shell of the particles is extremely soft, while the rigid iron core can induce high friction in response to mechanical pressure; thus, hand-sintering of the particles can be used to directly write the conductive traces when the particles are cast as a film on elastic substrates. The surface topography of the particles can be manipulated by forming GaOOH crystals through sonication in DI water, thus resulting in nonwettable circuit boards. These gallium-coated iron particles dispersed in uncured elastomer can be assembled to form conductive microwires with the application of magnetic fields.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Sihyun Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyeongmin Hong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael D Dickey
- Department of Chemical Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
42
|
Lee GH, Woo H, Yoon C, Yang C, Bae JY, Kim W, Lee DH, Kang H, Han S, Kang SK, Park S, Kim HR, Jeong JW, Park S. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204159. [PMID: 35702762 DOI: 10.1002/adma.202204159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heejin Woo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chanwoong Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Young Bae
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wonsik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hoon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seungmin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
43
|
Rajesh S, Gangadoo S, Nguyen H, Zhai J, Dekiwadia C, Drummond CJ, Chapman J, Truong VK, Tran N. Application of Fluconazole-Loaded pH-Sensitive Lipid Nanoparticles for Enhanced Antifungal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32845-32854. [PMID: 35850116 DOI: 10.1021/acsami.2c05165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is a yeast-like fungus that can cause the life-threatening disease cryptococcal meningitis. Numerous reports have shown increased resistance of this fungus against antifungal treatments, such as fluconazole (Fluc), contributing to an 80% global mortality rate. This work presents a novel approach to improve the delivery of the antifungal agent Fluc and increase the drug's targetability and availability at the infection site. Exploiting the acidic environment surrounding a C. neoformans infected site, we have developed pH-sensitive lipid nanoparticles (LNP) encapsulating Fluc to inhibit the growth of resistant C. neoformans. The LNP-Fluc delivery system consists of a neutral lipid monoolein (MO) and a novel synthetic ionizable lipid 2-morpholinoethyl oleate (O2ME). At neutral pH, because of the presence of O2ME, the nanoparticles are neutral and exhibit a liquid crystalline hexagonal nanostructure (hexosomes). At an acidic pH, they are positively charged with a cubic nanostructure (cubosomes), which facilitates the interaction with the negatively charged fungal cell wall. This interaction results in the MIC50 and MIC90 values of the LNP-Fluc being significantly lower than that of the free-Fluc control. Confocal laser scanning microscopy and scanning electron microscopy further support the MIC values, showing fungal cells exposed to LNP-Fluc at acidic pH were heavily distorted, demonstrating efflux of cytoplasmic molecules. In contrast, fungal cells exposed to Fluc alone showed cell walls mostly intact. This current study represents a significant advancement in delivering targeted antifungal therapy to combat fungal antimicrobial resistance.
Collapse
Affiliation(s)
- Sarigama Rajesh
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Han Nguyen
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Chaitali Dekiwadia
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - James Chapman
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
- Biomedical Nanoengineering Lab, College of Medicine and Public Health, Flinders University, Bedford Park 5043, South Australia
| | - Nhiem Tran
- School of Science, RMIT University, 124 La Trobe St., Melbourne, VIC 3000, Australia
| |
Collapse
|
44
|
Zhang C, Yang B, Biazik JM, Webster RF, Xie W, Tang J, Allioux FM, Abbasi R, Mousavi M, Goldys EM, Kilian KA, Chandrawati R, Esrafilzadeh D, Kalantar-Zadeh K. Gallium Nanodroplets are Anti-Inflammatory without Interfering with Iron Homeostasis. ACS NANO 2022; 16:8891-8903. [PMID: 35613428 DOI: 10.1021/acsnano.1c10981] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gallium (Ga) compounds, as the source of Ga ions (Ga3+), have been historically used as anti-inflammatories. Currently, the widely accepted mechanisms of the anti-inflammatory effects for Ga3+ are rationalized on the basis of their similarities to ferric ions (Fe3+), which permits Ga3+ to bind with Fe-binding proteins and subsequently disturbs the Fe homeostasis in the immune cells. Here in contrast to the classic views, our study presents the mechanisms of Ga as anti-inflammatory by delivering Ga nanodroplets (GNDs) into lipopolysaccharide-induced macrophages and exploring the processes. The GNDs show a selective inhibition of nitric oxide (NO) production without affecting the accumulation of pro-inflammatory mediators. This is explained by GNDs disrupting the synthesis of inducible NO synthase in the activated macrophages by upregulating the levels of eIF2α phosphorylation, without interfering with the Fe homeostasis. The Fe3+ transferrin receptor-independent endocytosis of GNDs by the cells prompts a fundamentally different mechanism as anti-inflammatories in comparison to that imparted by Ga3+. This study reveals the fundamental molecular basis of GND-macrophage interactions, which may provide additional avenues for the use of Ga for anti-inflammatory and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Biyao Yang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Joanna M Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Richard F Webster
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Song MS, Li RW, Qiu Y, Man SM, Tuipulotu DE, Birbilis N, Smith PN, Cole I, Kaplan DL, Chen XB. Gallium-Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomater Sci Eng 2022; 8:2709-2723. [PMID: 35574832 DOI: 10.1021/acsbiomaterials.2c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Device-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials. Pure Mg as a model biodegradable material was coated with gallium-doped strontium-phosphate through a chemical conversion process. Gallium was distributed in a gradual manner throughout the strontium-phosphate coating, with a compact structure and a gallium-rich surface. It was demonstrated that the coating protected the underlying Mg parts from significant degradation in minimal essential media at physiological conditions over 9 days. In terms of bacteria culture, the liberated gallium ions from the coatings upon Mg specimens, even though in minute quantities, inhibited the growth of Gram-positiveStaphylococcus aureus, Gram-negative Escherichia coli, andPseudomonas aeruginosa ─ key pathogens causing infection and early failure of the surgical implantations in orthopedics and trauma. More importantly, the gallium dopants displayed minimal interferences with the strontium-phosphate-based coating which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures. This work provides a new strategy to prevent bacterial infection and control the degradation behavior of Mg-based orthopedic implants, while preserving osteogenic features of the devices.
Collapse
Affiliation(s)
- Ming-Shi Song
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Laboratory, Department of Surgery, The Medical School, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Yao Qiu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Daniel E Tuipulotu
- Department of Immunology and Infectious Disease, College of Health & Medicine, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Nick Birbilis
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Paul N Smith
- Department of Surgery, The Canberra Hospital, Garran, Australian Capital Territory 2605, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, Victoria 3053, Australia
| |
Collapse
|
46
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
47
|
Jin X, Gao F, Qin M, Yu Y, Zhao Y, Shao T, Chen C, Zhang W, Xie B, Xiong Y, Yang L, Wu Y. How to Make Personal Protective Equipment Spontaneously and Continuously Antimicrobial (Incorporating Oxidase-like Catalysts). ACS NANO 2022; 16:7755-7771. [PMID: 35491982 DOI: 10.1021/acsnano.1c11647] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inability of commercial personal protective equipment (PPE) to inactivate microbes in the droplets/aerosols they intercept makes used PPE a potential source of cross-contamination. To make PPE spontaneously and continuously antimicrobial, we incorporate PPE with oxidase-like catalysts, which efficiently convert O2 into reactive oxygen species (ROS) without requiring any externally applied stimulus. Using a single-atom catalyst (SAC) nanoparticle containing atomically dispersed copper atoms as the reactive centers (Cu-SAC) and a silver-palladium bimetallic alloy nanoparticle (AgPd0.38) as models for oxidase-like catalysts, we show that the incorporation of oxidase-like catalysts enables PPE to inactivate bacteria in the droplets/aerosols they intercept without requiring any externally applied stimulus. Notably, this approach works both for PPE that are fibrous and woven such as a commercial KN95 facial respirator and for those made of solid plastics such as an apron. This work suggests a feasible and global approach for preventing PPE from spreading infectious diseases.
Collapse
Affiliation(s)
- Xinyang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Feng Gao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Mingxin Qin
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yunpeng Yu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tianyi Shao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Cai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lihua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuen Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Yu Y, Wu Q, Niu M, Gou L, Tan L, Fu C, Ren X, Ren J, Zheng Y, Meng X. A core-shell liquid metal-Cu nanoparticle with glutathione consumption via an in situ replacement strategy for tumor combination treatment of chemodynamic, microwave dynamic and microwave thermal therapy. Biomater Sci 2022; 10:3503-3513. [PMID: 35593298 DOI: 10.1039/d2bm00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The presence of high content glutathione (GSH) provides an effective "protective shield" for tumor cells, which undoubtedly is a huge impediment to reactive oxygen species (ROS)-based treatment. Fortunately, divalent copper (Cu2+) can not only consume GSH, destroying the protection mechanism of GSH, but also can be reduced to Cu+ with excellent Fenton-like reaction activity. Hence, capitalizing on the properties of liquid metals, we introduced Cu with three different valances via an in situ replacement reaction. A stable core-shell liquid-metal based "Cu storage pool" was obtained. It can effectively deplete GSH within the cells, and simultaneously produce ·OH through a Fenton-like reaction, further improving the effect of chemodynamic therapy (CDT). Under microwave irradiation, it is also capable of producing a large amount of ROS to promote tumor treatment. In addition, the loading of ionic liquid endows LZC@IL nanoparticles with certain microwave heating performance, which is able to augment microwave thermal therapy (MWTT). With the combination of CDT, microwave dynamic therapy (MDT) and MWTT, LZC@IL has an excellent effect on tumor elimination. This work offers a new idea for the application of liquid metals and the combined treatment of tumors, which has potential application value.
Collapse
Affiliation(s)
- Yongnian Yu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China. .,Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Li Gou
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| |
Collapse
|
49
|
Pham DQ, Gangadoo S, Berndt CC, Chapman J, Zhai J, Vasilev K, Truong VK, Ang ASM. Antibacterial Longevity of a Novel Gallium Liquid Metal/Hydroxyapatite Composite Coating Fabricated by Plasma Spray. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18974-18988. [PMID: 35416647 DOI: 10.1021/acsami.2c03695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite (HAp)-coated metallic implants are known for their excellent bioactivity and osteoconductivity. However, infections associated with the microstructure of the HAp coatings may lead to implant failures as well as increased morbidity and mortality. This work addresses the concerns about infections by developing novel composite coatings of HAp and gallium liquid metal (GaLM) using atmospheric plasma spray (APS) as the coating technique. Five weight percent Ga was mixed into a commercially supplied HAp powder using an orbital shaker; then, the HAp-Ga particle feedstock was coated onto Ti6Al4V substrates using the APS technique. The X-ray diffraction results indicated that Ga did not form any Ga-related phases in either the HAp-Ga powder or the respective coating. The GaLM filled the pores of the HAp coating presented both on the top surface and within the coating, especially at voids and cracks, to prevent failures of the coating at these locations. The wettability of the surface was changed from hydrophobic for the HAp coating to hydrophilic for the HAp-Ga composite coating. Finally, the HAp-Ga coating presented excellent antibacterial efficacies against both initial attachments and established biofilms generated from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa after 18 h and 7 days of incubation in comparison to the control HAp coating. This study shows that GaLM improves the antibacterial properties of HAp-based coatings without sacrificing the beneficial properties of conventional HAp coatings. Thus, the HAp-Ga APS coating is a viable candidate for antibacterial coatings.
Collapse
Affiliation(s)
- Duy Quang Pham
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sheeana Gangadoo
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Christopher C Berndt
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - James Chapman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew S M Ang
- ARC Training Centre for Surface Engineering for Advanced Materials (SEAM), Department of Mechanical Engineering & Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
50
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|