1
|
Wang Y, Zhou D, Liang H, Wang Y, Wang T, Li W, Song R, Song R, Wang E, Fang Y, Zhou S, Yang H, Bai X, Xu W, Song H. Efficient and Super-Stable 990 Nm Light‑Emitting Diodes Based on Quantum Cutting Emission of Trivalent Ytterbium in Pure-Br Quasi‑2D Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2503076. [PMID: 40109199 DOI: 10.1002/adma.202503076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Quasi 2D layered metal halide perovskites (2D-LMHPs) with natural quantum wells (QWs) structure have garnered significant attention due to their excellent optoelectronic properties. Doping rare earth (RE) ions with 4fn inner shell emission levels can largely expand their optical and optoelectronic properties and realize diverse applications, but has not been reported yet. Herein, an efficient Yb3+-doped PEA2Cs2Pb3Br10 quasi 2D-LMHPs is fabricated and directly identified the Yb3+ ions in the quasi 2D-LMHPs at the atomic scale using aberration electron microscopy. The interaction between different n phases and Yb3+ ions is elucidated using ultrafast transient absorption spectroscopy and luminescent dynamics, which demonstrated efficient, different time scales and multi-channel energy transfer processes. Finally, through phase distribution manipulation and surface passivation, the optimized film exhibits a photoluminescence quantum yield of 144%. This is the first demonstration of quantum cutting emission in pure Br-based perovskite material, suppressing defect states and ion migration. The efficient and stable near-infrared light-emitting diodes (NIR LED) is fabricated with a peak external quantum efficiency (EQE) of 8.8% at 990 nm and the record lifetime of 1274 min. This work provides fresh insight into the interaction between RE ions and quasi 2D-LMHPs and extend the function and application of quasi 2D-LMHPs materials.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Hao Liang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Yue Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tianyuan Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Wei Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Ruixin Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Renhuan Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Enhui Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yuhang Fang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Shangwei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Hao Yang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Wen Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
- Dalian Minzu Univ, Key Lab New Energy & Rare Earth Resource Utilizat, Dalian, 116600, P. R. China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Li D, Bao Y, Wang R, Wang J, Liu Y, Cao L, Deng Y, Xiang H. Efficient and stable blue perovskite light-emitting diodes enabled by the synergistic incorporation of dual additives. NANOSCALE 2025; 17:9541-9551. [PMID: 40130479 DOI: 10.1039/d4nr05355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Perovskite materials have garnered significant attention in the field of light-emitting diodes (LEDs) due to their low cost, solution processing, straightforward fabrication, tunable emission wavelengths, narrow emission linewidths, and high photoluminescence quantum yield. However, blue perovskite light-emitting diodes (PeLEDs) currently face challenges of low efficiency and poor stability, which hinder their application in full-color display technology. It is understood that the quality of the perovskite film is considered a key factor affecting the performance of PeLEDs. To achieve high-quality perovskite films and high-performance PeLEDs, benzoic acid potassium (BAP) and guanidinium chloride (GACl) were employed as dual additives in the precursor solution of a quasi-two-dimensional perovskite (PEA2Csn-1PbnX3n+1). By utilizing the coordination of BA- from BAP with uncoordinated Pb2+ and the formation of hydrogen bonds between GA+ from GACl and halide ions, the perovskite surface defects are effectively passivated, along with the inhibition of the migration of halide ions. This approach reduces non-radiative recombination and enhances the spectral stability of perovskite films. By fine-tuning the concentrations of BAP and GACl, optimal PeLEDs are achieved at a BAP concentration of 3% and a GACl concentration of 10%, with the spectrum stabilized at 476 nm and a maximum external quantum efficiency (EQEmax) of 4.47%, which is 2.54 times that of the control device (EQEmax of 1.76%). The findings in this study provide a new approach for the fabrication of highly efficient and spectrally stable blue PeLEDs.
Collapse
Affiliation(s)
- Dandan Li
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Yan Bao
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Run Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| | - Jinjiang Wang
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Yu Liu
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Lei Cao
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Yanhong Deng
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China.
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.
| |
Collapse
|
3
|
Yu Y, Wang BF, Shen Y, Wang YT, Zhang YH, Li YY, Su ZH, Cao LX, Feng SC, Wu YH, Gao XY, Kera S, Ueno N, Tang JX, Li YQ. Efficient Blue Perovskite LEDs via Bottom-Up Charge Manipulation for Solution-Processed Active-Matrix Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503234. [PMID: 40200907 DOI: 10.1002/adma.202503234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Perovskite light-emitting diodes (PeLEDs) are emerging as strong candidates for next-generation displays due to their outstanding optoelectronic properties, solution processability, and cost-effectiveness. However, the development of highly efficient blue PeLEDs remains a significant challenge. Here, a bottom-up strategy is introduced for precise charge manipulation in blue perovskites to enhance radiative recombination efficiency. By employing 1,3-bis(N-carbazolyl)benzene as an inserted hole transport layer, improved hole injection efficiency is achieved while effectively suppressing reverse electron transport and exciton quenching. Additionally, a fluorinated ester additive is incorporated to control perovskite crystallization, facilitating the formation of well-aligned reduced-dimensional phases to reduce nonradiative recombination losses. The resulting blue PeLEDs exhibit a record-breaking external quantum efficiency of 25.87%, the highest reported for one-step-prepared blue perovskite films. Furthermore, integration with thin-film transistor circuits enables solution-processed active-matrix perovskite displays with sharp and uniform patterning. This work provides a comprehensive pathway for advancing blue PeLEDs toward high-performance display applications.
Collapse
Affiliation(s)
- Yi Yu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Bing-Feng Wang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Yang Shen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu-Tong Wang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Yu-Hang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ying-Ying Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhen-Huang Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 200241, China
| | - Long-Xue Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Shi-Chi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yuan-Hang Wu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Xing-Yu Gao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 200241, China
| | - Satoshi Kera
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Nobuo Ueno
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522, Japan
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Sun SQ, Sun Q, Cai Y, Feng ZQ, Zheng Q, Liu B, Zhu M, Shi T, Liao LS, Xie YM, Lee ST, Fung MK. Mitigation of Nonradiative Recombination by Reconfiguring Triplet Energy of Additive Toward Efficient Blue Perovskite Light-Emitting Diodes. ACS NANO 2025; 19:13053-13062. [PMID: 40136061 DOI: 10.1021/acsnano.4c18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The exceptional optoelectronic properties of metal halide perovskites, including enhanced color saturation and tunable emission wavelengths, render them highly potential candidates for fabricating perovskite light-emitting diodes (PeLEDs). However, blue PeLEDs underperform relative to their red and green counterparts due to substantial nonradiative recombination losses, particularly at the perovskite/electron transporting layer (ETL) interface. Here, we propose an effective energy management strategy aimed at boosting the efficiency of blue PeLEDs by the incorporation of a multifunctional interlayer, specifically 2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF), at the perovskite/ETL interface. This approach involves the formation of robust P═O/Pb bonds between PPF and perovskite surface defects, thereby effectively mitigating trap-induced nonradiative recombination. Furthermore, the high triplet energy level of PPF inhibits triplet energy transfer from the perovskite to the ETL, leading to further reductions in energy loss. Consequently, the optimized blue PeLEDs exhibit a peak external quantum efficiency (EQE) of 15.1% (peak emission at 472 nm) with a 4-fold increased operational lifetime compared to the control PeLED. Additionally, utilizing blue PeLED units treated with PPF, we achieve a record EQE of 31.1% for hybrid perovskite/organic tandem white LEDs, which exhibit a high color rendering index of 85.
Collapse
Affiliation(s)
- Shuang-Qiao Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| | - Qi Sun
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yating Cai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Qi Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qi Zheng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Bochen Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| | - Min Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| | - Tingting Shi
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau 999078, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| | - Yue-Min Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shuit-Tong Lee
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau 999078, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| | - Man-Keung Fung
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau 999078, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou, Jiangsu 215200, P. R. China
| |
Collapse
|
5
|
Sun S, Jiang J, Jia M, Tian Y, Xiao Y. 1.5D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property. Angew Chem Int Ed Engl 2025; 64:e202423314. [PMID: 39800661 DOI: 10.1002/anie.202423314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 01/16/2025]
Abstract
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D. This structure is featured by a hydrogen-bonding-network-induced arrangement of zigzag inorganic chains, further forming an organized layered architecture. The structural dimensionality affects both electronic and spin-related properties. Density functional theory (DFT) calculations reveal Rashba splitting induced by the inversion asymmetry of the crystal structure, while circularly polarized transient absorption spectroscopy confirms spin lifetime on the nanosecond timescale. Magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements demonstrate exceptional chiral-induced spin selectivity (CISS) with maximum spin polarization degrees of (92±1)% and (-94±2)% for (R-MBA)(GA)PbI4 and (S-MBA)(GA)PbI4, respectively. These findings underscore the potential of (R/S-MBA)(GA)PbI4 as promising candidates for next-generation spintronic devices, also highlight the critical role of chemical environment in sculpturing the structural dimension and spin-polarized property of chiral perovskites.
Collapse
Affiliation(s)
- Shuo Sun
- School of Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiawei Jiang
- National Laboratory of Solid-State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Menghui Jia
- Materials Characterization Center, ECNU Multifunctional Platform for Innovation, East China Normal University, Shanghai 200062, China
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Sichuan, 610065, China
| | - Yin Xiao
- School of Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
7
|
He W, Sun Q, Jin ZY, Zheng HF, Sun SQ, Zhou JG, Hou SC, Xie YM, Kang F, Wei G, Fung MK. Narrowband emission and enhanced stability in top-emitting OLEDs with dual resonant cavities. MATERIALS HORIZONS 2025; 12:1845-1854. [PMID: 39663805 DOI: 10.1039/d4mh01561d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Capping layers (CPLs) are commonly employed in top-emitting organic light-emitting diodes (TEOLEDs) due to their ability to optimize color purity, enhance external light out-coupling efficiency, and improve device stability. However, the mismatch in refractive index between CPLs and thin film encapsulation (TFE) often induces light trapping. This study introduces a novel approach by combining a low refractive index material, lithium fluoride (LiF), with the traditional TFE material, silicon nitride (SiNx), to form a combined CPL (LiF/SiNx), resulting in improved light outcoupling and light reflection properties. The significant refractive index contrast between LiF and SiNx can facilitate enhanced light extraction by redirecting internally reflected light through evanescent waves. Moreover, the LiF/SiNx CPLs function as a secondary resonant cavity, leading to reduced emission spectral bandwidth and enhanced light extraction compared to the control TEOLEDs that only incorporate the primary cavity of organic active layers. As a result, incorporating the LiF/SiNx CPLs significantly increases current efficiency from 125.0 cd A-1 to 163.6 cd A-1 for green devices, from 71.2 cd A-1 to 110.1 cd A-1 for red devices, and from 43.1 cd A-1 to 53.1 cd A-1 for blue devices, with the corresponding full width at half maximum decreased from 20 nm to 10 nm, 26 nm to 14 nm, and 21 nm to 12 nm, respectively, demonstrating the compatibility of the CPLs with different color devices. Notably, an LT95 lifetime of 51 300 hours for green devices was achieved when tested at 1000 cd m-2. Utilizing narrow-band light emission without spectral overlap of each color enables the generation of purer and more vivid colors for display.
Collapse
Affiliation(s)
- Wei He
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Qi Sun
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Zi-Yi Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| | - Hao-Feng Zheng
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Shuang-Qiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| | - Jun-Gui Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Shao-Cong Hou
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
| | - Guodan Wei
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.
| | - Man-Keung Fung
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, P. R. China
| |
Collapse
|
8
|
Shi W, Yang P, Zhang X. Blue-Emitting CsPbBr 3 Nanocrystals: Synthesis Progress and Bright Photoluminescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5762-5781. [PMID: 40008989 DOI: 10.1021/acs.langmuir.4c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
All-inorganic perovskite (CsPbX3, X = Cl, Br, I) nanomaterials as novel optoelectronic semiconductors have attracted much attention due to their unique photoelectric properties in lighting, display, and photovoltaic applications. Meanwhile, green and red light-emitting diodes (LEDs) based on bromine and iodine groups have developed rapidly, in which the high external quantum efficiency (EQE) is close to that of the current commercial green and red LEDs. However, the EQE of perovskite-based blue LEDs is far behind. Blue LEDs are often made by CsPbCl3 and CsPb(Cl/Br)3 nanocrystals (NCs) with low photoluminescence (PL) quantum yields. Their phase segregation seriously limits their practical applications. The PL peak of CsPbBr3 NCs is usually located in the green region. In the case of a strong quantum confinement effect, blue PL can be observed from CsPbBr3 NCs. Therefore, blue emitting CsPbBr3 NCs have become a hot topic. This review focused on the synthesis, ligand selection, and morphology control of blue emitting CsPbBr3 NCs, in which the microstructure, luminescence, and synthesis method were first discussed. In addition, the influence of capping ligands on the PL properties and stability is indicated. Furthermore, the size and morphology adjustment are also discussed. Finally, the application and existing problems of blue-emitting CsPbBr3 in blue LEDs are summarized. This review aims to provide new insights into the preparation of efficient and stable blue-emitting CsPbBr3 and the design-based manufacturing of blue LEDs.
Collapse
Affiliation(s)
- Wenbin Shi
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiao Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Chen D, Sergeev AA, Zhang N, Ke L, Wu Y, Tang B, Tao CK, Liu H, Zou G, Zhu Z, An Y, Li Y, Portniagin A, Sergeeva KA, Wong KS, Yip HL, Rogach AL. Ultralow trap density FAPbBr 3 perovskite films for efficient light-emitting diodes and amplified spontaneous emission. Nat Commun 2025; 16:2367. [PMID: 40064905 PMCID: PMC11894068 DOI: 10.1038/s41467-025-56557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Solution-processed metal halide perovskites are widely studied for their potential in high-efficiency light-emitting diodes, yet they are facing several challenges like insufficient brightness, short operational lifetimes, and reduced power conversion efficiency under practical operation conditions. Here, we develop an interfacial amidation reaction on sacrificial ZnO substrates to produce perovskite films with low trap density (1.2 × 1010 cm-3), and implement a device structure featuring a mono-molecular hole-injection layer and an all-inorganic bi-layered electron-injection layer. This design leads to green perovskite light-emitting diodes with a brightness of ~ 312,000 cd m-2, a half-lifetime of 350 h at 1000 cd m-2, and a power conversion efficiency of 15.6% at a current density of 300 mA cm-2. Furthermore, the perovskite films show a low amplified spontaneous emission threshold of 13 μJ cm-2. Thus, our approach significantly advances the performance of green perovskite light-emitting diodes and opens up an avenue toward perovskite-based electrically pumped lasers.
Collapse
Affiliation(s)
- Desui Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Aleksandr A Sergeev
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Nan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lingyi Ke
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ye Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Bing Tang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chun Ki Tao
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Haochen Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Arsenii Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kseniia A Sergeeva
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Du C, Chen K, Chen J, Ma D. Research Advances in Ion Exchange of Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:375. [PMID: 40072177 PMCID: PMC11901563 DOI: 10.3390/nano15050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications. This review summarizes the recent progress in ion exchange of halide perovskites, including mechanisms, strategies, and studies on different ion exchange. Additionally, the applications of ion-exchanged perovskites in microfluidic sensors, light-emitting diodes (LEDs), lasers, and solar cells are presented. Lastly, we briefly discuss the challenges in ion exchange of perovskites and hope that ion exchange can provide a more refined and reliable method for the preparation of high-performance perovskites.
Collapse
Affiliation(s)
| | | | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China; (C.D.); (K.C.); (D.M.)
| | | |
Collapse
|
11
|
Zhan J, Huang X, Du H, Wang X, Sun Y, Wang Y, Ai XC, Fu LM, Zhang JP. Manipulation of Metal Halide Perovskite: Photoelectric Conversion or Light Emission? J Phys Chem Lett 2025; 16:1980-1986. [PMID: 39963724 DOI: 10.1021/acs.jpclett.4c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Metal halide perovskites (MHPs) display a range of superior photophysical properties, rendering them promising as a candidate for the active medium of high-efficiency photovoltaic and electroluminescence devices. In order to maximize their efficacy in photoelectric conversion or light emission, it is essential to regulate the charge separation efficiency of MHPs in a desired manner. Herein, we demonstrate that the extent of charge separation can be effectively manipulated upon thermal annealing treatment on MHPs. As the annealing time is extended from 10 to 30 min, the accumulation of excess lead halides is observed at the boundaries of MHP grains, resulting in the construction of a quasi-Type II band alignment between the lead halide and the MHP. This facilitates the separation of electron-hole pairs, reducing the exciton binding energy from approximately 102 meV to a level comparable with kBT. Our findings elucidate the transition of MHPs from a light-emission material to a photoelectric-conversion material along with continuous heating treatment, which is anticipated to guide the flexible regulation of MHPs to meet the requirements of specific practical applications.
Collapse
Affiliation(s)
- Jun Zhan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Xiao Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Hongzhe Du
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Xinli Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Yang Sun
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Yi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Xi-Cheng Ai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Li-Min Fu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China Beijing 100872, China
| |
Collapse
|
12
|
Jang KY, Chang SE, Kim DH, Yoon E, Lee TW. Nanocrystalline Perovskites for Bright and Efficient Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415648. [PMID: 39972651 DOI: 10.1002/adma.202415648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Nanocrystalline perovskites have driven significant progress in metal halide perovskite light-emitting diodes (PeLEDs) over the past decade by enabling the spatial confinement of excitons. Consequently, three primary categories of nanocrystalline perovskites have emerged: nanoscale polycrystalline perovskites, quasi-2D perovskites, and perovskite nanocrystals. Each type has been developed to address specific challenges and enhance the efficiency and stability of PeLEDs. This review explores the representative material design strategies for these nanocrystalline perovskites, correlating them with exciton recombination dynamics and optical/electrical properties. Additionally, it summarizes the trends in progress over the past decade, outlining four distinct phases of nanocrystalline perovskite development. Lastly, this review addresses the remaining challenges and proposes a potential material design to further advance PeLED technology toward commercialization.
Collapse
Affiliation(s)
- Kyung Yeon Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong Eui Chang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong-Hyeok Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eojin Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Soft Foundry, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- SN Display Co., Ltd., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
13
|
Wang L, Ooi ZY, Jia FY, Sun Y, Liu Y, Dai L, Ye J, Zhang J, Un HI, Chiang YH, Han S, Mirabelli AJ, Anaya M, Zhang Z, Lu Y, Zou C, Zhao B, Di D, Yang X, Guo D, Tan Y, Dong H, Liu S, Liu T, Zhou H, Stranks SD, Sun LD, Yan CH, Friend RH. Efficient perovskite LEDs with tailored atomic layer number emission at fixed wavelengths. SCIENCE ADVANCES 2025; 11:eadp9595. [PMID: 39951530 PMCID: PMC11827643 DOI: 10.1126/sciadv.adp9595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Colloidal quantum dots (QDs) have illuminated computer monitors and television screens due to their fascinating color-tunable properties depending on the size. Here, the electroluminescence (EL) wavelength of perovskite LEDs was tuned via the atomic layer number (ALN) of nanoplates (NPs) instead of the "size" in conventional QDs. We demonstrated efficient LEDs with controllably tailored emission from n = 3, 4, 5, and ≥7 ALN perovskite NPs with specific and discrete major peaks at 607, 638, 669, and 728 nanometers. These LEDs demonstrated peak external quantum efficiency (EQE) of 26.8% and high wavelength reproducibility with less than 1 to 2 nm difference between batches. High color stability without observable EL spectral change and operating stability with the best T50 of 267 minutes at 1.0 milliampere per square centimeter was also achieved. This work demonstrates a concept of tailoring specific ALN emission with fixed wavelengths, shedding light on efficient, emission-discrete, and color-stable LEDs for next-generation display.
Collapse
Affiliation(s)
- Ligang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department of Applied Physics, Royal Institute of Technology, Albanova University Centre, 106 91 Stockholm, Sweden
| | - Zher Ying Ooi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Feng-Yan Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Hio-Ieng Un
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu-Hsien Chiang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sanyang Han
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Miguel Anaya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yang Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
| | - Dengyang Guo
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu Tan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaocheng Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tianjun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Samuel D. Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Richard H. Friend
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
14
|
Chen LY, Sun Q, Xie YM, Fung MK. A review: strategies for reducing the open-circuit voltage loss of wide-bandgap perovskite solar cells. Chem Commun (Camb) 2025; 61:1063-1086. [PMID: 39659275 DOI: 10.1039/d4cc05131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Perovskite-based tandem solar cells (PTSCs) have made remarkable achievements in recent years, and the highest certified power conversion efficiency (PCE) of 33.9% has been achieved in perovskite/silicon tandem solar cells (PSTSCs), indicating their great commercialization potential. Nevertheless, the performance of PTSCs continues to be hindered by the compromised performance of wide-bandgap perovskite solar cells (WPSCs), particularly the high VOC deficit of WPSCs. Therefore, numerous strategies have been developed to minimize the VOC loss of WPSCs. Herein, we sort to comprehensively review about the reported studies on reducing the VOC deficit of WPSCs, focusing on interface modification, charge transport material (CTM) exploration, and additive engineering, with the aim of providing guidelines for increasing the VOC of WPSCs. Finally, we will provide a conclusive outlook on WPSCs, sharing our perspectives to inspire further advancements in both WPSCs and PTSCs.
Collapse
Affiliation(s)
- Lu-Yao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Qi Sun
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| | - Man-Keung Fung
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China
| |
Collapse
|
15
|
Xia Y, Zou C, Lou YH, Zhou YH, Nar A, Li YH, Nizamani N, Wang KL, Chen CH, Chen J, Li N, Yavuz I, Liao LS, Wang ZK. Screening Fluorination Additives for Efficient Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411231. [PMID: 39578302 DOI: 10.1002/adma.202411231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Fluorinated additives are proposed to address the issue of domain polydispersity in quasi-2D perovskites. However, the lack of established screening criteria for these additives necessitates a laborious and costly trial-and-error process. Herein, this work explores the behind nature for the first time how various fluorination in fluorinated additives affect domain distribution in quasi-2D perovskites. The studies reveal that fully fluorinated additives could suppress undesirable low-dimensional domains, facilitating efficient energy transfer, while partially fluorinated additives adversely cause deteriorated optical properties. The observed trend is ascribed to the molecular dipole moment of the fluorinated additives, offering a reasonable explanation for experimental phenomena that has never been reported before. By employing fully fluorinated additives, the fabricated sky-blue perovskite light-emitting diodes (PeLEDs) deliver a peak external quantum efficiency (EQE) of 20.38% (@488 nm), marking as one of the highest efficiencies reported to date. The finding provides a screening criterion for fluorinated additives to realize efficient PeLEDs.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chen Zou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Yu-Hang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Aleyna Nar
- Department of Physics, Marmara University, Ziverbey, Istanbul, 34722, Turkey
| | - Yu-Han Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Namatullah Nizamani
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chun-Hao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ilhan Yavuz
- Department of Physics, Marmara University, Ziverbey, Istanbul, 34722, Turkey
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Li C, Chen C, Gao W, Dong H, Zhou Y, Wu Z, Ran C. Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects. ACS NANO 2024; 18:35130-35163. [PMID: 39692273 DOI: 10.1021/acsnano.4c12107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Over the past decade, lead halide perovskites (LHPs), an emerging class of organic-inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.
Collapse
Affiliation(s)
- Changbo Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Changshun Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Weiyin Gao
- Engineering Research Center of Smart Energy and Carbon Neutral in Oil & Gas Field Universities of Shaanxi Province, College of New Energy, Xi'an Shiyou University, Xi'an 710065, China
| | - He Dong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Yipeng Zhou
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| |
Collapse
|
17
|
Marcato T, Kumar S, Shih CJ. Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413622. [PMID: 39676496 DOI: 10.1002/adma.202413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (ηext) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency. However, ≈70% to 85% of total generated photons are trapped within the devices through the dissipation pathways of the substrate, waveguide, and evanescent modes. To this end, numerous extrinsic and intrinsic light-outcoupling strategies are studied to enhance light-outcoupling efficiency (ηout). At the outset, various external and internal light outcoupling techniques are reviewed with specific emphasis on emission anisotropy and its role on ηout. In particular, the device ηext can be enhanced by up to 50%, taking advantage of the increased probability for photons outcoupled to air by effectively inducing horizontally oriented emission transition dipole moments (TDM) in the perovskite emitters. The role of the TDM orientation in PeLED performance and the factors allowing its rational manipulation are reviewed extensively. Furthermore, this account presents an in-depth discussion about the effects of the self-assembly of LHP colloidal nanocrystals (NCs) into superlattices on the NC emission anisotropy and optical properties.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
18
|
Chen D, Zou G, Wu Y, Tang B, Rogach AL, Yip HL. Metal Halide Perovskite LEDs for Visible Light Communication and Lasing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414745. [PMID: 39676405 DOI: 10.1002/adma.202414745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Indexed: 12/17/2024]
Abstract
Metal halide perovskites, known for their pure and tunable light emission, near-unity photoluminescence quantum yields, favorable charge transport properties, and excellent solution processability, have emerged as promising materials for large-area, high-performance light-emitting diodes (LEDs). Over the past decade, significant advancements have been made in enhancing the efficiency, response speed, and operational stability of perovskite LEDs. These promising developments pave the way for a broad spectrum of applications extending beyond traditional solid-state lighting and displays to include visible light communication (VLC) and lasing applications. This perspective evaluates the current state of perovskite LEDs in those emerging areas, addresses the primary challenges currently impeding the development of perovskite-based VLC systems and laser diodes, and provides an optimistic outlook on the future realization of perovskite-based VLC and electrically pumped perovskite lasers.
Collapse
Affiliation(s)
- Desui Chen
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Center of Super-Diamond and Advance Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ye Wu
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Center of Super-Diamond and Advance Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Bing Tang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Center of Super-Diamond and Advance Films (COSDAF), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
19
|
Han Y, Guo Z, Liu S, Wu Y, Li X, Cui G, Zhou S, Zhou H. Manipulating Electron-Phonon Coupling for Efficient Tin Halide Perovskite Blue LEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413895. [PMID: 39641219 DOI: 10.1002/adma.202413895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Indexed: 12/07/2024]
Abstract
Low-dimensional perovskites have opened up a new frontier in light-emitting diodes (LED) due to their excellent properties. However, concerns regarding the potential toxicity of Pb limited their commercial development. Sn-based perovskites are regarded as a promising candidate to replace Pb-based counterparts, while they generally exhibit strong electron-phonon coupling and consequently blue emission quenching at room temperature (RT), thus the Sn-based perovskite blue LED devices have not yet been reported. Herein, the luminescence properties are regulated by assembling a rigid organic skeleton within perovskite structure, and the protonated 4-bromobenzylamine (BrPMA+ = C7H9BrN+) is employed as A site cation to synthesize a 100-oriented 2D perovskite (BrPMA)2SnBr4, which exhibits a strong lattice rigidity via strong intermolecular interaction and consequently weak electron-phonon coupling, achieving the excellent blue PL emission at RT. The high quality (BrPMA)2SnBr4 perovskite thin films are obtained by further inhibiting oxidation and promoting crystallization. Finally, the Sn-based perovskite blue emission LED is successfully fabricated for the first time at 467 nm with a champion EQE of 1.3% and a maximum brightness of 800 cd m-2. This work gives insights into the luminescence mechanism of Sn-based perovskites and provides a new theoretical basis for the development of lead-free blue LEDs.
Collapse
Affiliation(s)
- Ying Han
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenyu Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaocheng Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuetong Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guangyao Cui
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shizhe Zhou
- BOE Technology Group Co., Ltd., Beijing, 100176, P. R. China
| | - Huanping Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
20
|
Liu A, Zhang Z, Li J, Yu H, Wang N, Wang J, Zhao N. Optimizing Perovskite Surfaces to Enhance Post-Treatment for Efficient Blue Mixed-Halide Perovskite Light-emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414788. [PMID: 39632461 DOI: 10.1002/adma.202414788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The halide postdeposition treatment technique is a widely used strategy for mitigating defects in perovskite. However, when applied to mixed-halide perovskites, it often leads to surface and internal halide heterogeneity, which compromises luminescence performance and spectral stability. In this work, blue mixed-halide 3D perovskites are engineered with acetate (Ac⁻)-rich surfaces to optimize the post-treatment process and achieve halide homogeneity. The findings demonstrate that the strong interaction between surface Ac⁻ ions and Pb2+ ions significantly reduces the formation of halide vacancy defects caused by the washing effect of isopropanol during post-treatment. This defect reduction slows the infiltration of halide ions into the perovskite lattice, providing more time for surface reconstruction and minimizing the accumulation of introduced halide ions at the surface. As a result, a mild halide redistribution occurs, promoting the formation of a uniform mixed-halide perovskite phase. This approach enabled the development of blue mixed-halide 3D PeLEDs with a record external quantum efficiency of 19.28% (emission peak at 482 nm), comparable to state-of-the-art blue reduced-dimensional perovskite-based PeLEDs. Additionally, the device demonstrated a narrowband and stable electroluminescence spectrum with a full width at half maximum (FWHM) of less than 16 nm.
Collapse
Affiliation(s)
- Aqiang Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, SAR, 999077, China
| | - Zheng Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Yu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, SAR, 999077, China
| |
Collapse
|
21
|
Lim EL, Chen X, Wei Z. The Rise of Tandem Perovskite Light-Emitting Diode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405933. [PMID: 39370566 DOI: 10.1002/smll.202405933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Indexed: 10/08/2024]
Abstract
In 2024, tandem perovskite light-emitting diodes (tandem-PLEDs) achieved a breakthrough external quantum efficiency of 43.42%, with an organic electroluminescence (EL) unit stacked atop a perovskite EL unit, surpassing the previous single-junction perovskite LEDs. This innovative design enables a higher brightness at lower currents, enhancing the longevity and efficiency of the tandem-PLEDs. Additionally, the tandem-PLEDs can also be fabricated by combining a perovskite EL unit with a perovskite quantum dot unit. In this perspective, the key advancements in tandem-PLEDs are highlighted, focusing on the development of perovskite-organic materials, perovskite-perovskite quantum dots, and the design principles for obtaining efficient and stable charge generation layers. But more importantly, the challenges and solutions are discussed in fabricating all-perovskite tandem LEDs using strongly polar solvents that have yet to be reported nowadays. This comprehensive guide aims to support researchers in advancing the practical deployment of tandem-PLED technology.
Collapse
Affiliation(s)
- Eng Liang Lim
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xi Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| |
Collapse
|
22
|
Wu W, Zhang J, Liu C, Zhang J, Lai H, Hu Z, Zhou H. Spontaneous Cooling Enables High-Quality Perovskite Wafers for High-Sensitivity X-Ray Detectors with a Low-Detection Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410303. [PMID: 39429205 PMCID: PMC11633536 DOI: 10.1002/advs.202410303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Developing high-quality perovskite wafers is essential for integrating perovskite technology throughout the chip industry chain. In this article, a spontaneous cooling strategy with a hot-pressing technique is presented to develop high-purity, wafer-scale, pinhole-free perovskite wafers with a reflective surface. This method can be extended to a variety of perovskite wafers, including organic-inorganic, 2D, and lead-free perovskites. Besides, the size of the wafer with diameters of 10, 15, and 20 mm can be tailored by changing the mold. Furthermore, the mechanism of spontaneous cooling for improving the quality of perovskite wafers is revealed. Finally, the high-quality lead-free Cs3Cu2I5 perovskite wafers demonstrate excellent X-ray detection performances with a high sensitivity of 3433.6 µC Gyair -1 cm-2 and a low detection limit of 33.17 nGyair s-1. Moreover, the Cs3Cu2I5 wafers exhibit outstanding environmental and operational stability even without encapsulation. These research presents a spontaneous cooling strategy to achieve wafer-scale, high-quality perovskites with mirror-like surfaces for X-ray detection, paving the way for integrating perovskites into electronic and optoelectronic devices and promoting the practical application of perovskite X-ray detectors.
Collapse
Affiliation(s)
- Wenyi Wu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jianqiang Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Ciyu Liu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jiankai Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Hoajie Lai
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049P. R. China
| | - Hai Zhou
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| |
Collapse
|
23
|
Zhao G, Lv S, Lou Y, Zhang Y, Zhang D, Jiang W, Sun Y, Duan L. Cascade Effect of a Dimerized Thermally Activated Delayed Fluorescence Dendrimer. Angew Chem Int Ed Engl 2024; 63:e202412720. [PMID: 39082148 DOI: 10.1002/anie.202412720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 11/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters with a high horizontal orientation are highly essential for improving the external quantum efficiency (EQE) of organic light-emitting diodes; however, pivotal molecular design strategies to improve the horizontal orientation of solution-processable TADF emitters are still scarce and challenging. Herein, a phenyl bridge is adopted to connect the double TADF units, and generate a dimerized TADF dendrimer, D4CzBNPh-SF. Compared to its counterpart with a single TADF unit, the proof-of-the-concept molecule not only exhibits an improved horizontal dipole ratio (78 %) due to the π-delocalization-induced extended molecular conjugation, but also displays a faster reversed intersystem crossing rate constant (6.08×106 s-1) and a high photoluminescence quantum yield of 95 % in neat film. Consequently, the non-doped solution-processed device with D4CzBNPh-SF as the emitter achieves an ultra-high maximum EQE of 32.6 %, which remains at 26.6 % under a luminance of 1000 cd/m2. Furthermore, when using D4CzBNPh-SF as a sensitizer, the TADF-sensitized fluorescence device exhibits a high maximum EQE of 30.7 % at a luminance of 575 cd/m2 and a full width at half maximum of 36 nm.
Collapse
Affiliation(s)
- Guimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Shuai Lv
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yuheng Lou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yueming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Li YH, Xia Y, Chen CH, Jin RJ, Nar A, Chen J, Li N, Wang KL, Yavuz I, Wang ZK. Surficial Homogenic Effect Enables Highly Stable Deep-Blue Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202412915. [PMID: 39083335 DOI: 10.1002/anie.202412915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/05/2024]
Abstract
The device performance of deep-blue perovskite light-emitting diodes (PeLEDs) is primarily constrained by low external quantum efficiency (EQE) especially poor operational stability. Herein, we develop a facile strategy to improve deep-blue emission through rational interface engineering. We innovatively reported the novel electron transport material, 4,6-Tris(4-(diphenylphosphoryl)phenyl)-1,3,5-triazine (P-POT2T), and utilized a sequential wet-dry deposition method to form the homogenic gradient interface between electron transport layer (ETL) and perovskite surface. Unlike previous reports that achieved carrier injection balance by inserting new interlayers, our strategy not only passivated uncoordinated Pb2+ in the perovskite via P=O functional groups but also reduced interfacial carrier recombination without introducing new interfaces. Additionally, this strategy enhanced the interface contact between the perovskite and ETL, significantly boosting device stability. Consequently, the fabricated deep-blue PeLEDs delivered an EQE exceeding 5 % (@ 460 nm) with an exceptional halftime extended to 31.3 minutes. This straightforward approach offers a new strategy to realize highly efficient especially stable PeLEDs.
Collapse
Affiliation(s)
- Yu-Han Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yu Xia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chun-Hao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Run-Jun Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Aleyna Nar
- Department of Physics, Marmara University, Ziverbey, Kadikoy, Istanbul, 34722, Türkiye
| | - Jing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai-Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ilhan Yavuz
- Department of Physics, Marmara University, Ziverbey, Kadikoy, Istanbul, 34722, Türkiye
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
25
|
Qi H, Tong Y, Zhang X, Wang H, Zhang L, Chen Y, Wang Y, Shang J, Wang K, Wang H. Homogenizing Energy Landscape for Efficient and Spectrally Stable Blue Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409319. [PMID: 39302002 DOI: 10.1002/adma.202409319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Blue perovskite light-emitting diodes (PeLEDs) have attracted enormous attention; however, their unsatisfactory device efficiency and spectral stability still remain great challenges. Unfavorable low-dimensional phase distribution and defects with deeper energy levels usually cause energy disorder, substantially limiting the device's performance. Here, an additive-interface optimization strategy is reported to tackle these issues, thus realizing efficient and spectrally stable blue PeLEDs. A new type of additive-formamidinium tetrafluorosuccinate (FATFSA) is introduced into the quasi-2D mixed halide perovskite accompanied by interface engineering, which effectively impedes the formation of undesired low-dimensional phases with various bandgaps throughout the entire film, thereby boosting energy transfer process for accelerating radiative recombination; this strategy also diminishes the halide vacancies especially chloride-related defects with deep energy level, thus reducing nonradiative energy loss for efficient radiative recombination. Benefitting from homogenized energy landscape throughout the entire perovskite emitting layer, PeLEDs with spectrally-stable blue emission (478 nm) and champion external quantum efficiency (EQE) of 21.9% are realized, which represents a record value among this type of PeLEDs in the pure blue region.
Collapse
Affiliation(s)
- Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuewen Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Materials Science Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yibo Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingzhi Shang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
26
|
Pan L, Zeng X, Qu Y, Mu M, Yang S, Chen Y, Li C, Dai L, Tao L, Xin H, Li W, Yang W. Bidirectional Inhibiting Interfacial Ion Migration in the Inorganic Hole Transport Layer for Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405528. [PMID: 39240075 DOI: 10.1002/smll.202405528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Cu2ZnSnS4 (CZTS) is strong candidate for hole transport in perovskite light emitting diodes (PeLEDs) due to their cost-effectiveness, deep highest occupied molecular orbital (HOMO), and high hole mobility. However, its inherent polymetallic ions usually deteriorate the quality of the perovskite emission layer (EML) affecting device performance. In this study, a bidirectional anchoring strategy is proposed by adding 15-crown-5 ether (15C5) into CZTS hole transport layer (HTL) to suppress the reaction between HTL and EML. The 15C5 molecule interacts with Cu+, Zn2+ and Sn2+ cations forming host-guest complexes to impede their migration, which is elucidated by density functional theory calculations. Additionally, 15C5 can neutralize lead (Pb) defects by the abundant oxygen (O) and high electronegative cavities to reduce the nonradiative recombination of FAPbBr3 film. This bidirectional anchoring strategy effectively improves hole charge transport efficiency and suppresses nonradiative recombination at the HTL/EML interface. As a result, the optimized PeLEDs present a 3.5 times peak external quantum efficiency (EQE) from 3.12% to 11.08% and the maximum luminance (Lmax) increased from 24495 to 50584 cd m-2. These findings offer innovative insights into addressing the metal ion migration issue commonly observed in inorganic HTLs.
Collapse
Affiliation(s)
- Lunyao Pan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiankan Zeng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuanxiao Qu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Maolin Mu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shiyu Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yongjian Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Chenglong Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Linzhu Dai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Li Tao
- School of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, P. R. China
| | - Hongqiang Xin
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Wen Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
27
|
Xing Z, Jin G, Du Q, Pang P, Liu T, Shen Y, Zhang D, Yu B, Liang Y, Yang D, Tang J, Wang L, Xing G, Chen J, Ma D. Ions-induced Assembly of Perovskite Nanocomposites for Highly Efficient Light-Emitting Diodes with EQE Exceeding 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406706. [PMID: 39308291 DOI: 10.1002/adma.202406706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Indexed: 11/16/2024]
Abstract
Metal halide perovskites, a cost-effective class of semiconductos, hold great promise for display technologies that demand high-efficiency, color-pure light-emitting diodes (LEDs). Early research on three-dimensional (3D) perovskites showed low radiative efficiencies due to modest exciton binding energies. To inprove luminescence, reducing dimensionality or grain size has been a common approach. However, dividing the perovskite lattice into smaller units may hinder carrier transport, compromising electrical performance. Moreover, the increased surface area introduce additional surface trap states, leading to greater non-radiative recombination. Here, an ions-induced growth method is employed to assembe lattice-anchored perovskite nanocomposites for efficient LEDs with high color purity. This approach enables the nanocomposite thin films, composed of 3D CsPbBr3 and its variant of zero-dimensional (0D) Cs4PbBr6, to feature significant low trap-assisted nonradiative recombination, enhanced light out-coupling with a corrugated surface, and well-balanced charge carrier transport. Based on the resultant 3D/0D perovskite nanocomposites, the perovskite LEDs (PeLEDs) achieving an remarkable external quantum efficiency of 31.0% at the emission peak of 521 nm with a narrow full width at half-maximum of only 18 nm. This sets a new benchmark for color purity in high performance PeLED research, highlighting the significant advantage of this approach.
Collapse
Affiliation(s)
- Zhaohui Xing
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Guangrong Jin
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Qing Du
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Peiyuan Pang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Tanghao Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Yang Shen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Dengliang Zhang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Bufan Yu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Yue Liang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jianxin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
28
|
Li Y, Guan X, Zhao Y, Zhang Q, Chen X, Zhang S, Lu J, Wei Z. Modulation of Charge Transport Layer for Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410535. [PMID: 39443833 DOI: 10.1002/adma.202410535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 10/25/2024]
Abstract
Perovskite light-emitting diodes (Pero-LEDs) have garnered significant attention due to their exceptional emission characteristics, including narrow full width at half maximum, high color purity, and tunable emission colors. Recent efficiency and operational stability advancements have positioned Pero-LEDs as a promising next-generation display technology. Extensive research and review articles on the compositional engineering and defect passivation of perovskite layers have substantially contributed to the development of multi-color and high-efficiency Pero-LEDs. However, the crucial aspect of charge transport layer (CTL) modulation in Pero-LEDs remains relatively underexplored. CTL modulation not only impacts the charge carrier transport efficiency and injection balance but also plays a critical role in passivating the perovskite surface, blocking ion migration, enhancing perovskite crystallinity, and improving light extraction efficiency. Therefore, optimizing CTLs is pivotal for further enhancing Pero-LED performance. Herein, this review discusses the roles of CTLs in Pero-LEDs and categorizes both reported and potential CTL materials. Then, various CTL optimization strategies are presented, alongside an analysis of the selection criteria for CTLs in high-performance Pero-LEDs. Finally, a summary and outlook on the potential of CTL modulation to further advance Pero-LED performances are provided.
Collapse
Affiliation(s)
- Yuqing Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiang Guan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qin Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shaopeng Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Division of Physical Science and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
29
|
Liu H, Shi G, Peng C, Chen W, Yao H, Xiao Z. Advances and Challenges in Large-Area Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410154. [PMID: 39318091 DOI: 10.1002/adma.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Metal halide perovskite light-emitting diodes (PeLEDs) have shown promise for high-definition displays and flat-panel lighting because of their wide color gamut, narrow emission band, and high brightness. The external quantum efficiency of PeLEDs increased rapidly from ≈1% to more than 25% in the past few years. However, most of these high-performance devices are fabricated using a spin coating method with a small device area of <0.1 cm2, limiting their commercial applications. Recently, large-area PeLEDs have attracted growing attention and significant breakthroughs have been reported. This perspective first introduces the pros and cons of each technique in making large-area PeLEDs. The advances in the fabrication of large-area PeLEDs are then summarized using spin coating and mass-production methods such as inkjet printing, blade coating, and thermal evaporation. Moreover, the challenging issues will be discussed that are urgent to be solved for large-area PeLEDs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangyi Shi
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenchen Peng
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haitao Yao
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
30
|
Shen Y, Hu XM, Guo ML, Li YQ, Tang JX. Unveiling the Carrier Dynamics of Perovskite Light-Emitting Diodes via Transient Electroluminescence. J Phys Chem Lett 2024:7916-7923. [PMID: 39072434 DOI: 10.1021/acs.jpclett.4c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have garnered significant attention due to their outstanding optoelectronic properties. However, investigating carrier transport and recombination behavior during device operation poses persistent challenges. In this study, we explore the impact of additive and interface engineering on device performance using transient electroluminescence (TREL). Polyethylene glycol (PEG) induces the formation of square-faceted nanocrystals with a homogeneous size distribution and extended fluorescence lifetime. Consequently, these PeLEDs exhibit remarkable stability. Additionally, employing an electron transport layer of 2,4,6-tris[3-(diphenylphosphino)phenyl]-1,3,5-triazine (PO-T2T), which has a better match to the energy bands of the perovskite layer and a higher carrier mobility, allows for lower turn-on voltage and faster response but also suffers from a short decay time and poor stability. Moreover, low-temperature TREL characterization shows that the carrier mobility is also significantly suppressed with decreasing temperature, which reduces the transient response speed.
Collapse
Affiliation(s)
- Yang Shen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Xin-Mei Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ming-Lei Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Wu C, Zhang T, Liang J, Yin J, Xiao M, Han D, Huang S, Wang S, Meng Y. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO 2 as Blowing Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1120. [PMID: 38998725 PMCID: PMC11243239 DOI: 10.3390/nano14131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Poly(propylene carbonate-co-phthalate) (PPC-P) is an amorphous copolymer of aliphatic polycarbonate and aromatic polyester; it possesses good biodegradability, superior mechanical performances, high thermal properties, and excellent affinity with CO2. Hence, we fabricate PPC-P foams in an autoclave by using subcritical CO2 as a physical blowing agent. Both saturation pressure and foaming temperature affect the foaming behaviors of PPC-P, including CO2 adsorption and desorption performance, foaming ratio, cell size, porosity, cell density, and nucleation density, which are investigated in this research. Moreover, the low-cost PPC-P/nano-CaCO3 and PPC-P/starch composites are prepared and foamed using the same procedure. The obtained PPC-P-based foams show ultra-high expansion ratio and refined microcellular structures simultaneously. Besides, nano-CaCO3 can effectively improve PPC-P's rheological properties and foamability. In addition, the introduction of starch into PPC-P can lead to a large number of open cells. Beyond all doubt, this work can certainly provide both a kind of new biodegradable PPC-P-based foam materials and an economic methodology to make biodegradable plastic foams. These foams are potentially applicable in the packaging, transportation, and food industry.
Collapse
Affiliation(s)
- Change Wu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianwei Zhang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxin Liang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingyao Yin
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450052, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
32
|
Guo N, Liu L, Cao G, Xing S, Liang J, Chen J, Tan Z, Shang Y, Lei H. Enhancing Emission and Stability in Na-Doped Cs 3Cu 2I 5 Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1118. [PMID: 38998724 PMCID: PMC11243144 DOI: 10.3390/nano14131118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Lead-free Cs3Cu2I5 metal halides have garnered significant attention recently due to their non-toxic properties and deep-blue emission. However, their relatively low photoluminescence quantum efficiency and poor stability have limited their applications. In this work, sodium iodide (NaI) is used to facilitate the synthesis of Cs3Cu2I5 nanocrystals (NCs), demonstrating improved photoluminescence intensity, photoluminescence quantum yield, and stability. Systematic optoelectronic characterizations confirm that Na+ is successfully incorporated into the Cs3Cu2I5 lattice without altering its crystal structure. The improved Photoluminescence Quantum Yield (PLQY) and stability are attributed to the strengthened chemical bonding, which effectively suppresses vacancy defects in the lattice. Additionally, light-emitting diodes (LEDs) based on 10% NaI-doped Cs3Cu2I5 NCs were assembled, emitting vibrant blue light with a maximum radiant intensity of 82 lux and Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.15, 0.1). This work opens new possibilities for commercial lighting display applications.
Collapse
Affiliation(s)
- Na Guo
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Lili Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Guilong Cao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Shurui Xing
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingying Liang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianjun Chen
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuojun Tan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuequn Shang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Hongwei Lei
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|