1
|
Wei Y, Pan F, Lin X, Zhang L, Xiang J, Chen Y. On-demand Reprogrammable Mechanical Metamaterial Driven by Structure Performance Relations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410865. [PMID: 39707679 DOI: 10.1002/adma.202410865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Indexed: 12/23/2024]
Abstract
The physical reprogrammability of metamaterials provides unprecedented opportunities for tailoring changeable mechanical behaviors. It is envisioned that metamaterials can actively, precisely, and rapidly reprogram their performances through digital interfaces toward varying demands. However, on-demand reprogramming by integration of physical and digital merits still remains less explored. Here, a real-time reprogrammable mechanical metamaterial is reported that is guided by its own structure-performance relations. The metamaterial consists of periodically tessellated bistable building blocks with built-in soft actuators for state switching, exhibiting rich spatial heterogeneity. Guided by the pre-established relations between state sequences and stress-strain curves, the metamaterial can accurately match a target curve by digitally tuning its state within 4 s. The metamaterial can be elastically tensioned and compressed under a strain of 4%, and its modulus tuning ratio reaches >30. Moreover, it also shows highly tunable shearing and bending performances. This work provides a new thought for the physical performance reprogrammability of artificial intelligent systems.
Collapse
Affiliation(s)
- Yuling Wei
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Fei Pan
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, China
| | - Xin Lin
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Lei Zhang
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Jinwu Xiang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, China
| |
Collapse
|
2
|
Wu G, Xu M, Lei M, Liao M, Luo Y, OuYang Y, Liu J, Cai G. Full-fiber triboelectric nanogenerators with knitted origami structures for high impact resistance intelligent protection fabric. MATERIALS HORIZONS 2024. [PMID: 39584507 DOI: 10.1039/d4mh01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Next-generation fabrics with excellent protection and intelligent sensing abilities will be beneficial to protect the elderly from accidents, as the ageing population will be a global challenge in the next decade. However, for widely used techniques such as fabric coating and multi-layer compositing, maintaining a balance between comfortability, stable anti-impact protection, and multi-function such as intelligent monitoring remains elusive. Herein, a full-fiber composite yarn with triboelectric ability was developed, which was then woven into an origami-structured knitted fabric (OSKF). Due to the coaxial torsional structure, the composite yarn exhibited outstanding fracture strength (219.18 MPa). The full-fiber multi-scale structure design endowed the OSKF with significantly improved energy absorption capacity (absorbing > 85% of the applied force) and the desired self-powered sensing performance without affecting the comfortability. The OSKF also had a unique ability to respond to various hazardous situations, such as external mechanical force stimuli, cutting by a sharp object, and accidental falls. This work sheds light on a new path toward the design of next-generation smart protection wearables based on knitted fabric structure design-based full-fiber materials.
Collapse
Affiliation(s)
- Guilin Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mengdie Lei
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mingmin Liao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yongyue Luo
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical, Agricultural Sciences (CATAS), Zhanjiang 524001, China
| | - Yiwei OuYang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jize Liu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production of Wuhan Textile University, Wuhan 430200, China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies of Wuhan Textile University, Wuhan 430200, China.
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
3
|
Huang J, Qiu L, Ni C, Chen G, Zhao Q. Shape Memory Polymers with Patternable Recovery Onset Regulated by Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408324. [PMID: 39097949 DOI: 10.1002/adma.202408324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.
Collapse
Affiliation(s)
- Jiacheng Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lintao Qiu
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Tie BSH, Daly M, Zhuo S, Halligan E, Keane G, Geever J, Geever L. The Exponential Shapeshifting Response of N-Vinylcaprolactam Hydrogel Bilayers Due to Temperature Change for Potential Minimally Invasive Surgery. J Funct Biomater 2024; 15:242. [PMID: 39330218 PMCID: PMC11432818 DOI: 10.3390/jfb15090242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Poly (N-vinylcaprolactam) (PNVCL) and poly (N-isopropylacrylamide) (PNIPAm) are two popular negatively temperature-responsive hydrogels, due to their biocompatibility, softness, hydrophilicity, superabsorbency, viscoelasticity, and near-physiological lower critical solution temperature (LCST). These characteristics make them ideal for biomedical applications. When combined with other materials, hydrogel expansion induces the morphing of the assembly due to internal stress differences. Our recent developments in NVCL hydrogel, enhanced by nanoclay incorporation, have driven us to the creation of a bilayer structure to study its shapeshifting response across various temperatures. This study focused on the bending behaviour of bilayer samples composed of an active hydrogel layer and a passive non-swellable layer. Using photopolymerisation, circular discs and rectangular bilayer samples of varying sizes were fabricated. Homogeneous circular samples demonstrated that hydrogel density increased proportionally with temperature, with the swelling ratio exhibiting two distinct rates of change below and above its LCST. In bilayer samples, the volume of the passive layer influenced bending, and its optimal volume was identified. The investigation revealed that geometry affected the overall bending effect due to changes in the passive layer stiffness. Lastly, a temperature-responsive gripper capable of picking up objects several times its own weight was demonstrated, highlighting the potential of NVCL hydrogels as bioactuators for minimally invasive surgery.
Collapse
Affiliation(s)
- Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mark Daly
- Faculty of Engineering & Informatics, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Centre, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Joseph Geever
- Faculty of Engineering & Informatics, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Luke Geever
- Applied Polymer Technologies Gateway, Technological University of the Shannon, Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
5
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
6
|
Zhu Y, Ghrayeb A, Yu J, Yang Y, Filipov ET, Oldham KR. Mixed-Transducer Micro-Origami for Efficient Motion and Decoupled Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400059. [PMID: 38429240 DOI: 10.1002/smll.202400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Indexed: 03/03/2024]
Abstract
This work introduces a mixed-transducer micro-origami to achieve efficient vibration, controllable motion, and decoupled sensing. Existing micro-origami systems tend to have only one type of transducer (actuator/sensor), which limits their versatility and functionality because any given transducer system has a narrow range of advantageous working conditions. However, it is possible to harness the benefit of different micro-transducer systems to enhance the performance of functional micro-origami. More specifically, this work introduces a micro-origami system that can integrate the advantages of three transducer systems: strained morph (SM) systems, polymer based electro-thermal (ET) systems, and thin-film lead zirconate titanate (PZT) systems. A versatile photolithography fabrication process is introduced to build this mixed-transducer micro-origami system, and their performance is investigated through experiments and simulation models. This work shows that mixed-transducer micro-origami can achieve power efficient vibration with high frequency, large vibration ranges, and little degradation; can produce decoupled folding motion with good controllability; and can accomplish simultaneous sensing and actuation to detect and interact with external environments and small-scale samples. The superior performance of mixed-transducer micro-origami systems makes them promising tools for micro-manipulation, micro-assembly, biomedical probes, self-sensing metamaterials, and more.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anan Ghrayeb
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joonyoung Yu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yiwei Yang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evgueni T Filipov
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenn R Oldham
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Sun X, Yue L, Yu L, Forte CT, Armstrong CD, Zhou K, Demoly F, Zhao RR, Qi HJ. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun 2024; 15:5509. [PMID: 38951533 PMCID: PMC11217466 DOI: 10.1038/s41467-024-49775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.
Collapse
Affiliation(s)
- Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor T Forte
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor D Armstrong
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Belfort-Montbeliard University of Technology, UTBM, Belfort, France
- Institut universitaire de France (IUF), Paris, France
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Jeon H, Han AR, Oh S, Park JG, Namkoong M, Bang KM, Kim HM, Kim NK, Hwang KY, Hur K, Lee BJ, Heo J, Kim S, Song HK, Cho H, Lee IG. Polymorphic Self-Assembly with Procedural Flexibility for Monodisperse Quaternary Protein Structures of DegQ Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308837. [PMID: 38351715 DOI: 10.1002/adma.202308837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Indexed: 02/29/2024]
Abstract
As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
| | - Sangmin Oh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Myeong Namkoong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Daejeon, 34126, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Science, Seoul National University, 599, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jeongyun Heo
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Ye H, He J, Ge Q, Xiong Y. Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites. Nat Commun 2024; 15:2322. [PMID: 38485752 PMCID: PMC10940589 DOI: 10.1038/s41467-024-46591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Active origami capable of precise deployment control, enabling on-demand modulation of its properties, is highly desirable in multi-scenario and multi-task applications. While 4D printing with shape memory composites holds great promise to realize such active origami, it still faces challenges such as low load-bearing capacity and limited transformable states. Here, we report a fabrication-design-actuation method of precisely controlled electrothermal origami with excellent mechanical performance and spatiotemporal controllability, utilizing 4D printing of continuous fiber-reinforced composites. The incorporation of continuous carbon fibers empowers electrothermal origami with a controllable actuation process via Joule heating, increased actuation force through improved heat conduction, and enhanced mechanical properties as a result of reinforcement. By modeling the multi-physical and highly nonlinear deploying process, we attain precise control over the active origami, allowing it to be reconfigured and locked into any desired configuration by manipulating activation parameters. Furthermore, we showcase the versatility of electrothermal origami by constructing reconfigurable robots, customizable architected materials, and programmable wings, which broadens the practical engineering applications of origami.
Collapse
Affiliation(s)
- Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jian He
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Wang L, Chang Y, Wu S, Zhao RR, Chen W. Physics-aware differentiable design of magnetically actuated kirigami for shape morphing. Nat Commun 2023; 14:8516. [PMID: 38129420 PMCID: PMC10739944 DOI: 10.1038/s41467-023-44303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Peng W, Mu H, Liang X, Zhang X, Zhao Q, Xie T. Digital Laser Direct Writing of Internal Stress in Shape Memory Polymer for Anticounterfeiting and 4D Printing. ACS Macro Lett 2023; 12:1698-1704. [PMID: 38039381 DOI: 10.1021/acsmacrolett.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Shape memory polymers (SMPs) are a type of smart shape-shifting material that can respond to various stimuli. Their shape recovery pathway is determined by the internal stress stored in the temporary shapes. Thus, manipulating the internal stress is key to the potential applications of SMPs. This is commonly achieved by the types of deformation forces applied during the programming stage. In contrast, we present here a digital laser direct writing method to selectively induce thermal relaxation of internal stress stored in the two-dimensional (2D) shape of a thermoplastic SMP. The internal stress field, while invisible under natural light, can be visualized under polarized light. Consequently, the digital stress pattern can be used for anticounterfeiting. In addition, further uniform heating induces the release of the programmed internal stress within the 2D film. This triggers its transformation into a three-dimensional (3D) shape, enabling 4D printing. The simplicity and versatility of our approach in manipulating internal stress and shape-shifting make it attractive for potential applications.
Collapse
Affiliation(s)
- Wenjun Peng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Hongfeng Mu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Liang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Matonis S, Zhuang B, Bishop AF, Naik DA, Temel Z, Bettinger CJ. Edible Origami Actuators Using Gelatin-Based Bioplastics. ACS APPLIED POLYMER MATERIALS 2023; 5:6288-6295. [PMID: 37588084 PMCID: PMC10425958 DOI: 10.1021/acsapm.3c00919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
The potential of ingestible medical devices can be greatly enhanced through the use of smart structures made from stimuli-responsive materials. While hydration is a convenient stimulus for inducing shape changes in biomaterials, finding robust materials that can achieve rapid actuation, facile manufacturability, and biocompatibility suitable for ingestible medical devices poses practical challenges. Hydration is a convenient stimulus to induce shape changes in smart biomaterials; however, there are many practical challenges to identifying materials that can achieve rapid actuation and facile manufacturability while satisfying constraints associated with biocompatibility requirements and mechanical properties that are suitable for ingestible medical devices. Herein, we illustrate the formulation and processability of a moisture-responsive genipin-crosslinked gelatin bioplastic system, which can be processed into complex three-dimensional shapes. Mechanical characterization of bioplastic samples showed Young's Modulus values as high as 1845 MPa and toughness values up to 52 MJ/m3, using only food-safe ingredients. Custom molds and UV-laser processing enabled the fabrication of centimeter-scale structures with over 150 independent actuating joints. These self-actuating structures soften and unfold in response to surrounding moisture, eliminating the need for additional stimuli or actuating elements.
Collapse
Affiliation(s)
| | | | - Ailla F. Bishop
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Durva A. Naik
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Zeynep Temel
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | | |
Collapse
|
13
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|