1
|
Abdel Aziz I, Gladisch J, Griggs S, Moser M, Biesmans H, Beloqui A, McCulloch I, Berggren M, Stavrinidou E. Drug delivery via a 3D electro-swellable conjugated polymer hydrogel. J Mater Chem B 2024; 12:4029-4038. [PMID: 38586978 DOI: 10.1039/d3tb02592f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, 20018, Gipuzkoa, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Hanne Biesmans
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
| |
Collapse
|
2
|
Abdel Aziz I, Gladisch J, Musumeci C, Moser M, Griggs S, Kousseff CJ, Berggren M, McCulloch I, Stavrinidou E. Electrochemical modulation of mechanical properties of glycolated polythiophenes. MATERIALS HORIZONS 2024; 11:2021-2031. [PMID: 38372393 DOI: 10.1039/d3mh01827j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Gipuzkoa 20018, Spain
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | - Chiara Musumeci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| | | | - Sophie Griggs
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden
| | | | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
| |
Collapse
|
3
|
Quill TJ, LeCroy G, Marks A, Hesse SA, Thiburce Q, McCulloch I, Tassone CJ, Takacs CJ, Giovannitti A, Salleo A. Charge Carrier Induced Structural Ordering And Disordering in Organic Mixed Ionic Electronic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310157. [PMID: 38198654 DOI: 10.1002/adma.202310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Operational stability underpins the successful application of organic mixed ionic-electronic conductors (OMIECs) in a wide range of fields, including biosensing, neuromorphic computing, and wearable electronics. In this work, both the operation and stability of a p-type OMIEC material of various molecular weights are investigated. Electrochemical transistor measurements reveal that device operation is very stable for at least 300 charging/discharging cycles independent of molecular weight, provided the charge density is kept below the threshold where strong charge-charge interactions become likely. When electrochemically charged to higher charge densities, an increase in device hysteresis and a decrease in conductivity due to a drop in the hole mobility arising from long-range microstructural disruptions are observed. By employing operando X-ray scattering techniques, two regimes of polaron-induced structural changes are found: 1) polaron-induced structural ordering at low carrier densities, and 2) irreversible structural disordering that disrupts charge transport at high carrier densities, where charge-charge interactions are significant. These operando measurements also reveal that the transfer curve hysteresis at high carrier densities is accompanied by an analogous structural hysteresis, providing a microstructural basis for such instabilities. This work provides a mechanistic understanding of the structural dynamics and material instabilities of OMIEC materials during device operation.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Iain McCulloch
- Department of Chemistry University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Paleti SHK, Kim Y, Kimpel J, Craighero M, Haraguchi S, Müller C. Impact of doping on the mechanical properties of conjugated polymers. Chem Soc Rev 2024; 53:1702-1729. [PMID: 38265833 PMCID: PMC10876084 DOI: 10.1039/d3cs00833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/25/2024]
Abstract
Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties. In addition, different methods for the mechanical characterization of thin films and bulk materials such as fibers are summarized. Then, the review discusses how chemical and electrochemical doping alter the mechanical properties in terms of stiffness and ductility. Finally, the mechanical response of (doped) conjugated polymers is discussed in the context of (1) organic photovoltaics, representing thin-film devices with a relatively low charge-carrier density, (2) organic thermoelectrics, where chemical doping is used to realize thin films or bulk materials with a high doping level, and (3) organic electrochemical transistors, where electrochemical doping allows high charge-carrier densities to be reached, albeit accompanied by significant swelling. In the future, chemical and electrochemical doping may not only allow modulation and optimization of the electrical and electrochemical behavior of conjugated polymers, but also facilitate the design of materials with a tunable mechanical response.
Collapse
Affiliation(s)
- Sri Harish Kumar Paleti
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Shuichi Haraguchi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
5
|
Kim JH, Halaksa R, Jo IY, Ahn H, Gilhooly-Finn PA, Lee I, Park S, Nielsen CB, Yoon MH. Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality. Nat Commun 2023; 14:7577. [PMID: 38016963 PMCID: PMC10684893 DOI: 10.1038/s41467-023-42840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023] Open
Abstract
Despite the growing interest in dynamic behaviors at the frequency domain, there exist very few studies on molecular orientation-dependent transient responses of organic mixed ionic-electronic conductors. In this research, we investigated the effect of ion injection directionality on transient electrochemical transistor behaviors by developing a model mixed conductor system. Two polymers with similar electrical, ionic, and electrochemical characteristics but distinct backbone planarities and molecular orientations were successfully synthesized by varying the co-monomer unit (2,2'-bithiophene or phenylene) in conjunction with a novel 1,4-dithienylphenylene-based monomer. The comprehensive electrochemical analysis suggests that the molecular orientation affects the length of the ion-drift pathway, which is directly correlated with ion mobility, resulting in peculiar OECT transient responses. These results provide the general insight into molecular orientation-dependent ion movement characteristics as well as high-performance device design principles with fine-tuned transient responses.
Collapse
Affiliation(s)
- Ji Hwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang, 37673, Republic of Korea
| | | | - Inho Lee
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Park
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, 16499, Republic of Korea
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK.
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
7
|
Siemons N, Pearce D, Yu H, Tuladhar SM, LeCroy GS, Sheelamanthula R, Hallani RK, Salleo A, McCulloch I, Giovannitti A, Frost JM, Nelson J. Controlling swelling in mixed transport polymers through alkyl side-chain physical cross-linking. Proc Natl Acad Sci U S A 2023; 120:e2306272120. [PMID: 37603750 PMCID: PMC10467570 DOI: 10.1073/pnas.2306272120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Semiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance. An effective strategy to control polymer film swelling is to copolymerize glycolated repeat units with a fraction of monomers bearing alkyl side chains, although the microscopic mechanism that constrains swelling is unknown. Here we investigate, experimentally and computationally, a series of archetypal mixed transporting copolymers with varying ratios of glycolated and alkylated repeat units. Experimentally we observe that exchanging 10% of the glycol side chains for alkyl leads to significantly reduced film swelling and an increase in electrochemical stability. Through molecular dynamics simulation of the amorphous phase of the materials, we observe the formation of polymer networks mediated by alkyl side-chain interactions. When in the presence of water, the network becomes increasingly connected, counteracting the volumetric expansion of the polymer film.
Collapse
Affiliation(s)
- Nicholas Siemons
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Drew Pearce
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Hang Yu
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Sachetan M. Tuladhar
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Garrett S. LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Rajendar Sheelamanthula
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Rawad K. Hallani
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Iain McCulloch
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg412 96, Sweden
| | - Jarvist M. Frost
- Department of Chemistry, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College, London, South Kensington, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Landi A, Reisjalali M, Elliott JD, Matta M, Carbone P, Troisi A. Simulation of polymeric mixed ionic and electronic conductors with a combined classical and quantum mechanical model. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:8062-8073. [PMID: 37362027 PMCID: PMC10286221 DOI: 10.1039/d2tc05103f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 06/28/2023]
Abstract
In organic polymeric materials with mixed ionic and electronic conduction (OMIEC), the excess charge in doped polymers is very mobile and the dynamics of the polymer chain cannot be accurately described with a model including only fixed point charges. Ions and polymer are comparatively slower and a methodology to capture the correlated motions of excess charge and ions is currently unavailable. Considering a prototypical interface encountered in this type of materials, we constructed a scheme based on the combination of MD and QM/MM to evaluate the classical dynamics of polymer, water and ions, while allowing the excess charge of the polymer chains to rearrange following the external electrostatic potential. We find that the location of the excess charge varies substantially between chains. The excess charge changes across multiple timescales as a result of fast structural fluctuations and slow rearrangement of the polymeric chains. Our results indicate that such effects are likely important to describe the phenomenology of OMIEC, but additional features should be added to the model to enable the study of processes such as electrochemical doping.
Collapse
Affiliation(s)
- Alessandro Landi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno Via Giovanni Paolo II, I-84084 Fisciano Salerno Italy
| | - Maryam Reisjalali
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Joshua D Elliott
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Micaela Matta
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Paola Carbone
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
9
|
LeCroy G, Cendra C, Quill TJ, Moser M, Hallani R, Ponder JF, Stone K, Kang SD, Liang AYL, Thiburce Q, McCulloch I, Spano FC, Giovannitti A, Salleo A. Role of aggregates and microstructure of mixed-ionic-electronic-conductors on charge transport in electrochemical transistors. MATERIALS HORIZONS 2023. [PMID: 37089107 DOI: 10.1039/d3mh00017f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Rawad Hallani
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - James F Ponder
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
- UES, Inc., Dayton, Ohio 45432, USA
| | - Kevin Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stephen D Kang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955-6900, Saudi Arabia
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
DiTullio BT, Savagian LR, Bardagot O, De Keersmaecker M, Österholm AM, Banerji N, Reynolds JR. Effects of Side-Chain Length and Functionality on Polar Poly(dioxythiophene)s for Saline-Based Organic Electrochemical Transistors. J Am Chem Soc 2023; 145:122-134. [PMID: 36563183 DOI: 10.1021/jacs.2c08850] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the impact of side chains on the aqueous redox properties of conjugated polymers is crucial to unlocking their potential in bioelectrochemical devices, such as organic electrochemical transistors (OECTs). Here, we report a series of polar propylenedioxythiophene-based copolymers functionalized with glyme side chains of varying lengths as well as an analogue with short hydroxyl side chains. We show that long polar side chains are not required for achieving high volumetric capacitance (C*), as short hydroxy substituents can afford facile doping and high C* in saline-based electrolytes. Furthermore, we demonstrate that varying the length of the polar glyme chains leads to subtle changes in material properties. Increasing the length of glyme side chain is generally associated with an enhancement in OECT performance, doping kinetics, and stability, with the polymer bearing the longest side chains exhibiting the highest performance ([μC*]OECT = 200 ± 8 F cm-1 V-1 s-1). The origin of this performance enhancement is investigated in different device configurations using in situ techniques (e.g., time-resolved spectroelectrochemistry and chronoamperometry). These studies suggest that the performance improvement is not due to significant changes in C* but rather due to variations in the inferred mobility. Through a thorough comparison of two different architectures, we demonstrate that device geometry can obfuscate the benchmarking of OECT active channel materials, likely due to contact resistance effects. By complementing all electrochemical and spectroscopic experiments with in situ measurements performed within a planar OECT device configuration, this work seeks to unambiguously assign material design principles to fine-tune the properties of poly(dioxythiophene)s relevant for application in OECTs.
Collapse
Affiliation(s)
- Brandon T DiTullio
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Lisa R Savagian
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Olivier Bardagot
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Bern3012, Switzerland
| | - Michel De Keersmaecker
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Anna M Österholm
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Natalie Banerji
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Bern3012, Switzerland
| | - John R Reynolds
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia30332, United States.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
12
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Siemons N, Pearce D, Cendra C, Yu H, Tuladhar SM, Hallani RK, Sheelamanthula R, LeCroy GS, Siemons L, White AJP, McCulloch I, Salleo A, Frost JM, Giovannitti A, Nelson J. Impact of Side-Chain Hydrophilicity on Packing, Swelling, and Ion Interactions in Oxy-Bithiophene Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204258. [PMID: 35946142 DOI: 10.1002/adma.202204258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Exchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid-state packing and polymer-electrolyte interactions being poorly understood. Presented here is a molecular dynamics (MD) force field for modeling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals. MD simulations, coupled with X-ray diffraction (XRD), show that alkoxylated polythiophenes will pack with a "tilted stack" and straight interdigitating side chains, whilst their glycolated counterpart will pack with a "deflected stack" and an s-bend side-chain configuration. MD simulations reveal water penetration pathways into the alkoxylated and glycolated crystals-through the π-stack and through the lamellar stack respectively. Finally, the two distinct ways triethylene glycol polymers can bind to cations are revealed, showing the formation of a metastable single bound state, or an energetically deep double bound state, both with a strong side-chain length dependence. The minimum energy pathways for the formation of the chelates are identified, showing the physical process through which cations can bind to one or two side chains of a glycolated polythiophene, with consequences for ion transport in bithiophene semiconductors.
Collapse
Affiliation(s)
- Nicholas Siemons
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Drew Pearce
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Hang Yu
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Sachetan M Tuladhar
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Rawad K Hallani
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Rajendar Sheelamanthula
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Garrett S LeCroy
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Lucas Siemons
- Structural biology of cells and viruses laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew J P White
- Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 2JD, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Jarvist M Frost
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Jenny Nelson
- Department of Physics, Imperial College, London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Keene ST, Gueskine V, Berggren M, Malliaras GG, Tybrandt K, Zozoulenko I. Exploiting mixed conducting polymers in organic and bioelectronic devices. Phys Chem Chem Phys 2022; 24:19144-19163. [PMID: 35942679 DOI: 10.1039/d2cp02595g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.
Collapse
Affiliation(s)
- Scott T Keene
- Electrical Engineering Division, Department of Engineering, Cambridge University, 9 JJ Thompson Ave., CB3 0FA Cambridge, UK
| | - Viktor Gueskine
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, Cambridge University, 9 JJ Thompson Ave., CB3 0FA Cambridge, UK
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden. .,Wallenberg Wood Science Center, Linköping University, SE-601 74, Norrköping, Sweden
| |
Collapse
|
15
|
Tan STM, Gumyusenge A, Quill TJ, LeCroy GS, Bonacchini GE, Denti I, Salleo A. Mixed Ionic-Electronic Conduction, a Multifunctional Property in Organic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110406. [PMID: 35434865 DOI: 10.1002/adma.202110406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have gained recent interest and rapid development due to their versatility in diverse applications ranging from sensing, actuation and computation to energy harvesting/storage, and information transfer. Their multifunctional properties arise from their ability to simultaneously participate in redox reactions as well as modulation of ionic and electronic charge density throughout the bulk of the material. Most importantly, the ability to access charge states with deep modulation through a large extent of its density of states and physical volume of the material enables OMIEC-based devices to display exciting new characteristics and opens up new degrees of freedom in device design. Leveraging the infinite possibilities of the organic synthetic toolbox, this perspective highlights several chemical and structural design approaches to modify OMIECs' properties important in device applications such as electronic and ionic conductivity, color, modulus, etc. Additionally, the ability for OMIECs to respond to external stimuli and transduce signals to myriad types of outputs has accelerated their development in smart systems. This perspective further illustrates how various stimuli such as electrical, chemical, and optical inputs fundamentally change OMIECs' properties dynamically and how these changes can be utilized in device applications.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tyler James Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett Swain LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Giorgio Ernesto Bonacchini
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, Milano, 20133, Italy
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Moser M, Wang Y, Hidalgo TC, Liao H, Yu Y, Chen J, Duan J, Moruzzi F, Griggs S, Marks A, Gasparini N, Wadsworth A, Inal S, McCulloch I, Yue W. Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications. MATERIALS HORIZONS 2022; 9:973-980. [PMID: 34935815 DOI: 10.1039/d1mh01889b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, many of the high-performance conjugated polymers employed as OECT channel materials make use of ethylene glycol (EG) chains to confer the materials with mixed ionic-electronic conduction properties, with limited emphasis placed on alternative hydrophilic moieties. While a degree of hydrophilicity is required to facilitate some ionic conduction in hydrated channels, an excess results in excessive swelling, with potentially detrimental effects on charge transport. This is therefore a subtle balance that must be optimised to maximise electrical performance. Herein a series of polymers based on a bithiophene-thienothiophene conjugated backbone was synthesised and the conventional EG chains substituted by their propylene and butylene counterparts. Specifically, the use of propylene and butylene chains was found to afford polymers with a more hydrophobic character, thereby reducing excessive water uptake during OECT operation and in turn significantly boosting the polymers' electronic charge carrier mobility. Despite the polymers' lower water uptake, the newly developed oligoether chains retained sufficiently high degrees of hydrophilicity to enable bulk volumetric doping, ultimately resulting in the development of polymers with superior OECT performance.
Collapse
Affiliation(s)
- Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Yazhou Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Tania Cecilia Hidalgo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia.
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Floriana Moruzzi
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Nicola Gasparini
- Imperial College London, Department of Chemistry and Centre for Plastic Electronics, London, W12 0BZ, UK
| | - Andrew Wadsworth
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal, 23955-6900, Saudi Arabia.
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of the Ministry of Education, School of Materials and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Dingler C, Walter R, Gompf B, Ludwigs S. In Situ Monitoring of Optical Constants, Conductivity, and Swelling of PEDOT:PSS from Doped to the Fully Neutral State. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carsten Dingler
- IPOC─Functional Polymers, Institute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Ramon Walter
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany
| | - Bruno Gompf
- 1st Physics Institute, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70569, Germany
| | - Sabine Ludwigs
- IPOC─Functional Polymers, Institute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
18
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Gladisch J, Oikonomou VK, Moser M, Griggs S, McCulloch I, Berggren M, Stavrinidou E. An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Johannes Gladisch
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-60174 Norrköping Sweden
- Wallenberg Wood Science Center Linköping University SE‐60174 Norrköping Sweden
| | - Vasileios K. Oikonomou
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-60174 Norrköping Sweden
- Wallenberg Wood Science Center Linköping University SE‐60174 Norrköping Sweden
| | | | - Sophie Griggs
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
| | - Iain McCulloch
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
- KAUST Solar Center King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia
| | - Magnus Berggren
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-60174 Norrköping Sweden
- Wallenberg Wood Science Center Linköping University SE‐60174 Norrköping Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics Department of Science and Technology Linköping University SE-60174 Norrköping Sweden
- Wallenberg Wood Science Center Linköping University SE‐60174 Norrköping Sweden
| |
Collapse
|
20
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
21
|
Modarresi M, Zozoulenko IV. Why does solvent treatment increase conductivity of PEDOT:PSS? Insight from molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:22073-22082. [DOI: 10.1039/d2cp02655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by...
Collapse
|
22
|
Eslamian M, Mirab F, Raghunathan VK, Majd S, Abidian MR. Organic Semiconductor Nanotubes for Electrochemical Devices. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105358. [PMID: 34924917 PMCID: PMC8673914 DOI: 10.1002/adfm.202105358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 05/20/2023]
Abstract
Electrochemical devices that transform electrical energy to mechanical energy through an electrochemical process have numerous applications ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics. To date, achievement of large deformation strains and fast response times remains a challenge for electrochemical actuator devices operating in liquid wherein drag forces restrict the actuator motion and electrode materials/structures limit the ion transportation and accumulation. We report results for electrochemical actuators, electrochemical mass transfers, and electrochemical dynamics made from organic semiconductors (OSNTs). Our OSNTs electrochemical device exhibits high actuation performance with fast ion transport and accumulation and tunable dynamics in liquid and gel-polymer electrolytes. This device demonstrates an excellent performance, including low power consumption/strain, a large deformation, fast response, and excellent actuation stability. This outstanding performance stems from enormous effective surface area of nanotubular structure that facilitates ion transport and accumulation resulting in high electroactivity and durability. We utilize experimental studies of motion and mass transport along with the theoretical analysis for a variable-mass system to establish the dynamics of the electrochemical device and to introduce a modified form of Euler-Bernoulli's deflection equation for the OSNTs. Ultimately, we demonstrate a state-of-the-art miniaturized device composed of multiple microactuators for potential biomedical application. This work provides new opportunities for next generation electrochemical devices that can be utilized in artificial muscles and biomedical devices.
Collapse
Affiliation(s)
- Mohammadjavad Eslamian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Fereshtehsadat Mirab
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| |
Collapse
|
23
|
Rossi S, Olsson O, Chen S, Shanker R, Banerjee D, Dahlin A, Jonsson MP. Dynamically Tuneable Reflective Structural Coloration with Electroactive Conducting Polymer Nanocavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105004. [PMID: 34626028 PMCID: PMC11469130 DOI: 10.1002/adma.202105004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Dynamic control of structural colors across the visible spectrum with high brightness has proven to be a difficult challenge. Here, this is addressed with a tuneable reflective nano-optical cavity that uses an electroactive conducting polymer (poly(thieno[3,4-b]thiophene)) as spacer layer. Electrochemical doping and dedoping of the polymer spacer layer provides reversible tuning of the cavity's structural color throughout the entire visible range and beyond. Furthermore, the cavity provides high peak reflectance that varies only slightly between the reduced and oxidized states of the polymer. The results indicate that the polymer undergoes large reversible thickness changes upon redox tuning, aided by changes in optical properties and low visible absorption. The electroactive cavity concept may find particular use in reflective displays, by opening for tuneable monopixels that eliminate limitations in brightness of traditional subpixel-based systems.
Collapse
Affiliation(s)
- Stefano Rossi
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Shangzhi Chen
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Ravi Shanker
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Debashree Banerjee
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Magnus P. Jonsson
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| |
Collapse
|
24
|
Szumska AA, Maria IP, Flagg LQ, Savva A, Surgailis J, Paulsen BD, Moia D, Chen X, Griggs S, Mefford JT, Rashid RB, Marks A, Inal S, Ginger DS, Giovannitti A, Nelson J. Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. J Am Chem Soc 2021; 143:14795-14805. [PMID: 34469688 PMCID: PMC8447255 DOI: 10.1021/jacs.1c06713] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Conjugated polymers
achieve redox activity in electrochemical devices
by combining redox-active, electronically conducting backbones with
ion-transporting side chains that can be tuned for different electrolytes.
In aqueous electrolytes, redox activity can be accomplished by attaching
hydrophilic side chains to the polymer backbone, which enables ionic
transport and allows volumetric charging of polymer electrodes. While
this approach has been beneficial for achieving fast electrochemical
charging in aqueous solutions, little is known about the relationship
between water uptake by the polymers during electrochemical charging
and the stability and redox potentials of the electrodes, particularly
for electron-transporting conjugated polymers. We find that excessive
water uptake during the electrochemical charging of polymer electrodes
harms the reversibility of electrochemical processes and results in
irreversible swelling of the polymer. We show that small changes of
the side chain composition can significantly increase the reversibility
of the redox behavior of the materials in aqueous electrolytes, improving
the capacity of the polymer by more than one order of magnitude. Finally,
we show that tuning the local environment of the redox-active polymer
by attaching hydrophilic side chains can help to reach high fractions
of the theoretical capacity for single-phase electrodes in aqueous
electrolytes. Our work shows the importance of chemical design strategies
for achieving high electrochemical stability for conjugated polymers
in aqueous electrolytes.
Collapse
Affiliation(s)
- Anna A Szumska
- Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Iuliana P Maria
- Department of Chemistry, Imperial College London, London, W12 0BZ, United Kingdom.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Lucas Q Flagg
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Achilleas Savva
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jokubas Surgailis
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Davide Moia
- Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Xingxing Chen
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sophie Griggs
- Department of Chemistry, Imperial College London, London, W12 0BZ, United Kingdom.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - J Tyler Mefford
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam Marks
- Department of Chemistry, Imperial College London, London, W12 0BZ, United Kingdom.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Sahika Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexander Giovannitti
- Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom.,Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Delavari N, Gladisch J, Petsagkourakis I, Liu X, Modarresi M, Fahlman M, Stavrinidou E, Linares M, Zozoulenko I. Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Delavari
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Johannes Gladisch
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Ioannis Petsagkourakis
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
26
|
Zokaei S, Kroon R, Gladisch J, Paulsen BD, Sohn W, Hofmann AI, Persson G, Stamm A, Syrén P, Olsson E, Rivnay J, Stavrinidou E, Lund A, Müller C. Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002778. [PMID: 33511014 PMCID: PMC7816697 DOI: 10.1002/advs.202002778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Indexed: 05/30/2023]
Abstract
Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Renee Kroon
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Johannes Gladisch
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Bryan D. Paulsen
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Wonil Sohn
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Anna I. Hofmann
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Gustav Persson
- Department of PhysicsChalmers University of TechnologyGöteborg41296Sweden
| | - Arne Stamm
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm11428Sweden
| | - Per‐Olof Syrén
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm11428Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholm11428Sweden
| | - Eva Olsson
- Department of PhysicsChalmers University of TechnologyGöteborg41296Sweden
- Wallenberg Wood Science CenterChalmers University of TechnologyGöteborg41296Sweden
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Eleni Stavrinidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Anja Lund
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
- Wallenberg Wood Science CenterChalmers University of TechnologyGöteborg41296Sweden
| |
Collapse
|
27
|
Sahalianov I, Hynynen J, Barlow S, Marder SR, Müller C, Zozoulenko I. UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. J Phys Chem B 2020; 124:11280-11293. [PMID: 33237790 PMCID: PMC7872427 DOI: 10.1021/acs.jpcb.0c08757] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Indexed: 11/28/2022]
Abstract
The UV-to-IR transitions in p-doped poly(3-hexylthiophene) (P3HT) with alkyl side chains and polar polythiophene with tetraethylene glycol side chains are studied experimentally by means of the absorption spectroscopy and computationally using density functional theory (DFT) and tight-binding DFT. The evolution of electronic structure is calculated as the doping level is varied, while the roles of dopant ions, chain twisting, and π-π stacking are also considered, each of these having the effect of broadening the absorption peaks while not significantly changing their positions. The calculated spectra are found to be in good agreement with experimental spectra obtained for the polymers doped with a molybdenum dithiolene complex. As in other DFT studies of doped conjugated polymers, the electronic structure and assignment of optical transitions that emerge are qualitatively different from those obtained through earlier "traditional" approaches. In particular, the two prominent bands seen for the p-doped materials are present for both polarons and bipolarons/polaron pairs. The lowest energy of these transitions is due to excitation from the valence band to a spin-resolved orbitals located in the gap between the bands. The higher-energy band is a superposition of excitation from the valence band to a spin-resolved orbitals in the gap and an excitation between bands.
Collapse
Affiliation(s)
- Ihor Sahalianov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Jonna Hynynen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Göteborg, Sweden
| | - Stephen Barlow
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Seth R. Marder
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Göteborg, Sweden
| | - Igor Zozoulenko
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
28
|
Ohayon D, Inal S. Organic Bioelectronics: From Functional Materials to Next-Generation Devices and Power Sources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001439. [PMID: 32691880 DOI: 10.1002/adma.202001439] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Moser M, Hidalgo TC, Surgailis J, Gladisch J, Ghosh S, Sheelamanthula R, Thiburce Q, Giovannitti A, Salleo A, Gasparini N, Wadsworth A, Zozoulenko I, Berggren M, Stavrinidou E, Inal S, McCulloch I. Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002748. [PMID: 32754923 DOI: 10.1002/adma.202002748] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Indexed: 05/23/2023]
Abstract
A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [μC* ] and current retentions up to 98% over 700 electrochemical switching cycles are developed.
Collapse
Affiliation(s)
- Maximilian Moser
- Department of Chemistry and Center for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Tania Cecilia Hidalgo
- Organic Bioelectronics Laboratory, Biological Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jokubas Surgailis
- Organic Bioelectronics Laboratory, Biological Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Johannes Gladisch
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Department of Science and Technology, Wallenberg Wood Science Center, Linköping University, Norrköping, SE-60174, Sweden
| | - Sarbani Ghosh
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicola Gasparini
- Department of Chemistry and Center for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Andrew Wadsworth
- Department of Chemistry and Center for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Department of Science and Technology, Wallenberg Wood Science Center, Linköping University, Norrköping, SE-60174, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Department of Science and Technology, Wallenberg Wood Science Center, Linköping University, Norrköping, SE-60174, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Department of Science and Technology, Wallenberg Wood Science Center, Linköping University, Norrköping, SE-60174, Sweden
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
30
|
Modarresi M, Mehandzhiyski A, Fahlman M, Tybrandt K, Zozoulenko I. Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|