1
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
2
|
Ren N, Lv S, Li X, Shao C, Wang Z, Mei Y, Yang W, Fu W, Hu Y, Sha L, Hu W, Zhang Z, Wang C. Clinical features, treatment, and follow-up of OPPG and high-bone-mass disorders: LRP5 is a key regulator of bone mass. Osteoporos Int 2024; 35:1395-1406. [PMID: 38625381 PMCID: PMC11281985 DOI: 10.1007/s00198-024-07080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.
Collapse
Affiliation(s)
- Na Ren
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Shanshan Lv
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Xiang Li
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Chong Shao
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ziyuan Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yazhao Mei
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wendi Yang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wenzhen Fu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yunqiu Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ling Sha
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Weiwei Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| | - Chun Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
3
|
Busse E, Lee B, Nagamani SCS. Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Curr Osteoporos Rep 2024; 22:308-317. [PMID: 38600318 DOI: 10.1007/s11914-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis. RECENT FINDINGS Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment. Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.
Collapse
Affiliation(s)
- Emily Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Abdel-Hamid MS, Elhossini RM, Otaify GA, Abdel-Ghafar SF, Aglan MS. Osteoporosis-pseudoglioma syndrome in four new patients: identification of two novel LRP5 variants and insights on patients' management using bisphosphonates therapy. Osteoporos Int 2022; 33:1501-1510. [PMID: 35106624 DOI: 10.1007/s00198-022-06313-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
UNLABELLED This study describes the clinical, radiological, and molecular data of four new patients with osteoporosis-pseudoglioma syndrome and assesses their response to bisphosphonate therapy. INTRODUCTION Osteoporosis-pseudoglioma syndrome (OPPG) is a very rare disorder characterized mainly by severe juvenile osteoporosis and congenital blindness. OPPG is caused by biallelic mutations in the gene encoding low-density lipoprotein receptor-related protein 5 (LRP5). METHODS We present the clinical, radiological, and molecular findings of four new patients with OPPG from Egypt. We also assessed patients' response to oral and intravenous bisphosphonate therapy. RESULTS All patients had reduced bone mineral density (BMD) with variable number of fractures per year, in addition to bone abnormalities and the characteristic eye phenotype associated with OPPG. Mutation analyses of LRP5 gene revealed three different homozygous variants including two novel ones, c.7delG (p.A3Qfs*80) and c.3280G > A (p.E1094K). The c.3280G > A (p.E1094K) was recurrent in two unrelated patients who shared a unique haplotype suggesting a possible founder effect. The use of bisphosphonate therapy was beneficial; however, intravenous bisphosphonate administration led to a more favorable response. CONCLUSION Our study described the phenotypic and genetic features of four patients with OPPG and identified two new LRP5 variants, thus expanding the mutational spectrum of OPPG. In addition, our study reinforces the efficiency of using intravenous bisphosphonates in the management of patients with OPPG.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Tahrir street, Dokki, Cairo, Egypt.
| | - Rasha M Elhossini
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Ghada A Otaify
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Tahrir street, Dokki, Cairo, Egypt
| | - Mona S Aglan
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Garg B, Tomar N, Biswas A, Mehta N, Malhotra R. Understanding Musculoskeletal Disorders Through Next-Generation Sequencing. JBJS Rev 2022; 10:01874474-202204000-00001. [PMID: 35383688 DOI: 10.2106/jbjs.rvw.21.00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» An insight into musculoskeletal disorders through advancements in next-generation sequencing (NGS) promises to maximize benefits and improve outcomes through improved genetic diagnosis. » The primary use of whole exome sequencing (WES) for musculoskeletal disorders is to identify functionally relevant variants. » The current evidence has shown the superiority of NGS over conventional genotyping for identifying novel and rare genetic variants in patients with musculoskeletal disorders, due to its high throughput and low cost. » Genes identified in patients with scoliosis, osteoporosis, osteoarthritis, and osteogenesis imperfecta using NGS technologies are listed for further reference.
Collapse
Affiliation(s)
- Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
7
|
Whole-Gene Deletions of FZD4 Cause Familial Exudative Vitreoretinopathy. Genes (Basel) 2021; 12:genes12070980. [PMID: 34199009 PMCID: PMC8306649 DOI: 10.3390/genes12070980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disorder characterized by abnormalities in the retinal vasculature. The FZD4 gene is associated with FEVR, but the prevalence and impact of FZD4 copy number variation (CNV) on FEVR patients are unknown. The aim of this study was to better understand the genetic features and clinical manifestations of patients with FZD4 CNVs. A total of 651 FEVR families were recruited. Families negative for mutations in FEVR-associated genes were selected for CNV analysis using SeqCNV. Semiquantitative multiplex polymerase chain reaction and multiplex ligation-dependent probe amplification were conducted to verify the CNVs. Four probands were found to carry whole-gene deletions of FZD4, accounting for 5% (4/80) of probands with FZD4 mutations and 0.6% (4/651) of all FEVR probands. The four probands exhibited similar phenotypes of unilateral retinal folds. FEVR in probands with CNVs was not more severe than in probands with FZD4 missense mutations (p = 1.000). Although this is the first report of FZD4 CNVs and the associated phenotypes, the interpretation of FZD4 CNVs should be emphasized when analyzing the next-generation sequencing data of FEVR patients because of their high prevalence.
Collapse
|
8
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
9
|
Astiazarán MC, Cervantes-Sodi M, Rebolledo-Enríquez E, Chacón-Camacho O, Villegas V, Zenteno JC. Novel Homozygous LRP5 Mutations in Mexican Patients with Osteoporosis-Pseudoglioma Syndrome. Genet Test Mol Biomarkers 2017; 21:742-746. [PMID: 29131652 DOI: 10.1089/gtmb.2017.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Osteoporosis-pseudoglioma syndrome (OPPG) is an uncommon autosomal recessive disorder characterized by the rare association of early-onset osteoporosis and severe ocular abnormalities such as persistent fetal vasculature and microphthalmia. Biallelic mutations in the low-density lipoprotein receptor-related protein-5 gene (LRP5) have been associated with OPPG. We present clinical and genetic data from three Mexican OPPG patients, a pair of sibs, and a sporadic case. MATERIALS AND METHODS Three patients underwent clinical examination, including a complete ophthalmic evaluation. Based on the clinical diagnosis of OPPG, the entire coding sequence of LRP5 was polymerase chain reaction-amplified and directly Sanger-sequenced. Genetic testing was extended to the parents of the affected patients. RESULTS Phenotypic variability was observed in the familial case and molecular analysis identified a novel homozygous c.1145C>T, p.(Pro382Leu) variant in both sibs. As expected, their parents were heterozygous carriers. The sporadic patient exhibited a severe osseous phenotype, microphthalmia, and neurological symptoms. In this patient, homozygosity for the c.442C>T, p.(Gln148*) variant was demonstrated, whereas her parents were heterozygous carriers. The p.(Pro382Leu) pathogenic mutation has been previously reported only in a compound heterozygous state in OPPG patients. CONCLUSIONS Two novel homozygous missense and nonsense variants were demonstrated in three OPPG cases from Mexico. Our results expand the spectrum of disease-causing LRP5 mutations. This is the first report of OPPG in our population and our findings may potentially add to a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Mirena C Astiazarán
- 1 Research Unit, Genetics Department, Institute of Ophthalmology , "Conde de Valenciana," Mexico City, Mexico
| | - María Cervantes-Sodi
- 2 Departamento Clínico de Genética Médica, Hospital de Pediatría , Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Oscar Chacón-Camacho
- 1 Research Unit, Genetics Department, Institute of Ophthalmology , "Conde de Valenciana," Mexico City, Mexico
| | - Vanessa Villegas
- 1 Research Unit, Genetics Department, Institute of Ophthalmology , "Conde de Valenciana," Mexico City, Mexico
| | - Juan Carlos Zenteno
- 1 Research Unit, Genetics Department, Institute of Ophthalmology , "Conde de Valenciana," Mexico City, Mexico .,4 Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico , Mexico City, Mexico
| |
Collapse
|
10
|
Pekkinen M, Grigelioniene G, Akin L, Shah K, Karaer K, Kurtoğlu S, Ekbote A, Aycan Z, Sağsak E, Danda S, Åström E, Mäkitie O. Novel mutations in the LRP5 gene in patients with Osteoporosis-pseudoglioma syndrome. Am J Med Genet A 2017; 173:3132-3135. [PMID: 29055141 DOI: 10.1002/ajmg.a.38491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Minna Pekkinen
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Giedre Grigelioniene
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Leyla Akin
- Erciyes University, Faculty of Medicine, Department of Pediatric Endocrinology, Turkey
| | - Krati Shah
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Kadri Karaer
- Intergen, Genetic Diagnosis Research and Application Center, Ankara, Turkey
| | - Selim Kurtoğlu
- Erciyes University, Faculty of Medicine, Department of Pediatric Endocrinology, Turkey
| | - Alka Ekbote
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Zehra Aycan
- Dr.Sami Ulus Children's Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Elif Sağsak
- Dr.Sami Ulus Children's Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital Vellore, India
| | - Eva Åström
- Department of Woman and Child Health, Karolinska Institutet and Pediatric Neurology, Astrid Lindgren Children's Hospital at Karolinska University Hospital, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass. Mol Cell Endocrinol 2016; 432:3-13. [PMID: 26747728 DOI: 10.1016/j.mce.2015.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/16/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Bone mineral density (BMD) is a quantitative traits used as a surrogate phenotype for the diagnosis of osteoporosis, a common metabolic disorder characterized by increased fracture risk as a result of a decreased bone mass and deterioration of the microarchitecture of the bone. Normal variation in BMD is determined by both environmental and genetic factors. According to heritability studies, 50-85% of the variance in BMD is controlled by genetic factors which are mostly polygenic. In contrast to the complex etiology of osteoporosis, there are disorders with deviating BMD values caused by one mutation with a large impact. These mutations can result in monogenic bone disorders with either an extreme high (sclerosteosis, Van Buchem disease, osteopetrosis, high bone mass phenotype) or low BMD (osteogenesis imperfecta, juvenile osteoporosis, primary osteoporosis). Identification of the disease causing genes, increased the knowledge on the regulation of BMD and highlighted important signaling pathways and novel therapeutic targets such as sclerostin, RANKL and cathepsin K. Genetic variation in genes involved in these pathways are often also involved in the regulation of normal variation in BMD and osteoporosis susceptibility. In the last decades, identification of genetic factors regulating BMD has proven to be a challenge. Several approaches have been tested such as linkage studies and candidate and genome wide association studies. Although, throughout the years, technological developments made it possible to study increasing numbers of genetic variants in populations with increasing sample sizes at the same time, only a small fraction of the genetic impact can yet be explained. In order to elucidate the missing heritability, the focus shifted to studying the role of rare variants, copy number variations and epigenetic influences. This review summarizes the genetic cause of different monogenic bone disorders with deviating BMD and the knowledge on genetic factors explaining normal variation in BMD and osteoporosis risk.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Igor Fijalkowski
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
12
|
Kramer GD, Say EAT, Shields CL. Simultaneous Novel Mutations of LRP5 and TSPAN12 in a Case of Familial Exudative Vitreoretinopathy. J Pediatr Ophthalmol Strabismus 2016; 53 Online:e1-5. [PMID: 27007396 DOI: 10.3928/01913913-20151215-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022]
Abstract
Familial exudative vitreoretinopathy and osteoporosis pseudoglioma syndrome are conditions that result from mutations in the LRP5 gene. Persistent fetal vasculature is a rare congenital malformation that can mimic end-stage familial exudative vitreoretinopathy. The authors report a case of familial exudative vitreoretinopathy in the spectrum of osteoporosis pseudoglioma syndrome associated with novel mutations of the LRP5 and TSPAN12 genes that resulted in a phenotype similar to bilateral persistent fetal vasculature. Both conditions can result in bilateral early-onset blindness. A high index of suspicion, dilated fundus examination and angiography of the parents, and genetic testing are necessary to ensure a correct diagnosis.
Collapse
|
13
|
Alternative splicing within the Wnt signaling pathway: role in cancer development. Cell Oncol (Dordr) 2016; 39:1-13. [PMID: 26762488 DOI: 10.1007/s13402-015-0266-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Wnt signaling cascade plays a fundamental role in embryonic development, adult tissue regeneration, homeostasis and stem cell maintenance. Abnormal Wnt signaling has been found to be prevalent in various human cancers. Also, a role of Wnt signaling in the regulation of alternative splicing of several cancer-related genes has been established. In addition, accumulating evidence suggests the existence of multiple splice isoforms of Wnt signaling cascade components, including Wnt ligands, receptors, components of the destruction complex and transcription activators/suppressors. The presence of multiple Wnt signaling-related isoforms may affect the functionality of the Wnt pathway, including its deregulation in cancer. As such, specific Wnt pathway isoform components may serve as therapeutic targets or as biomarkers for certain human cancers. Here, we review the role of alternative splicing of Wnt signaling components during the onset and progression of cancer. CONCLUSIONS Splice isoforms of components of the Wnt signaling pathway play distinct roles in cancer development. Isoforms of the same component may function in a tissue- and/or cancer-specific manner. Splice isoform expression analyses along with deregulated Wnt signaling pathway analyses may be of help to design efficient diagnostic and therapeutic strategies.
Collapse
|
14
|
Berndt A, Ackert-Bicknell C, Silva KA, Kennedy VE, Sundberg BA, Cates JM, Schofield PN, Sundberg JP. Genetic determinants of fibro-osseous lesions in aged inbred mice. Exp Mol Pathol 2015; 100:92-100. [PMID: 26589134 DOI: 10.1016/j.yexmp.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Fibro-osseous lesions in mice are progressive aging changes in which the bone marrow is replaced to various degrees by fibrovascular stroma and bony trabeculae in a wide variety of bones. The frequency and severity varied greatly among 28 different inbred mouse stains, predominantly affecting females, ranging from 0% for 10 strains to 100% for KK/HlJ and NZW/LacJ female mice. Few lesions were observed in male mice and for 23 of the strains, no lesions were observed in males for any of the cohorts. There were no significant correlations between strain-specific severities of fibro-osseous lesions and ovarian (r=0.11; P=0.57) or endometrial (r=0.03; P=0.89) cyst formation frequency or abnormalities in parathyroid glands. Frequency of fibro-osseous lesions was most strongly associated (P<10(-6)) with genome variations on chromosome (Chr) 8 at 90.6 and 90.8Mb (rs33108071, rs33500669; P=5.0·10(-10), 1.3·10(-6)), Chr 15 at 23.6 and 23.8Mb (rs32087871, rs45770368; P=7.3·10(-7), 2.7·10(-6)), and Chr 19 at 33.2, 33.4, and 33.6Mb (rs311004232, rs30524929, rs30448815; P=2.8·10(-6), 2.8·10(-6), 2.8·10(-6)) in genome-wide association studies (GWAS). The relatively large number of candidate genes identified in the GWAS analyses suggests that this may be an extremely complex polygenic disease. These results indicate that fibro-osseous lesions are surprisingly common in many inbred strains of laboratory mice as they age. While this presents little problem in most studies that utilize young animals, it may complicate aging studies, particularly those focused on bone.
Collapse
Affiliation(s)
- Annerose Berndt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | | | | | | - Justin M Cates
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| | - Paul N Schofield
- The Jackson Laboratory, Bar Harbor, ME, United States; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
15
|
Mitchell JA, Chesi A, Elci O, McCormack SE, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Zemel BS, Grant SFA. Genetics of Bone Mass in Childhood and Adolescence: Effects of Sex and Maturation Interactions. J Bone Miner Res 2015; 30:1676-83. [PMID: 25762182 PMCID: PMC4839534 DOI: 10.1002/jbmr.2508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/20/2014] [Accepted: 03/08/2015] [Indexed: 11/10/2022]
Abstract
We aimed to determine if adult bone mineral density (BMD) susceptibility loci were associated with pediatric bone mass and density, and if sex and pubertal stage influenced any association. We analyzed prospective areal BMD (aBMD) and bone mineral content (BMC) data from the Bone Mineral Density in Childhood Study (n = 603, European ancestry, 54% female). Linear mixed models were used to assess if 77 single-nucleotide polymorphisms (SNPs) near known adult BMD susceptibility loci interacted with sex and pubertal stage to influence the aBMD/BMC; adjusting for age, BMI, physical activity, and dietary calcium. The strongest main association was observed between an SNP near C7orf58 and distal radius aBMD. However, this association had a significant sex • SNP interaction, revealing a significant association only in females (b = -0.32, p = 1.8 × 10(-6)). Furthermore, the C12orf23 locus had significant interactions with both sex and pubertal stage, revealing associations in females during Tanner stage I for total hip aBMD (b = 0.24, p = 0.001) and femoral neck aBMD (b = 0.27, p = 3.0 × 10(-5)). In contrast, the sex • SNP interactions for loci near LRP5 and WNT16 uncovered associations that were only in males for total body less head BMC (b = 0.22, p = 4.4 × 10(-4)) and distal radius aBMD (b = 0.27, p = 0.001), respectively. Furthermore, the LRP5 locus interacted with both sex and pubertal stage, demonstrating associations that were exclusively in males during Tanner V for total hip aBMD (b = 0.29, p = 0.003). In total, significant sex • SNP interactions were found at 15 loci; pubertal stage • SNP interactions at 23 loci and 19 loci interacted with both sex and pubertal stage. In conclusion, variants originally associated with adult BMD influence bone mass in children of European ancestry, highlighting the fact that many of these loci operate early in life. However, the direction and magnitude of associations for a large number of SNPs only became evident when accounting for sex and maturation.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Biostatistics and Data Management Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Heidi J Kalkwarf
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| |
Collapse
|
16
|
Abstract
A dozen years ago the identification of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene involved in two rare bone disorders propelled research in the bone field in totally new directions. Since then, there have been an explosion in the number of reports that highlight the role of the Wnt/β-catenin pathway in the regulation of bone homeostasis. In this review we discuss some of the most recent reports (in the past 2 years) highlighting the involvement of the members of the LRP family (LRP5, LRP6, LRP4, and more recently LRP8) in the maintenance of bone and their implications in bone diseases. These reports include records of new single nucleotides polymorphisms (SNPs) and haplotypes that suggest variants in these genes can contribute to subtle variation in bone traits to mutations that give rise to extreme bone phenotypes. All of these serve to further support and reinforce the importance of this tightly regulated pathway in bone. Furthermore, we discuss provocative reports suggesting novel approaches through inhibitors of this pathway to treat rarer diseases such as Osteoporosis-Pseudoglioma Syndrome (OPPG), Osteogenesis Imperfecta (OI), and Sclerosteosis/Van Buchem disease. It is hoped that by understanding the role of each component of the pathway and their involvement in bone diseases that this knowledge will allow us to develop new, more effective therapeutic approaches for more common diseases such as post-menopausal osteoporosis, osteoarthritis, and rheumatoid arthritis as well as these rarer bone diseases.
Collapse
Affiliation(s)
- N Lara-Castillo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA,
| | | |
Collapse
|
17
|
Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015; 11:462-74. [PMID: 25900210 DOI: 10.1038/nrrheum.2015.48] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a common disorder, affecting hundreds of millions of people worldwide, and characterized by decreased bone mineral density and increased fracture risk. Known nonheritable risk factors for primary osteoporosis include advanced age, sex-steroid deficiency and increased oxidative stress. Age is a nonmodifiable risk factor, but the influence of a person's lifestyle (diet and physical activity) on their bone structure and density is modifiable to some extent. Heritable factors influencing bone fragility can be monogenic or polygenic. Osteogenesis imperfecta, juvenile osteoporosis and syndromes of decreased bone density are discussed as examples of monogenic disorders associated with bone fragility. So far, the factors associated with polygenic osteoporosis have been investigated mainly in genome-wide association studies. However, epigenetic mechanisms also contribute to the heritability of polygenic osteoporosis. Identification of these heritable and nonheritable risk factors has already led to the discovery of therapeutic targets for osteoporosis, which emphasizes the importance of research into the pathogenetic mechanisms of osteoporosis. Accordingly, this article discusses the many heritable and nonheritable factors that contribute to the pathogenesis of primary osteoporosis. Although osteoporosis can also develop secondary to many other diseases or their treatment, a discussion of the factors that contribute only to secondary osteoporosis is beyond the scope of this Review.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| |
Collapse
|
18
|
Alonso N, Soares DC, V McCloskey E, Summers GD, Ralston SH, Gregson CL. Atypical femoral fracture in osteoporosis pseudoglioma syndrome associated with two novel compound heterozygous mutations in LRP5. J Bone Miner Res 2015; 30:615-20. [PMID: 25384351 DOI: 10.1002/jbmr.2403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022]
Abstract
Osteoporosis pseudoglioma syndrome (OPPG) is a rare autosomal recessive condition of congenital blindness and severe childhood osteoporosis with skeletal fragility, caused by loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. We report the first case of atypical (subtrochanteric) femoral fracture (AFF) in OPPG, occurring in a 38-year-old man within the context of relatively low bone turnover and trabecular osteoporosis on bone histology. We identify two novel LRP5 mutations: R752W is associated with low bone mineral density (BMD), as demonstrated by the heterozygous carriage identified in his 57-year-old mother; however, the combination of this R752W mutation with another novel W79R mutation, causes a severe case of compound heterozygous OPPG. We undertake 3D homology modeling of the four extracellular YWTD β-propeller/EGF-like domains (E1-E4) of LRP5, and show that both novel mutations destabilize the β-propeller domains that are critical for protein and ligand binding to regulate Wnt signaling and osteoblast function. Although AFFs have been reported in other rare bone diseases, this is the first in a genetic condition of primary osteoblast dysfunction. The relatively low bone turnover observed, and knowledge of LRP5 function, implicates impaired bone remodeling in the pathogenesis of AFF.
Collapse
Affiliation(s)
- Nerea Alonso
- Rheumatic Diseases Unit, Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
19
|
Eghbali-Fatourechi G. Bisphosphonate therapy in pediatric patients. J Diabetes Metab Disord 2014; 13:109. [PMID: 25551100 PMCID: PMC4279811 DOI: 10.1186/s40200-014-0109-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/04/2014] [Indexed: 01/18/2023]
Abstract
Although for many decades bisphosphonates were used for adult bone loss, bisphosphonate administration in pediatric patients is new and was initiated in the past 15-year. The indications for pediatric bisphosphonates was extended to childhood malignancies with bone involvement, after additional effects were unveiled for bisphosphonates with recent research. In this article we review childhood bone loss and conditions with bone involvement in which bisphosphonate therapy have been used. We also review mechanisms of action of bisphosphonates, and present indications of bisphosphonate therapy in pediatric patients based on results of clinical trials.
Collapse
Affiliation(s)
- Guiti Eghbali-Fatourechi
- Affiliate Professor of Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran ; Affiliate Faculty of University College of Omran and Tosseh, Hamedan, Iran
| |
Collapse
|
20
|
Stagi S, Cavalli L, Seminara S, de Martino M, Brandi ML. The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Ital J Pediatr 2014; 40:55. [PMID: 24906390 PMCID: PMC4064514 DOI: 10.1186/1824-7288-40-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023] Open
Abstract
In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | | | | | | |
Collapse
|
21
|
Belfield EJ, Brown C, Gan X, Jiang C, Baban D, Mithani A, Mott R, Ragoussis J, Harberd NP. Microarray-based ultra-high resolution discovery of genomic deletion mutations. BMC Genomics 2014; 15:224. [PMID: 24655320 PMCID: PMC3998191 DOI: 10.1186/1471-2164-15-224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/28/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. RESULTS Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. CONCLUSIONS Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
22
|
Fan X, Tang L. Aberrant and alternative splicing in skeletal system disease. Gene 2013; 528:21-6. [PMID: 23800666 DOI: 10.1016/j.gene.2013.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/24/2013] [Accepted: 06/08/2013] [Indexed: 11/19/2022]
Abstract
The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
23
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
24
|
Go GW, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. YALE JOURNAL OF BIOLOGY AND MEDICINE 2012. [PMID: 22461740 DOI: 10.1002/9780470015902.a0006138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The LDLR family of proteins is involved in lipoproteins trafficking. While the role of LDLR in cardiovascular disease has been widely studied, only recently the role of other members of the LDLR proteins in lipoprotein homeostasis and atherosclerosis has emerged. LDLR, VLDLR, and LRPs bind and internalize apoE- and apoB-containing lipoprotein, including LDL and VLDL, and regulate their cellular uptake. LRP6 is a unique member of this family for its function as a co-receptor for Wnt signal transduction. The work in our laboratory has shown that LRP6 also plays a key role in lipoprotein and TG clearance, glucose homoeostasis, and atherosclerosis. The role of these receptor proteins in pathogenesis of diverse metabolic risk factors is emerging, rendering them targets of novel therapeutics for metabolic syndrome and atherosclerosis. This manuscript reviews the physiological role of the LDLR family of proteins and describes its involvement in pathogenesis of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Gwang-Woong Go
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
25
|
LRP5 and bone mass regulation: Where are we now? BONEKEY REPORTS 2012; 1:1. [PMID: 23951413 DOI: 10.1038/bonekey.2012.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/13/2022]
Abstract
The discovery of causal mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene underlying conditions of altered bone mass ushered in a new era in bone research. Since those original publications, the role of Lrp5 and the Wnt/β-catenin signaling pathway controlled by Lrp5 and its homologs, Lrp6 and Lrp4, in bone mass regulation has been an intense area of investigation. Studies to date have implicated this pathway in skeletal development, osteoblast differentiation and proliferation, osteoblast/osteocyte apoptosis, regulation of the balance between osteogenesis-chondrogenesis-adipogenesis, regulation of osteoclastogenesis and the response of bone to mechanical loading. Interestingly, the data from knockout and transgenic mice involving Lrp4/5/6 and/or their regulators, as well as β-catenin signaling pathway components, and in vitro studies have sometimes yielded conflicting results. Adding to the complexity of the system are the studies that suggested Lrp5 regulated bone mass through a gut-bone endocrine signaling system involving Lrp5 mediated control of gut serotonin synthesis. However, recent studies have called this into question and so this provocative concept remains an open question. Clearly, the manipulation of Lrp5/Wnt/β-catenin pathway presents as a major target for drug development to treat diseases of low bone mass such as osteoporosis and these new therapies are in full progress. At present, although it is clear that Lrp5 has a role in bone mass regulation, much of the details remain to be elucidated and this is a major and exciting challenge for future studies.
Collapse
|
26
|
Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). Eur J Hum Genet 2011; 19:875-81. [PMID: 21407258 DOI: 10.1038/ejhg.2011.42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis-pseudoglioma sydrome (OPPG) is an autosomal recessive disorder with early-onset severe osteoporosis and blindness, caused by biallelic loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Heterozygous carriers exhibit a milder bone phenotype. Only a few splice mutations in LRP5 have been published. We present clinical and genetic data for four patients with novel LRP5 mutations, three of which affect splicing. Patients were evaluated clinically and by radiography and bone densitometry. Genetic screening of LRP5 was performed on the basis of the clinical diagnosis of OPPG. Splice aberrances were confirmed by cDNA sequencing or exon trapping. The effect of one splice mutation on LRP5 protein function was studied. A novel splice-site mutation c.1584+4A>T abolished the donor splice site of exon 7 and activated a cryptic splice site, which led to an in-frame insertion of 21 amino acids (p.E528_V529ins21). Functional studies revealed severely impaired signal transduction presumably caused by defective intracellular transport of the mutated receptor. Exon trapping was used on two samples to confirm that splice-site mutations c.4112-2A>G and c.1015+1G>T caused splicing-out of exons 20 and 5, respectively. One patient carried a homozygous deletion of exon 4 causing the loss of exons 4 and 5, as demonstrated by cDNA analysis. Our results broaden the spectrum of mutations in LRP5 and provide the first functional data on splice aberrations.
Collapse
|
27
|
Kato T, Sato H, Emi M, Seino T, Arawaka S, Iseki C, Takahashi Y, Wada M, Kawanami T. Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med 2011; 50:297-303. [PMID: 21325761 DOI: 10.2169/internalmedicine.50.4505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Idiopathic normal pressure hydrocephalus (iNPH) is clinically important as a treatable gait disturbance or preventable dementia by shunt operation. We have recently reported that approximately 1.5% of the elderly living in a Japanese community showed ventriculomegaly with features of iNPH on MRI (VIM), which may represent a preclinical stage of iNPH. The purpose of the present study was to identify a possible genetic change in VIM subjects. METHODS Eight subjects with VIM and 10 healthy individuals were examined for copy number variations (CNV) with a CNV-targeted whole-genome oligonucleotide microarray (Agilent 400 K CNV array). Another panel of 100 healthy Japanese individuals was screened for CNV by whole-genome using the deCODE-Illumina CNV 370 K chip. Immunohistochemical examination of the human brain was performed using an avidin-biotin-peroxidase complex method. RESULTS Among several genetic changes observed, a copy number loss within the SFMBT1 gene was seen in half of the VIM cases (4 of 8 cases), that was rare among the Japanese control subjects (0/10 by Agilent 400 K CNV array or 1/100 by deCODE/Illumina CNV 370 K chip). Immunohistochemical examination of the human brain revealed that the SFMBT1 protein was localized mainly in the arterial walls, the ependymal cells, and the epithelium of the choroid plexus, all of which play a crucial role in the CSF circulation. CONCLUSION A segmental copy number loss of the SFMBT1 gene may be involved in the pathological process in some individuals with VIM/iNPH.
Collapse
Affiliation(s)
- Takeo Kato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|