1
|
Yang X, Zhao H, Wen Z, Bai Y, Meng Q, Sun H, Ding X, Jiang J, Huang D, Yu WW, Liu F. On-Off Switching of Singlet Self-Trapped Exciton Emission Endows Antimony-Doped Indium Halides with Excitation-Wavelength-Dependent Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407892. [PMID: 39487640 DOI: 10.1002/smll.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Excitation-wavelength-dependent (Ex-De) emitters are a fascinating category of luminescent materials whose emission properties vary with the wavelength of the light used for excitation. Antimony (Sb3+)-doped indium (In)-based metal halides are efficient light emitters; however, the peak fluorescence emission of most Sb3+-activated In-halide remains independent of the excitation wavelength. Here, the study introduces a new Sb3+-doped In-halide cluster, (BDPA)2InCl5:Sb (BDPA+ = C15H18N+, benzyldimethylphenylammonium), which demonstrates efficient Ex-De emission originating from the on-off switchable fluorescence behavior of singlet self-trapped exciton (STE) in 5-coordinate Sb3+ dopant. Interestingly, when excited within the range of 240-370 nm, photoluminescence (PL) spectra of (BDPA)2InCl5:Sb show both singlet and triplet STE emission. However, under excitation wavelengths of 370 to 420 nm, the singlet STE emission is absent, resulting in a noticeable correlated color temperature change from 1700 to 3800 K. The study provides a new approach to designing color-tunable Sb3+-based luminophores, and also presents a novel application scenario for the widely recognized Sb3+ doping strategy.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Hongyuan Zhao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ziying Wen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yunfei Bai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Qichao Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Haibo Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xihong Ding
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou, 233100, P. R. China
| | - Junke Jiang
- Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, Rennes Cedex, F-35000, France
| | - Dan Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education, Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, P. R. China
| | - Feng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
2
|
Zhu Y, Wang F, Wang J, Xu K, Qian Y. Insight into interfacial dynamics of photogenerated carriers in Cs 3Bi 2I 9/Au heterostructure nanocomposites for high-sensitivity broadband photodetection with negative photoconductivity. J Colloid Interface Sci 2024; 680:459-468. [PMID: 39522241 DOI: 10.1016/j.jcis.2024.10.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The negative photoconductivity (NPC) effect is becoming an increasingly significant factor in the development of next-generation optoelectronics. However, research in the field of NPC-dominated optoelectronics remains in its infancy and frequently encounters challenges related to fabrication complexity, slow photoresponse speed, instability, and a limited spectral response range. Herein, a Cs3Bi2I9/Au heterostructure nanocomposite was prepared via a simple self-assembly process utilizing electrostatic interactions with Au nanoparticles (NPs) and lead-free Cs3Bi2I9 nanoplates. The Cs3Bi2I9/Au nanocomposite-based photodetectors (PDs) demonstrate a broadband photoresponse (405-1550 nm), enhanced rise/fall times (27.2/40.0 µs), and reduced noise density (4.7 × 10-13 A/Hz1/2 at 1 Hz). In contrast to the positive photoconductivity (PPC) effect observed in colloidally synthesized Cs3Bi2I9 nanoplate-based PDs, the NPC can be attributed to the decrease in photocurrent under light illumination during the processes of recombination and trapping of photogenerated carriers induced by the incorporation of Au NPs. These findings are expected to provide valuable insights into achieving high-performance NPC-dominated PDs by regulating the dynamics of photogenerated carriers in perovskite heterostructures.
Collapse
Affiliation(s)
- Yating Zhu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Fan Wang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jiayin Wang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Kaijia Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Yinyin Qian
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
3
|
Liu Y, Yun R, Yang H, Sun W, Li Y, Lu H, Zhang L, Li X. Lattice doping of lanthanide ions in Cs 2ZrCl 6 nanocrystals enabling phase transition and tunable photoluminescence. MATERIALS HORIZONS 2024; 11:5341-5351. [PMID: 39143916 DOI: 10.1039/d4mh00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dopants can endow lead-free perovskite nanocrystals with novel photoelectric properties. However, understanding the effect of dopants on the structure and energy transfer of lead-free perovskite nanocrystals remains limited. In this work, we synthesize zero-dimensional Cs2ZrCl6 nanocrystals with a blue light quantum yield of up to 75.6% by an improved hot-injection method. And we introduce trace amounts of lanthanide ions (Ln3+) (<∼8%) in the lattice of nanocrystals and establish an effective energy transfer channel from self-trapped excitons (STEs) to various Ln3+ ions (Tb3+, Eu3+, Dy3+, Sm3+, and Pr3+), which can achieve tunable photoluminescence between red, green and blue. Interestingly, with increasing Ln3+ concentrations (>∼10%), the phase transition from the cubic phase Cs2ZrCl6:Ln3+ to the monoclinic phase Cs3LnCl6:Zr4+ occurred, while Zr4+ ions began to act as dopants. And a new energy transfer channel from dopant [ZrCl6]2- to host Ln3+ ions was established in the Cs3LnCl6 host accompanied by enhanced broadband photoluminescence excitation (PLE) and photoluminescence (PL). In particular, the photoluminescence quantum yield (PLQY) of Tb3+ ions increases from 0.77% to 54% upon the phase transition (under 276 nm excitation). Our study provides new insights into the effects of dopants on the structure of perovskite nanocrystals and is beneficial to the design of a variety of light-emitting materials for optoelectronic applications.
Collapse
Affiliation(s)
- Yachong Liu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| | - Huanxin Yang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| | - Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| | - Yue Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China.
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
- State Key Laboratory of Photovoltaic Materials and Cells, Tianjin 300350, China
| |
Collapse
|
4
|
Tang W, Liu S, Zhang G, Ren Z, Liu Z, Zhang M, Zhang SY, Zou C, Zhao B, Di D. Lead-Free Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411020. [PMID: 39449210 DOI: 10.1002/adma.202411020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Metal halide perovskites have been identified as a promising class of materials for light-emitting applications. The development of lead-based perovskite light-emitting diodes (PeLEDs) has led to substantial improvements, with external quantum efficiencies (EQEs) now surpassing 30% and operational lifetimes comparable to those of organic LEDs (OLEDs). However, the concern over the potential toxicity of lead has motivated a search for alternative materials that are both eco-friendly and possess excellent optoelectronic properties, with lead-free perovskites emerging as a strong contender. In this review, the properties of various lead-free perovskite emitters are analyzed, with a particular emphasis on the more well-reported tin-based variants. Recent progress in enhancing device efficiencies through refined crystallization processes and the optimization of device configurations is also discussed. Additionally, the remaining challenges are examined, and propose strategies that may lead to stable device operation. Looking forward, the potential future developments for lead-free PeLEDs are considered, including the extension of spectral range, the adoption of more eco-friendly deposition techniques, and the exploration of alternative materials.
Collapse
Affiliation(s)
- Weidong Tang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Shengnan Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Gan Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Zhixiang Ren
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Zhe Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Shi-Yuan Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ben Messaoud E, Abid D, Elleuch S, Oueslati A, Guionneau P, Pechev S, Daro N, Elaoud Z. A 0D Ge(II)-Halide-Based Perovskite with Enhanced Semiconducting Behavior for Electronic Capacitors. ACS OMEGA 2024; 9:42868-42882. [PMID: 39464455 PMCID: PMC11500373 DOI: 10.1021/acsomega.4c05255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Perovskite materials have surged to the forefront of materials science, captivating researchers worldwide with their distinctive crystal lattice arrangement and remarkable optical, electric and dielectric attributes. The current study focuses on the development of a novel zero-dimensional (0D) Ge(II)-based hybrid perovskite, formulated as NH3(CH2)2NH3GeF6, and synthesized through a gradual evaporation process conducted at room temperature. The crystal structure is characterized by an arrangement of organic cations and isolated octahedral [GeF6]2- groups. This configuration is stabilized by relatively weak intermolecular bonds. A comprehensive analysis of the material's thermal properties using differential scanning calorimetry (DSC) revealed a distinct phase transition occurring at approximately 323 K, which was further confirmed through electrical measurements. The studied compound provided a broad absorption range across the visible spectrum and an optical band gap of 3.30 eV, indicating its potential for semiconducting applications in optoelectronic devices. Photoluminescence PL analysis displays a blueish broad-band emission with a high color rendering index CRI value of 91, when excited at 325 nm. This emission primarily originates from the self-trapped excitons (STEs) recombination in the inorganic [GeF6]2-. Herein, the temperature-dependent behavior of grain conductivity exhibited an Arrhenius-type pattern, with an activation energy (E a) of 0.46 eV, confirming the semiconductor nature of the investigated compound. In addition, a deep investigation of the alternating current conductivity, analyzed using Jonscher's law, demonstrates that the conduction mechanism is effectively described by the correlated barrier hopping (CBH) model. The dielectric performances show a significant dielectric constant (ε' ∼ 103). Thus, all these interesting physical properties of this hybrid perovskite have paved the way for advancements in various technological applications, particularly in the field of electronic capacitors.
Collapse
Affiliation(s)
- Emna Ben Messaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Dhouha Abid
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| | - Slim Elleuch
- Laboratory
of Applied Physics, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Abderrazek Oueslati
- Laboratory
of Spectroscopic Characterization and Optical Materials, Faculty of
Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Philippe Guionneau
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Stanislav Pechev
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Nathalie Daro
- Univ.
Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Zakaria Elaoud
- Laboratory
Physical-Chemistry of Solid-State, Faculty of Sciences, University of Sfax, BP 1171, route soukra, 3000 Sfax, Tunisia
| |
Collapse
|
6
|
Ren Q, Zhou G, Mao Y, Zhang N, Zhang J, Zhang XM. Optical activity levels of metal centers controlling multi-mode emissions in low-dimensional hybrid metal halides for anti-counterfeiting and information encryption. Chem Sci 2024:d4sc05041j. [PMID: 39323518 PMCID: PMC11417954 DOI: 10.1039/d4sc05041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
In-depth insight into the electronic competition principles between inorganic units and organic ligands proves to be extremely challenging for controlling multi-mode emissions in low-dimensional hybrid metal halides (LHMHs). Herein, an efficient blue emission from organic ligand was engineered in (DppyH)2MCl4 (Dppy = diphenyl-2-pyridylphosphine, M = Zn2+, Cd2+) due to the reverse type I band alignment constructed by optically inert units with nd10 shell electrons. By contrast, the optically active [MnCl4]2- with semi-fully filled 3d5 shell electrons prompts the band alignment of type II, resulting in the narrowband green emission of Mn2+, along with an energy transfer from DppyH+ to [MnCl4]2-. Beyond that, the band alignment of (DppyH)SbCl4 is further reversed to type I due to the strong stereochemical activity of 5s2 lone-pair electrons, resulting in the triplet-state (3P1 → 1S0) self-trapped exciton (STE) emission of [SbCl4]-. The conclusion is that the electronic configurations of metal centers govern the optical activity levels of inorganic units, which in turn controls the multi-mode emissions by maneuvering the band alignments. This research provides an enlightening perspective on the multi-mode emissions with tunable photoluminescence and resulting electronic transitions of LHMHs, whose derived emitters can be employed in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan Shanxi 030024 P. R. China
| |
Collapse
|
7
|
Fan J, Han C, Yang G, Song B, Xu R, Xiang C, Zhang T, Qian L. Recent Progress of Quantum Dots Light-Emitting Diodes: Materials, Device Structures, and Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312948. [PMID: 38813832 DOI: 10.1002/adma.202312948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Colloidal quantum dots (QDs), as a class of 0D semiconductor materials, have generated widespread interest due to their adjustable band gap, exceptional color purity, near-unity quantum yield, and solution-processability. With decades of dedicated research, the potential applications of quantum dots have garnered significant recognition in both the academic and industrial communities. Furthermore, the related quantum dot light-emitting diodes (QLEDs) stand out as one of the most promising contenders for the next-generation display technologies. Although QD-based color conversion films are applied to improve the color gamut of existing display technologies, the broader application of QLED devices remains in its nascent stages, facing many challenges on the path to commercialization. This review encapsulates the historical discovery and subsequent research advancements in QD materials and their synthesis methods. Additionally, the working mechanisms and architectural design of QLED prototype devices are discussed. Furthermore, the review surveys the latest advancements of QLED devices within the display industry. The narrative concludes with an examination of the challenges and perspectives of QLED technology in the foreseeable future.
Collapse
Affiliation(s)
- Junpeng Fan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| | - Changfeng Han
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| | - Guojian Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| | - Bin Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Department of Materials Science and Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Rui Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Chaoyu Xiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| | - Ting Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| | - Lei Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315000, P. R. China
| |
Collapse
|
8
|
Sanchez-Diaz J, Rodriguez-Pereira J, Das Adhikari S, Mora-Seró I. Synthesis of Hybrid Tin-Based Perovskite Microcrystals for LED Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403835. [PMID: 38973344 PMCID: PMC11425840 DOI: 10.1002/advs.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Considerable focus on tin-based perovskites lies on substitution to leadhalide perovskites for the fabrication of eco-friendly optoelectronic devices. The major concern related to tin-based perovskite devices are mainly the stability and the efficiency. However, thinking on the final commercialization scope, other considerations such as precursor stability and cost are major factors to carry about. In this regard, this work presents a robust and facile synthesis of 2D A2SnX4 (A = 4-fluorophenethylammonium(4-FPEA); X = I, Br, I/Br) and 3D FASnI3 perovskite microcrystals following a developed synthesis strategy with low-cost starting materials. In this developed methodology, acetic acid is used as a solvent, which helps to protect from water by making a hydrophobic network over the perovskite surface, and hence provides sufficient ambient and long-term inert atmosphere stability of the microcrystals. Further, the microcrystals are recrystallized in thin films for LED application, allowing the fabrication of orange, near-infrared and purered emitting LEDs. The two-step recrystallized devices show better performance and stability in comparison to the reference devices made by using commercial precursors. Importantly, the developed synthesis methodology is defined as a generic method for the preparation of varieties of hybrid tin-based perovskites microcrystals and application in optoelectronic devices.
Collapse
Affiliation(s)
- Jesus Sanchez-Diaz
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Samrat Das Adhikari
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I. Av. de Vicent Sos Baynat, Castellón de la Plana, 12006, Spain
| |
Collapse
|
9
|
Beegum KAB, Sasi S, Thomas C, Mathew A, Raman R. Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr 3) by a Two-stage Deposition Technique. J Fluoresc 2024; 34:2325-2333. [PMID: 37768464 DOI: 10.1007/s10895-023-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bluish-white light-emitting materials are commonly used in LED lighting because they produce natural-looking light. Here we report the photoluminescent emission (PL) of novel, two-dimensional lead-free CsTiBr3 perovskite prepared via a two-stage deposition process. The formation of two-dimensional nanosheets of CsTiBr3 perovskite is confirmed by XRD, EDAX, and FESEM analysis. The height of the cesium bromide thin film substrate from the titanium bromide vapor source plays an important role in the formation of two-dimensional CsTiBr3. The CsTiBr3 perovskite nanosheets exhibit unique exciton- luminescence at 440 nm and self-trapped exciton emission at 595 nm which are the characteristics of two-dimensional halide structure, along with the band-to-band emission at 400 nm at an excitation wavelength of 340 nm. The resulting bluish-white light PL emission makes two-dimensional CsTiBr3 perovskite an alternative material to the traditional lead-based perovskite in LEDs, display technology, solid-state lighting, and various optoelectronic devices, addressing environmental concerns.
Collapse
Affiliation(s)
- K A Benazeera Beegum
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Saranya Sasi
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Christeena Thomas
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Alex Mathew
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India
| | - Reshmi Raman
- Optoelectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, 683102, Kerala, India.
| |
Collapse
|
10
|
Paul T, Sahoo A, Maiti S, Mandal S, Bhattacharjee S, Maity A, Chattopadhyay KK. Observation of piezoelectricity in a lead-free Cs 2AgBiBr 6 perovskite: a new entrant in the energy harvesting arena. NANOSCALE 2024; 16:16127-16139. [PMID: 39101964 DOI: 10.1039/d4nr01230e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Halide perovskite materials have recently been recognised as powerful ferroelectric and piezoelectric materials with applications in the energy harvesting arena, but their experimental proof is very limited. We achieved strong intrinsic piezoelectricity in the lead-free inorganic double perovskite Cs2AgBiBr6 at room temperature and utilized it for mechanical energy harvesting, with a piezoelectric co-efficient (d33) of 12.7 pC N-1. Hysteresis loop and structural analyses offered further validation for the substantial ferroelectric features of the as-synthesised double perovskite. Density functional theory (DFT) calculations revealed the presence of anharmonic phonon soft modes in tetragonal Cs2AgBiBr6 due to dynamic instability, which resulted in piezoelectricity. Under an optimal pressure of ≈25 kPa, a Cs2AgBiBr6 thin film-based piezoelectric nanogenerator device delivered instantaneous output values of ≈45 V and ≈200 nA. The strain-sensitive responses of the device were also exemplified to identify specific body motions from the detected instantaneous output values. The energy obtained from the device is shown to be effective for capacitor charging and commercial light-emitting diode (LED) lighting. Our study provides significant insights into the dielectric behaviour of materials as well as piezo- and ferroelectric behaviours, which are crucial for the development of modern electronic and energy harvesting devices.
Collapse
Affiliation(s)
- Tufan Paul
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Aditi Sahoo
- CSIR-Central Glass and Ceramic Research Institute, Kolkata-700032, India
| | - Soumen Maiti
- St Thomas College of Engineering & Technology, Kolkata, 700023, India
| | - Suvankar Mandal
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | | | - Avisek Maity
- S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Kalyan Kumar Chattopadhyay
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
11
|
Xu B, Li Y, Hong P, Zhang P, Han J, Xiao Z, Quan Z. Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides. Nat Commun 2024; 15:7403. [PMID: 39191775 DOI: 10.1038/s41467-024-51836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Hybrid metal halides represent a novel type of semiconductor light emitters with intriguing excitonic emission properties, including free exciton emission and self-trapped exciton emission. Achieving precise control over these two excitonic emissions in hybrid metal halides is highly desired yet remains challenging. Here, the complete transformation from intrinsically broadband self-trapped exciton emission to distinctively sharp free exciton emission in a quasi-one-dimensional hybrid metal halide (C2H10N2)8[Pb4Br18]·6Br with a ribbon width of n = 4, is successfully achieved based on high-pressure method. During compression, pressure-induced phonon hardening continuously reduces exciton-phonon coupling, therefore suppressing excitonic localization and quenching the original self-trapped exciton emission. Notably, further compression triggers excitonic delocalization to induce intense free exciton emission, accompanied with reduced carrier effective masses and improved charge distribution. Controlled high-pressure investigations indicate that the ribbon width of n > 2 is necessary to realize excitonic delocalization and generate free exciton emissions in similar quasi-one-dimensional hybrid metal halides. This work presents an important photophysical process of excitonic transitions from self-trapped exciton emission to free exciton emission in quasi-one-dimensional hybrid metal halides without chemical regulation, promoting the rational synthesis of hybrid metal halides with desired excitonic emissions.
Collapse
Affiliation(s)
- Bin Xu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yawen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peibin Hong
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peijie Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jiang Han
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Pramanik M, Bera A, Karmakar S, Sinha P, Singha A, Das K. High-Performance Broadband Self-Driven Photodetector Based on MoS 2/Cs 2CuBr 4 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38260-38268. [PMID: 39004815 DOI: 10.1021/acsami.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Few-layer transition metal dichalcogenides and perovskites are both promising materials in high-performance optoelectronic devices. Here, we developed a self-driven photodetector by creating a heterojunction between few-layer MoS2 and lead-free perovskite Cs2CuBr4. The detector shows a unique property of very high sensitivity in a broad spectral range of 400 to 800 nm with response speed in a millisecond order. Current-voltage characteristics of the heterojunction device show rectifying behavior, in contrast to the ohmic behavior of the MoS2-based device. The rectifying behavior is attributed to the type II band alignment of the MoS2/Cs2CuBr4 heterojunction. The device shows a broadband (400 to 800 nm) photodetection with very high responsivity reaching up to 2.8 × 104 A/W and detectivity of 1.6 × 1011 Jones at a bias voltage of 3 V. The detector can also operate in self-bias mode with sufficient response. The photocurrent, photoresponsivity, detectivity, and external quantum efficiency of the device are found to be dependent on the illumination power density. The response time of the device is found to be ∼32 and ∼79 ms during the rise and fall of the photocurrent. The work proposes a MoS2/Cs2CuBr4 heterostructure to be a promising candidate for cost-effective, high-performance photodetector.
Collapse
Affiliation(s)
- Mousumi Pramanik
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Anupam Bera
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sreya Karmakar
- Department of Basic Science and Humanities, Calcutta Institute of Engineering and Management, Kolkata 700040, India
| | - Pritam Sinha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Achintya Singha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Kaustuv Das
- Department of Physics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Tang Y, Pu G, Tang Y, Sun T, Wang M, Wang J. Recent Advances in Fast-Decaying Metal Halide Perovskites Scintillators. J Phys Chem Lett 2024; 15:7036-7044. [PMID: 38949737 DOI: 10.1021/acs.jpclett.4c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fast-decaying scintillators show subnanoseconds or nanoseconds lifetime and high time resolution, making them important in nuclear physics, medical diagnostics, scientific research, and other fields. Metal halide perovskites (MHPs) show great potential for scintillator applications owing to their easy synthesis procedure and attractive optical properties. However, MHPs scintillators still need further improvement in decay lifetime. To optimize the decay lifetime, great progress has been achieved recently. In this Perspective, we first summarize the structural characteristics of MHPs in various dimensions, which brings different exciton behaviors. Then, recent advances in designing fast-decaying MHPs according to different exciton behaviors have been concluded, focusing on the photophysical mechanisms to achieve fast-decaying lifetimes. These advancements in decay lifetimes could facilitate the MHPs scintillators in advanced applications, such as time-of-flight positron emission tomography (TOF-PET), photon-counting computed tomography (PCCT), etc. Finally, the challenges and future opportunities are discussed to provide a roadmap for designing novel fast-decaying MHPs scintillators.
Collapse
Affiliation(s)
- Yangmin Tang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqiang Pu
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongming Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Qin JP, Hu CA, Lin CQ, Pan CY. Lead-free Perovskite with Distorted [InX 6] 3- Octahedron Induced by Organic Cation and Enhanced PLQY by Sb Doping. Inorg Chem 2024; 63:8764-8774. [PMID: 38686432 DOI: 10.1021/acs.inorgchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In-based halide perovskites have attracted a lot of attention because of their unique broadband emission properties. Herein, a series of In-based hybrid perovskites of (H2MP)2InCl7·H2O (1), (H2EP)2InCl7·H2O (2), (H2MP)2InBr7·H2O (3), and (H2EP)2InBr7·H2O (4) were synthesized under the control of halogen ions and organic cations. 1, 2, and 4 exhibit obvious photoluminescence properties with peaks at 392, 442, and 652 nm, respectively. The effects of the different components on the crystal structure and photoluminescence properties are discussed by calculating the structural distortion of the [InX6]3- octahedron. The photoluminescence properties of 1 and 4 were significantly improved after Sb3+ doping with PLQY values of 57.12 and 41.53%. Finally, a white LED was successfully fabricated with the two doped compounds coated onto the 365 nm blue LED chip.
Collapse
Affiliation(s)
- Jian-Peng Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Cheng-An Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chang-Qing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| | - Chun-Yang Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Ghuangzhou 510006, China
| |
Collapse
|
15
|
Yu S, Peng H, Wei Q, Li T, Huang W, He X, Du Z, Zhao J, Zou B. Realizing efficient broadband near-infrared emission and multimode photoluminescence switching via coordination structure modulation in Sb 3+-doped 0D organic metal chlorides. MATERIALS HORIZONS 2024; 11:2230-2241. [PMID: 38421281 DOI: 10.1039/d3mh01962d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Recently, organic Sb(III)-based metal halides have achieved significant results in the visible light region due to their efficient emission. However, realizing efficient broadband near-infrared (NIR) emission in such materials is a great challenge. Herein, we developed three different NIR emitters via a coordination structure modulation strategy in Sb3+-doped zero-dimensional organic metal chlorides of (C20H20P)2MnCl4, (C20H20P)2ZnCl4, and (C20H20P)2CdCl4 with tetrahedral structure. More specifically, after the dopant Sb3+ is inserted into the host lattice, the coordination structures of Sb3+ ions can change from [SbCl5]2- square-pyramidal configuration to [SbCl4]- clusters, which will bring a larger lattice distortion degree to the excited state compared to the ground state, resulting in a larger Stokes shift. Thus, efficient NIR emission with near-unity photoluminescence quantum yield (PLQY) can be obtained in Sb3+-doped compounds under 365 nm excitation. Moreover, Sb3+-doped NIR emitters also show remarkable stabilities, which prompts us to fabricate NIR phosphor conversion light-emitting diodes (pc-LEDs) and demonstrate their application in night vision. More interestingly, the Sb3+-doped (C20H20P)2MnCl4 shows tunable emission characteristics, which can be tuned from green to greenish-yellow, orange, red, and NIR emission under different external stimuli, and thus we can demonstrate the applications of this compound in quintuple-mode fluorescence anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Shuiyue Yu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Hui Peng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tongzhou Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Weiguo Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Xuefei He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Zhentao Du
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Jialong Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
16
|
Sheng Y, Chen P, Gao Y, He Y, Li J, Muhammad, Xie X, Cheng C, Yang J, Chang Y, Tong G, Jiang Y. Tuneable Efficient White Emission of Sb 3+/Mn 2+ Co-Doped Lead-Free Perovskites for Single-Component White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19175-19183. [PMID: 38573052 DOI: 10.1021/acsami.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ping Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanpeng Gao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong He
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Muhammad
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xie
- Jianghuai Advance Technology Center, Hefei 230000, People's Republic of China
| | - Chen Cheng
- School of Microelectronics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jingting Yang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajing Chang
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, People's Republic of China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Zhang K, Fan W, Yao T, Wang S, Yang Z, Yao J, Xu L, Song J. Polymer-Surface-Mediated Mechanochemical Reaction for Rapid and Scalable Manufacture of Perovskite QD Phosphors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310521. [PMID: 38211956 DOI: 10.1002/adma.202310521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Perovskite quantum dots (QDs) have been considered new-generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer-surface-mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high-speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra-high rotating speed (>15 000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface-rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation-induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material- (100% yield), time- (1 kg min-1), and effort- (solvent-free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb-free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs.
Collapse
Affiliation(s)
- Kaishuai Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Wenxuan Fan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Tianliang Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| |
Collapse
|
18
|
Elattar A, Duclos C, Bellevu F, Dickens T, Okoli O. Synthesis of different organic ammonium-based bismuth iodide perovskites for photodetection application. RSC Adv 2024; 14:10113-10119. [PMID: 38533102 PMCID: PMC10964312 DOI: 10.1039/d4ra00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Bismuth-based perovskites are promising candidates for highly stable halide perovskites with low toxicity. Here, we report the synthesis of a series of bismuth iodide-based perovskites with different primary, secondary, and tertiary ammonium cations and study their structural, thermal, and optical properties, and the likelihood of photodetection. Interestingly, the variation of A-site organic ammonium cations, with different interlayer spacings between adjacent bismuth iodide monolayers, has exotic effects on the diffraction patterns and morphological structures of the perovskite crystals. Thermogravimetric analysis reveals the highest thermal stability of tertiary ammonium-based bismuth perovskite with a decomposition temperature of 385 °C. The branched primary ammonium-based photodetector has photo-responsivity roughly two and four times faster than that of secondary and tertiary ammonium-based devices, respectively. These findings provide insight into the importance of A-site cation engineering for structural modulation and tailoring the optoelectronic properties of bismuth-based perovskites for emerging optoelectronic devices.
Collapse
Affiliation(s)
- Amr Elattar
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| | - Cassie Duclos
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| | - Franchesca Bellevu
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| | - Tarik Dickens
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
| | - Okenwa Okoli
- Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee Florida 32310 USA
- Herff College of Engineering, University of Memphis Memphis TN 38111 USA
| |
Collapse
|
19
|
Dastidar RG, Okamoto T, Takahashi K, Takano Y, Vijayakumar C, Subrahmanyam C, Biju V. Dual-color photoluminescence modulation of zero-dimensional hybrid copper halide microcrystals. NANOSCALE 2024; 16:5107-5114. [PMID: 38227491 DOI: 10.1039/d3nr05503e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Zero-dimensional hybrid copper(I) halides (HCHs) are attractive due to their interesting photoluminescence (PL) properties and the high abundance and low toxicity of copper. In this study, we report green-red dual emission from rhombic 1-butyl-1-methyl piperidinium copper bromide [(Bmpip)2Cu2Br4] microcrystals (MCs) prepared on borosilicate glass. The structure and elemental composition of the MCs are characterized by single crystal X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Interestingly, MCs prepared on an ITO-coated glass plate show an intense green emission compared to the dual emission on a bare glass or plastic substrate. Furthermore, the intensity of the green emission from the MC is enormously increased by powdering using a conductive material, suggesting the deactivation of the red-emitting state by a charge transfer interaction with the conductor. These findings open a new strategy to suppress the self-trapping of excitons by longitudinal optical phonons and control the dual emitting states in HCHs.
Collapse
Affiliation(s)
- Rahul Ghosh Dastidar
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020 Japan
| | - Kiyonori Takahashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020 Japan
| | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020 Japan
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020 Japan
- Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
20
|
Lv JN, Zhang J, Liu YM, Zhang SY, Deng XY, Xu M, Lei XW, Chen ZW, Yue CY. Zero-dimensional hybrid tin halides with stable broadband light emissions. Dalton Trans 2024; 53:4698-4704. [PMID: 38362640 DOI: 10.1039/d3dt03937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Considering the instability and toxicity of 3D Pb-based perovskite nanocrystals, lead-free low-dimensional organic-inorganic hybrid metal halides have attracted widespread attention as potential substitutes. Herein, two new tin-based 0D halides [H4BAPP]SnBr5·Br and [H4BAPP]SnCl5·Cl·H2O (BAPP = 1,4-bis(3-aminopropyl)piperazine) were synthesized successfully based on [SnX5]3- as an emission center. Typically, [H4BAPP]SnBr5·Br and [H4BAPP]SnCl5·Cl·H2O display broadband yellow and yellow-green light emissions originating from the radiative recombination of self-trapped excitons (STEs). The photoluminescence quantum yields (PLQYs) of the two compounds were calculated to be 19.27% and 2.36%, respectively. Furthermore, the excellent chemical and thermal stability and broadband light emissions reveal their potential application in solid-state white lighting diodes.
Collapse
Affiliation(s)
- Jing-Ning Lv
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yu-Meng Liu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Shao-Ya Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xiang-Yuan Deng
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Man Xu
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Zhi-Wei Chen
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong 273155, P. R. China.
| |
Collapse
|
21
|
Sun X, Liu S, Zhou D, Ding N, Wang T, Wang Y, Wang Y, Li W, Song H. Chlorophyl-Passivated Ytterbium-Doped Perovskite Quantum-Cutting Film for High-Performance Solar Energy Conversion and Near-Infrared Light-Emitting Diode Applications. J Phys Chem Lett 2024:2665-2674. [PMID: 38426818 DOI: 10.1021/acs.jpclett.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The quantum cutting ytterbium (Yb3+)-doped CsPbX3 (X = Cl, Cl, or Br) nanocrystals, exhibiting photoluminescence quantum yields (PLQYs) exceeding 100%, hold significant promise for applications in solar energy conversion technologies and near-infrared (NIR) light-emitting diodes (LEDs). This work investigates the usage of chlorophyll (CHL), a naturally existing organic pigment, as an efficient molecular passivator to improve the performance of quantum cutting films. With the assistance of CHL, the resultant perovskite film displays an increased PLQY of 176%. The commercial silicon solar cells (SSCs) with CHL-treated perovskite films demonstrate a remarkable photon-to-current conversion efficiency improvement of 1.83% for a 330.15 cm2 area SSC device. Additionally, a CHL-modified Yb3+:CsPbCl3 film was used to create 988 nm NIR LEDs with an external quantum efficiency of 3.2%. This work provides a new, eco-friendly approach for producing high-quality, large-area Yb3+-doped perovskite film for deployment in photoelectric and night vision applications.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shuainan Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Nan Ding
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Tianyuan Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuqi Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
22
|
Fausia K, Nharangatt B, Vinayakan RN, Ramesh AR, Santhi V, Dhandapani KR, Manoj TP, Chatanathodi R, Jose D, Sandeep K. Probing the Structural Degradation of CsPbBr 3 Perovskite Nanocrystals in the Presence of H 2O and H 2S: How Weak Interactions and HSAB Matter. ACS OMEGA 2024; 9:8417-8424. [PMID: 38405449 PMCID: PMC10882691 DOI: 10.1021/acsomega.3c09600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Structural degradation of all inorganic CsPbBr3 in the presence of moisture is considered as one of its major limitations to use as an active component in various light-harvesting and light-emitting devices. Herein, we used two similar molecules, H2O and H2S, with similar structures, to follow the decomposition mechanism of CsPbBr3 perovskite nanocrystals. Interestingly, H2O acts as a catalyst for the decomposition of CsPbBr3, which is in contrast to H2S. Our experimental observations followed by density functional theory (DFT) calculations showed that the water molecule is intercalated in the CsPbBr3 perovskite whereas H2S is adsorbed in the (100) planes of CsPbBr3 by a weak electrostatic interaction. According to Pearson's hard-soft acid-base theory, both cations present in CsPbBr3 prefer soft/intermediate bases. In the case of the water molecule, it lacks a soft base and thus it is not directly involved in the reaction whereas H2S can provide a soft base and thus it gets involved in the reaction. Understanding the mechanistic aspects of decomposition can give different methodologies for preventing such unwanted reactions.
Collapse
Affiliation(s)
- Karayadi
H. Fausia
- Government
Victoria College, Research Center under
University of Calicut, Palakkad 678001, India
| | - Bijoy Nharangatt
- Department
of Physics, National Institute of Technology, Calicut, Kerala 673601, India
| | | | - Analiparambil R. Ramesh
- Government
Victoria College, Research Center under
University of Calicut, Palakkad 678001, India
| | - Vijayan Santhi
- Government
Victoria College, Research Center under
University of Calicut, Palakkad 678001, India
| | - Kuppathil R. Dhandapani
- Government
Victoria College, Research Center under
University of Calicut, Palakkad 678001, India
| | | | - Raghu Chatanathodi
- Department
of Physics, National Institute of Technology, Calicut, Kerala 673601, India
| | - Deepthi Jose
- Department
of Chemistry, Providence Women’s
College, Calicut 673009, India
| | - Kulangara Sandeep
- Government
Victoria College, Research Center under
University of Calicut, Palakkad 678001, India
| |
Collapse
|
23
|
Ou K, Wang Y, Zhang W, Tang Y, Ni Y, Xia Y, Wang H. Highly Sensitive H 2S Gas Sensor Based on a Lead-Free CsCu 2I 3 Perovskite Film at Room Temperature. ACS OMEGA 2023; 8:48326-48335. [PMID: 38144075 PMCID: PMC10733916 DOI: 10.1021/acsomega.3c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Recently, there have been reports of lead halide perovskite-based sensors demonstrating their potential for gas sensing applications. However, the toxicity of lead and the instability of lead-based perovskites have limited their applications. This study addressed this issue by developing a H2S gas sensor based on a lead-free CsCu2I3 film prepared using a one-step CVD method. The sensor demonstrated excellent sensing properties, including a high response and selectivity toward H2S, even at low concentrations (0.2 ppm) at room temperature. Furthermore, a reasonable sensing mechanism was proposed. It is suggested that the sensing mechanism sheds light on the role of defects in perovskite materials, the impact of H2S as an electron donor, and the occurrence of reversible chemical reactions. These findings suggest that lead-free CsCu2I3 has great potential in the field of H2S gas sensing.
Collapse
Affiliation(s)
- Kai Ou
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yue Wang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wenting Zhang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongliang Tang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuxiang Ni
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yudong Xia
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hongyan Wang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
24
|
Bai W, Liang M, Xuan T, Gong T, Bian L, Li H, Xie RJ. Ligand Engineering Enables Efficient Pure Red Tin-Based Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202312728. [PMID: 37888877 DOI: 10.1002/anie.202312728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+ , leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2 SnI4 ) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2 SnI4 -based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2 SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2 SnI4 -based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs.
Collapse
Affiliation(s)
- Wenhao Bai
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Mingming Liang
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| | - Ting Gong
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Liang Bian
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Sichuan, 621010, P. R. China
| | - Huili Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
25
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Li S, Lin H, Chu C, Martin C, MacSwain W, Meulenberg RW, Franck JM, Chakraborty A, Zheng W. Interfacial B-Site Ion Diffusion in All-Inorganic Core/Shell Perovskite Nanocrystals. ACS NANO 2023; 17:22467-22477. [PMID: 37962602 PMCID: PMC10690799 DOI: 10.1021/acsnano.3c05876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
All-inorganic metal halide perovskites (ABX3, X = Cl, Br, or I) show great potential for the fabrication of optoelectronic devices, but the toxicity and instability of lead-based perovskites limit their applications. Shell passivation with a more stable lead-free perovskite is a promising strategy to isolate unstable components from the environment as well as a feasible way to tune the optical properties. However, it is challenging to grow core/shell perovskite nanocrystals (NCs) due to the soft ionic nature of the perovskite lattice. In this work, we developed a facile method to grow a lead-free CsMnCl3 shell on the surface of CsPbCl3 NCs to form CsPbCl3/CsMnCl3 core/shell NCs with enhanced environmental stability and improved photoluminescence (PL) quantum yields (QYs). More importantly, the resulting core/shell perovskite NCs have color-tunable PL due to B-site ion diffusion at the interface of the core/shell NCs. Specifically, B-site Mn diffusion from the CsMnCl3 shell to the CsPbCl3 core leads to a Mn-doped CsPbCl3 core (i.e., Mn:CsPbCl3), which can turn on the Mn PL at around 600 nm. The ratio of Mn PL and host CsPbCl3 PL is highly tunable as a function of the thermal annealing time of the CsPbCl3/CsMnCl3 core/shell NCs. While the halide anion exchange for all-inorganic metal halide perovskites has been well-developed for band-gap-engineered materials, interfacial B-site diffusion in core/shell perovskite NCs is a promising approach for both tunable optical properties and enhanced environmental stability.
Collapse
Affiliation(s)
- Shuya Li
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Hanjie Lin
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Chun Chu
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Chandler Martin
- Department
of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Walker MacSwain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Robert W. Meulenberg
- Department
of Physics and Astronomy and Frontier Institute for Research in Sensor
Technologies, University of Maine, Orono, Maine 04469, United States
| | - John M. Franck
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Weiwei Zheng
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
27
|
Saha A, Yadav R, Aldakov D, Reiss P. Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission. Angew Chem Int Ed Engl 2023; 62:e202311317. [PMID: 37735098 DOI: 10.1002/anie.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2 S3 ) and their core/shell heterostructures Ga2 S3 /ZnS as well as Ga2 S3 /ZnS/Al2 O3 . The photoluminescence (PL) properties of core Ga2 S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2 S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.
Collapse
Affiliation(s)
- Avijit Saha
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Ranjana Yadav
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Dmitry Aldakov
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Peter Reiss
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
28
|
Wang S, Liu R, Li J, Sun F, Yang Q, Li S, Liu J, Chen J, Cheng P. Achieving Highly Efficient Warm-White Light Emission in All-Inorganic Copper-Silver Halides via Structural Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303501. [PMID: 37537363 PMCID: PMC10558639 DOI: 10.1002/advs.202303501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
Single-component metal halides with white light emission are highly attractive for solid-state lighting applications, but it is still challenging to develop all-inorganic lead-free metal halides with high white-light emission efficiency. Herein, by rationally introducing silver (Ag) into zero-dimensional (0D) Cs3 Cu2 Br5 as new structural building unit, a one-dimensional (1D) bimetallic halide Cs6 Cu3 AgBr10 is designed that emits strong warm-white light with an impressive photoluminescence quantum yield (PLQY) of 94.5% and excellent stability. This structural transformation lowers the conduction band minimum while maintaining the localized nature of the valence band maximum, which is crucial in expanding the excitation spectrum and obtaining efficient self-trapped excitons (STEs) emission simultaneously. Detailed spectroscopy studies reveal that the white-light originates from triplet STEs emission, which can be remarkably improved by weakening the strong electron-phonon coupling and thus suppressing phonon-induced non-radiative processes. Moreover, the interesting temperature-dependent emission behavior, together with self-absorption-free property, make Cs6 Cu3 AgBr10 as sensitive luminescent thermometer and high-performance X-ray scintillator, respectively. These findings demonstrate a general approach to achieving effective single-component white-light emitters based on lead-free, all-inorganic metal halides, thereby opening up a new avenue to explore their versatile applications such as lighting, temperature detection and X-ray imaging.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100039P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Juntao Li
- University of Chinese Academy of SciencesBeijing100039P. R. China
- Key Laboratory of Chemical LasersDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Fengke Sun
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100039P. R. China
| | - Qing Yang
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Shunshun Li
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100039P. R. China
| | - Junsheng Chen
- Nano‐Science Center and Department of ChemistryUniversity of CopenhagenUniversitetsparken 5CopenhagenDK‐2100Denmark
| | - Pengfei Cheng
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100039P. R. China
| |
Collapse
|
29
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
30
|
Wei H, Sun J, Mao X, Wang H, Chen Z, Bai T, Cheng P, Zhang R, Jin B, Zhou P, Liu F, Han K. Cs 2 SnCl 6 : To Emit or to Catalyze? Te 4+ Ion Calls the Shots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302706. [PMID: 37559177 PMCID: PMC10582433 DOI: 10.1002/advs.202302706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Indexed: 08/11/2023]
Abstract
A low concentration of Te4+ doping is found to be capable of endowing the lead-free Cs2 SnCl6 perovskites with excellent photoluminescence quantum yield (PLQY), while further increasing Te4+ concentration leads to PLQY deterioration. The mechanism behind the improved PLQY is intensively studied and reported elsewhere. However, little work is conducted to understand the decreased PLQY at high doping levels and to explore its implications for non-PL-related applications. Here, it is demonstrated that the Te4+ -incorporated Cs2 SnCl6 can be promising candidate for efficient CO2 photocatalysis. An optimum photocatalytic performance is achieved when Te4+ concentration reaches as high as 50%, at which point significant PL quenching has occurred. Through a detailed spectral characterization, such concentration-dependent functionality is attributed to systematic changes in both electronic and local crystal structure, which allow a robust regulation of excitation energy relaxation channels. These findings expand the scope of available photocatalysts for CO2 reduction and also inform synthetic planning for the preparation of multifunctional Pb-free metal halide perovskites.
Collapse
Affiliation(s)
- Haiwen Wei
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Jikai Sun
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Xin Mao
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Honglei Wang
- School of Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Zhen Chen
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Tianxin Bai
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Pengfei Cheng
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Bing Jin
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Panwang Zhou
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Feng Liu
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Keli Han
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
- State Key Laboratory of Molecular Reaction DynamicsDalian Institute of Chemical PhysicsChinese Academy of ScienceDalian116023P. R. China
| |
Collapse
|
31
|
Mandal A, Gupta S, Dutta S, Pati SK, Bhattacharyya S. Transition from Dion-Jacobson hybrid layered double perovskites to 1D perovskites for ultraviolet to visible photodetection. Chem Sci 2023; 14:9770-9779. [PMID: 37736622 PMCID: PMC10510777 DOI: 10.1039/d3sc01919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| |
Collapse
|
32
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
33
|
Wolf S, Feldmann C. Solvent-free room-temperature synthesis of brightly luminescent [BMPyr] 2[SnCl 4]. Chem Commun (Camb) 2023; 59:11113-11116. [PMID: 37646079 DOI: 10.1039/d3cc03145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The pseudo-ternary tin(II) halide [BMPyr]2[SnCl4] can be obtained just by mixing the starting materials [BMPyr]Cl and SnCl2 at room temperature without additional solvents. The compound shows bright Sn(II)-based emission of deep-red light (λmax: 740 nm) with a quantum yield of 88 ± 3% after optimised synthesis. Characterization is performed by X-ray structure analysis, infrared and fluorescence spectroscopy. Exemplary fluorescent thinfilms are realized by solvent processing.
Collapse
Affiliation(s)
- Silke Wolf
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany.
| | - Claus Feldmann
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
34
|
Mai H, Li X, Lu J, Wen X, Le TC, Russo SP, Chen D, Caruso RA. Synthesis of Layered Lead-Free Perovskite Nanocrystals with Precise Size and Shape Control and Their Photocatalytic Activity. J Am Chem Soc 2023; 145:17337-17350. [PMID: 37523781 DOI: 10.1021/jacs.3c04890] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Halide perovskites have attracted enormous attention due to their potential applications in optoelectronics and photocatalysis. However, concerns over their instability, toxicity, and unsatisfactory efficiency have necessitated the development of lead-free all-inorganic halide perovskites. A major challenge in designing efficient halide perovskites for practical applications is the lack of effective methods for producing nanocrystals with precise size and shape control. In this work, a layered perovskite, Cs4ZnSb2Cl12 (CZS), is found from calculations to exhibit size- and facet-dependent optoelectronic properties in the nanoscale, and thus, a colloidal method is used to synthesize the CZS nanoparticles with size-tunable morphologies: zero- (nanodots), one- (nanowires and nanorods), two- (nanoplates), and three-dimensional (nanopolyhedra). The growth kinetics of the CZS nanostructures, along with the effects of surface ligands, reaction temperature, and time were investigated. The optoelectronic properties of the nanocrystals varied with size due to quantum confinement effects and with shape due to anisotropy within the crystals and the exposure of specific facets. These properties could be modulated to enhance the visible-light photocatalytic performance for toluene oxidation. In particular, the 9.7 nm CZS nanoplates displayed a toluene to benzaldehyde conversion rate of 1893 μmol g-1 h-1 (95% selectivity), 500 times higher than the bulk synthesized CZS, and comparable with the reported photocatalysts. This study demonstrates the integration of theoretical calculations and synthesis, revealing an approach to the design and fabrication of novel, high-performance colloidal perovskite nanocrystals for optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xuying Li
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Junlin Lu
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaoming Wen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
35
|
Wu H, Lin Z, Song J, Zhang Y, Guo Y, Zhang W, Huang R. Boosting the Self-Trapped Exciton Emission in Cs 4SnBr 6 Zero-Dimensional Perovskite via Rapid Heat Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2259. [PMID: 37570576 PMCID: PMC10420998 DOI: 10.3390/nano13152259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Zero-dimensional (0D) tin halide perovskites feature extraordinary properties, such as broadband emission, high photoluminescence quantum yield, and self-absorption-free characteristics. The innovation of synthesis approaches for high-quality 0D tin halide perovskites has facilitated the flourishing development of perovskite-based optoelectronic devices in recent years. However, discovering an effective strategy to further enhance their emission efficiency remains a considerable challenge. Herein, we report a unique strategy employing rapid heat treatment to attain efficient self-trapped exciton (STE) emission in Cs4SnBr6 zero-dimensional perovskite. Compared to the pristine Cs4SnBr6, rapid thermal treatment (RTT) at 200 °C for a duration of 120 s results in an augmented STE emission with the photoluminescence (PL) quantum yield rising from an initial 50.1% to a substantial 64.7%. Temperature-dependent PL spectra analysis, Raman spectra, and PL decay traces reveal that the PL improvement is attributed to the appropriate electron-phonon coupling as well as the increased binding energies of STEs induced by the RTT. Our findings open up a new avenue for efficient luminescent 0D tin-halide perovskites toward the development of efficient optoelectronic devices based on 0D perovskites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China (Y.G.)
| |
Collapse
|
36
|
Wei H, Si T, Xu F, Fan W, Yang T, Cao B, Juan F, Xu J, Wu Y. Enhanced photoluminescence of double perovskite Cs 2SnI 6 nanocrystals via Na + doping. OPTICS EXPRESS 2023; 31:25298-25306. [PMID: 37475338 DOI: 10.1364/oe.495150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Double perovskites without lead element have attracted great attention in recent years. Further increasing the photoluminescence quantum yield of lead-free double perovskites is necessary for their potential applications. In this work, Na+ doped Cs2SnI6 nanocrystals were synthesized by hot injection method. It was displayed that all the NCs have uniform hexagonal shape with good crystallization. Energy dispersing spectroscopy and X-ray photoelectron spectroscopy proves the Na+ ions were doped in the lattice of perovskite structure. The photoluminescence intensity of doped NCs is increased by 2.7-fold than that of pure NCs. A maximum photoluminescence quantum yield of 72% is obtained. The luminous mechanism was investigated by femtosecond transient absorption spectrum and a self-trap emission was proved by the observation of ground state bleaching and photo-induced absorption signals.
Collapse
|
37
|
Liu W, Wu H, Liang T, Miao R, Riaz S, Fan J. Critical Roles of Octahedron Bilayer Surface/Interior Bromide Defects in Photodynamics of Multi-Quantum-Well-Structured Cesium Bismuth Bromide. J Phys Chem Lett 2023:5546-5552. [PMID: 37294772 DOI: 10.1021/acs.jpclett.3c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate theoretically the roles of the intrinsic point defects in the photophysics of wide-bandgap multi-quantum-well-structured Cs3Bi2Br9 based on the Shockley-Read-Hall statistics and multiphonon recombination theory. The GW plus Bethe-Salpeter equation calculation reveals that there is a prominent exciton peak below the interband absorption edge, and it clarifies the experimental debate. The most energetically favorable native defects possess deep thermodynamic transition levels. The bromide self-interstitials within the octahedron bilayers exhibit as efficient carrier trapping centers through the non-radiative multiphonon recombination, with a lifetime of 184 ns being on the same order of magnitude as the experimental value. The octahedron bilayer surface bromide self-interstitials account for the experimentally observed dominant blue luminescence in Cs3Bi2Br9. These results reveal that the intrinsic point defects at different sites of the multi-quantum-well-like octahedron bilayers play different roles in the photodynamics of such unique layer-structured semiconductors.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Huaxin Wu
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Tianyuan Liang
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Ruonan Miao
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Saba Riaz
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| |
Collapse
|
38
|
Xu J, Wu H, Lu X, Huang Y, Chen J, Zhou W, Lin Z, Song J, Li H, Huang R. Synthesis and Improved Photoluminescence of SnF 2-Derived CsSnCl 3-SnF 2:Mn 2+ Perovskites via Rapid Thermal Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114027. [PMID: 37297162 DOI: 10.3390/ma16114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
We report a rapid synthesis method for producing CsSnCl3:Mn2+ perovskites, derived from SnF2, and investigate the effects of rapid thermal treatment on their photoluminescence properties. Our study shows that the initial CsSnCl3:Mn2+ samples exhibit a double luminescence peak structure with PL peaks at approximately 450 nm and 640 nm, respectively. These peaks originate from defect-related luminescent centers and the 4T1→6A1 transition of Mn2+. However, as a result of rapid thermal treatment, the blue emission is significantly reduced and the red emission intensity is increased nearly twofold compared to the pristine sample. Furthermore, the Mn2+-doped samples demonstrate excellent thermal stability after the rapid thermal treatment. We suggest that this improvement in photoluminescence results from enhanced excited-state density, energy transfer between defects and the Mn2+ state, as well as the reduction of nonradiative recombination centers. Our findings provide valuable insights into the luminescence dynamics of Mn2+-doped CsSnCl3 and open up new possibilities for controlling and optimizing the emission of rare-earth-doped CsSnCl3.
Collapse
Affiliation(s)
- Jisheng Xu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Haixia Wu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Xinye Lu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Yaqian Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jianni Chen
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Wendi Zhou
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Zewen Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jie Song
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Hongliang Li
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
39
|
Xu G, Wang C, Li Y, Meng W, Luo G, Peng M, Xu B, Deng Z. Solid-state synthesis of cesium manganese halide nanocrystals in glass with bright and broad red emission for white LEDs. Chem Sci 2023; 14:5309-5315. [PMID: 37234884 PMCID: PMC10207884 DOI: 10.1039/d3sc01084h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, lead halide perovskite nanocrystals (NCs) have attracted extensive attention due to their unique optical properties. However, the toxicity of lead and the instability to moisture obstruct their further commercial development. Herein, a series of lead-free CsMnX3 (X = Cl, Br, and I) NCs embedded in glasses were synthesized by a high temperature solid-state chemistry method. These NCs embedded in glass can remain stable after soaking in water for 90 days. It is found that increasing the amount of cesium carbonate in the synthesis process can not only prevent the oxidation of Mn2+ to Mn3+ and promote the transparency of glass in the 450-700 nm region, but also significantly increase its photoluminescence quantum yield (PLQY) from 2.9% to 65.1%, which is the highest reported value of the red CsMnX3 NCs so far. Using CsMnBr3 NCs with a red emission peak at 649 nm and full-width-at-half-maximum (FWHM) of 130 nm as the red light source, a white light-emitting diode (LED) device with International Commission on illumination (CIE) coordinates of (0.33, 0.36) and a color rendering index (CRI) of 94 was obtained. These findings, together with future research, are likely to yield stable and bright lead-free NCs for the next generation of solid-state lighting.
Collapse
Affiliation(s)
- Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Guigen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
40
|
Marwitz A, Dutta AK, McDonald MA, Knope KE. Efficient Europium Sensitization via Low-Level Doping in a 2-D Bismuth-Organic Coordination Polymer. CRYSTAL GROWTH & DESIGN 2023; 23:3330-3337. [PMID: 38510753 PMCID: PMC10950293 DOI: 10.1021/acs.cgd.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Indexed: 03/22/2024]
Abstract
A new bismuth-organic compound containing 1,10-phenanthroline (phen) and 2,5-pyridinedicarboxylic acid (PDC) was synthesized and structurally characterized by single-crystal X-ray diffraction. The structure consists of 2-D {Bi(phen)(HPDC)(PDC)}n sheets wherein the PDC ligands bridge metal centers via three unique bonding modes. The 2-D sheets are further connected through strong hydrogen-bonding interactions to form a 3-D supramolecular network. The parent compound displayed yellow photoluminescence in the solid state at room temperature. Doping studies were undertaken to incorporate Eu3+ into the structure, statistically replacing Bi3+ in small quantities (1, 5, and 10 mol % Eu3+ relative to Bi3+). All three compounds displayed characteristic Eu3+ emission, with total quantum yields as high as 16.0% and sensitization efficiencies between 0.21 and 0.37 depending on the Eu3+ doping percentage.
Collapse
Affiliation(s)
- Alexander
C. Marwitz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Anuj K. Dutta
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Morgan A. McDonald
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
41
|
Li X, Wang D, Zhong Y, Jiang F, Zhao D, Sun S, Lu P, Lu M, Wang Z, Wu Z, Gao Y, Zhang Y, Yu WW, Bai X. Halide Double Perovskite Nanocrystals Doped with Rare-Earth Ions for Multifunctional Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207571. [PMID: 37114798 PMCID: PMC10369281 DOI: 10.1002/advs.202207571] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Most lead-free halide double perovskite materials display low photoluminescence quantum yield (PLQY) due to the indirect bandgap or forbidden transition. Doping is an effective strategy to tailor the optical properties of materials. Herein, efficient blue-emitting Sb3+ -doped Cs2 NaInCl6 nanocrystals (NCs) are selected as host, rare-earth (RE) ions (Sm3+ , Eu3+ , Tb3+ , and Dy3+ ) are incorporated into the host, and excellent PLQY of 80.1% is obtained. Femtosecond transient absorption measurement found that RE ions not only served as the activator ions but also filled the deep vacancy defects. Anti-counterfeiting, optical thermometry, and white-light-emitting diodes (WLEDs) are exhibited using these RE ions-doped halide double perovskite NCs. For the optical thermometry based on Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs, the maximum relative sensitivity is 0.753% K-1 , which is higher than those of most temperature-sensing materials. Moreover, the WLED fabricated by Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs@PMMA displays CIE color coordinates of (0.30, 0.28), a luminous efficiency of 37.5 lm W-1 , a CCT of 8035 K, and a CRI over 80, which indicate that Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs are promising single-component white-light-emitting phosphors for next-generation lighting and display technologies.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Dingdi Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Deqiang Zhao
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE10691, Sweden
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yanbo Gao
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
42
|
Branzi L, Kavanagh A, Back M, Speghini A, Gun'ko YK, Benedetti A. Chirality in luminescent Cs 3Cu 2Br 5 microcrystals produced via ligand-assisted reprecipitation. Chem Commun (Camb) 2023; 59:6024-6027. [PMID: 37186125 DOI: 10.1039/d3cc00719g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein we report new chiral luminescent Cs3Cu2Br5 needle-like microcrystals and the analysis of their optical properties and the effect of the ligand structure on the transfer of chirality.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Aoife Kavanagh
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Michele Back
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Yurii K Gun'ko
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Alvise Benedetti
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
| |
Collapse
|
43
|
Gong H, Yu H, Zhang Y, Feng L, Tian Y, Cui G, Fu H. Thermally Activated Long Persistent Luminescence of Organic Inorganic Metal Halides. Angew Chem Int Ed Engl 2023; 62:e202219085. [PMID: 36738174 DOI: 10.1002/anie.202219085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Long persistent luminescence (LPL) materials of SrAl2 O4 doped with Eu2+ or Dy3+ can maintain emission over hours after ceasing the excitation but suffer from insolubility, high cost, and harsh preparation. Recently, organic LPL of guest-host exciplex systems has been demonstrated via an intermediate charge-separated state with flexible design but poor air-stability. Here, we synthesized a nontoxic two-dimensional organic-inorganic metal hybrid halides (OIMHs), called PBA2 [ZnX4 ] with X=Br or Cl and PBA=4-phenylbenzylamine. These materials exhibit stable LPL emission over minutes at room-temperature, which is two orders of magnitude longer than those of previously reported OIMHs. The mechanism study shows that the LPL emission comes from thermally activated charge separation state rather than room-temperature phosphorescence. Moreover, the LPL of PBA2 [ZnX4 ] can be excited by low power sources, representing an effective strategy for developing low-cost and high-stability LPL systems.
Collapse
Affiliation(s)
- Hao Gong
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Heng Yu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Letong Feng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
44
|
Yang H, Chen X, Chu Y, Sun C, Lu H, Yuan M, Zhang Y, Long G, Zhang L, Li X. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals. LIGHT, SCIENCE & APPLICATIONS 2023; 12:75. [PMID: 36935450 PMCID: PMC10025261 DOI: 10.1038/s41377-023-01117-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the traditionally used preparation methods with a long period and limited product yield have curtailed the commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as Cs2Na0.9Ag0.1InCl6:Ln3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high luminous performance are all realized by our proposed strategy, which has shown excellent availability towards commercialization.
Collapse
Affiliation(s)
- Huanxin Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiangxiang Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yiyue Chu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300354, China
| | - Changjiu Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haolin Lu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Guankui Long
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300354, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China.
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
45
|
Meng W, Wang C, Li Y, Hu G, Sui S, Xu G, Peng M, Deng Z. Synthesis of Efficient and Stable Tetrabutylammonium Copper Halides with Dual Emissions for Warm White Light-Emitting Diodes. Chemistry 2023; 29:e202202675. [PMID: 36599805 DOI: 10.1002/chem.202202675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
In order to achieve a high color-rendering index (CRI) and low correlated color temperature (CCT) indoor lighting, single-component phosphors with broad-band dual emission are in high demand for white-light-emitting diodes (WLEDs). However, phosphors with such fluorescent properties are rare at present. Herein, we report a facile solid-state chemical method for the synthesis of single-component phosphor with broad-band emission and a large Stokes shift that can meet the requirements of future white-light sources. These new tetrabutylammonium copper halides phosphors have excellent warm white emission characteristics, and their luminescence peaks are located at 494 and 654 nm. The optimized photoluminescence (PL) quantum yield can reach 93.7 %. The typical CIE coordinate of the as-fabricated WLED is at (0.3620, 0.3731) with a CRI of 89 and low CCT of 4516 K.
Collapse
Affiliation(s)
- Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangcai Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shiqi Sui
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
46
|
The Effects of Mono- and Bivalent Linear Alkyl Interlayer Spacers on the Photobehavior of Mn(II)-Based Perovskites. Int J Mol Sci 2023; 24:ijms24043280. [PMID: 36834688 PMCID: PMC9967457 DOI: 10.3390/ijms24043280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Mn(II)-based perovskite materials are being intensively explored for lighting applications; understanding the role of ligands regarding their photobehavior is fundamental for their development. Herein, we report on two Mn (II) bromide perovskites using monovalent (perovskite 1, P1) and bivalent (perovskite 2, P2) alkyl interlayer spacers. The perovskites were characterized with powder X-ray diffraction (PXRD), electron spin paramagnetic resonance (EPR), steady-state, and time-resolved emission spectroscopy. The EPR experiments suggest octahedral coordination in P1 and tetrahedral coordination for P2, while the PXRD results demonstrate the presence of a hydrated phase in P2 when exposed to ambient conditions. P1 exhibits an orange-red emission, while P2 shows a green photoluminescence, as a result of the different types of coordination of Mn(II) ions. Furthermore, the P2 photoluminescence quantum yield (26%) is significantly higher than that of P1 (3.6 %), which we explain in terms of different electron-phonon couplings and Mn-Mn interactions. The encapsulation of both perovskites into a PMMA film largely increases their stability against moisture, being more than 1000 h for P2. Upon increasing the temperature, the emission intensity of both perovskites decreases without a significant shift in the emission spectrum, which is explained in terms of an increase in the electron-phonon interactions. The photoluminescence decays fit two components in the microsecond regime-the shortest lifetime for hydrated phases and the longest one for non-hydrated phases. Our findings provide insights into the effects of linear mono- and bivalent organic interlayer spacer cations on the photophysics of these kinds of Mn (II)-based perovskites. The results will help in better designs of Mn(II)-perovskites, to increase their lighting performance.
Collapse
|
47
|
Stroyuk O, Raievska O, Sebastia-Luna P, Huisman BAH, Kupfer C, Barabash A, Hauch J, Bolink HJ, Brabec CJ. Highly Luminescent Transparent Cs 2Ag x Na 1-x Bi y In 1-y Cl 6 Perovskite Films Produced by Single-Source Vacuum Deposition. ACS MATERIALS LETTERS 2023; 5:596-602. [PMID: 36776692 PMCID: PMC9906732 DOI: 10.1021/acsmaterialslett.3c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Thermal deposition of halide perovskites as a universal and scalable route to transparent thin films becomes highly challenging in the case of lead-free double perovskites, requiring the evaporation dynamics of multiple metal halide sources to be balanced or a single-phase precursor preliminary synthesized to achieve a reliable control over the composition and the phase of the final films. In the present Letter, the feasibility of the single-source vacuum deposition of microcrystalline Cs2Ag x Na1-x Bi y In1-y Cl6 double perovskites into corresponding transparent nanocrystalline films while preserving the bulk spectral and structural properties is shown. The perovskite films produced from the most emissive powders with x = 0.40 and y = 0.01 revealed a photoluminescence quantum yield of 85%, highlighting thermal evaporation as a promising approach to functional perovskite-based optical materials.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum
Jülich GmbH, Helmholtz-Institut Erlangen
Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany
| | - Oleksandra Raievska
- Forschungszentrum
Jülich GmbH, Helmholtz-Institut Erlangen
Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany
| | - Paz Sebastia-Luna
- Insituto
de Ciencia Molecular, Universidad de Valencia, Catedrático J. Beltrán
2, 46980 Paterna, Spain
| | - Bas A. H. Huisman
- Insituto
de Ciencia Molecular, Universidad de Valencia, Catedrático J. Beltrán
2, 46980 Paterna, Spain
| | - Christian Kupfer
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Materials for Electronics
and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Anastasia Barabash
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Materials for Electronics
and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Jens Hauch
- Forschungszentrum
Jülich GmbH, Helmholtz-Institut Erlangen
Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Materials for Electronics
and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Henk J. Bolink
- Insituto
de Ciencia Molecular, Universidad de Valencia, Catedrático J. Beltrán
2, 46980 Paterna, Spain
| | - Christoph J. Brabec
- Forschungszentrum
Jülich GmbH, Helmholtz-Institut Erlangen
Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Materials for Electronics
and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
48
|
Li K, Zhang W, Niu L, Ye Y, Ren J, Liu C. Lead-Free Cesium Manganese Halide Nanocrystals Embedded Glasses for X-Ray Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204843. [PMID: 36461760 PMCID: PMC9896042 DOI: 10.1002/advs.202204843] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/20/2022] [Indexed: 06/01/2023]
Abstract
The toxicity of heavy-metal Pb and instability of lead-based halide perovskite nanomaterials are main factors to impede their practical applications in the fields of solar cells, LEDs and scintillators. In this paper, all inorganic lead-free cesium manganese halide nanocrystals are synthesized in glass for the first time. Red photoluminescence with broad PL band, negligible self-absorption and a high photoluminescence quantum yield of 41.8% is obtained. In addition, modulating halide component can change the Mn2+ ions coordination environment to obtain tunable photoluminescence from red to green. More importantly, cesium manganese halide nanocrystals embedded glasses exhibit outstanding long-term stabilities. Theses cesium manganese halide nanocrystals embedded glasses are also highly stable against high energy irradiation and exhibit highly efficient radioluminescence, making them promising for high-resolution X-ray imaging. These results demonstrate that cesium manganese halide nanocrystals embedded glasses are promising eco-friendly candidates for applications in light-emitting diodes and scintillators.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Wenchao Zhang
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Luyue Niu
- Key Laboratory of In‐fiber Integrated OpticsMinistry Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Ying Ye
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| | - Jing Ren
- Key Laboratory of In‐fiber Integrated OpticsMinistry Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures (SMART)Wuhan University of Technology122 Luoshi Road, HongshanWuhanHubei430070P. R. China
| |
Collapse
|
49
|
Wu N, Zhai Y, Chang P, Mei H, Wang Z, Zhang H, Zhu Q, Liang P, Wang L. Rubidium ions doping to improve the photoluminescence properties of Mn doped CsPbCl 3perovskite quantum dots. NANOTECHNOLOGY 2023; 34:145701. [PMID: 36260977 DOI: 10.1088/1361-6528/ac9b62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
All-inorganic cesium lead halide CsPbX3(X = Cl, Br, I) perovskite quantum dots (PQDs) have shown promising potential in current Mini/Micro-LED display applications due to their excellent photoluminescence performance. However, lead ions in PQDs are easily to leak owing to the unstable structure of PQDs, which hinders their commercial applications. Herein, we adopt Rb+ions co-doping strategy to regulate the doping characteristics of Mn2+ions in CsPbCl3PQDs. The synthesized CsPbCl3:(Rb+, Mn2+) PQDs possess enhanced photoluminescence quantum yield of 71.1% due to the reduction of intrinsic defect states and Mn-Mn or Mn-traps in co-doped PQDs. Moreover, the white light emission of CsPb(Cl/Br)3:(Rb+, Mn2+) PQDs is achieved by anion exchange reaction and the constructed WLED exhibits the CIE coordinate of (0.33, 0.29) and the correlated color temperature of 5497 K. Benefiting from the substitution strategy, these doped CsPbX3PQDs can be widely used as fluorescence conversion materials for the construction of Mini/Micro-LED.
Collapse
Affiliation(s)
- Na Wu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yue Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Peng Chang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hang Mei
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Ziyan Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hong Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qiangqiang Zhu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
50
|
Cheng H, Cao C, Teng S, Zhang Z, Zhang Y, Wang D, Yang W, Xie R. Sn(II)-doped one-dimensional hybrid metal halide [C 5H 14NO]CdCl 3 single crystals with broadband greenish-yellow light emission. Dalton Trans 2023; 52:1021-1029. [PMID: 36601998 DOI: 10.1039/d2dt03697e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low-dimensional organic-inorganic hybrid halides, as an important branch of metal halide materials, have attracted much attention due to their excellent photoelectric properties. Herein, we designed one new hybrid cadmium chloride [C5H14NO]CdCl3 based on combinations of the d10 metal cation (Cd2+) and choline chloride molecules. [C5H14NO]CdCl3 single crystals belong to the orthorhombic Pna21 space group and show a one-dimensional (1D) structure with distorted [CdCl5O]5- octahedra. The second harmonic generation (SHG) response of [C5H14NO]CdCl3 exhibits an intensity of approximately 0.4 × KDP. Moreover, the photoluminescence properties of the [C5H14NO]CdCl3 crystal are activated by doping with Sn2+ ions having stereochemically active lone pair 5s2 electrons. Under UV excitation conditions, bright greenish-yellow light emission can be observed, and the quantum efficiency (PLQY) is as high as 91.27%. The luminescence mechanism is revealed by combining the results of temperature dependent luminescence and density functional theory (DFT) calculation. This work can serve as a guide for the design and synthesis of emerging optical materials.
Collapse
Affiliation(s)
- Haiming Cheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| | - Chi Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| | - Shiyong Teng
- First Hospital, Jilin University, Changchun 130021, China
| | - Zhinan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| | - Ying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China. .,Engineering Center for Nanomaterials, Henan University, Kaifeng 475004, China.,Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun 130012, China.
| |
Collapse
|