1
|
Feng Y, Zhang S, Chen M, Zhu L, Pei A, Wu F, Liao X, Gao Q, Wang W, Yang Z, Ye H, Chen BH. Revealing the mechanism of bifunctional PtLa electrocatalyst for highly efficient methanol oxidation, hydrogen evolution, and coupling reaction. J Colloid Interface Sci 2025; 679:918-928. [PMID: 39486230 DOI: 10.1016/j.jcis.2024.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
The development of clean energy solutions, such as fuel cells and hydrogen energy, is crucial for addressing the global energy shortage. Platinum (Pt)-based catalysts are widely used in fuel cells and hydrogen energy generation (for example, via water electrolysis). However, reducing the amount of Pt used while maintaining the catalytic performance of such catalysts is essential. Herein, PtLa catalysts (PtxLay/C) doped with rare earth element lanthanum (La) with different Pt/La atomic ratios were synthesized using a simple chemical reduction method, resulting in Pt65La35/C, Pt78La22/C, Pt97La3/C, and Pt100/C. These PtxLay/C catalysts exhibited excellent electrocatalytic activity and stability in methanol oxidation reaction (MOR), hydrogen evolution reaction (HER), and their coupling reaction as MOR||HER under alkaline conditions. The mechanism by which La doping enhances the electrocatalytic properties and stability of Pt-based catalysts was investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), aberration-corrected scanning transmission electron microscopy (AC-STEM), in-situ Fourier transform infrared (FTIR) and operando Raman spectroscopy. For HER, La doping facilitated the adsorption and activation of H2O at Pt sites, improving water dissociation and *OH desorption and reducing Pt poisoning by *OH. This enhances both the catalytic performance and stability of PtxLay/C for HER. Pt78La22/C exhibited a considerably lower overpotential of only 111 mV at 100 mA cm-2 compared to commercial 20 wt% Pt/C (Pt/C-Johnson Matthey (JM)), which requires 153 mV. For MOR, La promotes CO bond cleavage and reduces CO adsorption at the Pt sites, thereby enhancing both the performance and stability of the catalysts. The mass activity (MA) of Pt78La22/C for MOR is 4.44 A mg-1Pt, which is 12.33 times higher than that of Pt/C-JM (0.36 A/mgPt), and surpasses those of Pt65La35/C, Pt97La3/C, and Pt100/C (2.93, 0.24, and 2.91 A mg-1Pt, respectively). Additionally, Pt78La22/C exhibited outstanding catalytic performance for MOR||HER, with a current density of 20 mA cm-2 at 1.030 V, demonstrating good stability with negligible voltage changes after a 15 h chronoamperometry (CA) testing. This study provides a new strategy for synthesizing Pt-based catalysts with enhanced efficiency and low-energy input for HER||MOR.
Collapse
Affiliation(s)
- Yingliang Feng
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Sifan Zhang
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Mingzhi Chen
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Lihua Zhu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - An Pei
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Fengshun Wu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Xianping Liao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | | | | | | | - Bing Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Cai G, Hua C, Ren H, Yu R, Xu D, Khan MA, Guo J, Sun Y, Tang Y, Qian H, Xia Z, Ye D, Zhang J, Zhao H. Ultrathin ternary PtNiRu nanowires for enhanced oxygen reduction and methanol oxidation catalysis via d-band center regulation. J Colloid Interface Sci 2025; 678:599-608. [PMID: 39265332 DOI: 10.1016/j.jcis.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Direct methanol fuel cells rely on the efficiency of their anode/cathode electrocatalysts to facilitate the methanol oxidation reaction and oxygen reduction reaction, respectively. Platinum-based nanocatalysts are at the forefront due to their superior catalytic properties. However, the high-cost, scarcity, and low CO tolerance of platinum pose challenges for the scalable application of DMFCs. Herein, we report novel ultrathin ternary PtNiRu alloy nanowires to improve Pt utilization and CO tolerance. These novel electrocatalysts incorporate the oxophilic metal Ru into ultrathin PtNi nanowires, aiming to enhance the intrinsic activity of platinum while leveraging the long-term durability and high utilization efficiency provided by the bimetallic synergistic effect. The PtNiRu NWs significantly enhance both mass activity and specific activity for ORR, performing about 6.9 times and 3.9 times better than commercial Pt/C, respectively. After a rigorous durability test of 10,000 cycles, the PtNiRu NWs only exhibited a 25.2 % loss in mass activity. Additionally, for MOR, the MA and SA of PtNiRu NWs exceed that of Pt/C catalyst by 4.30 and 2.72 times, respectively, and exhibit exceptional resistance to CO poisoning. Theoretical insights from density functional theory calculations suggest that the introduction of Ru modulates the d-band center of the surface Pt atoms, which contributes to decreased binding strength of oxygenated species and an elevated dissolution potential, substantiating the enhanced performance metrics, and the durability enhancement stems from the stronger PtM bonds than those in PtNiRu NWs resulted from PtRu covalent interactions. These findings not only provide a new perspective on platinum-based nanocatalysts but also significantly advance the quest for more efficient and durable electrocatalysts for DMFCs, representing a substantial stride in fuel cell technology.
Collapse
Affiliation(s)
- Guopu Cai
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Chun Hua
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongji Ren
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Deying Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Muhammad Arif Khan
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jian Guo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yu Sun
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Huidong Qian
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China; Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Zhu G, Bao W, Xie M, Qi C, Xu F, Jiang Y, Chen B, Fan Y, Liu B, Wang L, Jiang W, Qiu P, Luo W. Accelerating Tandem Electroreduction of Nitrate to Ammonia via Multi-Site Synergy in Mesoporous Carbon-Supported High-Entropy Intermetallics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413560. [PMID: 39648538 DOI: 10.1002/adma.202413560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3 -RR) for ammonia (NH3) synthesis represents a significant technological advancement, yet it involves a cascade of elementary reactions alongside various intermediates. Thus, the development of multi-site catalysts for enhancing NO3 -RR and understanding the associated reaction mechanisms for NH3 synthesis is vital. Herein, a versatile approach is presented to construct platinum based high-entropy intermetallic (HEI) library for NH3 synthesis. The HEI nanoparticles (NPs) are uniformly supported on a 2D nitrogen doped mesoporous carbon (N-mC) framework, featured with adjustable compositions (up to eight elements) and a high degree of atomic order (over 90%). Guided by the density functional theory (DFT) calculations and atomic structural analysis, a quinary Pt0.8Fe0.2Co0.2Ni0.2Cu0.2 HEI NPs based N-mC catalyst is designed, which demonstrates a large ammonia Faradaic efffciency (>97%) and a remarkable recyclability (>20 cycles) under both acidic and basic conditions. The combined in situ experimental analysis and further DFT calculation suggests that the well-defined multi-sites nature of the HEI NPs cooperate for a tandem reduction mechanism, in which the Pt-X (X represents the other four transition elements) bridging sites offer optimal adsorption for key nitrogen-oxygen species while the Pt sites facilitate the generation and adsorption of *H species.
Collapse
Affiliation(s)
- Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Weichao Bao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Meng Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Chunhong Qi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Fangfang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Ying Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310000, China
| | - Bingwei Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310000, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Bin Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Zhang H, Ma C, Wang YC, Zhu X, Qu K, Ma X, He C, Han S, Liu AH, Wang Q, Cao W, Lin W, Xia J, Zhu L, Gu L, Yun Q, Wang AL, Lu Q. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409515. [PMID: 39228207 DOI: 10.1002/anie.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3 - battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaiyu Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ai-Hua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Lin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, 511458, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Hu M, Li J, Liu T, Wu Z, Du Y. Insights into the formation and growth of high entropy PdPtSnPbNi nanowires to obtain catalysts with high alcohol electrocatalytic oxidation activity. J Colloid Interface Sci 2024; 675:481-487. [PMID: 38986321 DOI: 10.1016/j.jcis.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
High-entropy alloys have raised great interest in recent years because of their potential applications for multi-electron reactions owing to their diverse active sites and multielement tunability. However, the difficulty of synthesis is an obstacle to their development due to phase separation often exists. In addition, it's a challenge to precisely control morphology in harsh conditions, thus leading to nanoparticles in many cases. We report a facile method to obtain PdPtPbSnNi HEA NWs by solvothermal synthesis method that no existing phase separation. PdPb nucleation plays a role in the formation of the high-entropy structure that serves as a PdPb nucleus for Sn, Ni, and Pt reduction subsequently, thus forming a single phase and an orderly-arranged nanowire structure. Significantly, the optimized PdPtPbSnNi NWs exhibit excellent catalytic activity and stability for both EOR and MOR which is 4.36 A mgPd+Pt-1 and 4.34 A mgPd+Pt-1, respectively. This study highlights a novel strategy for morphology tuning, providing a prospect for designing superior high-entropy nano-catalysts for multi-step reactions.
Collapse
Affiliation(s)
- Mengyun Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tianpeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
6
|
Distaso M, Abella E. Design of PtSn Nanocatalysts for Fuel Cell Applications. Chempluschem 2024; 89:e202400151. [PMID: 39382180 PMCID: PMC11639638 DOI: 10.1002/cplu.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/30/2024] [Indexed: 10/10/2024]
Abstract
The challenges in the fuel cell industry lie in the cost, performance, and durability of the electrode components, especially the platinum-based catalysts. Alloying has been identified as an effective strategy to reduce the cost of the catalyst and increase its efficiency and durability. So far, most studies focused on the design of PtM bimetallic nanocatalyst, where M is a transition metal. The resulting PtM materials show higher catalytic activity, but their stability remained challenging. In addition, most of the transition metals M are expensive or low abundant. Tin (Sn) has gained attention as alloying element due to its versatility in manufacturing both anode and cathode electrodes. If used as anode catalyst, it is able to overcome poisoning from CO and related intermediates. As cathode catalyst, it improves the kinetics of the oxygen reduction reaction (ORR). Additionally, Sn is an abundant and cheap element. The current contribution outlines the state of the art on the alloy and shape effect on PtSn activity and stability, demonstrating its high potential to develop cheaper, more efficient and durable catalysts for fuel-cell electrodes. Additionally, in situ analytical and spectroscopic studies can shed light on the elementary steps involved in the use of PtSn catalytic systems. Finally, this intriguing material can be used as a parent system for the synthesis of high-entropy-alloys and intermetallics materials.
Collapse
Affiliation(s)
- Monica Distaso
- Friedrich-Alexander University Erlangen-NürnbergInterdisciplinary Center for Functional Particle SystemsHaberstraße 9a91058ErlangenGermany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2)Forschungszentrum JülichCauerstr. 191058ErlangenGermany
| | - Erika Abella
- Friedrich-Alexander University Erlangen-NürnbergInterdisciplinary Center for Functional Particle SystemsHaberstraße 9a91058ErlangenGermany
| |
Collapse
|
7
|
Hou X, Liang C, Zhao R, Wang L, Chen T, Yang J, Guo X, Xue N, Wang T, Peng L, Zhao X, Ding W. Integrated Catalyst ZnNC⊂PtZn for High-Performance Ethanol Electrooxidation and DEFC. Angew Chem Int Ed Engl 2024:e202417406. [PMID: 39587447 DOI: 10.1002/anie.202417406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
We report here an electrocatalyst that exhibits superior performance in the electrooxidation of ethanol. The reactive centers of the catalyst have a nest-type configuration with outer Zn-NxC nest covering inner PtZn intermetallic compound nanoparticles loaded on carbon support (ZnNC⊂PtZn/C). The high-energy stepped facets of the inner PtZn nanoparticles confined and shaped by the outer Zn-NxC nest is highly active for the critical C-C bond cleavage of ethanol in oxidation, confirmed by experimental characterizations and density functional theory calculations. The catalyst shows a rare high-performance and demonstrates a mass activity of 3.7 A mgPt -1 and a Faradaic efficiency of 78.2 %, following the C1 pathway of reaction and the retention of initial activity remains 97 % after 5,000 cycles. The unique configuration, also mitigating the concentration polarization, endows the catalyst with innate ethanol electrooxidation property by inner-outer synergic interactions, leading to unexpected power output of an acidic direct ethanol fuel cell.
Collapse
Affiliation(s)
- Xiaoxia Hou
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chenjia Liang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ruiyao Zhao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liwen Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Teng Chen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiangke Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- Jiangsu Meso Catalytic Materials Technology Co., Ltd, Science and Technology Innovation Park, 36 Huada Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaomei Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Tan X, Wang C, Wang J, Wang P, Xiao Y, Guo Y, Chen J, He W, Li Y, Cui H, Wang C. High-Entropy PdRhFeCoMo Metallene With High C1 Selectivity and Anti-Poisoning Ability for Ethanol Electrooxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409109. [PMID: 39559911 DOI: 10.1002/advs.202409109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/20/2024]
Abstract
The urgent demand for designing highly efficient electrocatalysts for ethanol oxidation reaction (EOR) with elevated C1 selectivity, robust anti-poisoning capability, and high mass activity presents a formidable challenge. Herein, a novel two-dimentional (2D) high-entropy PdRhFeCoMo metallene (PdRhFeCoMo HEM) electrocatalyst is successfully synthesized via a mild one-step solvothermal method. The PdRhFeCoMo HEM, characterized by intentionally designed multi-metallic ensembles and ultra-thin graphene-like structures, delivers an impressive mass activity of 7.47 A mgPd+Rh -1 and specific activity of 25.5 mA cm-2. Furthermore, it can retain a mass activity of 0.56 A mgPd+Rh -1 after undergoing 20000 s of continuous testing, demonstrating outstanding resistance to poisoning. More significantly, the PdRhFeCoMo HEM demonstrates an elevated capacity for C─C bond cleavage with a superior C1 selectivity of up to 84.12%. In situ spectroscopy analysis, combined with theoretical calculations, reveals that the deliberate design of components and structures effectively regulate the electronic properties of the Pd site, thereby enhancing the adsorption of reactant and reducing the reaction barrier of the C1 pathway. Finally, a flexible solid-state ethanol fuel cell assembled by PdRhFeCoMo HEM presents a maximum power density of 20.1 mW cm-2 and can operate continuously by repeatedly adding ethanol fuel.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chenhui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiarui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianpo Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Cui M, Zhang Y, Xu B, Xu F, Chen J, Zhang S, Chen C, Luo Z. High-entropy alloy nanomaterials for electrocatalysis. Chem Commun (Camb) 2024; 60:12615-12632. [PMID: 39377768 DOI: 10.1039/d4cc04075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
High-entropy alloys (HEAs) exhibit a remarkable capacity to modulate geometric and electronic structures for the construction of catalysts with unpredictable and exceptional performance, and have attracted substantial acclaim within the domain of materials science. In this comprehensive review, we present a thorough summary of the synthesis and multiple applications of HEAs in the realm of electrocatalysis. Our review encompasses the diverse synthesis methodologies of HEA nanomaterials and their pivotal roles in amplifying electrocatalytic performance in hydrogen evolution reactions (HERs), oxygen evolution reactions (OERs), oxygen reduction reactions (ORRs), alcohol oxidation reactions (AORs), and CO2 reduction reactions (CO2RRs), and more. Furthermore, we address the intricate challenges and promising avenues that lie ahead in this research area. Reviewing recent breakthroughs, emerging paradigms, and prospects on the horizon, it becomes increasingly evident that HEAs harbor immense potential to reshape the landscape of energy conversion and storage, and emerge as paramount contenders for the development of cutting-edge electrocatalytic materials that hold the key to a sustainable energy future.
Collapse
Affiliation(s)
- Mingjin Cui
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Bo Xu
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Fei Xu
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jianwei Chen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Shaoyin Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Chunhong Chen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
10
|
Zheng J, Li Y, Xu W, Sun B, Xu T, Liu S, Zhu X, Liu Y, Zhang S, Ge M, Yuan X. Growth Modulation of High-Entropy Alloys for Electrocatalytic Methanol Oxidation Reaction. Inorg Chem 2024; 63:20697-20704. [PMID: 39425660 DOI: 10.1021/acs.inorgchem.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
High-entropy alloy (HEA) electrocatalysts have exhibited remarkable catalytic performance because of their synergistic interactions among multiple metals. However, the growth mechanism of HEAs remains elusive, primarily due to the constraints imposed by the current synthesis methodologies for HEAs. In this work, an innovative electrodeposition method was developed to fabricate Pt-based nanocomposites (Pt1Bi2Co1Cu1Ni1/CC), comprising HEA nanosheets and carbon cloths (CCs). The reaction system could be effectively monitored by taking samples out from the system during the reaction process, facilitating in-depth insight into the growth mechanism underlying the material formation. In particular, Pt1Bi2Co1Cu1Ni1/CC nanocomposites show superior methanol oxidation reaction (MOR) performance (mass activity up to 5.02 A mgPt-1). Upon structural analysis, the d-band center of Pt1Bi2Co1Cu1Ni1/CC is lower in comparison with that of Pt1Bi2/CC and Pt/CC, demonstrating the formation of a rich-electron structure. Both the uniformity of HEAs and the carbon-supported effect could provide additional active sites. These findings suggest that the strong electronic interaction within HEAs and additional active sites can effectively modulate the catalytic structure of Pt, which benefits the enhanced CO tolerance and MOR performance.
Collapse
Affiliation(s)
- Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanqi Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Wenjing Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bingbing Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tian Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
11
|
Sheng Y, Xie J, Yang R, Yu H, Deng K, Wang J, Wang H, Wang L, Xu Y. Modulating Hydrogen Adsorption by Unconventional p-d Orbital Hybridization over Porous High-Entropy Alloy Metallene for Efficient Electrosynthesis of Nylon-6 Precursor. Angew Chem Int Ed Engl 2024; 63:e202410442. [PMID: 38993065 DOI: 10.1002/anie.202410442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Renewable electricity driven electrosynthesis of cyclohexanone oxime (C6H11NO) from cyclohexanone (C6H10O) and nitrogen oxide (NOx) is a promising alternative to traditional environment-unfriendly industrial technologies for green synthesis of C6H11NO. Precisely controlling the reaction pathway of the C6H10O/NOx-involved electrochemical reductive coupling reaction is crucial for selectively producing C6H11NO, which is yet still challenging. Herein, we report a porous high-entropy alloy PdCuAgBiIn metallene (HEA-PdCuAgBiInene) to boost the electrosynthesis of C6H11NO from C6H10O and nitrite, achieving a high Faradaic efficiency (47.6 %) and almost 100 % yield under ambient conditions. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that unconventional orbital hybridization between d-block metals and p-block metals could regulate the local electronic structure of active sites and induce electron localization of electron-rich Pd sites, which tunes the active hydrogen supply, facilitates the generation and enrichment of key intermediates NH2OH* and C6H10O*, and efficiently promotes their C-N coupling to selectively produce C6H11NO.
Collapse
Affiliation(s)
- Youwei Sheng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiangwei Xie
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ruidong Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
12
|
Zhou X, Liu S, Teng H, Ma K, Miao W, Cui X, Zhou X, Jiang L. OH Regulator of Amorphous CrO x on Defect-Rich Ultrafine Pd Nanowires Boosts Electrocatalytic Ethanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408373. [PMID: 39428817 DOI: 10.1002/smll.202408373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Reasonable construction of high activity and selectivity electrocatalysts is crucial to achieve efficient ethanol oxidation reaction (EOR). However, the oxidation of ethanol tends to produce CO species that poison the active centers of the EOR electrocatalysts. Herein, a unique amorphous CrOx-protected defect-rich ultrafine Pd nanowires (CrOx-Pd NWs) is developed. On the one hand, the CrOx layer can act as a protective layer to maintain the structure of the nanowire. On the other hand, it can play the role of OH regulator to optimize the adsorption energy barrier of intermediate species in Pd nanowire, thereby enhancing the ability of the catalyst to resist CO poisoning. The CrOx-Pd NWs exhibit excellent EOR performance with 3.64 times higher mass activity and 50 mV lower CO electro-oxidation potential than commercial Pd black. The results show that the CrOx layer promotes the dissociation of H2O into OHads, while the CrOx transfers electrons to neighboring Pd atoms optimizing the electronic configuration of Pd, thus selectively oxidizing ethanol to acetate and preventing the formation of toxic *CO. This work provides an effective strategy for the synthesis of nanowire materials with oxide/metal interfaces and offers new ideas for the design of catalysts that can efficiently drive EOR.
Collapse
Affiliation(s)
- Xiaotong Zhou
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Songliang Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Huaifang Teng
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Kun Ma
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Weixin Miao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xin Zhou
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning, 116029, P. R. China
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
13
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
14
|
Li D, Liu C, Tao S, Cai J, Zhong B, Li J, Deng W, Hou H, Zou G, Ji X. High-Entropy Electrode Materials: Synthesis, Properties and Outlook. NANO-MICRO LETTERS 2024; 17:22. [PMID: 39331215 PMCID: PMC11436529 DOI: 10.1007/s40820-024-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024]
Abstract
High-entropy materials represent a new category of high-performance materials, first proposed in 2004 and extensively investigated by researchers over the past two decades. The definition of high-entropy materials has continuously evolved. In the last ten years, the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage, electrocatalysis, and related domains, accompanied by a rise in techniques for fabricating high-entropy electrode materials. Recently, the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches. However, the current definition of high-entropy materials remains relatively vague, and the preparation method of high-entropy materials is based on the preparation method of single metal/low- or medium-entropy materials. It should be noted that not all methods applicable to single metal/low- or medium-entropy materials can be directly applied to high-entropy materials. In this review, the definition and development of high-entropy materials are briefly reviewed. Subsequently, the classification of high-entropy electrode materials is presented, followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods. Finally, an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided, along with a proposal for potential future development directions for high-entropy materials.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, People's Republic of China.
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jieming Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Biao Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
15
|
Zhang S, Yin L, Liu Q, Hai G, Du Y. Lanthanide-Induced Ligand Effect to Regulate the Electronic Structure of Platinum-Lanthanide Nanoalloys for Efficient Methanol Oxidation. ACS NANO 2024; 18:25754-25764. [PMID: 39102015 DOI: 10.1021/acsnano.4c08156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The ligand effect in alloy catalysts is one of the decisive parameters of the catalytic performance. However, the strong interrelation between the ligand effect and the geometric effect of the active atom and its neighbors as well as the systematic alteration of the microenvironment of the active site makes the active mechanism unclear. Herein, Pt3Tm, Pt3Yb, and Pt3Lu with a cubic crystal system (Pm-3m) were selected. With the difference of Pt-Pt interatomic distance within 0.02 Å, we minimize the geometric effect to realize the disentanglement of the system. Through precise characterization, due to the low electronegativity of Ln (Ln = Tm, Yb, and Lu) and the ligand effect in the alloy, the electronic structure of Pt is continuously optimized, which improves the electrochemical methanol oxidation reaction (MOR) performance. The Ln electronegativity has a linear relationship with the MOR performance, and Pt3Yb/C achieves a high mass activity of up to 11.61 A mgPt-1, which is the highest value reported so far in Pt-based electrocatalysts. The results obtained in this study provide fundamental insights into the mechanism of ligand effects on the enhancement of electrochemical activity in rare-earth nanoalloys.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qian Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
16
|
Duan L, Xu J, Cao L, Lu L, Zang L, Hu S, Fu R, Wang K. Enhanced Electrocatalytic Performance of the FePt/PPy-C Composite toward Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44718-44727. [PMID: 39139126 DOI: 10.1021/acsami.4c07065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A novel FePt/PPy-C composite nanomaterial has been designed and investigated as a methanol oxidation reaction (MOR) electrocatalyst. The FePt nanoparticles with an average diameter of about 3 nm have been prepared by the co-reduction method and then loaded onto the PPy-C composite support. The electrocatalytic performance is affected by the composition of the FePt nanoparticles. The experimental results indicated that the Fe1.5Pt1/PPy-C catalyst exhibited excellent catalytic activity and stability for MOR, with mass activity and specific activity of 1.76 A mgPt-1 and 2.71 mA cm-2, respectively, which are 5.18 and 4.60 times higher than that of the commercial Pt/C catalyst. Density functional theory (DFT) has been employed to simulate the electrical structures of catalyst supports, and the mechanism of the methanol oxidation process has been further analyzed. The heterojunctions of the PPy-C interface could accelerate the electron migration from the electrocatalytic center to the electrodes. The possibility of methanol oxidation has been improved effectively, which can be confirmed by the d-band center and CO adsorption energy on FePt nanoparticles in the DFT calculation results.
Collapse
Affiliation(s)
- Lijun Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhao Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingzhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liying Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Likun Zang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongpeng Fu
- School of Mathematics and Physics, Handan University, Handan 056005, China
| | - Kai Wang
- School of Mathematics and Physics, Handan University, Handan 056005, China
| |
Collapse
|
17
|
Nakaya Y, Furukawa S. High-entropy intermetallics: emerging inorganic materials for designing high-performance catalysts. Chem Sci 2024; 15:12644-12666. [PMID: 39148764 PMCID: PMC11323319 DOI: 10.1039/d3sc03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Alloy materials have been used as promising platforms to upgrade catalytic performance that cannot be achieved with conventional monometallic materials. As a result of numerous efforts, the recent progress in the field of alloy catalysis has been remarkable, and a wide range of new advanced alloys have been considered as potential electro/thermal catalysts. Among advanced alloy materials, high-entropy intermetallics are novel materials, and their excellent catalytic performance has recently been reported. High-entropy intermetallics have several advantages over disordered solid-solution high-entropy alloys, that is, greater structural/thermal stability, more facile site isolation, more precise control of electronic structures, tunability, and multifunctionality. A multidimensional compositional space is indeed limitless, but such a compositional space also provides a well-designed surface configuration because of its ordered nature. In this review, we will provide fundamental insights into high-entropy intermetallics, including thermodynamic properties, synthesis requirements, characterization techniques, roles in catalysis, and reaction examples. The comprehensive information provided in this review will highlight the great application potential of high-entropy intermetallics for catalysis, and will accelerate the development of this newly developed field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Shinya Furukawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| |
Collapse
|
18
|
Xu K, Liang L, Li T, Bao M, Yu Z, Wang J, Thalluri SM, Lin F, Liu Q, Cui Z, Song S, Liu L. Pt 1.8Pd 0.2CuGa Intermetallic Nanocatalysts with Enhanced Methanol Oxidation Performance for Efficient Hybrid Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403792. [PMID: 38742953 DOI: 10.1002/adma.202403792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Seawater electrolysis is a potentially cost-effective approach to green hydrogen production, but it currently faces substantial challenges for its high energy consumption and the interference of chlorine evolution reaction (ClER). Replacing the energy-demanding oxygen evolution reaction with methanol oxidation reaction (MOR) represents a promising alternative, as MOR occurs at a significantly low anodic potential, which cannot only reduce the voltage needed for electrolysis but also completely circumvents ClER. To this end, developing high-performance MOR catalysts is a key. Herein, a novel quaternary Pt1.8Pd0.2CuGa/C intermetallic nanoparticle (i-NP) catalyst is reported, which shows a high mass activity (11.13 A mgPGM -1), a large specific activity (18.13 mA cmPGM -2), and outstanding stability toward alkaline MOR. Advanced characterization and density functional theory calculations reveal that the introduction of atomically distributed Pd in Pt2CuGa intermetallic markedly promotes the oxidation of key reaction intermediates by enriching electron concentration around Pt sites, resulting in weak adsorption of carbon-containing intermediates and favorable adsorption of synergistic OH- groups near Pd sites. MOR-assisted seawater electrolysis is demonstrated, which continuously operates under 1.23 V for 240 h in simulated seawater and 120 h in natural seawater without notable degradation.
Collapse
Affiliation(s)
- Kaiyang Xu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering, Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China
| | - Lecheng Liang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Tong Li
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering, Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| | - Mujie Bao
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering, Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| | - Zhipeng Yu
- Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Jingwei Wang
- Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China
| | | | - Fei Lin
- Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering, Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shuqin Song
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lifeng Liu
- Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China
| |
Collapse
|
19
|
Fan D, Yao H, Sun L, Lv H, Liu B. 2D PtRhPb Mesoporous Nanosheets with Surface-Clean Active Sites for Complete Ethanol Oxidation Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407940. [PMID: 38962849 DOI: 10.1002/adma.202407940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The development of active and selective metal electrocatalysts for complete ethanol oxidation reaction (EOR) into desired C1 products is extremely promising for practical application of direct ethanol fuel cells. Despite some encouraging achievements, their activity and selectivity remain unsatisfactory. In this work, it is reported that 2D PtRhPb mesoporous nanosheets (MNSs) with anisotropic structure and surface-clean metal site perform perfectly for complete EOR electrocatalysis in both three-electrode and two-electrode systems. Different to the traditional routes, a selective etching strategy is developed to produce surface-clean mesopores while retaining parent anisotropy quasi-single-crystalline structure without the mesopore-forming surfactants. This method also allows the general synthesis of surface-clean mesoporous metals with other compositions and structures. When being performed for alkaline EOR electrocatalysis, the best PtRhPb MNSs deliver remarkably high activity (7.8 A mg-1) and superior C1 product selectivity (70% of Faradaic efficiency), both of which are much better than reported electrocatalysts. High performance is assigned to multiple structural and compositional synergies that not only stabilized key OHads intermediate by surface-clean mesopores but also separated the chemisorption of two carbons in ethanol by adjacent Pt and Rh sites, which facilitate the oxidation cleavage of stable C─C bond for complete EOR electrocatalysis.
Collapse
Affiliation(s)
- Dongping Fan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
20
|
Liu H, Zhang Y, Zhang L, Mu X, Zhang L, Zhu S, Wang K, Yu B, Jiang Y, Zhou J, Yang F. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation. J Am Chem Soc 2024; 146:20193-20204. [PMID: 39004825 DOI: 10.1021/jacs.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
Collapse
Affiliation(s)
- Haojie Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulong Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Liang J, Cao G, Zeng M, Fu L. Controllable synthesis of high-entropy alloys. Chem Soc Rev 2024; 53:6021-6041. [PMID: 38738520 DOI: 10.1039/d4cs00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
22
|
Li M, Lin F, Zhang S, Zhao R, Tao L, Li L, Li J, Zeng L, Luo M, Guo S. High-entropy alloy electrocatalysts go to (sub-)nanoscale. SCIENCE ADVANCES 2024; 10:eadn2877. [PMID: 38838156 DOI: 10.1126/sciadv.adn2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rui Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junyi Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Hu Z, Chen K, Zhu Y, Liu B, Shen J. Synergistic Effects of PtRhNiFeCu High Entropy Alloy Nanocatalyst for Hydrogen Evolution and Oxygen Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309819. [PMID: 38229574 DOI: 10.1002/smll.202309819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Indexed: 01/18/2024]
Abstract
The unique properties of high entropy alloy (HEA) catalysts, particularly their severe lattice distortion and the synergistic effect of multiple components, endow them with exceptional multifunctional catalytic performance. Herein, it is revealed for the first time, that the ultrasmall PtRhNiFeCu HEA nanoparticles catalyst shows outstanding catalytic activity for both hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The catalyst exhibits an impressively low overpotential of 13 mV at 10 mA cm-2, a Tafel slope of 29.6 mV dec-1, and high mass activity of 7.6 A mgPt -1 at -50 mV in alkaline media, and long-term stability of at least 20 h. Moreover, the catalyst also demonstrates effective catalytic activity for acidic ORR with a commendable performance of 1.23 A mgPt -1, much exceeding the commercial Pt/C catalyst. Density functional theory (DFT) calculations unveil that the efficient electrocatalytic performance for HER and ORR can be primarily attributed to the synergistic effect between components tailors and optimizes the electronic structure of PtRhNiFeCu/C HEA, which not only enhances the HER activity through increasing water capture capability, decreasing energetic barrier for water dissociation, and optimizing hydrogen absorption but also initiates non-platinum active sites with high ORR activity, achieving the improved ORR performance.
Collapse
Affiliation(s)
- Zhiwei Hu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangyin Chen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
24
|
Sun X, Sun Y. Synthesis of metallic high-entropy alloy nanoparticles. Chem Soc Rev 2024; 53:4400-4433. [PMID: 38497773 DOI: 10.1039/d3cs00954h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The theoretically infinite compositional space of high-entropy alloys (HEAs) and their novel properties and applications have attracted significant attention from a broader research community. The successful synthesis of high-quality single-phase HEA nanoparticles represents a crucial step in fully unlocking the potential of this new class of materials to drive innovations. This review analyzes the various methods reported in the literature to identify their commonalities and dissimilarities, which allows categorizing these methods into five general strategies. Physical minimization of HEA metals into HEA nanoparticles through cryo-milling represents the typical top-down strategy. The counter bottom-up strategy requires the simultaneous generation and precipitation of metal atoms of different elements on growing nanoparticles. Depending on the metal atom generation process, there are four synthesis strategies: vaporization of metals, burst reduction of metal precursors, thermal shock-induced reduction of metal precursors, and solvothermal reduction of metal precursors. Comparisons among the methods within each strategy, along with discussions, provide insights and guidance for achieving the robust synthesis of HEA nanoparticles.
Collapse
Affiliation(s)
- Xiuyun Sun
- College of Energy and Mechanical Engineering, Dezhou University, Dezhou, Shandong, 253023, P. R. China
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania, 19122, USA.
| |
Collapse
|
25
|
Fan X, Chen W, Xie L, Liu X, Ding Y, Zhang L, Tang M, Liao Y, Yang Q, Fu XZ, Luo S, Luo JL. Surface-Enriched Single-Bi-Atoms Tailoring of Pt Nanorings for Direct Methanol Fuel Cells with Ultralow-Pt-Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313179. [PMID: 38353598 DOI: 10.1002/adma.202313179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Single-atom decorating of Pt emerges as a highly effective strategy to boost catalytic properties, which can trigger the most Pt active sites while blocking the smallest number of Pt atoms. However, the rational design and creation of high-density single-atoms on Pt surface remain as a huge challenge. Herein, a customized synthesis of surface-enriched single-Bi-atoms tailored Pt nanorings (SE-Bi1/Pt NRs) toward methanol oxidation is reported, which is guided by the density functional theory (DFT) calculations suggesting that a relatively higher density of Bi species on Pt surface can ensure a CO-free pathway and accelerate the kinetics of *HCOOH formation. Decorating Pt NRs with dense single-Bi-atoms is achieved by starting from PtBi intermetallic nanoplates (NPs) with intrinsically isolated Bi atoms and subsequent etching and annealing treatments. The SE-Bi1/Pt NRs exhibit a mass activity of 23.77 A mg-1 Pt toward methanol oxidation in alkaline electrolyte, which is 2.2 and 12.8 times higher than those of Pt-Bi NRs and Pt/C, respectively. This excellent activity endows the SE-Bi1/Pt NRs with a high likelihood to be used as a practical anodic electrocatalyst for direct methanol fuel cells (DMFCs) with high power density of 85.3 mW cm-2 and ultralow Pt loading of 0.39 mg cm-2.
Collapse
Affiliation(s)
- Xiaokun Fan
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei Xie
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xianglong Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- School of Physics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Long Zhang
- School of Physics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Min Tang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yujia Liao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Qi Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
26
|
Li Y, Yao Z, Gao W, Shang W, Deng T, Wu J. Nanoscale Design for High Entropy Alloy Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310006. [PMID: 38088529 DOI: 10.1002/smll.202310006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Due to their distinctive physical and chemical characteristics, high entropy alloys (HEAs), a class of alloys comprising multiple elements, have garnered a lot of attention. It is demonstrated recently that HEA electrocatalysts increase the activity and stability of several processes. In this paper, the most recent developments in HEA electrocatalysts research are reviewed, and the performance of HEAs in catalyzing key reactions in water electrolysis and fuel cells is summarized. In addition, the design strategies for HEA electrocatalysts optimization is introduced, which include component selection, size optimization, morphology control, structural engineering, crystal phase regulation, and theoretical prediction, which can guide component selection and structural design of HEA electrocatalysts.
Collapse
Affiliation(s)
- Yanjie Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenpeng Yao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wenpei Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
27
|
Liang C, Zhao R, Chen T, Luo Y, Hu J, Qi P, Ding W. Recent Approaches for Cleaving the C─C Bond During Ethanol Electro-Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308958. [PMID: 38342625 PMCID: PMC11022732 DOI: 10.1002/advs.202308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.
Collapse
Affiliation(s)
- Chenjia Liang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ruiyao Zhao
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Teng Chen
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Yi Luo
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Jianqiang Hu
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Ping Qi
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Weiping Ding
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
28
|
Zhang F, Sun S, Ge X, Guan Q, Ling M, Yuan W, Zhang LY. Synthesizing Pd-based high entropy alloy nanoclusters for enhanced oxygen reduction. Chem Commun (Camb) 2024; 60:3591-3594. [PMID: 38470334 DOI: 10.1039/d4cc00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
We report the synthesis of uniform Pd-based high-entropy alloy clusters via rapid Joule heating. The quinary PdMnFeCuNi clusters exhibit 4.95 times higher mass activity than the Commercial Pt/C for the oxygen reduction reaction, and outstanding stability with only 2 mV decay in the half-wave potential after 20 000 cycles of testing.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| | - Shiwei Sun
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| | - Xiaohang Ge
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| | - Qinhe Guan
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| | - Miao Ling
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| | - Weiyong Yuan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P.R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China.
| |
Collapse
|
29
|
Liu MF, Zhang C, Wang J, Han X, Hu W, Deng Y. Recent research progresses of Sn/Bi/In-based electrocatalysts for electroreduction CO 2 to formate. Chemistry 2024; 30:e202303711. [PMID: 38143240 DOI: 10.1002/chem.202303711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.
Collapse
Affiliation(s)
- Ms Fei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chen Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiajun Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
30
|
He L, Li M, Qiu L, Geng S, Liu Y, Tian F, Luo M, Liu H, Yu Y, Yang W, Guo S. Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis. Nat Commun 2024; 15:2290. [PMID: 38480686 PMCID: PMC10937678 DOI: 10.1038/s41467-024-45874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
The precise structural integration of single-atom and high-entropy-alloy features for energy electrocatalysis is highly appealing for energy conversion, yet remains a grand challenge. Herein, we report a class of single-atom Mo-tailored PdPtNiCuZn high-entropy-alloy nanosheets with dilute Pt-Pt ensembles and intrinsic tensile strain (Mo1-PdPtNiCuZn) as efficient electrocatalysts for enhancing the methanol oxidation reaction catalysis. The as-made Mo1-PdPtNiCuZn delivers an extraordinary mass activity of 24.55 A mgPt-1 and 11.62 A mgPd+Pt-1, along with impressive long-term durability. The planted oxophilic Mo single atoms as promoters modify the electronic structure of isolated Pt sites in the high-entropy-alloy host, suppressing the formation of CO adsorbates and steering the reaction towards the formate pathway. Meanwhile, Mo promoters and tensile strain synergistically optimize the adsorption behaviour of intermediates to achieve a more energetically favourable pathway and minimize the methanol oxidation reaction barrier. This work advances the design of atomically precise catalytic sites by creating a new paradigm of single atom-tailored high-entropy alloys, opening an encouraging pathway to the design of CO-tolerance electrocatalysts.
Collapse
Affiliation(s)
- Lin He
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Menggang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Longyu Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yequn Liu
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Fenyang Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Dey G, Soliman SS, McCormick CR, Wood CH, Katzbaer RR, Schaak RE. Colloidal Nanoparticles of High Entropy Materials: Capabilities, Challenges, and Opportunities in Synthesis and Characterization. ACS NANOSCIENCE AU 2024; 4:3-20. [PMID: 38406312 PMCID: PMC10885327 DOI: 10.1021/acsnanoscienceau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Materials referred to as "high entropy" contain a large number of elements randomly distributed on the lattice sites of a crystalline solid, such that a high configurational entropy is presumed to contribute significantly to their formation and stability. High temperatures are typically required to achieve entropy stabilization, which can make it challenging to synthesize colloidal nanoparticles of high entropy materials. Nonetheless, strategies are emerging for the synthesis of colloidal high entropy nanoparticles, which are of interest for their synergistic properties and unique catalytic functions that arise from the large number of constituent elements and their interactions. In this Perspective, we highlight the classes of materials that have been made as colloidal high entropy nanoparticles as well as insights into the synthetic methods and the pathways by which they form. We then discuss the concept of "high entropy" within the context of colloidal materials synthesized at much lower temperatures than are typically required for entropy to drive their formation. Next, we identify and address challenges and opportunities in the field of high entropy nanoparticle synthesis. We emphasize aspects of materials characterization that are especially important to consider for nanoparticles of high entropy materials, including powder X-ray diffraction and elemental mapping with scanning transmission electron microscopy, which are among the most commonly used techniques in laboratory settings. Finally, we share perspectives on emerging opportunities and future directions involving colloidal nanoparticles of high entropy materials, with an emphasis on synthesis, characterization, and fundamental knowledge that is needed for anticipated advances in key application areas.
Collapse
Affiliation(s)
- Gaurav
R. Dey
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Samuel S. Soliman
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Connor R. McCormick
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles H. Wood
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rowan R. Katzbaer
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Xiao L, Wang Z, Guan J. Optimization strategies of high-entropy alloys for electrocatalytic applications. Chem Sci 2023; 14:12850-12868. [PMID: 38023509 PMCID: PMC10664458 DOI: 10.1039/d3sc04962k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
High-entropy alloys (HEAs) are expected to become one of the most promising functional materials in the field of electrocatalysis due to their site-occupancy disorder and lattice order. The chemical complexity and component tunability make it possible for them to obtain a nearly continuous distribution of adsorption energy curve, which means that the optimal adsorption strength and maximum activity can be obtained by a multi-alloying strategy. In the last decade, a great deal of research has been performed on the synthesis, element selection and catalytic applications of HEAs. In this review, we focus on the analysis and summary of the advantages, design ideas and optimization strategies of HEAs in electrocatalysis. Combined with experiments and theories, the advantages of high activity and high stability of HEAs are explored in depth. According to the classification of catalytic reactions, how to design high-performance HEA catalysts is proposed. More importantly, efficient strategies for optimizing HEA catalysts are provided, including element regulation, defect regulation and strain engineering. Finally, we point out the challenges that HEAs will face in the future, and put forward some personal proposals. This work provides a deep understanding and important reference for electrocatalytic applications of HEAs.
Collapse
Affiliation(s)
- Liyuan Xiao
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
36
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
37
|
Hu Y, Xu Z, Guo X, Xiong P, Xu C, Chen C, Zhang Q, Wang S, Wu TS, Soo YL, Li MMJ, Wang D, Zhu Y. Hollow-Carbon Confinement Annealing: A New Synthetic Approach to Make High-Entropy Solid-Solution and Intermetallic Nanoparticles. NANO LETTERS 2023. [PMID: 37963268 DOI: 10.1021/acs.nanolett.3c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
High-entropy alloy (HEA) nanoparticles (NPs) have been emerging with superior compositional tunability and multielemental synergy, presenting a unique platform for material discovery and performance optimization. Here we report a synthetic approach utilizing hollow-carbon confinement in the ordinary furnace annealing to achieve the nonequilibrium HEA-NPs such as Pt0.45Fe0.18Co0.12Ni0.15Mn0.10 with uniform size ∼5.9 nm. The facile temperature control allows us not only to reveal the detailed reaction pathway through ex situ characterization but also to tailor the HEA-NP structure from the crystalline solid solution to intermetallic. The preconfinement of metal precursors is the key to ensure the uniform distribution of metal nanoparticles with confined volume, which is essential to prevent the thermodynamically favored phase separation even during the ordinary furnace annealing. Besides, the synthesized HEA-NPs exhibit remarkable activity and stability in oxygen reduction catalysis. The demonstrated synthetic approach may significantly expand the scope of HEA-NPs with uncharted composition and performance.
Collapse
Affiliation(s)
- Yezhou Hu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| |
Collapse
|
38
|
Chen C, Guo J, Liu J, Li W, Wei Y, Wang H, Zhao X, Wei L. Quinary RuRhPdPtAu high-entropy alloy as an efficient electrocatalyst for the hydrogen evolution reaction. Chem Commun (Camb) 2023; 59:12863-12866. [PMID: 37815878 DOI: 10.1039/d3cc04162j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Quinary RuRhPdPtAu high-entropy alloy nanoparticles (HEA-NPs) were prepared for the first time from a deep eutectic solvent by an electrochemical method. Owing to the benefits of high entropy and abundant surface active sites, the RuRhPdPtAu HEA-NPs exhibit outstanding electrocatalytic performance for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Cheng Chen
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jiayin Guo
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jianhong Liu
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Weiwei Li
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Yongsheng Wei
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Honghui Wang
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Fujian Province University, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China.
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lu Wei
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
39
|
Li L, Xu H, Zhu Q, Meng X, Xu J, Han M. Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions. Dalton Trans 2023; 52:13452-13466. [PMID: 37721115 DOI: 10.1039/d3dt02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The intercalation of H into Pd-based nanocatalysts plays a crucial role in optimizing the catalytic performance by tailoring the structural and electronic properties. We herein present a comprehensive review about the recent progress of interstitial hydrogen atom modified Pd-based nanocatalysts for various energy-related electrocatalytic reactions. Before systematically manifesting the great potential of Pd-based hydrides for electrocatalytic applications, we have briefly illustrated the synthesis strategies and corresponding mechanisms for the Pd-based hydrides. This is followed by a comprehensive discussion about the fundamentals and functions of H intercalation in tailoring their physicochemical and electrochemical properties. Subsequently, we focus on the widespread application of Pd-based hydrides for electrocatalytic reactions, with the emphasis on the role of H intercalation played in determining electrocatalytic performance. Finally, the future direction and perspectives regarding the development of more efficient Pd-based hydrides are also manifested.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
40
|
Wu G, Yang Y, Jiang J, Liu Y, Sun M, Zhang J, Zhang W, Qin Q. Emerging Electrocatalysts in Urea Production. Chemistry 2023; 29:e202301619. [PMID: 37403776 DOI: 10.1002/chem.202301619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Urea synthesis from abundant CO2 and N-feedstocks via renewable electricity has attracted increasing interests, offering a promising alternative to the industrial-applied Haber-Meiser process. However, the studies toward electrochemical urea production remain scarce and appeal for more research. Herein, in this perspective, an up-to-date overview on the urea electrosynthesis is highlighted and summarized. Firstly, the reaction pathways of urea formation through various feedstocks are comprehensively discussed. Then, we focus on the strategies of materials design to improve C-N coupling efficiency by identifying the descriptor and understanding the reaction mechanism. Finally, the current challenges and disadvantages in this field are reviewed and some future development directions of electrocatalytic urea synthesis are also prospected. This Minireview aims to promote future investigations of the electrochemical urea synthesis.
Collapse
Affiliation(s)
- Guanzheng Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yidong Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jiadi Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yi Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mengmiao Sun
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jianrui Zhang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China
| | - Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and, Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Qing Qin
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
41
|
Tao L, Huang B, Zhao Y. Low-Dimensional High-Entropy Alloys for Advanced Electrocatalytic Reactions. CHEM REC 2023; 23:e202300097. [PMID: 37236145 DOI: 10.1002/tcr.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Low-dimensional high-entropy alloy (HEA) nanomaterials are widely employed as electrocatalysts for energy conversion reactions, due to their inherent advantages, including high electron mobility, rich catalytically active site, optimal electronic structure. Moreover, the high-entropy, lattice distortion, and sluggish diffusion effects also enable them to be promising electrocatalysts. A thorough understanding on the structure-activity relationships of low-dimensional HEA catalyst play a huge role in the future pursuit of more efficient electrocatalysts. In this review, we summarize the recent progress of low-dimensional HEA nanomaterials for efficient catalytic energy conversion. By systematically discussing the fundamentals of HEA and properties of low-dimensional nanostructures, we highlight the advantages of low-dimensional HEAs. Subsequently, we also present many low-dimensional HEA catalysts for electrocatalytic reactions, aiming to gain a better understanding on the structure-activity relationship. Finally, a series of upcoming challenges and issues are also thoroughly proposed as well as their future directions.
Collapse
Affiliation(s)
- Lei Tao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Baoyu Huang
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
42
|
Zhao F, Yuan Q. Abundant Exterior/Interior Active Sites Enable Three-Dimensional PdPtBiTe Dumbbells C-C Cleavage Electrocatalysts for Actual Alcohol Fuel Cells. Inorg Chem 2023; 62:14815-14822. [PMID: 37647605 DOI: 10.1021/acs.inorgchem.3c02642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing high-activity electrocatalysts is of great significance for the commercialization of direct alcohol fuel cells (DAFCs), but it still faces challenges. Herein, three-dimensional (3D) porous PdPtBiTe dumbbells (DBs) were successfully fabricated via the visible photoassisted method. The alloying effect, defect-rich surface/interface and nanoscale cavity, and open pores make the 3D PdPtBiTe DBs a comprehensive and remarkable electrocatalyst for the C1-C3 alcohol (ethanol, ethylene glycol, glycerol, and methanol) oxidation reaction (EOR, EGOR, GOR, and MOR, respectively) in an alkaline electrolyte, and the results of in situ Fourier transform infrared spectra revealed a superior C-C bond cleavage ability. The 3D PdPtBiTe DBs exhibit ultrahigh EOR, EGOR, GOR, and MOR mass activities of 25.4, 23.2, 16.8, and 18.3 A mgPd + Pt-1, respectively, considerably surpassing those of the commercial Pt/C and Pd/C. Moreover, the mass peak power densities of 3D PdPtBiTe DBs in actual ethanol, ethylene glycol, glycerol, or methanol fuel cells increase to 409.5, 501.5, 558.0, or 601.3 mW mgPd + Pt-1 in O2, respectively. This study provides a new class of multimetallic nanomaterials as state-of-the-art multifunctional anode electrocatalysts for actual DAFCs.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|
43
|
Wang Y, Luo W, Gong S, Luo L, Li Y, Zhao Y, Li Z. Synthesis of High-Entropy-Alloy Nanoparticles by a Step-Alloying Strategy as a Superior Multifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302499. [PMID: 37155729 DOI: 10.1002/adma.202302499] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Indexed: 05/10/2023]
Abstract
High-entropy-alloy nanoparticles (HEA-NPs) have attracted great attention because of their unique complex compositions and tailorable properties. Further expanding the compositional space is of great significance for enriching the material library. Here, a step-alloying strategy is developed to synthesis HEA-NPs containing a range of strongly repellent elements (e.g., Bi-W) by using the rich-Pt cores formed during the first liquid phase reaction as the seed of the second thermal diffusion. Remarkably, the representative HEA-NPs-(14) with up to 14 elements exhibits extremely excellent multifunctional electrocatalytic performance for pH-universal hydrogen evolution reaction (HER), alkaline methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR). Briefly, HEA-NPs-(14) only requires the ultralow overpotentials of 11 and 18 mV to deliver 10 mA cm-2 and exhibits ultralong durability for 400 and 264 h under 100 mA cm-2 in 0.5 m H2 SO4 and 1 m KOH, respectively, which surpasses most advanced pH-universal HER catalysts. Moreover, HEA-NPs-(14) also exhibits an impressive peak current density of 12.6 A mg-1 Pt in 1 m KOH + 1 m MeOH and a half-wave potential of 0.86 V (vs RHE.) in 0.1 m KOH. The work further expands the spectrum of possible metal alloys, which is important for the broad compositional space and future data-driven material discovery.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Wenhui Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Shen Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yixuan Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yuyuan Zhao
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Zhou Li
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
44
|
Huang B, Ge Y, Zhang A, Zhu S, Chen B, Li G, Yun Q, Huang Z, Shi Z, Zhou X, Li L, Wang X, Wang G, Guan Z, Zhai L, Luo Q, Li Z, Lu S, Chen Y, Lee CS, Han Y, Shao M, Zhang H. Seeded Synthesis of Hollow PdSn Intermetallic Nanomaterials for Highly Efficient Electrocatalytic Glycerol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302233. [PMID: 37261943 DOI: 10.1002/adma.202302233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd2 Sn and monoclinic Pd3 Sn2 . Benefiting from the rational regulation of the crystal phase and morphology, the obtained hollow orthorhombic Pd2 Sn NPs deliver excellent electrocatalytic performance toward glycerol oxidation reaction (GOR), outperforming solid orthorhombic Pd2 Sn NPs, hollow monoclinic Pd3 Sn2 NPs, and commercial Pd/C, which places it among the best reported Pd-based GOR electrocatalysts. The reaction mechanism of GOR using the hollow orthorhombic Pd2 Sn as the catalyst is investigated by operando infrared reflection absorption spectroscopy, which reveals that the hollow orthorhombic Pd2 Sn catalyst cleaves the CC bond more easily compared to the commercial Pd/C. This work can pave an appealing route to the controlled synthesis of diverse novel intermetallic nanomaterials with hollow morphology for various promising applications.
Collapse
Affiliation(s)
- Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Energy Institute, Hong Kong Branch of the Southern Marine, Science and Engineering Guangdong Laboratory and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
45
|
Liang J, Cheng H, Zhao B, Hu Q, Xing Z, Zhang Y, Niu L. Boosting the Methanol Oxidation Reaction Activity of Pt-Ru Clusters via Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302149. [PMID: 37194975 DOI: 10.1002/smll.202302149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO* to CO2 . This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99 mW cm - 2 mg Pt - 1 ${\rm{mW\ cm}}^{ - 2}{\rm{\ mg}}_{{\rm{Pt}}}^{ - 1}$ ). The fabricated system can be potentially used for the efficient fabrication of DMFCs.
Collapse
Affiliation(s)
- Jiahui Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Heyun Cheng
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Bolin Zhao
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zihao Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
46
|
Soliman SS, Dey GR, McCormick CR, Schaak RE. Temporal Evolution of Morphology, Composition, and Structure in the Formation of Colloidal High-Entropy Intermetallic Nanoparticles. ACS NANO 2023; 17:16147-16159. [PMID: 37549244 DOI: 10.1021/acsnano.3c05241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Morphology-controlled nanoparticles of high entropy intermetallic compounds are quickly becoming high-value targets for catalysis. Their ordered structures with multiple distinct crystallographic sites, coupled with the "cocktail effect" that emerges from randomly mixing a large number of elements, yield catalytic active sites capable of achieving advanced catalytic functions. Despite this growing interest, little is known about the pathways by which high entropy intermetallic nanoparticles form and grow in solution. As a result, controlling their morphology remains challenging. Here, we use the high entropy intermetallic compound (Pd,Rh,Ir,Pt)Sn, which adopts a NiAs-related crystal structure, as a model system for understanding how nanoparticle morphology, composition, and structure evolve during synthesis in solution using a slow-injection reaction. By performing a time-point study, we establish the initial formation of palladium-rich cube-like Pd-Sn seeds onto which the other metals deposit over time, concomitant with continued incorporation of tin. For (Pd,Rh,Ir,Pt)Sn, growth occurs on the corners, resulting in a sample having a mixture of flower-like and cube-like morphologies. We then synthesize and characterize a library of 14 distinct intermetallic nanoparticle systems that comprise all possible binary, ternary, and quaternary constituents of (Pd,Rh,Ir,Pt)Sn. From these studies, we correlated compositions, morphologies, and growth pathways with the constituent elements and their competitive reactivities, ultimately mapping out a framework that rationalizes the key features of the high entropy (Pd,Rh,Ir,Pt)Sn intermetallic nanoparticles based on those of their simpler constituents. We then validated these design guidelines by applying them to the synthesis of a morphologically pure variant of flowerlike (Pd,Rh,Ir,Pt)Sn particles as well as a series of (Pd,Rh,Ir,Pt)Sn particles with tunable morphologies based on control of composition.
Collapse
|
47
|
Li M, Huang C, Yang H, Wang Y, Song X, Cheng T, Jiang J, Lu Y, Liu M, Yuan Q, Ye Z, Hu Z, Huang H. Programmable Synthesis of High-Entropy Nanoalloys for Efficient Ethanol Oxidation Reaction. ACS NANO 2023. [PMID: 37418375 DOI: 10.1021/acsnano.3c02762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.
Collapse
Affiliation(s)
- Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Chenming Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Yu Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Jiangsu 215123, People's Republic of China
| | - Jietao Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yangfan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
48
|
Guo J, Liu W, Fu X, Jiao S. Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. NANOSCALE 2023; 15:8508-8531. [PMID: 37114369 DOI: 10.1039/d3nr00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) noble-metal-based nanomaterials have attracted tremendous attention and have widespread promising applications as a result of their unique physical, chemical, and electronic properties. Especially, 2D Pt- and Pd-based intermetallic nanoplates (IMNPs) and nanosheets (IMNSs) are widely studied for fuel cell (FC)-related reactions, including the cathodic oxygen reduction reaction (ORR) and anodic formic acid, methanol and ethanol oxidation reactions (FAOR, MOR and EOR). Wet-chemistry synthesis is a powerful strategy to prepare metallic nanocrystals with well-controlled dispersity, size, and composition. In this review, a fundamental understanding of the FC-related reactions is firstly elaborated. Subsequently, the current wet-chemistry synthesis pathways for 2D Pt- and Pd-based IMNPs and IMNSs are briefly summarized, as well as their electrocatalytic applications including in the ORR, FAOR, MOR, and EOR. Finally, we provide an overview of the opportunities and current challenges and give our perspectives on the development of high-performance 2D Pt- and Pd-based intermetallic electrocatalysts towards FCs. We hope this review offers timely information on the synthesis of 2D Pt- and Pd-based IMNPs and IMNSs and provides guidance for the efficient synthesis and application of them.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Jinming Avenue, Kaifeng 475001, China.
| |
Collapse
|
49
|
Lee SA, Bu J, Lee J, Jang HW. High‐Entropy Nanomaterials for Advanced Electrocatalysis. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Sol A Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Liquid Sunlight Alliance (LiSA) Department of Applied Physics and Materials Science California Institute of Technology Pasadena CA 91106 USA
| | - Jeewon Bu
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Jiwoo Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Advanced Institute of Convergence Technology Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
50
|
Cheng J, Lyu C, Dong G, Liu Y, Hu Y, Han B, Geng D, Zhao D. The Underlying Mechanism Trade-Off between Particle Proximity Effect and Low-Pt Loading for Oxygen Reduction and Methanol Oxidation Reaction Activity. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|