1
|
Che M, Li F, Jia Y, Liu Q, Hu J, Zhang J, Liu S. Case Report: A Chinese child with Barth syndrome caused by a novel TAFAZZIN mutation. Front Cardiovasc Med 2024; 11:1465912. [PMID: 39309604 PMCID: PMC11412893 DOI: 10.3389/fcvm.2024.1465912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Barth syndrome (BTHS) is a rare X-linked recessive genetic disorder characterized by a broad spectrum of clinical features including cardiomyopathy, skeletal myopathy, neutropenia, growth delay, and 3-methylglutaconic aciduria. This disease is caused by loss-of-function mutations in the TAFAZZIN gene located on chromosome Xq28, resulting in cardiolipin deficiency. Most patients are diagnosed in childhood, and the mortality rate is highest in the early years. We report a case of acute, life-threatening metabolic decompensation occurring one day after birth. A novel TAFAZZIN splice site mutation was identified in the patient, marking the first reported case of such a mutation in BTHS identified in China. The report aims to expand our understanding of the spectrum of TAFAZZIN mutations in BTHS.
Collapse
Affiliation(s)
- Mingxuan Che
- Cardiovascular Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fuhai Li
- Cardiovascular Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaning Jia
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingzheng Liu
- Cardiovascular Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Hu
- Cardiovascular Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jidong Zhang
- Cardiovascular Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
3
|
Senoo N, Chinthapalli DK, Baile MG, Golla VK, Saha B, Oluwole AO, Ogunbona OB, Saba JA, Munteanu T, Valdez Y, Whited K, Sheridan MS, Chorev D, Alder NN, May ER, Robinson CV, Claypool SM. Functional diversity among cardiolipin binding sites on the mitochondrial ADP/ATP carrier. EMBO J 2024; 43:2979-3008. [PMID: 38839991 PMCID: PMC11251061 DOI: 10.1038/s44318-024-00132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.
Collapse
Affiliation(s)
- Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dinesh K Chinthapalli
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Matthew G Baile
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vinaya K Golla
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Bodhisattwa Saha
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
| | - Abraham O Oluwole
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Oluwaseun B Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James A Saba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Teona Munteanu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yllka Valdez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin Whited
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Macie S Sheridan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dror Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
6
|
Lim Y, Hong I, Han A. The Impact of Raising Children with Barth Syndrome on Parental Health-Related Quality of Life and Family Functioning: Preliminary Reliability and Validity of the PedsQL™ Family Impact Module. Occup Ther Int 2023; 2023:5588935. [PMID: 38187035 PMCID: PMC10771332 DOI: 10.1155/2023/5588935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study examined the preliminary reliability and validity of the PedsQL™ Family Impact Module (PedsQL FIM) in families of children with Barth syndrome (BTHS). Method A total of 72 parents with children or youth between the ages of 5 and 19 participated in this study. Thirty-three parents of children with BTHS and 39 parents of unaffected children completed the PedsQL FIM and a demographic information form. Internal consistency reliability and item-total correlations were calculated to test the reliability of the PedsQL FIM. Construct validity was examined using the known-groups method. We estimated the mean score differences of the PedsQL FIM between the two groups using three different models, including unadjusted, multivariate regression, and propensity score matching with inverse probability of treatment weighting (PS-IPTW) models. Results The Cronbach's alpha coefficients were greater than 0.70 for all scales of the PedsQL FIM, except for the communication scale. The item-total correlations were significant for all scales with moderate to high correlations (p < .05). In construct validity, the mean scores of the PedsQL FIM between the two groups were significantly different (p < .05) for all scales and total score in the unadjusted and PS-IPTW models. However, in the multivariate regression model, the family relationships scale was not significant between the two groups. Conclusion The PedsQL FIM demonstrated adequate measurement properties of preliminary reliability and validity in assessing the impact of children with BTHS on parental health-related quality of life (HRQoL) and family functioning. Further research needs to be conducted to examine the psychometric properties of the PedsQL FIM with a large sample of BTHS and with other pediatric rare diseases.
Collapse
Affiliation(s)
- Yoonjeong Lim
- Division of Occupational Therapy, Binghamton University, Johnson City, NY 13790, USA
| | - Ickpyo Hong
- Department of Occupational Therapy, Yonsei University, Wonju 26493, Republic of Korea
| | - Areum Han
- Department of Occupational Therapy, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Sabbah HN, Taylor C, Vernon HJ. Temporal evolution of the heart failure phenotype in Barth syndrome and treatment with elamipretide. Future Cardiol 2023; 19:211-225. [PMID: 37325898 DOI: 10.2217/fca-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disorder caused by pathogenic variants in TAFAZZIN leading to reduced remodeled cardiolipin (CL), a phospholipid essential to mitochondrial function and structure. Cardiomyopathy presents in most patients with BTHS, typically appearing as dilated cardiomyopathy (DCM) in infancy and evolving to hypertrophic cardiomyopathy (HCM) resembling heart failure (HF) with preserved ejection fraction (HFpEF) in some patients ≥12 years. Elamipretide localizes to the inner mitochondrial membrane where it associates with CL, improving mitochondrial function, structure and bioenergetics, including ATP synthesis. Numerous preclinical and clinical studies in BTHS and other forms of HF have demonstrated that elamipretide improves left ventricular relaxation by ameliorating mitochondrial dysfunction, making it well suited for therapeutic use in adolescent and adult patients with BTHS.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Carolyn Taylor
- Department of Pediatrics, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Wohlfarter Y, Eidelpes R, Yu RD, Sailer S, Koch J, Karall D, Scholl-Bürgi S, Amberger A, Hillen HS, Zschocke J, Keller MA. ost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism. Cell Mol Life Sci 2022; 79:562. [PMID: 36271951 PMCID: PMC9587951 DOI: 10.1007/s00018-022-04579-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17β-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC-MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here.
Collapse
Affiliation(s)
- Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ryan D Yu
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Daniela Karall
- Department of Paediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Department of Paediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Str. 1/1.OG, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
11
|
Zhang J, Shi Y. In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells 2022; 11:cells11121906. [PMID: 35741033 PMCID: PMC9221202 DOI: 10.3390/cells11121906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial signature phospholipid that plays a pivotal role in mitochondrial dynamics, membrane structure, oxidative phosphorylation, mtDNA bioenergetics, and mitophagy. The depletion or abnormal acyl composition of CL causes mitochondrial dysfunction, which is implicated in the pathogenesis of aging and age-related disorders. However, the molecular mechanisms by which mitochondrial dysfunction causes age-related diseases remain poorly understood. Recent development in the field has identified acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1), an acyltransferase upregulated by oxidative stress, as a key enzyme that promotes mitochondrial dysfunction in age-related diseases. ALCAT1 catalyzes CL remodeling with very-long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). Enrichment of DHA renders CL highly sensitive to oxidative damage by reactive oxygen species (ROS). Oxidized CL becomes a new source of ROS in the form of lipid peroxides, leading to a vicious cycle of oxidative stress, CL depletion, and mitochondrial dysfunction. Consequently, ablation or the pharmacological inhibition of ALCAT1 have been shown to mitigate obesity, type 2 diabetes, heart failure, cardiomyopathy, fatty liver diseases, neurodegenerative diseases, and cancer. The findings suggest that age-related disorders are one disease (aging) manifested by different mitochondrion-sensitive tissues, and therefore should be treated as one disease. This review will discuss a unified hypothesis on CL remodeling by ALCAT1 as the common denominator of mitochondrial dysfunction, linking mitochondrial dysfunction to the development of age-related diseases.
Collapse
Affiliation(s)
| | - Yuguang Shi
- Correspondence: ; Tel.: +1-210-450-1363; Fax: +1-210-562-6150
| |
Collapse
|
12
|
Sohn J, Milosevic J, Brouse T, Aziz N, Elkhoury J, Wang S, Hauschild A, van Gastel N, Cetinbas M, Tufa SF, Keene DR, Sadreyev RI, Pu WT, Sykes DB. A new murine model of Barth syndrome neutropenia links TAFAZZIN deficiency to increased ER stress-induced apoptosis. Blood Adv 2022; 6:2557-2577. [PMID: 34979560 PMCID: PMC9043941 DOI: 10.1182/bloodadvances.2021005720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome is an inherited X-linked disorder that leads to cardiomyopathy, skeletal myopathy, and neutropenia. These symptoms result from the loss of function of the enzyme TAFAZZIN, a transacylase located in the inner mitochondrial membrane that is responsible for the final steps of cardiolipin production. The link between defective cardiolipin maturation and neutropenia remains unclear. To address potential mechanisms of neutropenia, we examined myeloid progenitor development within the fetal liver of TAFAZZIN knockout (KO) animals as well as within the adult bone marrow of wild-type recipients transplanted with TAFAZZIN-KO hematopoietic stem cells. We also used the ER-Hoxb8 system (estrogen receptor fused to Hoxb8) of conditional immortalization to establish a new murine model system for the ex vivo study of TAFAZZIN-deficient neutrophils. The TAFAZZIN-KO cells demonstrated the expected dramatic differences in cardiolipin maturation that result from a lack of TAFAZZIN enzyme activity. Contrary to our hypothesis, we did not identify any significant differences in neutrophil development or neutrophil function across a variety of assays including phagocytosis and the production of cytokines or reactive oxygen species. However, transcriptomic analysis of the TAFAZZIN-deficient neutrophil progenitors demonstrated an upregulation of markers of endoplasmic reticulum stress and confirmatory testing demonstrated that the TAFAZZIN-deficient cells had increased sensitivity to certain ER stress-mediated and non-ER stress-mediated triggers of apoptosis. Although the link between increased sensitivity to apoptosis and the variably penetrant neutropenia phenotype seen in some patients with Barth syndrome remains to be clarified, our studies and new model system set a foundation for further investigation.
Collapse
Affiliation(s)
- Jihee Sohn
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Thomas Brouse
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Najihah Aziz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jenna Elkhoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Suya Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | | | - Nick van Gastel
- de Duve Institute, Brussels, Belgium
- Harvard Stem Cell Institute, Cambridge, MA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Sara F. Tufa
- Micro-Imaging Center, Shriners Hospitals for Children, Portland, OR
| | - Douglas R. Keene
- Micro-Imaging Center, Shriners Hospitals for Children, Portland, OR
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA; and
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
13
|
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, Novelli A, Drago F, Raponi M, Baban A. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J Cardiovasc Dev Dis 2022; 9:47. [PMID: 35200700 PMCID: PMC8877723 DOI: 10.3390/jcdd9020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Giovanni Parlapiano
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimo Stefano Silvetti
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Rachele Adorisio
- Heart Failure Clinic-Heart Failure, Heart Transplant, Mechanical Circulatory Support Unit, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplant, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Michela Armando
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology and Genodermatosis Units, Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonino Romanzo
- Ophtalmology Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (G.P.); (F.C.); (M.S.S.); (F.D.)
| |
Collapse
|
14
|
Taylor C, Rao ES, Pierre G, Chronopoulou E, Hornby B, Heyman A, Vernon HJ. Clinical presentation and natural history of Barth Syndrome: An overview. J Inherit Metab Dis 2022; 45:7-16. [PMID: 34355402 DOI: 10.1002/jimd.12422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/25/2023]
Abstract
Barth Syndrome is a rare X-linked disorder caused by pathogenic variants in the gene TAFAZZIN, which encodes for an enzyme involved in the remodeling of cardiolipin, a phospholipid primarily localized to the inner mitochondrial membrane. Barth Syndrome is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities, among other features. In this review, we will discuss the clinical presentation and natural history of Barth Syndrome, review key features of this disease, and introduce less common clinical associations. Recognition and understanding of the natural history of Barth Syndrome are important for ongoing patient management and developing endpoints for the demonstration of efficacy of new and emerging therapies.
Collapse
Affiliation(s)
- Carolyn Taylor
- Department of Pediatrics, Division of Cardiology, Children's Hospital, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Emily S Rao
- Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Germaine Pierre
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Estathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Brittany Hornby
- Department of Physical Therapy, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrea Heyman
- Department of Nutrition, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Oemer G, Koch J, Wohlfarter Y, Lackner K, Gebert REM, Geley S, Zschocke J, Keller MA. The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzin-deficient cells. J Inherit Metab Dis 2022; 45:38-50. [PMID: 34494285 DOI: 10.1002/jimd.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita E M Gebert
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Ralph-Epps T, Onu CJ, Vo L, Schmidtke MW, Le A, Greenberg ML. Studying Lipid-Related Pathophysiology Using the Yeast Model. Front Physiol 2021; 12:768411. [PMID: 34777024 PMCID: PMC8581491 DOI: 10.3389/fphys.2021.768411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023] Open
Abstract
Saccharomyces cerevisiae, commonly known as baker's yeast, is one of the most comprehensively studied model organisms in science. Yeast has been used to study a wide variety of human diseases, and the yeast model system has proved to be an especially amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has gained considerable attention in recent years. This review focuses on how yeast has contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes perturbation of CL metabolism, resulting in many downstream cellular consequences and clinical pathologies that are discussed herein. The influence of yeast research in the lipid-related pathophysiologies of Alzheimer's and Parkinson's diseases is also summarized.
Collapse
Affiliation(s)
- Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Chisom J. Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W. Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anh Le
- Muskegon Catholic Central High School, Muskegon, MI, United States
| | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
17
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
18
|
Sakurai T, Chen Z, Yamahata A, Hayasaka T, Satoh H, Sekiguchi H, Chiba H, Hui SP. A mouse model of short-term, diet-induced fatty liver with abnormal cardiolipin remodeling via downregulated Tafazzin gene expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4995-5001. [PMID: 33543498 DOI: 10.1002/jsfa.11144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cardiolipin (CL) helps maintain mitochondrial structure and function. Here we investigated whether a high carbohydrate diet (HCD) fed to mice for a short period (5 days) could modulate the CL level, including that of monolysoCL (MLCL) in the liver. RESULTS Total CL in the HCD group was 22% lower than that in the normal chow diet (NCD) group (P < 0.05). The CL72:8 level strikingly decreased by 93% (P < 0.0001), whereas total nascent CLs (CLs other than CL72:8) increased (P < 0.01) in the HCD group. The total MLCL in the HCD group increased by 2.4-fold compared with that in the NCD group (P < 0.05). Tafazzin expression in the HCD group was significantly downregulated compared with that in the NCD group (P < 0.05). A strong positive correlation between nascent CL and total MLCL (r = 0.955, P < 0.0001), and a negative correlation between MLCL and Tafazzin expression (r = -0.593, P = 0.0883) were observed. CONCLUSION A HCD modulated the fatty acid composition of CL and MLCL via Tafazzin in the liver, which could lead to mitochondrial dysfunction. This model may be useful for elucidating the relationship between fatty liver and mitochondrial dysfunction. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Arisa Yamahata
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Satoh
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Japan
| | - Hirotaka Sekiguchi
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- R&D Planning and Administration Department, Life Science Institute Co., Ltd, Tokyo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Phospholipids: Identification and Implication in Muscle Pathophysiology. Int J Mol Sci 2021; 22:ijms22158176. [PMID: 34360941 PMCID: PMC8347011 DOI: 10.3390/ijms22158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.
Collapse
|
20
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
21
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
22
|
Rao S, Kanwal A, Padmanabhan S. Case report of Barth syndrome: a forgotten cause of cardiomyopathy. Eur Heart J Case Rep 2021; 5:ytab195. [PMID: 34557625 PMCID: PMC8453413 DOI: 10.1093/ehjcr/ytab195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 11/15/2022]
Abstract
Background Barth syndrome (BTHS) is a rare X-linked recessive disorder characterized by clinical features including cardiomyopathy, skeletal myopathy, neutropenia, growth delay, and exercise intolerance. It is often considered to be a paediatric disease, owing to most cases being diagnosed during childhood and mortality being the highest during the first few years of life. Case summary We report a case of dilated cardiomyopathy due to BTHS in a 27-year-old adult male patient, who initially presented with lightheadedness, dyspnoea, orthopnoea, and bilateral lower extremity oedema. Key findings from investigations included leukopenia, prolonged QTc interval, reduced left ventricular ejection fraction (LVEF), global enlargement of all heart chambers, patent coronary arteries, and mild pulmonary hypertension. The patient was diuresed to euvolemia and discharged with a LifeVest. Guideline-directed medical therapy was initiated and uptitrated as an outpatient. A repeat echocardiogram 2 years after initial presentation showed marked improvement in LVEF. Discussion It is possible that there are adult patients with idiopathic cardiomyopathy, which may be attributable to BTHS. In the absence of an obvious underlying cause, with the appropriate historical information, clinical exam, laboratory investigations, and imaging findings, BTHS should be considered as a likely cause of non-ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Shiavax Rao
- Department of Medicine, MedStar Health Internal Medicine Residency Program , 201 E University Pkwy, Baltimore, MD 21218, USA
| | - Arjun Kanwal
- Department of Medicine, MedStar Health Internal Medicine Residency Program , 201 E University Pkwy, Baltimore, MD 21218, USA
| | - Sriram Padmanabhan
- MedStar Heart and Vascular Institute, MedStar Franklin Square Medical Center, 9000 Franklin Square Dr, Baltimore, MD 21237, US A
| |
Collapse
|
23
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
24
|
Jia D, Zhang J, Nie J, Andersen JP, Rendon S, Zheng Y, Liu X, Tian Z, Shi Y. Cardiolipin remodeling by ALCAT1 links hypoxia to coronary artery disease by promoting mitochondrial dysfunction. Mol Ther 2021; 29:3498-3511. [PMID: 34111561 DOI: 10.1016/j.ymthe.2021.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining cardiac health. A loss of tetralinoleoyl cardiolipin (TLCL), the predominant cardiolipin species in the healthy mammalian heart, is implicated in the pathogenesis of coronary heart disease (CHD) through poorly defined mechanisms. Here, we identified acyl-coenzyme A:lysocardiolipin acyltransferase-1 (ALCAT1) as the missing link between hypoxia and CHD in an animal model of myocardial infarction (MI). ALCAT1 is an acyltransferase that promotes mitochondrial dysfunction in aging-related diseases by catalyzing pathological remodeling of cardiolipin. In support of a causative role of ALCAT1 in CHD, we showed that ALCAT1 expression was potently upregulated by MI, linking myocardial hypoxia to oxidative stress, TLCL depletion, and mitochondrial dysfunction. Accordingly, ablation of the ALCAT1 gene or pharmacological inhibition of the ALCAT1 enzyme by Dafaglitapin (Dafa), a potent and highly specific ALCAT1 inhibitor, not only restored TLCL levels but also mitochondrial respiration by attenuating signal transduction pathways mediated by hypoxia-inducible factor 1α (HIF-1α). Consequently, ablation or pharmacological inhibition of ALCAT1 by Dafa effectively mitigated CHD and its underlying pathogenesis, including dilated cardiomyopathy, left ventricle dysfunction, myocardial inflammation, fibrosis, and apoptosis. Together, the findings have provided the first proof-of-concept studies for targeting ALCAT1 as an effective treatment for CHD.
Collapse
Affiliation(s)
- Dandan Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - Jun Zhang
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Perenna Pharmaceuticals, Inc., 14785 Omicron Drive, San Antonio, TX 78245, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - John-Paul Andersen
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA
| | - Samantha Rendon
- Perenna Pharmaceuticals, Inc., 14785 Omicron Drive, San Antonio, TX 78245, USA
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xueling Liu
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Dr., San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
25
|
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell Biochem 2021; 476:1605-1629. [PMID: 33415565 DOI: 10.1007/s11010-020-04021-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Barth syndrome is a rare X-linked genetic disease classically characterized by cardiomyopathy, skeletal myopathy, growth retardation, neutropenia, and 3-methylglutaconic aciduria. It is caused by mutations in the tafazzin gene localized to chromosome Xq28.12. Mutations in tafazzin may result in alterations in the level and molecular composition of the mitochondrial phospholipid cardiolipin and result in large elevations in the lysophospholipid monolysocardiolipin. The increased monolysocardiolipin:cardiolipin ratio in blood is diagnostic for the disease, and it leads to disruption in mitochondrial bioenergetics. In this review, we discuss cardiolipin structure, synthesis, and function and provide an overview of the clinical and cellular pathophysiology of Barth Syndrome. We highlight known pharmacological management for treatment of the major pathological features associated with the disease. In addition, we discuss non-pharmacological management. Finally, we highlight the most recent promising therapeutic options for this rare mitochondrial disease including lipid replacement therapy, peroxisome proliferator-activated receptor agonists, tafazzin gene replacement therapy, induced pluripotent stem cells, mitochondria-targeted antioxidants and peptides, and the polyphenolic compound resveratrol.
Collapse
|
26
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Barth syndrome (BTHS) is an X-linked disease characterized by defective remodeling of phospholipid side chains in mitochondrial membranes. Major features include neutropenia, dilated cardiomyopathy, motor delay and proximal myopathy, feeding problems, and constitutional growth delay. We conducted this review of neutropenia in BTHS to aid in the diagnosis of this disease, and to improve understanding of both the consequences of neutropenia and the benefits of treatment with granulocyte colony-stimulating factor (G-CSF). RECENT FINDINGS In 88 patients with BTHS, neutropenia, that is, at least one count below 1.5 × 10/l, was detected in 74 (84%) and 44% had severe chronic neutropenia, with multiple counts below 0.5 × 10/l. The pattern of neutropenia varied between intermittent and unpredictable, chronic and severe, or cyclical with mathematically regular oscillations. Monocytosis, that is, monocytes more than 1.0 × 10/l, was observed at least once in 64 of 85 (75%) patients. G-CSF was administered to 39 of 88 patients (44%). Weekly average G-CSF doses ranged from 0.12 to 10.92 μg/kg/day (mean 1.16 μg/kg/day, median 1.16 μg/kg/day). Antibiotic prophylaxis was additionally employed in 21 of 26 neutropenic patients. Pretreatment bone marrow evaluations predominantly showed reduced myeloid maturation which normalized on G-CSF therapy in seven of 13 examined. Consistent clinical improvement, with reduced signs and symptoms of infections, was observed in response to prophylactic G-CSF ± prophylactic antibiotics. However, despite G-CSF and antibiotics, one adult patient died with multiple infections related to indwelling medical devices and gastrostomy site infection after 15.5 years on G-CSF and a pediatric patient required gastrostomy removal for recurrent abdominal wall cellulitis. SUMMARY BTHS should be considered in any men with neutropenia accompanied by any of the characteristic features of this syndrome. Prophylaxis with G-CSF ± antibiotics prevents serious bacterial infections in the more severe neutropenic patients although infections remain a threat even in patients who are very compliant with therapy, especially in those with indwelling devices.
Collapse
|
28
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
29
|
Miller PC, Ren M, Schlame M, Toth MJ, Phoon CKL. A Bayesian Analysis to Determine the Prevalence of Barth Syndrome in the Pediatric Population. J Pediatr 2020; 217:139-144. [PMID: 31732128 DOI: 10.1016/j.jpeds.2019.09.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the prevalence of Barth syndrome in the pediatric population. STUDY DESIGN Data were collected from the Barth Syndrome Foundation Registry and relevant literature. With the advent of genetic testing and whole-exome sequencing, a multipronged Bayesian analysis was used to estimate the prevalence of Barth syndrome based on published data on the incidence and prevalence of cardiomyopathy and neutropenia, and the respective subpopulations of patients with Barth syndrome indicated in these publications. RESULTS Based on 7 published studies of cardiomyopathy and 2 published studies of neutropenia, the estimated prevalence of Barth syndrome is approximately 1 case per million male population. This contrasts with 99 cases in the Barth Syndrome Foundation Registry, 58 of which indicate a US location, and only 230-250 cases known worldwide. CONCLUSIONS It appears that Barth syndrome is greatly underdiagnosed. There is a need for better education and awareness of this rare disease to move toward early diagnosis and treatment.
Collapse
Affiliation(s)
- Paighton C Miller
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | | | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY.
| |
Collapse
|
30
|
Seitz A, Hinck A, Bekeredjian R, Sechtem U. Late diagnosis of Barth syndrome in a 39-year-old patient with non-compaction cardiomyopathy and neutropenia. ESC Heart Fail 2020; 7:697-701. [PMID: 31967729 PMCID: PMC7160505 DOI: 10.1002/ehf2.12588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 11/07/2022] Open
Abstract
Barth syndrome is a rare X‐linked recessive disorder characterized by a broad spectrum of clinical features including cardiac and skeletal myopathy, neutropenia, exercise intolerance, and growth delay. Most affected patients are diagnosed during childhood, and mortality is highest in the first years of life. As a consequence, Barth syndrome is often considered a paediatric disease. Here, we report a case where the diagnosis was established in a 39‐year‐old patient with left ventricular non‐compaction and neutropenia. The clinical course of the patient presented here was relatively benign. This suggests that the prevalence of Barth syndrome in adults may be underestimated. Barth syndrome should be considered in the differential diagnosis of male patients with cardiomyopathy and neutropenia.
Collapse
Affiliation(s)
- Andreas Seitz
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Annely Hinck
- Department of Medicine-Cardiology, Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Udo Sechtem
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| |
Collapse
|
31
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Garcia-Segura LM, Astiz M. Sex differences and gonadal hormone regulation of brain cardiolipin, a key mitochondrial phospholipid. J Neuroendocrinol 2020; 32:e12774. [PMID: 31323169 DOI: 10.1111/jne.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Miguel Garcia-Segura
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
32
|
Prediabetes Induced by Fructose-Enriched Diet Influences Cardiac Lipidome and Proteome and Leads to Deterioration of Cardiac Function prior to the Development of Excessive Oxidative Stress and Cell Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3218275. [PMID: 31885782 PMCID: PMC6925817 DOI: 10.1155/2019/3218275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
Prediabetes is a condition affecting more than 35% of the population. In some forms, excessive carbohydrate intake (primarily refined sugar) plays a prominent role. Prediabetes is a symptomless, mostly unrecognized disease which increases cardiovascular risk. In our work, we examined the effect of a fructose-enriched diet on cardiac function and lipidome as well as proteome of cardiac muscle. Male Wistar rats were divided into two groups. The control group received a normal diet while the fructose-fed group received 60% fructose-supplemented chow for 24 weeks. Fasting blood glucose measurement and oral glucose tolerance test (OGTT) showed slightly but significantly elevated values due to fructose feeding indicating development of a prediabetic condition. Both echocardiography and isolated working heart perfusion performed at the end of the feeding protocol demonstrated diastolic cardiac dysfunction in the fructose-fed group. Mass spectrometry-based, high-performance lipidomic and proteomic analyses were executed from cardiac tissue. The lipidomic analysis revealed complex rearrangement of the whole lipidome with special emphasis on defects in cardiolipin remodeling. The proteomic analysis showed significant changes in 75 cardiac proteins due to fructose feeding including mitochondria-, apoptosis-, and oxidative stress-related proteins. Nevertheless, just very weak or no signs of apoptosis induction and oxidative stress were detected in the hearts of fructose-fed rats. Our results suggest that fructose feeding induces marked alterations in the cardiac lipidome, especially in cardiolipin remodeling, which leads to mitochondrial dysfunction and impaired cardiac function. However, at the same time, several adaptive responses are induced at the proteome level in order to maintain a homeostatic balance. These findings demonstrate that even very early stages of prediabetes can impair cardiac function and can result in significant changes in the lipidome and proteome of the heart prior to the development of excessive oxidative stress and cell damage.
Collapse
|
33
|
Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019; 56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, obesity and their coexistence, obese sarcopenia (OBSP) as well as atherosclerosis-related cardio-vascular diseases (ACVDs), including chronic heart failure (CHF), are among the greatest public health concerns in the ageing population. A clear age-dependent increased prevalence of sarcopenia and OBSP has been registered in CHF patients, suggesting mechanistic relationships. Development of OBSP could be mediated by a crosstalk between the visceral and subcutaneous adipose tissue (AT) and the skeletal muscle under conditions of low-grade local and systemic inflammation, inflammaging. The present review summarizes the emerging data supporting the idea that inflammaging may serve as a mutual mechanism governing the development of sarcopenia, OBSP and ACVDs. In support of this hypothesis, various immune cells release pro-inflammatory mediators in the skeletal muscle and myocardium. Subsequently, the endothelial structure is disrupted, and cellular processes, such as mitochondrial activity, mitophagy, and autophagy are impaired. Inflamed myocytes lose their contractile properties, which is characteristic of sarcopenia and CHF. Inflammation may increase the risk of ACVD events in a hyperlipidemia-independent manner. Significant reduction of ACVD event rates, without the lowering of plasma lipids, following a specific targeting of key pro-inflammatory cytokines confirms a key role of inflammation in ACVD pathogenesis. Gut dysbiosis, an imbalanced gut microbial community, is known to be deeply involved in the pathogenesis of age-associated sarcopenia and ACVDs by inducing and supporting inflammaging. Dysbiosis induces the production of trimethylamine-N-oxide (TMAO), which is implicated in atherosclerosis, thrombosis, metabolic syndrome, hypertension and poor CHF prognosis. In OBSP, AT dysfunction and inflammation induce, in concert with dysbiosis, lipotoxicity and other pathophysiological processes, thus exacerbating sarcopenia and CHF. Administration of specialized, inflammation pro-resolving mediators has been shown to ameliorate the inflammatory manifestations. Considering all these findings, we hypothesize that sarcopenia, OBSP, CHF and dysbiosis are inflammaging-oriented disorders, whereby inflammaging is common and most probably the causative mechanism driving their pathogenesis.
Collapse
Affiliation(s)
- Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.; Adelson School of Medicine, Ariel University, Ariel, Israel..
| | - Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
34
|
Baban A, Adorisio R, Corica B, Rizzo C, Calì F, Semeraro M, Taurisano R, Magliozzi M, Carrozzo R, Parisi F, Dallapiccola B, Vaz FM, Drago F, Dionisi-Vici C. Delayed appearance of 3-methylglutaconic aciduria in neonates with early onset metabolic cardiomyopathies: A potential pitfall for the diagnosis. Am J Med Genet A 2019; 182:64-70. [PMID: 31729175 DOI: 10.1002/ajmg.a.61383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Infantile onset cardiomyopathies are highly heterogeneous with several phenocopies compared with adult cardiomyopathies. Multidisciplinary management is essential in determining the underlying etiology in children's cardiomyopathy. Elevated urinary excretion of 3-methylglutaconic acid (3-MGA) is a useful tool in identifying the etiology in some metabolic cardiomyopathy. Here, we report the delayed appearance of 3-MGA-uria, between 6 and 18 months in three patients (out of 100 childhood onset cardiomyopathy) with neonatal onset cardiomyopathy, secondary to TMEM70 mutations and TAZ mutations (Barth syndrome), in whom extensive metabolic investigations, performed in the first weeks of life, did not display 3-MGA-uria. Serial retrospective evaluations showed full characteristic features of TMEM70 and TAZ mutations (Barth syndrome) in these three patients, including a clearly abnormal monolysocardiolipin/cardiolipin ratio in the two Barth syndrome patients. Serially repeated metabolic investigations finally discovered the 3-MGA-uria biomarker in all three patients between the age of 6 and 18 months. Our observation provides novel insights into the temporal appearance of 3-MGA-uria in TMEM70 and TAZ mutations (Barth syndrome) and focus the importance of multidisciplinary management and careful evaluation of family history and red flag signs for phenocopies in infantile onset cardiomyopathies.
Collapse
Affiliation(s)
- Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Rachele Adorisio
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Bernadette Corica
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Cristiano Rizzo
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Federica Calì
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Michela Semeraro
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Roberta Taurisano
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Monia Magliozzi
- Laboratories of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Rosalba Carrozzo
- Muscular and Neurodegenerative Pathology Unit, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Francesco Parisi
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Disease, Academic Medical Center, Amsterdam, The Netherlands
| | - Fabrizio Drago
- Pediatric Cardiology and Cardiac Arrhythmias Complex Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Carlo Dionisi-Vici
- Metabolic Diseases Unit, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| |
Collapse
|
35
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
37
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
38
|
Cade WT, Bohnert KL, Peterson LR, Patterson BW, Bittel AJ, Okunade AL, de las Fuentes L, Steger-May K, Bashir A, Schweitzer GG, Chacko SK, Wanders RJ, Pacak CA, Byrne BJ, Reeds DN. Blunted fat oxidation upon submaximal exercise is partially compensated by enhanced glucose metabolism in children, adolescents, and young adults with Barth syndrome. J Inherit Metab Dis 2019; 42:480-493. [PMID: 30924938 PMCID: PMC6483838 DOI: 10.1002/jimd.12094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/27/2019] [Indexed: 12/26/2022]
Abstract
Barth syndrome (BTHS) is a rare X-linked condition resulting in abnormal mitochondria, cardioskeletal myopathy, and growth delay; however, the effects of BTHS on substrate metabolism regulation and their relationships with tissue function in humans are unknown. We sought to characterize glucose and fat metabolism during rest, submaximal exercise, and postexercise rest in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardioskeletal energetics and function. Children/adolescents and young adults with BTHS (n = 29) and children/adolescent and young adult control participants (n = 28, total n = 57) underwent an infusion of 6'6'H2 glucose and U-13 C palmitate and indirect calorimetry during rest, 30-minutes of moderate exercise (50% V ˙ O 2 peak ), and recovery. Cardiac function, cardioskeletal mitochondrial energetics, and exercise capacity were examined via echocardiography, 31 P magnetic resonance spectroscopy, and peak exercise testing, respectively. The glucose turnover rate was significantly higher in individuals with BTHS during rest (33.2 ± 9.8 vs 27.2 ± 8.1 μmol/kgFFM/min, P < .01) and exercise (34.7 ± 11.2 vs 29.5 ± 8.8 μmol/kgFFM/min, P < .05) and tended to be higher postexercise (33.7 ± 10.2 vs 28.8 ± 8.0 μmol/kgFFM/min, P < .06) compared to controls. Increases in total fat (-3.9 ± 7.5 vs 10.5 ± 8.4 μmol/kgFFM/min, P < .0001) and plasma fatty acid oxidation rates (0.0 ± 1.8 vs 5.1 ± 3.9 μmol/kgFFM/min, P < .0001) from rest to exercise were severely blunted in BTHS compared to controls. Conclusion: An inability to upregulate fat metabolism during moderate intensity exercise appears to be partially compensated by elevations in glucose metabolism. Derangements in fat and glucose metabolism are characteristic of the pathophysiology of BTHS. A severely blunted ability to upregulate fat metabolism during a modest level of physical activity is a defining pathophysiologic characteristic in children, adolescents, and young adults with BTHS.
Collapse
Affiliation(s)
- W. Todd Cade
- Program in Physical Therapy, 4444 Forest Park Avenue, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kathryn L. Bohnert
- Program in Physical Therapy, 4444 Forest Park Avenue, Washington University School of Medicine, St. Louis, MO
| | - Linda R. Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Adam J. Bittel
- Program in Physical Therapy, 4444 Forest Park Avenue, Washington University School of Medicine, St. Louis, MO
| | - Adewole L. Okunade
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lisa de las Fuentes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karen Steger-May
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Adil Bashir
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL
| | | | - Shaji K. Chacko
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ronald J. Wanders
- Department of Pediatrics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Dominic N. Reeds
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
39
|
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1039-1052. [PMID: 30951877 DOI: 10.1016/j.bbalip.2019.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization. However, it remains unclear in the literature as to which is the key regulator of mitochondrial membrane biophysical properties. We review the literature to discriminate the effects of CL concentration and acyl chain composition on mitochondrial membrane organization. A widely applicable theme emerges across several pathologies, including cardiovascular diseases, diabetes, Barth syndrome, and neurodegenerative ailments. The loss of CL, often accompanied by increased levels of lyso-CLs, impairs mitochondrial inner membrane organization. Modest remodeling of CL acyl chains is not a major driver of impairments and only in cases of extreme remodeling is there an influence on membrane properties.
Collapse
|
40
|
Chang W, Xiao D, Ao X, Li M, Xu T, Wang J. Increased Dynamin‐Related Protein 1–Dependent Mitochondrial Fission Contributes to High‐Fat‐Diet‐Induced Cardiac Dysfunction and Insulin Resistance by Elevating Tafazzin in Mouse Hearts. Mol Nutr Food Res 2019; 63:e1801322. [DOI: 10.1002/mnfr.201801322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Wenguang Chang
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Dandan Xiao
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Xiang Ao
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Mengyang Li
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Tao Xu
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| | - Jianxun Wang
- Center for Regenerative MedicineInstitute for Translational MedicineQingdao University Qingdao 266021 China
| |
Collapse
|
41
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
42
|
A reference set of curated biomedical data and metadata from clinical case reports. Sci Data 2018; 5:180258. [PMID: 30457569 PMCID: PMC6244181 DOI: 10.1038/sdata.2018.258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022] Open
Abstract
Clinical case reports (CCRs) provide an important means of sharing clinical experiences about atypical disease phenotypes and new therapies. However, published case reports contain largely unstructured and heterogeneous clinical data, posing a challenge to mining relevant information. Current indexing approaches generally concern document-level features and have not been specifically designed for CCRs. To address this disparity, we developed a standardized metadata template and identified text corresponding to medical concepts within 3,100 curated CCRs spanning 15 disease groups and more than 750 reports of rare diseases. We also prepared a subset of metadata on reports on selected mitochondrial diseases and assigned ICD-10 diagnostic codes to each. The resulting resource, Metadata Acquired from Clinical Case Reports (MACCRs), contains text associated with high-level clinical concepts, including demographics, disease presentation, treatments, and outcomes for each report. Our template and MACCR set render CCRs more findable, accessible, interoperable, and reusable (FAIR) while serving as valuable resources for key user groups, including researchers, physician investigators, clinicians, data scientists, and those shaping government policies for clinical trials.
Collapse
|
43
|
Cardiac mitochondrial structure and function in tafazzin-knockdown mice. Mitochondrion 2018; 43:53-62. [DOI: 10.1016/j.mito.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/27/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022]
|
44
|
Araújo ARD, Melo T, Maciel EA, Pereira C, Morais CM, Santinha DR, Tavares JF, Oliveira H, Jurado AS, Costa V, Domingues P, Domingues MRM, Santos MAS. Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast. PLoS One 2018; 13:e0202402. [PMID: 30148852 PMCID: PMC6110467 DOI: 10.1371/journal.pone.0202402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10−4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.
Collapse
Affiliation(s)
- Ana Rita D. Araújo
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Elisabete A. Maciel
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Clara Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina M. Morais
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Deolinda R. Santinha
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Joana F. Tavares
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
| | - Helena Oliveira
- Laboratory of Biotechnology and Cytomics, Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Amália S. Jurado
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vítor Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Maria Rosário M. Domingues
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
- * E-mail: (MASS); (MRMD)
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- * E-mail: (MASS); (MRMD)
| |
Collapse
|
45
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
46
|
Johnson JM, Ferrara PJ, Verkerke ARP, Coleman CB, Wentzler EJ, Neufer PD, Kew KA, de Castro Brás LE, Funai K. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome. J Mol Cell Cardiol 2018; 121:94-102. [PMID: 30008435 DOI: 10.1016/j.yjmcc.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022]
Abstract
Barth Syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy and muscle weakness. The underlying cause of BTHS is a mutation in the tafazzin (TAZ) gene, a key enzyme of cardiolipin biosynthesis. The lack of CL arising from loss of TAZ function results in destabilization of the electron transport system, promoting oxidative stress that is thought to contribute to development of cardioskeletal myopathy. Indeed, in vitro studies demonstrate that mitochondria-targeted antioxidants improve contractile capacity in TAZ-deficient cardiomyocytes. The purpose of the present study was to determine if resolving mitochondrial oxidative stress would be sufficient to prevent cardiomyopathy and skeletal myopathy in vivo using a mouse model of BTHS. To this end we crossed mice that overexpress catalase in the mitochondria (MCAT mice) with TAZ-deficient mice (TAZKD) to produce TAZKD mice that selectively overexpress catalase in the mitochondria (TAZKD+MCAT mice). TAZKD+MCAT mice exhibited decreased mitochondrial H2O2 emission and lipid peroxidation compared to TAZKD littermates, indicating decreased oxidative stress. Despite the improvements in oxidative stress, TAZKD+MCAT mice developed cardiomyopathy and mild muscle weakness similar to TAZKD littermates. These findings indicate that resolving oxidative stress is not sufficient to suppress cardioskeletal myopathy associated with BTHS.
Collapse
Affiliation(s)
- Jordan M Johnson
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Patrick J Ferrara
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Anthony R P Verkerke
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chanel B Coleman
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Edward J Wentzler
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Kimberly A Kew
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA; Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Li H, Xu W, Jiang L, Gu H, Li M, Zhang J, Guo W, Deng P, Long H, Bu Q, Tian J, Zhao Y, Cen X. Lipidomic signature of serum from the rats exposed to alcohol for one year. Toxicol Lett 2018; 294:166-176. [PMID: 29758358 DOI: 10.1016/j.toxlet.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Although the mechanism of alcohol-related disorders has been widely investigated, serum metabolites associated with long-term alcohol intake have not been well explored. In this study, we aimed to investigate the profiles of serum metabolites and lipid species of rats chronically exposed to alcohol, which may be involved in the pathogenesis of alcohol-associated disease. An 1H NMR-based metabolomics and Q-TOF/MS-based lipidomics approach were applied to investigate the profile of serum metabolites and lipid species of rats administrated daily with alcohol (12% vol/vol, 10 ml/kg per day, i.g.) for one year continuously. The rats administered with sterile water (10 ml/kg per day, i.g.) were used as control. We found that alcohol affected mostly the lipid species rather than small molecule metabolites in the serum of both female and male rats. Among the modified lipids, glycerophospholipid, sphingolipid and glycerolipids metabolism pathways were profoundly altered. The prominent changes in lipid profiles included diacylglycerol (DG), lysophosphatidylcholine (LysoPC), phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triacylglycerol (TG). Moreover, fatty-acyl profile of lipids and total degree of unsaturation of fatty acid were also significantly altered by alcohol. The modified lipidomic profile may help to understand the pathogenesis of alcohol-associated diseases and also be of value for clinical evaluation of alcohol abuse, alcohol-associated disease diagnosis.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Menglu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China
| | - Jingwei Tian
- College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
48
|
de Taffin de Tilques M, Lasserre JP, Godard F, Sardin E, Bouhier M, Le Guedard M, Kucharczyk R, Petit PX, Testet E, di Rago JP, Tribouillard-Tanvier D. Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells. ACTA ACUST UNITED AC 2018; 5:220-232. [PMID: 29796387 PMCID: PMC5961916 DOI: 10.15698/mic2018.05.629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Maxence de Taffin de Tilques
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Marina Le Guedard
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France.,LEB Aquitaine Transfert-ADERA, FR-33883 Villenave d'Ornon, Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Patrice X Petit
- CNRS FR3636 Fédération de recherché en Neuroscience, Université Paris-Descartes, 45, rue des Saints-Pères, 75006 Paris, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| |
Collapse
|
49
|
Imai-Okazaki A, Kishita Y, Kohda M, Yatsuka Y, Hirata T, Mizuno Y, Harashima H, Hirono K, Ichida F, Noguchi A, Yoshida M, Tokorodani C, Nishiuchi R, Takeda A, Nakaya A, Sakata Y, Murayama K, Ohtake A, Okazaki Y. Barth Syndrome: Different Approaches to Diagnosis. J Pediatr 2018; 193:256-260. [PMID: 29249525 DOI: 10.1016/j.jpeds.2017.09.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/18/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
The diagnosis of Barth syndrome is challenging owing to the wide phenotypic spectrum with allelic heterogeneity. Here we report 3 cases of Barth syndrome with phenotypic and allelic heterogeneity that were diagnosed by different approaches, including whole exome sequencing and final confirmation by reverse-transcription polymease chain reaction.
Collapse
Affiliation(s)
- Atsuko Imai-Okazaki
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Genomic Medicine Research, Medical Genomics Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihito Kishita
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yukiko Yatsuka
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Tomoko Hirata
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroko Harashima
- Department of Pediatrics, Saitama Medical University, Saitama, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Fukiko Ichida
- Department of Pediatrics, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Atsuko Noguchi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita, Japan
| | - Masayuki Yoshida
- Department of Molecular Pathology and Tumor Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Chiho Tokorodani
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Ritsuo Nishiuchi
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Saitama, Japan; Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
50
|
Hershberger RE, Morales A, Cowan J. Is Left Ventricular Noncompaction a Trait, Phenotype, or Disease? ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001968. [DOI: 10.1161/circgenetics.117.001968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ray E. Hershberger
- From the Division of Human Genetics, Department of Internal Medicine (R.E.H, A.M., J.C) and Division of Cardiovascular Medicine (R.E.H), Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus
| | - Ana Morales
- From the Division of Human Genetics, Department of Internal Medicine (R.E.H, A.M., J.C) and Division of Cardiovascular Medicine (R.E.H), Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus
| | - Jason Cowan
- From the Division of Human Genetics, Department of Internal Medicine (R.E.H, A.M., J.C) and Division of Cardiovascular Medicine (R.E.H), Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus
| |
Collapse
|