1
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
2
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
3
|
Huang L, Zhu J, Wu G, Xiong W, Feng J, Yan C, Yang J, Li Z, Fan Q, Ren B, Li Y, Chen C, Yu X, Shen Z. A strategy of "adding fuel to the flames" enables a self-accelerating cycle of ferroptosis-cuproptosis for potent antitumor therapy. Biomaterials 2024; 311:122701. [PMID: 38981152 DOI: 10.1016/j.biomaterials.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Cuproptosis in antitumor therapy faces challenges from copper homeostasis efflux mechanisms and high glutathione (GSH) levels in tumor cells, hindering copper accumulation and treatment efficacy. Herein, we propose a strategy of "adding fuel to the flames" for potent antitumor therapy through a self-accelerating cycle of ferroptosis-cuproptosis. Disulfiram (DSF) loaded hollow mesoporous copper-iron sulfide (HMCIS) nanoparticle with conjugation of polyethylene glycol (PEG) and folic acid (FA) (i.e., DSF@HMCIS-PEG-FA) was developed to swiftly release DSF, H2S, Cu2+, and Fe2+ in the acidic tumor microenvironment (TME). The hydrogen peroxide (H2O2) levels and acidity within tumor cells enhanced by the released H2S induce acceleration of Fenton (Fe2+) and Fenton-like (Cu2+) reactions, enabling the powerful tumor ferroptosis efficacy. The released DSF acts as a role of "fuel", intensifying catalytic effect ("flame") in tumor cells through the sustainable Fenton chemistry (i.e., "add fuel to the flames"). Robust ferroptosis in tumor cells is characterized by serious mitochondrial damage and GSH depletion, leading to excess intracellular copper that triggers cuproptosis. Cuproptosis disrupts mitochondria, compromises iron-sulfur (Fe-S) proteins, and elevates intracellular oxidative stress by releasing free Fe3+. These interconnected processes form a self-accelerating cycle of ferroptosis-cuproptosis with potent antitumor capabilities, as validated in both cancer cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Guochao Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Yan Li
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China
| | - Chaomin Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, 519000, China.
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Sha-Tai South Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Zhang B, Yang R, Yu H, Peng Y, Huang H, Hameed MMA, Wang H, Zhang G, El-Newehy M, Shen M, Shi X, Peng S. Macrophage membrane-camouflaged nanoclusters of ultrasmall iron oxide nanoparticles for precision glioma theranostics. Biomater Sci 2024; 12:2705-2716. [PMID: 38607326 DOI: 10.1039/d4bm00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing effective nanomedicines to cross the blood-brain barrier (BBB) for efficient glioma theranostics is still considered to be a challenging task. Here, we describe the development of macrophage membrane (MM)-coated nanoclusters (NCs) of ultrasmall iron oxide nanoparticles (USIO NPs) with dual pH- and reactive oxygen species (ROS)-responsivenesses for magnetic resonance (MR) imaging and chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Surface citrate-stabilized USIO NPs were solvothermally synthesized, sequentially modified with ethylenediamine and phenylboronic acid, and cross-linked with gossypol to form gossypol-USIO NCs (G-USIO NCs), which were further coated with MMs. The prepared MM-coated G-USIO NCs (G-USIO@MM NCs) with a mean size of 99.9 nm display tumor microenvironment (TME)-responsive gossypol and Fe release to promote intracellular ROS production and glutathione consumption. With the MM-mediated BBB crossing and glioma targeting, the G-USIO@MM NCs can specifically inhibit orthotopic glioma in vivo through the gossypol-mediated chemotherapy and Fe-mediated CDT. Meanwhile, USIO NPs can be dissociated from the NCs under the TME, thus allowing for effective T1-weighted glioma MR imaging. The developed G-USIO@MM NCs with simple components and drug as a crosslinker are promising for glioma theranostics, and may be extended to tackle other cancer types.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yamin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Shaojun Peng
- Center for Biological Science and Technology & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
6
|
Niu S, Qiu P, Meng J, Tao C, Wen M, Yu N, Chen Z. Light/glutathione-ignited nanobombs integrating azo and tetrasulfide bonds for multimodal therapy of colorectal cancer. J Colloid Interface Sci 2024; 659:474-485. [PMID: 38183813 DOI: 10.1016/j.jcis.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Reactive chemical bonds are associated with the generation of therapeutic radicals and gases under internal-external stimuli, which are highly attractive for cancer treatments. However, designing multifunctional nanostructures that incorporate multiple chemical bonds remains a significant challenge. Herein, novel core-shell nanobombs integrating azo (NN) and tetrasulfide bonds (SSSS) have been constructed with sensitive ignition by both near-infrared (NIR) laser and tumor microenvironments (TME) for treating colorectal tumors. The nanobombs (GNR/AIPH@MON@PVP, GAMP) were prepared by the in-situ growth of tetrasulfide-contained mesoporous organosilica nanoshell (MON) on gold nanorods (GNR) as the photothermal initiator, the load of azo compound (AIPH) as the radical producer and polymer modification. Upon NIR irradiation, the GNR core exhibits stable and high photothermal effects because of the passivation of the MON shell, leading to the thermal ablation of cancer cells. Simultaneously, the local hyperthermia ignites AIPH to release alkyl radicals to cause extensive oxidative stress without oxygen dependence. Moreover, the MON shell can be gradually decomposed in a reduced environment and release therapeutic H2S gas because of the cleavage of SSSS bonds by the glutathione (GSH) overexpressed in TME, causing mitochondrial injury. Owing to multifunctional functions, the GAMP significantly inhibits the growth rate of tumors upon NIR irradiation and achieves the highest efficacy among treatments. Therefore, this study presents activatable nanoagents containing multiple chemical bonds and provides insights into developing comprehensive antitumor strategies.
Collapse
Affiliation(s)
- Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jialan Meng
- Department of Ultrasound, Songjiang Maternity & Child Health Hospital of Shanghai, Shanghai 201600, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
8
|
Sun W, Xiao H, Zhu J, Hao Z, Sun J, Wang D, Wang X, Ramalingam M, Xie S, Wang R. Multifunctional Oxygen-Generating Nanoflowers for Enhanced Tumor Therapy. ACS APPLIED BIO MATERIALS 2023; 6:4998-5008. [PMID: 37880964 DOI: 10.1021/acsabm.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Sonodynamic therapy (SDT) and chemotherapy have received great attention as effective methods for tumor treatment. However, the inherent hypoxia of the tumor greatly hinders its therapeutic efficacy. In this work, a tumor microenvironment-responsive biodegradable nanoplatform SiO2-MnO2-PEG-Ce6&DOX (designated as SMPC&D) is fabricated by encapsulating manganese oxide (MnO2) into silica nanoparticles and anchoring poly(ethylene glycol) (PEG) onto the surface for tumor hypoxia relief and delivery, then loaded with sonosensitizer Chlorin e6 (Ce6) and chemotherapeutic drug doxorubicin (DOX) for hypoxic tumor treatment. We evaluated the physicochemical properties of SMPC&D nanoparticles and the tumor therapeutic effects of chemotherapy and SDT under ultrasound stimulation in vitro and in vivo. After endocytosis by tumor cells, highly expressed glutathione (GSH) triggers biodegradation of the nanoplatform and MnO2 catalyzes hydrogen peroxide (H2O2) to generate oxygen (O2), thereby alleviating tumor hypoxia. Depleting GSH and self-supplying O2 effectively improve the SDT efficiency both in vitro and in vivo. Ultrasonic stimulation promoted the release and cellular uptake of chemotherapy drugs. In addition, the relieved hypoxia reduced the efflux of chemotherapy drugs by downregulating the expression of the P-gp protein, which jointly improved the effect of chemotherapy. This study demonstrates that the degradable SMPC&D as a therapeutic agent can achieve efficient chemotherapy and SDT synergistic therapy for hypoxic tumors.
Collapse
Affiliation(s)
- Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
- Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Huifang Xiao
- Zhongnan Hospital of Wuhan University, Wuhan 430062, People's Republic of China
| | - Jiazhi Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, People's Republic of China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Murugan Ramalingam
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country(UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Joint Research Laboratory (JRL), Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Drug Formulation Unit 10, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioprinting and Precisión Medicine, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- School of Basic Medical Science, Chengdu University, Chengdu 610106, China
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwennigen, Germany
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China
- Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, People's Republic of China
| |
Collapse
|
9
|
Bérard C, Truillet C, Larrat B, Dhermain F, Estève MA, Correard F, Novell A. Anticancer drug delivery by focused ultrasound-mediated blood-brain/tumor barrier disruption for glioma therapy: From benchside to bedside. Pharmacol Ther 2023; 250:108518. [PMID: 37619931 DOI: 10.1016/j.pharmthera.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption. The safety of this technique has been demonstrated in small and large animal models. This approach promises to enhance drug delivery into the brain tumor and therefore to improve survival outcomes by repurposing existing drugs. Several clinical trials continue to be initiated in the last decade. In this review, we provide an overview of the rationale behind the use of FUS-BBBD in gliomas and summarize the preclinical studies investigating different approaches (free drugs, drug-loaded microbubbles and drug-loaded nanocarriers) in combination with this technology in in vivo glioma models. Furthermore, we discuss the current state of clinical trials and devices developed and review the challenges to overcome for clinical use of FUS-BBBD in glioma therapy.
Collapse
Affiliation(s)
- Charlotte Bérard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, 91191 Gif-sur-Yvette, France.
| | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, 94805 Villejuif, France.
| | - Marie-Anne Estève
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Florian Correard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| |
Collapse
|
10
|
Jiang D, Xia X, He Z, Xue Y, Xiang X. Biodegradable organosilica-based targeted and redox-responsive delivery system of resveratrol for efficiently alleviating ulcerative colitis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:120-137. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
14
|
Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev 2022; 191:114619. [PMID: 36372301 PMCID: PMC9724744 DOI: 10.1016/j.addr.2022.114619] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Despite its prevalence in the management of peripheral tumors, compared to surgery and radiation therapy, chemotherapy is still a suboptimal intervention in fighting against brain cancer and cancer brain metastases. This discrepancy is mainly derived from the complicatedly physiological characteristic of intracranial tumors, including the presence of blood-brain barrier (BBB) and limited enhanced permeability and retention (EPR) effect attributed to blood-brain tumor barrier (BBTB), which largely lead to insufficient therapeutics penetrating to tumor lesions to produce pharmacological effects. Therefore, dependable methodologies that can boost the efficacy of chemotherapy for brain tumors are urgently needed. Recently, nanomedicines have shown great therapeutic potential in brain tumors by employing various transcellular strategies, paracellular strategies, and their hybrids, such as adsorptive-mediated transcytosis, receptor-mediated transcytosis, BBB disruption technology, and so on. It is compulsory to comprehensively summarize these practices to shed light on future directions in developing therapeutic regimens for brain tumors. In this review, the biological and pathological characteristics of brain tumors, including BBB and BBTB, are illustrated. After that, the emerging delivery strategies for brain tumor management are summarized into different classifications and supported with detailed examples. Finally, the potential challenges and prospects for developing and clinical application of brain tumor-oriented nanomedicine are discussed.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
15
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
16
|
Liang S, Hu D, Li G, Gao D, Li F, Zheng H, Pan M, Sheng Z. NIR-II fluorescence visualization of ultrasound-induced blood-brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles. Sci Bull (Beijing) 2022; 67:2316-2326. [PMID: 36546222 DOI: 10.1016/j.scib.2022.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening is crucial for enhancing glioblastoma (GBM) therapies. However, an in vivo imaging approach with a high spatial-temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green (ICG)-dopped microbubbles (MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy (PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window (NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ∼168.9 μm and ultrasound penetration depth of ∼7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-to-background ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.
Collapse
Affiliation(s)
- Simin Liang
- Department of Ultrasonography, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518034, China; Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofeng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518034, China; Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
17
|
Qiu Z, Yu Z, Xu T, Wang L, Meng N, Jin H, Xu B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022; 11:cells11233761. [PMID: 36497021 PMCID: PMC9737081 DOI: 10.3390/cells11233761] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
As the most dangerous tumors, brain tumors are usually treated with surgical removal, radiation therapy, and chemotherapy. However, due to the aggressive growth of gliomas and their resistance to conventional chemoradiotherapy, it is difficult to cure brain tumors by conventional means. In addition, the higher dose requirement of chemotherapeutic drugs caused by the blood-brain barrier (BBB) and the untargeted nature of the drug inevitably leads to low efficacy and systemic toxicity of chemotherapy. In recent years, nanodrug carriers have attracted extensive attention because of their superior drug transport capacity and easy-to-control properties. This review systematically summarizes the major strategies of novel nano-drug delivery systems for the treatment of brain tumors in recent years that cross the BBB and enhance brain targeting, and compares the advantages and disadvantages of several strategies.
Collapse
Affiliation(s)
- Ziyi Qiu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenhua Yu
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
| | - Ting Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liuyou Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nanxin Meng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huawei Jin
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
- Correspondence: (H.J.); (B.X.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
18
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
19
|
Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 2022; 190:114539. [PMID: 36116720 DOI: 10.1016/j.addr.2022.114539] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Blood-brain barrier (BBB) remains a significant obstacle to drug therapy for brain diseases. Focused ultrasound (FUS) combined with microbubbles (MBs) can locally and transiently open the BBB, providing a potential strategy for drug delivery across the BBB into the brain. Nowadays, taking advantage of this technology, many therapeutic agents, such as antibodies, growth factors, and nanomedicine formulations, are intensively investigated across the BBB into specific brain regions for the treatment of various brain diseases. Several preliminary clinical trials also have demonstrated its safety and good tolerance in patients. This review gives an overview of the basic mechanisms, ultrasound contrast agents, evaluation or monitoring methods, and medical applications of FUS-mediated BBB opening in glioblastoma, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Muhammad Fiaz
- Department of Radiology, Azra Naheed Medical College, Lahore, Pakistan
| | - Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
21
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
22
|
Zhang S, Zhang S, Luo S, Tang P, Wan M, Wu D, Gao W. Ultrasound-assisted brain delivery of nanomedicines for brain tumor therapy: advance and prospect. J Nanobiotechnology 2022; 20:287. [PMID: 35710426 PMCID: PMC9205090 DOI: 10.1186/s12951-022-01464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nowadays, brain tumors are challenging problems, and the key of therapy is ensuring therapeutic drugs cross the blood-brain barrier (BBB) effectively. Although the efficiency of drug transport across the BBB can be increased by innovating and modifying nanomedicines, they exert insufficient therapeutic effects on brain tumors due to the complex environment of the brain. It is worth noting that ultrasound combined with the cavitation effect of microbubbles can assist BBB opening and enhance brain delivery of nanomedicines. This ultrasound-assisted brain delivery (UABD) technology with related nanomedicines (UABD nanomedicines) can safely open the BBB, facilitate the entry of drugs into the brain, and enhance the therapeutic effect on brain tumors. UABD nanomedicines, as the main component of UABD technology, have great potential in clinical application and have been an important area of interest in the field of brain tumor therapy. However, research on UABD nanomedicines is still in its early stages despite the fact that they have been associated with many disciplines, including material science, brain science, ultrasound, biology, and medicine. Some aspects of UABD theory and technology remain unclear, especially the mechanisms of BBB opening, relationship between materials of nanomedicines and UABD technology, cavitation and UABD nanomedicines design theories. This review introduces the research status of UABD nanomedicines, investigates their properties and applications of brain tumor therapy, discusses the advantages and drawbacks of UABD nanomedicines for the treatment of brain tumors, and offers their prospects. We hope to encourage researchers from various fields to participate in this area and collaborate on developing UABD nanomedicines into powerful tools for brain tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shuai Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Siyuan Luo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Peng Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Wei Gao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
23
|
Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022; 187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Blood-Brain Barrier (BBB) is one of the most important physiological barriers strictly restricting the substance exchange between blood and brain tissues. While the BBB protects the brain from infections and toxins and maintains brain homeostasis, it is also recognized as the main obstacle to the penetration of therapeutics and imaging agents into the brain. Due to high specificity and affinity, peptides are frequently exploited to decorate nanocarriers across the BBB for diagnosis and/or therapy purposes. However, there are still some challenges that restrict their clinical application, such as stability, safety and immunocompatibility. In this review, we summarize the biological and pathophysiological characteristics of the BBB, strategies across the BBB, and recent progress on peptide decorated nanocarriers for brain diseases diagnosis and therapy. The challenges and opportunities for their translation are also discussed.
Collapse
|
24
|
Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-Intensity Focused Ultrasound Technique in Glioblastoma Multiforme Treatment. Front Oncol 2022; 12:903059. [PMID: 35677164 PMCID: PMC9169875 DOI: 10.3389/fonc.2022.903059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is one of the central nervous system most aggressive and lethal cancers with poor overall survival rate. Systemic treatment of glioblastoma remains the most challenging aspect due to the low permeability of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), limiting therapeutics extravasation mainly in the core tumor as well as in its surrounding invading areas. It is now possible to overcome these barriers by using low-intensity focused ultrasound (LIFU) together with intravenously administered oscillating microbubbles (MBs). LIFU is a non-invasive technique using converging ultrasound waves which can alter the permeability of BBB/BTB to drug delivery in a specific brain/tumor region. This emerging technique has proven to be both safe and repeatable without causing injury to the brain parenchyma including neurons and other structures. Furthermore, LIFU is also approved by the FDA to treat essential tremors and Parkinson's disease. It is currently under clinical trial in patients suffering from glioblastoma as a drug delivery strategy and liquid biopsy for glioblastoma biomarkers. The use of LIFU+MBs is a step-up in the world of drug delivery, where onco-therapeutics of different molecular sizes and weights can be delivered directly into the brain/tumor parenchyma. Initially, several potent drugs targeting glioblastoma were limited to cross the BBB/BTB; however, using LIFU+MBs, diverse therapeutics showed significantly higher uptake, improved tumor control, and overall survival among different species. Here, we highlight the therapeutic approach of LIFU+MBs mediated drug-delivery in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rajneesh Mungur
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesheng Zheng
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Tong
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
26
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
27
|
Huang X, Qiu M, Wang T, Li B, Zhang S, Zhang T, Liu P, Wang Q, Qian ZR, Zhu C, Wu M, Zhao J. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J Nanobiotechnology 2022; 20:93. [PMID: 35193583 PMCID: PMC8864853 DOI: 10.1186/s12951-022-01300-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ovarian cancer is the most lethal gynecological cancer which is characterized by extensive peritoneal implantation metastasis and malignant ascites. Despite advances in diagnosis and treatment in recent years, the five-year survival rate is only 25–30%. Therefore, developing multifunctional nanomedicine with abilities of promoting apoptosis and inhibiting migration on tumor cells would be a promising strategy to improve the antitumor effect. Methods and results In this study, we developed a novel ACaT nanomedicine composed of alendronate, calcium ions and cyclin-dependent kinase 7 (CDK7) inhibitor THZ1. With the average size of 164 nm and zeta potential of 12.4 mV, the spherical ACaT nanoparticles were selectively internalized by tumor cells and effectively accumulated in the tumor site. Results of RNA-sequencing and in vitro experiments showed that ACaT promoted tumor cell apoptosis and inhibited tumor cell migration by arresting the cell cycle, increasing ROS and affecting calcium homeostasis. Weekly intraperitoneally administered of ACaT for 8 cycles significantly inhibited the growth of tumor and prolonged the survival of intraperitoneal xenograft mice. Conclusion In summary, this study presents a new self-assembly nanomedicine with favorable tumor targeting, antitumor activity and good biocompatibility, providing a novel therapeutic strategy for advanced ovarian cancer. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01300-4.
Collapse
Affiliation(s)
- Xiuyu Huang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Miaojuan Qiu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Binbin Li
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Shiqiang Zhang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Tianzhi Zhang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Qiang Wang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Zhi Rong Qian
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chengming Zhu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Jing Zhao
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
29
|
Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021; 8:109-118. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotic-resistant pathogens are a serious threat to global public health. The emergence of drug-resistant pathogens is due to the improper use of antibiotics, making the treatment of bacterial infections very challenging. Here, we reported an efficient antibiotic delivery nanoparticle to minimize antibiotic resistance. The nanoparticle was designed to target the bacterial membrane using mesoporous silica nanoparticles (MSNs) modified with an ovotransferrin-derived antimicrobial peptide (OVTp12), enabling the antibiotic to be delivered to the vicinity of the pathogenic bacteria. Moreover, we observed that OVTp12-modified nanoparticles effectively inhibited the growth of Escherichia coli in vitro and in vivo. The nanoparticle with high biosafety could significantly downregulate the expression of inflammation-related cytokines in infected tissues. Thus, this novel bacterial targeted nanoparticle provides advantages in minimizing bacterial drug resistance and treating bacterial infection.
Collapse
Affiliation(s)
- Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Deog Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Science, Kangwon National University, Chunchon 24341, South Korea
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
30
|
Chen GT, Hu TM. Stable Encapsulation of Methylene Blue in Polysulfide Organosilica Colloids for Fluorescent Tracking of Nanoparticle Uptake in Cells. ACS OMEGA 2021; 6:32109-32119. [PMID: 34870032 PMCID: PMC8637969 DOI: 10.1021/acsomega.1c04877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB), a century-old drug and a fluorescent dye, has a long history of diverse applications, both in drug therapy and as a tissue-staining agent. However, MB is inherently unstable when exposed to light and reducing agents. In this study, we aim to prepare and characterize polysulfide-based organosilica colloidal particles for efficient, stable, and protective encapsulation of MB. Disulfide- and tetrasulfide-containing organosilane congeners were used as organosilica precursors for direct synthesis of organosilica colloids based on the silica ouzo effect. MB was spontaneously entrapped into the colloidal particles during the particle formation process. The following properties of the colloidal MB were evaluated: particle size, surface charge, atomic distribution, encapsulation efficiency, MB release, photodynamic activity, thiol and ascorbate reactivity, and cytotoxicity. The DLS measurements show that the size of colloidal MB is tunable in a range of 100 nm to 1 μm. SEM images reveal spherical particles with composition-dependent particle sizes of 70-120 nm (coefficient of variation: 15-18%). MB was encapsulated in the colloidal particles with a maximal efficiency of 95%. The release of MB from the colloids was <1% at 4 h and <3.5% at 48 h. The colloidal particles show much reduced photodynamic activity, low reactivity toward reducing agents, and low cytotoxicity. Accordingly, the colloidal MB was proposed and further investigated as a fluorescent particle tracer for the study of cell-nanoparticle interactions. In conclusion, MB can be efficiently and stably loaded into polysulfide organosilica colloidal particles using a simple and convenient physical route.
Collapse
Affiliation(s)
- Guann-Tyng Chen
- Institute
of Biopharmaceutical Sciences, National
Yang Ming Chiao Tung University, Yangming Campus, Taipei 112, Taiwan
- Tri-Service
General Hospital, Beitou-Branch, Taipei 112, Taiwan
| | - Teh-Min Hu
- Institute
of Biopharmaceutical Sciences, National
Yang Ming Chiao Tung University, Yangming Campus, Taipei 112, Taiwan
- Department
of Pharmacy, National Yang Ming Chiao Tung
University, Yangming Campus, Taipei 112, Taiwan
| |
Collapse
|
31
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
32
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Zhang H, Song F, Dong C, Yu L, Chang C, Chen Y. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. J Nanobiotechnology 2021; 19:290. [PMID: 34579711 PMCID: PMC8474771 DOI: 10.1186/s12951-021-01025-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In comparison with traditional therapeutics, it is highly preferable to develop a combinatorial therapeutic modality for nanomedicine and photothermal hyperthermia to achieve safe, efficient, and localized delivery of chemotherapeutic drugs into tumor tissues and exert tumor-activated nanotherapy. Biocompatible organic-inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) have shown high performance in molecular imaging and drug delivery as compared to other inorganic nanosystems. Disulfiram (DSF), an alcohol-abuse drug, can act as a chemotherapeutic agent according to its recently reported effectiveness for cancer chemotherapy, whose activity strongly depends on copper ions. RESULTS In this work, a therapeutic construction with high biosafety and efficiency was proposed and developed for synergistic tumor-activated and photothermal-augmented chemotherapy in breast tumor eradication both in vitro and in vivo. The proposed strategy is based on the employment of HMONs to integrate ultrasmall photothermal CuS particles onto the surface of the organosilica and the molecular drug DSF inside the mesopores and hollow interior. The ultrasmall CuS acted as both photothermal agent under near-infrared (NIR) irradiation for photonic tumor hyperthermia and Cu2+ self-supplier in an acidic tumor microenvironment to activate the nontoxic DSF drug into a highly toxic diethyldithiocarbamate (DTC)-copper complex for enhanced DSF chemotherapy, which effectively achieved a remarkable synergistic in-situ anticancer outcome with minimal side effects. CONCLUSION This work provides a representative paradigm on the engineering of combinatorial therapeutic nanomedicine with both exogenous response for photonic tumor ablation and endogenous tumor microenvironment-responsive in-situ toxicity activation of a molecular drug (DSF) for augmented tumor chemotherapy.
Collapse
Affiliation(s)
- Haixian Zhang
- Department of Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, People’s Republic of China
| | - Feifei Song
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, 200072 Shanghai, People’s Republic of China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, 200032 People’s Republic of China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, People’s Republic of China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| |
Collapse
|
34
|
Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021; 13:pharmaceutics13081135. [PMID: 34452096 PMCID: PMC8397943 DOI: 10.3390/pharmaceutics13081135] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer chemotherapies often exhibit insufficient therapeutic outcomes and dose-limiting toxicity. Therefore, there is a need for novel therapeutics and formulations with higher efficacy, improved safety, and more favorable toxicological profiles. This has promoted the development of nanomedicines, including systems for drug delivery, but also for imaging and diagnostics. Nanoparticles loaded with drugs can be designed to overcome several biological barriers to improving efficiency and reducing toxicity. In addition, stimuli-responsive nanocarriers are able to release their payload on demand at the tumor tissue site, preventing premature drug loss. This review focuses on ultrasound-triggered drug delivery by nanocarriers as a versatile, cost-efficient, non-invasive technique for improving tissue specificity and tissue penetration, and for achieving high drug concentrations at their intended site of action. It highlights aspects relevant for ultrasound-mediated drug delivery, including ultrasound parameters and resulting biological effects. Then, concepts in ultrasound-mediated drug delivery are introduced and a comprehensive overview of several types of nanoparticles used for this purpose is given. This includes an in-depth compilation of the literature on the various in vivo ultrasound-responsive drug delivery systems. Finally, toxicological and safety considerations regarding ultrasound-mediated drug delivery with nanocarriers are discussed.
Collapse
|
35
|
Tang T, Chang B, Zhang M, Sun T. Nanoprobe-mediated precise imaging and therapy of glioma. NANOSCALE HORIZONS 2021; 6:634-650. [PMID: 34110340 DOI: 10.1039/d1nh00182e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gliomas are the most common primary brain tumors in adults, accounting for 80% of primary intracranial tumors. Due to the heterogeneous and infiltrating nature of malignant gliomas and the hindrance of the blood-brain barrier (BBB), it is very difficult to accurately image and differentiate the malignancy grade of gliomas, thus significantly influencing the diagnostic accuracy and subsequent surgery or therapy. In recent years, the rapid development of emerging nanoprobes has provided a promising opportunity for the diagnosis and treatment of gliomas. After rational component regulation and surface modification, functional nanoprobes could efficiently cross the BBB, target gliomas, and realize single-modal or multimodal imaging of gliomas with high clarity. Moreover, these contrast nanoagents could also be conjugated with therapeutic drugs and cure cancerous tissues at the same time. Herein, we focus on the design strategies of nanoprobes for effective crossing of the BBB, and introduce the recent advances in the precise imaging and therapy of gliomas using functional nanoprobes. Finally, we also discuss the challenges and future directions of nanoprobe-based diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
36
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
37
|
Sabbagh A, Beccaria K, Ling X, Marisetty A, Ott M, Caruso H, Barton E, Kong LY, Fang D, Latha K, Zhang DY, Wei J, DeGroot J, Curran MA, Rao G, Hu J, Desseaux C, Bouchoux G, Canney M, Carpentier A, Heimberger AB. Opening of the Blood-Brain Barrier Using Low-Intensity Pulsed Ultrasound Enhances Responses to Immunotherapy in Preclinical Glioma Models. Clin Cancer Res 2021; 27:4325-4337. [PMID: 34031054 DOI: 10.1158/1078-0432.ccr-20-3760] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The blood-brain barrier (BBB) inhibits adequate dosing/penetration of therapeutic agents to malignancies in the brain. Low-intensity pulsed ultrasound (LIPU) is a safe therapeutic method of temporary BBB disruption (BBBD) to enhance chemotherapeutic delivery to the tumor and surrounding brain parenchyma for treatment of glioblastoma. EXPERIMENTAL DESIGN We investigated if LIPU could enhance therapeutic efficacy of anti-PD-1 in C57BL/6 mice bearing intracranial GL261 gliomas, epidermal growth factor receptor variant III (EGFRvIII) chimeric antigen receptor (CAR) T cells in NSG mice with EGFRvIII-U87 gliomas, and a genetically engineered antigen-presenting cell (APC)-based therapy producing the T-cell attracting chemokine CXCL10 in the GL261-bearing mice. RESULTS Mice treated with anti-PD-1 and LIPU-induced BBBD had a median survival duration of 58 days compared with 39 days for mice treated with anti-PD-1, and long-term survivors all remained alive after contralateral hemisphere rechallenge. CAR T-cell administration with LIPU-induced BBBD resulted in significant increases in CAR T-cell delivery to the CNS after 24 (P < 0.005) and 72 (P < 0.001) hours and increased median survival by greater than 129%, in comparison with CAR T cells alone. Local deposition of CXCL10-secreting APCs in the glioma microenvironment with LIPU enhanced T-cell glioma infiltration during the therapeutic window (P = 0.004) and markedly enhanced survival (P < 0.05). CONCLUSIONS LIPU increases immune therapeutic delivery to the tumor microenvironment with an associated increase in survival and is an emerging technique for enhancing novel therapies in the brain.
Collapse
Affiliation(s)
- Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin Beccaria
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP, Université de Paris, 75015 Paris, France
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hillary Caruso
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Barton
- Department of Psychology and Behavioral Neuroscience, St. Edward's University, Austin, Texas
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khatri Latha
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Yang Zhang
- Department of Neurosurgery, Northwestern University, Chicago, Illinois
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Hu
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carole Desseaux
- CarThera, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Guillaume Bouchoux
- CarThera, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Michael Canney
- CarThera, Institut du Cerveau et de la Moelle épinière, Paris F-75013, France
| | - Alexandre Carpentier
- AP-HP, Neurosurgery Department, Pitie Salpetriere Hospital, F-75013 Paris, France.,Sorbonne Universite, GRC23, Interface Neuro Machine team, F-75013 Paris, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0524. [PMID: 34002583 PMCID: PMC8185869 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brain cancer, also known as intracranial cancer, is one of the most invasive and fatal cancers affecting people of all ages. Despite the great advances in medical technology, improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier (BBB). Fortunately, recent endeavors using gold-based nanomaterials (GBNs) have indicated the potential of these materials to cross the BBB. Therefore, GBNs might be an attractive therapeutic strategy against brain cancer. Herein, we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment. Furthermore, the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized, with an emphasis on the mechanism of their effective BBB penetration. Finally, the challenges and future outlook in using GBNs for brain cancer treatment are discussed. We hope that this review will spark researchers' interest in constructing more powerful nanoplatforms for brain disease treatment.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
39
|
Li L, Zhang B, Liu Y, Gao R, Zhou J, Fu LM, Wang J. A Spontaneous Membrane-Adsorption Approach to Enhancing Second Near-Infrared Deep-Imaging-Guided Intracranial Tumor Therapy. ACS NANO 2021; 15:4518-4533. [PMID: 33619957 DOI: 10.1021/acsnano.0c08532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a functional class of microenvironment-associated nanomaterials is reported for improving the second near-infrared (NIR-II) imaging and photothermal therapeutic effect on intracranial tumors via a spontaneous membrane-adsorption approach. Specific peptides, photothermal agents, and biological alkylating agents were designed to endow the nanogels with high targeting specificity, photothermal properties, and pharmacological effects. Importantly, the frozen scanning electron microscopy technology (cryo-SEM) was utilized to observe the self-association of nanomaterials on tumor cells. Interestingly, the spontaneous membrane-adsorption behavior of nanomaterials was captured through direct imaging evidence. Histological analysis showed that the cross-linking adhesion in intracranial tumor and monodispersity in normal tissues of the nanogels not only enhanced the retention time but also ensured excellent biocompatibility. Impressively, in vivo data confirmed that the microenvironment-associated nanogels could significantly enhance brain tumor clearance rate within a short treatment timeframe (only two weeks). In short, utilizing the spontaneous membrane-adsorption strategy can significantly improve NIR-II diagnosis and phototherapy in brain diseases while avoiding high-risk complications.
Collapse
Affiliation(s)
- Luoyuan Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P.R. China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P.R. China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, P.R. China
| | - Rongyao Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, P.R. China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, P.R. China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, P.R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P.R. China
| |
Collapse
|
40
|
Deng Z, Wang J, Xiao Y, Li F, Niu L, Liu X, Meng L, Zheng H. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity. Am J Cancer Res 2021; 11:4351-4362. [PMID: 33754065 PMCID: PMC7977450 DOI: 10.7150/thno.52436] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Extracellular vesicles, including exosomes, are secreted by a variety of cell types in the central nervous system. Exosomes play a role in removing intracellular materials from the endosomal system. Alzheimer's disease (AD) is caused by an overproduction or reduced amyloid-beta (Aβ) peptide clearance. Increased Aβ levels in the brain may impair the exosome-mediated Aβ clearance pathway. Therapeutic ultrasound stimulation demonstrated its potential for promoting Aβ degradation efficiency in clinical trials. However, the underlying mechanism of ultrasound stimulation is still unclear. Methods: In this study, astrocytes, the most abundant glial cells in the brain, were used for exosome production. Post insonation, exosomes from ultrasound-stimulated HA cells (US-HA-Exo) were collected, nanoparticle tracking analysis and protein analysis were used to measure and characterize exosomes. Neuroprotective effect of US-HA-Exo in oligomeric Aβ42 toxicated SH-SY5Y cells was tested. Cellular uptake and distribution of exosomes were observed by flow cytometry and confocal laser scanning microscopy. Focused ultrasound (FUS) with microbubbles was employed for blood-brain-barrier opening to achieve brain-targeted exosome delivery. After US-HA-Exo/FUS treatment, amyloid-β plaque in APP/PS1 mice were evaluated by Aβ immunostaining and thioflavin-S staining. Results: We showed that ultrasound resulted in an almost 5-fold increase in the exosome release from human astrocytes. Exosomes were rapidly internalized in SH-SY5Y cells, and colocalized with FITC-Aβ42, causing a decreased uptake of FITC-Aβ42. CCk-8 test results showed that US-HA-Exo could mitigate Aβ toxicity to neurons in vitro. The therapeutic potential of US-HA-Exo/FUS delivery was demonstrated by a decrease in thioflavin-S-positive amyloid plaques and Aβ immuno-staining, a therapeutic target for AD in APP/PS1 transgenic mice. The iTRAQ-based proteomic quantification was performed to gain mechanistic insight into the ultrasound effect on astrocyte-derived exosomes and their ability to alleviate Aβ neurotoxicity. Conclusion: Our results imply that US-HA-Exo have the potential to provide neuroprotective effects to reverse oligomeric amyloid-β-induced cytotoxicity in vitro and, when combined with FUS-induced BBB opening, enable the clearance of amyloid-β plaques in vivo.
Collapse
|
41
|
Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS APPLIED NANO MATERIALS 2020; 3:11129-11134. [PMID: 34337344 PMCID: PMC8320805 DOI: 10.1021/acsanm.0c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hannah Pang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Abhishek Sethi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Oren J Becher
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Kankala RK, Wang SB, Chen AZ. Nanoarchitecting Hierarchical Mesoporous Siliceous Frameworks: A New Way Forward. iScience 2020; 23:101687. [PMID: 33163941 PMCID: PMC7607446 DOI: 10.1016/j.isci.2020.101687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Owing to their attractive physicochemical and morphological attributes, mesoporous silica nanoparticles (MSNs) have attracted increasing attention over the past two decades for their utilization in diversified fields. Despite the success, these highly stable siliceous frameworks often suffer from several shortcomings of compatibility issues, uncontrollable degradability leading to long-term retention in vivo, and substantial unpredictable toxicity risks, as well as deprived drug encapsulation efficiency, which could limit their applicability in medicine. Along this line, various advancements have been made in re-engineering the stable siliceous frameworks, such as the incorporation of diverse molecular organic, as well as inorganic (cationic and anionic) species and monitoring the processing, as well as formulation parameters, resulting in the hetero-nanostructures of irregular-shaped (Janus and multi-podal) and dynamically-modulated (deformable solids) architectures with high morphological complexity. Insightfully, this review gives a brief emphasis on re-engineering such stable siliceous frameworks through modifying their intrinsic structural and physicochemical attributes. In conclusion, we recapitulate the review with exciting perspectives.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
43
|
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer.
Collapse
|
44
|
Men X, Chen H, Sun C, Liu Y, Wang R, Zhang X, Wu C, Yuan Z. Thermosensitive Polymer Dot Nanocomposites for Trimodal Computed Tomography/Photoacoustic/Fluorescence Imaging-Guided Synergistic Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51174-51184. [PMID: 33141578 DOI: 10.1021/acsami.0c13252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Precision delivery of theranostic agents to the tumor site is essential to improve their diagnostic and therapeutic efficacy and concurrently minimize adverse effects during treatment. In this study, a novel concept of near-infrared (NIR) light activation of conjugated polymer dots (Pdots) at thermosensitive hydrogel nanostructures is introduced for multimodal imaging-guided synergistic chemo-photothermal therapy. Interestingly, owing to the attractive photothermal conversion efficiency of Pdots, the Pdots@hydrogel as theranostic agents is able to undergo a controllable softening or melting state under the irradiation of NIR laser, resulting in light-triggered drug release in a controlled way and concurrently hydrogel degradation. Besides, the novel Pdots@hydrogel nanoplatform can serve as the theranostic agent for enhanced trimodal photoacoustic (PA)/computed tomography (CT)/fluorescence (FL) imaging-guided synergistic chemo-photothermal therapy of tumors. More importantly, the constructed intelligent nanocomposite Pdots@hydrogel exhibits excellent biodegradability, strong NIR absorption, bright PA/CT/FL signals, and superior tumor ablation effect. Therefore, the concept of a light-controlled multifunctional Pdots@hydrogel that integrates multiple diagnostic/therapeutic modalities into one nanoplatform can potentially be applied as a smart nanotheranostic agent to various perspectives of personalized nanomedicine.
Collapse
Affiliation(s)
- Xiaoju Men
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Haobin Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Yubin Liu
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR 999708, China
| |
Collapse
|
45
|
Blood-Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12111085. [PMID: 33198244 PMCID: PMC7697580 DOI: 10.3390/pharmaceutics12111085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells that are sealed by tight junctions, making it a significant obstacle for most brain therapeutics. The poor BBB penetration of newly developed therapeutics has therefore played a major role in limiting their clinical success. A particularly challenging therapeutic target is glioma, which is the most frequently occurring malignant brain tumor. Thus, to enhance therapeutic uptake in tumors, researchers have been developing strategies to modulate BBB permeability. However, most conventional BBB opening strategies are difficult to apply in the clinical setting due to their broad, non-specific modulation of the BBB, which can result in damage to normal brain tissue. In this review, we have summarized strategies that could potentially be used to selectively and efficiently modulate the tumor BBB for more effective glioma treatment.
Collapse
|
46
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Ancona A, Troia A, Garino N, Dumontel B, Cauda V, Canavese G. Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. ULTRASONICS SONOCHEMISTRY 2020; 67:105132. [PMID: 32339870 DOI: 10.1016/j.ultsonch.2020.105132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 05/11/2023]
Abstract
Nanoparticles able to promote inertial cavitation when exposed to focused ultrasound have recently gained much attention due to their vast range of possible applications in the biomedical field, such as enhancing drug penetration in tumor or supporting ultrasound contrast imaging. Due to their nanometric size, these contrast agents could penetrate through the endothelial cells of the vasculature to target tissues, thus enabling higher imaging resolutions than commercial gas-filled microbubbles. Herein, Zinc Oxide NanoCrystals (ZnO NCs), opportunely functionalized with amino-propyl groups, are developed as novel nanoscale contrast agents that are able, for the first time, to induce a repeatedly and over-time sustained inertial cavitation as well as ultrasound contrast imaging. The mechanism behind this phenomenon is investigated, revealing that re-adsorption of air gas nanobubbles on the nanocrystal surface is the key factor for this re-chargeable cavitation. Moreover, inertial cavitation and significant echographic signals are obtained at physiologically relevant ultrasound conditions (MI < 1.9), showing great potential for low side-effects in in-vivo applications of the novel nanoscale agent from diagnostic imaging to gas-generating theranostic nanoplatforms and to drug delivery.
Collapse
Affiliation(s)
- Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Adriano Troia
- Ultrasounds & Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica (I.N.Ri.M.), Strada delle Cacce 91, 10135 Turin, Italy
| | - Nadia Garino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
48
|
Zhang H, Zeng X, Li Z. Copper-Chalcogenide-Based Multimodal Nanotheranostics. ACS APPLIED BIO MATERIALS 2020; 3:6529-6537. [DOI: 10.1021/acsabm.0c00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| |
Collapse
|
49
|
Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020; 256:120191. [PMID: 32593907 DOI: 10.1016/j.biomaterials.2020.120191] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Despite the advantages of mesoporous silica nanoparticles (MSNs) in drug delivery, the inherent non-biodegradability seriously impedes the clinical translation of inorganic MSNs, so the current research focus has been turned to mesoporous organosilica nanoparticles (MONs) with higher biocompatibility and easier biodegradability. Recent remarkable advances in silica fabrication chemistry have catalyzed the emergence of a library of MONs with various structures and functions. This review will summarize the latest state-of-the-art studies on the precise control of morphology, structure, framework, particle size and pore size of MONs, which enables the precise synthesis of MONs with suitable engineering for precision stimuli-responsive drug delivery/release, bioimaging and synergistic therapy. Besides, the potential challenges about the future development of MONs are also outlooked with the intention of attracting more researchers to promote the clinical translation of MONs.
Collapse
|
50
|
Yang Z, Du Y, Sun Q, Peng Y, Wang R, Zhou Y, Wang Y, Zhang C, Qi X. Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS NANO 2020; 14:6191-6212. [PMID: 32320600 DOI: 10.1021/acsnano.0c02249] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly infiltrative and invasive glioma cells obscure the boundary between tumor and normal brain tissue, making it extremely difficult to precisely diagnose and completely remove. The combination of multimodal imaging with effective treatments to diagnose precisely and guide surgery and therapy accurately is desperately needed for glioma in the brain. Here, we report a biomimetic catalase-integrated-albumin phototheranostic nanoprobe (ICG/AuNR@BCNP) to realize multimodal imaging, amplify phototherapy, and guide surgery for glioma after penetrating the blood-brain barrier, accumulating into deep-seated glioma via albumin-binding protein mediated transportation. The phototheranostic nanoprobe enabled fluorescence, photoacoustic, and infrared thermal imaging with desirable detecting depth and high signal-to-background ratio for clearly differentiating brain tumors from surrounding tissues. Meanwhile, the nanoprobe could effectively induce local hyperthermia and promote the level of singlet oxygen based on alleviated hypoxic glioma microenvironment by decomposing endogenous hydrogen peroxide to oxygen to amplify phototherapy. Thus, significant inhibition of glioma growth, extended survival time, alleviated tumor hypoxia, improved apoptosis, and antiangiogenesis effects were exhibited in several animal models including the periphery and the brain through intravenous or intratumoral injection, meanwhile with low toxicity to normal tissue. The phototherapy was also guided by the assistance of external bioluminescence, magnetic resonance, and positron emission tomography imaging. Moreover, the nanoprobe could accurately guide the glioma resection. These results suggest that the phototheranostic nanoprobe is a promising nanoplatform specifically for glioma to achieve multimodal diagnosis, effective phototherapy, and accurate imaging-guided surgery.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Qi Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Rudong Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yu Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yuqi Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|