1
|
Haviland I, Hector RD, Swanson LC, Verran AS, Sherrill E, Frazier Z, Denny AM, Lucash J, Zhang B, Dubbs HA, Marsh ED, Weisenberg JL, Leonard H, Crippa M, Cogliati F, Russo S, Suter B, Rajaraman R, Percy AK, Schreiber JM, Demarest S, Benke TA, Chopra M, Yu TW, Olson HE. Deletions in the CDKL5 5' untranslated region lead to CDKL5 deficiency disorder. Am J Med Genet A 2025; 197:e63843. [PMID: 39205479 PMCID: PMC11637933 DOI: 10.1002/ajmg.a.63843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR. All individuals presented characteristic features of CDD, including medically refractory infantile-onset epilepsy, global developmental delay, and visual impairment. We performed RNA sequencing on fibroblast samples from three individuals with small deletions involving exons 1 and/or 1a/1b only. Results demonstrated reduced CDKL5 mRNA expression with no evidence of expression from alternatively spliced first exons. Our study broadens the genotypic spectrum for CDD by adding to existing evidence that deletions affecting the 5' UTR of the CDKL5 gene are associated with the disorder. We propose that smaller 5' UTR deletions may require additional molecular testing approaches such as RNA sequencing to determine pathogenicity.
Collapse
Affiliation(s)
- Isabel Haviland
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lindsay C Swanson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aubrie Soucy Verran
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emma Sherrill
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Zoë Frazier
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - AnneMarie M Denny
- Division of Pediatric Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenna Lucash
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Holly A Dubbs
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Judith L Weisenberg
- Department of Pediatric Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesca Cogliati
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Bernhard Suter
- Division of Child Neurology, Texas Children's Hospital, Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Rajsekar Rajaraman
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John M Schreiber
- Division of Epilepsy, Neurophysiology, and Critical Care Neurology, Children's National Hospital, Washington, DC, USA
| | - Scott Demarest
- Department of Pediatrics and Neurology, Precision Medicine Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Timothy A Benke
- Department of Pediatrics, Pharmacology and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Maya Chopra
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W Yu
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heather E Olson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
3
|
Amato A, Bonomo G, Bonomo R, Proietti J, Darra F. Longitudinal, multidimensional, observational study of 15 patients with CDKL5 Deficiency Disorder. Clin Neurol Neurosurg 2024; 246:108603. [PMID: 39433014 DOI: 10.1016/j.clineuro.2024.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND CDKL5 Deficiency Disorder (CDD) is a rare developmental and epileptic encephalopathy characterized by dominant X-linked inheritance and early infantile onset. To date, more than 300 pathogenic variants of the CDKL5 gene have been reported with different phenotypes. As a rare genetic disease, data on CDD are still limited, making the diagnostic and therapeutic process very challenging. The objective of our study was to provide a comprehensive overview of CDD, including those aspects of the disease for which there is unfortunately still limited knowledge. MATERIALS AND METHODS The presence of a CDKL5 variant, cognitive impairment/delayed psychomotor development, and onset of epilepsy within the first year of life were screened for the diagnosis. Comprehensive clinical assessment, laboratory and radiological investigations were performed. RESULTS Fifteen (n=15) patients were enrolled in the study. In most cases, concordance was found between our data and those already present in the literature. In contrast, some other features, including the development of macrocephaly and the presence of congenital gastrointestinal malformations and spinal cord abnormalities, differ from previous findings. CONCLUSIONS Our study provides an overview on CDD, including those features for which we still have limited knowledge and, albeit on a limited sample, several insights on this rare condition.
Collapse
Affiliation(s)
- Alessia Amato
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Giulio Bonomo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurosurgery Unit, Milan, Italy
| | - Roberta Bonomo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurology, Milan, Italy; School of Medicine and Surgery, Kore University of Enna, Enna, Italy.
| | - Jacopo Proietti
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Francesca Darra
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Charfi Triki C, Zouari Mallouli S, Ben Jdila M, Ben Said M, Kamoun Feki F, Weckhuysen S, Masmoudi S, Fakhfakh F. First report of Tunisian patients with CDKL5-related encephalopathy. Epilepsia Open 2024; 9:906-917. [PMID: 37701975 PMCID: PMC11145601 DOI: 10.1002/epi4.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) are associated with a wide spectrum of clinical presentations. Early-onset epileptic encephalopathy (EOEE) is the most recognized phenotype. Here we describe phenotypic features in eight Tunisian patients with CDKL5-related encephalopathy. METHODS We included all cases with clinical features consistent with CDKL5-related encephalopathy: infantile epileptic spasm, acquired microcephaly, movement disorders and visual impairment. We collected data about seizure types, electroencephalogram, magnetic resonance imaging, and metabolic analysis. The diagnosis of CDKL5 mutation was made thanks to Sanger sequencing with an ABI PRISM 3100-Avant automated DNA sequencer using a Big Dye Terminator Cycle Sequencing Reaction Kit v1.1. and Next Generation Sequencing (NGS) since the development of a gene panel responsible for DEE within the framework of "Strengthening the Sfax University Expertise for diagnosis and management of epileptic encephalopathies". RESULTS We collected four boys and four girls aged meanly 6 years old with confirmed mutation on CDKL5 gene. Overall, we identified five de novo CDKL5 mutations including three Frame-shift mutations, one missense mutation, and a splicing variant. The mean age at first seizure onset was 4 months. The first seizure type was infantile epileptic spasm (4/8) followed by tonic (2/8) and myoclonic seizures (2/8). Out of eight cases, four exhibited two stages epileptic course while epilepsy in three other patients progressed on three stages. Regarding development, most cases (6/8) had psychomotor retardation from the start whilst the two others showed psychomotor regression with the onset of seizures. Additional clinical features included visual impairment (7/8), tone abnormalities (7/8), stereotypies (7/8), and acquired microcephaly (6/8). SIGNIFICANCE Our present report delineates an unusual phenotype of CDKL5-related encephalopathy with male gender predominance and delayed onset epilepsy. It interestingly described new phenotypic features and uncommon benign developmental profiles in boys, different patterns of CDKL5-epilepsy, neuroimaging findings, and CDKL5 mutational spectrum.
Collapse
Affiliation(s)
- Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Salma Zouari Mallouli
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Marwa Ben Jdila
- Laboratory of Molecular and Functional Genetics, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Fatma Kamoun Feki
- Child Neurology Department, Hedi Chaker Sfax University Hospital, and Research Laboratory LR19ES15University of SfaxSfaxTunisia
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIBUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
- Translational Neurosciences, Faculty of Medicine and Health ScienceUniversity of AntwerpAntwerpBelgium
| | - Sabeur Masmoudi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of SfaxUniversity of SfaxSfaxTunisia
| |
Collapse
|
5
|
Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat Commun 2023; 14:7830. [PMID: 38081835 PMCID: PMC10713615 DOI: 10.1038/s41467-023-43475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
| | - Lucas L Baltussen
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory for the Research of Neurodegenerative Diseases (VIB-KU Leuven), Department of Neurosciences, ON5 Herestraat 49, 3000, Leuven, Belgium
| | - André T Lopes
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Liina Sirvio
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jill C Richardson
- Neuroscience, MSD Research Laboratories, 120 Moorgate, London, EC2M 6UR, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
6
|
Specchio N, Trivisano M, Lenge M, Ferretti A, Mei D, Parrini E, Napolitano A, Rossi-Espagnet C, Talenti G, Longo D, Proietti J, Ragona F, Freri E, Solazzi R, Granata T, Darra F, Bernardina BD, Vigevano F, Guerrini R. CDKL5 deficiency disorder: progressive brain atrophy may be part of the syndrome. Cereb Cortex 2023; 33:9709-9717. [PMID: 37429835 PMCID: PMC10472491 DOI: 10.1093/cercor/bhad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included. The median age at study entry was 13.4 years. In 14/22 patients (85.7%), MRI in the first year of life was unremarkable in all but two. In 11/22, we performed MRI after 24 months of age (range 2.5-23 years). In 8 out of 11 (72.7%), MRI showed supratentorial atrophy and in six cerebellar atrophy. Quantitative analysis detected volumetric reduction of the whole brain (-17.7%, P-value = 0.014), including both white matter (-25.7%, P-value = 0.005) and cortical gray matter (-9.1%, P-value = 0.098), with a reduction of surface area (-18.0%, P-value = 0.032), mainly involving the temporal regions, correlated with the head circumference (ρ = 0.79, P-value = 0.109). Both the qualitative structural assessment and the quantitative analysis detected brain volume reduction involving the gray and white matter. These neuroimaging findings may be related to either progressive changes due to CDD pathogenesis, or to the extreme severity of epilepsy, or both. Larger prospective studies are needed to clarify the bases for the structural changes we observed.
Collapse
Affiliation(s)
- Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Marina Trivisano
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Matteo Lenge
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Alessandro Ferretti
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| | - Antonio Napolitano
- Medical Physics Unit, Enterprise Risk Management, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Camilla Rossi-Espagnet
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Giacomo Talenti
- Neuroradiology Unit, Neuroradiology Unit, Azienda Ospedale-Università di Padova, Padova 35128, Italy
| | - Daniela Longo
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Jacopo Proietti
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Francesca Darra
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona 37121, Italy
| | - Federico Vigevano
- Research Area on Neurology and Neurorehabilitation, Bambino Gesù Children’s Hospital IRCCS, Rome 00050, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, 50139, Italy
| |
Collapse
|
7
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
8
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
9
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. Discovery of a Potent and Selective CDKL5/GSK3 Chemical Probe That Is Neuroprotective. ACS Chem Neurosci 2023; 14:1672-1685. [PMID: 37084253 PMCID: PMC10161233 DOI: 10.1021/acschemneuro.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a compound that has advanced to phase II clinical trials and is a known inhibitor of several cyclin-dependent kinases (CDKs) and cyclin-dependent kinase-like kinases (CDKLs). We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. We next demonstrated the inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to human CDKL5. A structurally similar analog (4) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β, making it a suitable negative control. Finally, we used our chemical probe pair (2 and 4) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York 10032, United States
- Departments of Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York 10032, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. A Potent and Selective CDKL5/GSK3 Chemical Probe is Neuroprotective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527935. [PMID: 36798313 PMCID: PMC9934649 DOI: 10.1101/2023.02.09.527935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Despite mediating several essential processes in the brain, including during development, cyclin-dependent kinase-like 5 (CDKL5) remains a poorly characterized human protein kinase. Accordingly, its substrates, functions, and regulatory mechanisms have not been fully described. We realized that availability of a potent and selective small molecule probe targeting CDKL5 could enable illumination of its roles in normal development as well as in diseases where it has become aberrant due to mutation. We prepared analogs of AT-7519, a known inhibitor of several cyclin dependent and cyclin-dependent kinase-like kinases that has been advanced into Phase II clinical trials. We identified analog 2 as a highly potent and cell-active chemical probe for CDKL5/GSK3 (glycogen synthase kinase 3). Evaluation of its kinome-wide selectivity confirmed that analog 2 demonstrates excellent selectivity and only retains GSK3α/β affinity. As confirmation that our chemical probe is a high-quality tool to use in directed biological studies, we demonstrated inhibition of downstream CDKL5 and GSK3α/β signaling and solved a co-crystal structure of analog 2 bound to CDKL5. A structurally similar analog ( 4 ) proved to lack CDKL5 affinity and maintain potent and selective inhibition of GSK3α/β. Finally, we used our chemical probe pair ( 2 and 4 ) to demonstrate that inhibition of CDKL5 and/or GSK3α/β promotes the survival of human motor neurons exposed to endoplasmic reticulum (ER) stress. We have demonstrated a neuroprotective phenotype elicited by our chemical probe pair and exemplified the utility of our compounds to characterize the role of CDKL5/GSK3 in neurons and beyond.
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Emily R. Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neurology, Neuroscience, Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, 10032, United States of America; The Project ALS Therapeutics Core, Columbia University Irving Medical Center, New York, New York, 10032, United States of America
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Sila K. Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Alex N. Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America; UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| |
Collapse
|
11
|
Gorchkhanova ZK, Nikolaeva EA, Pivovarova AM, Bochenkov SV, Belousova ED. Difficulties in the differential diagnosis of Angelman’s syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-113-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angelman syndrome is a rare neurogenetic disease caused by the loss of the function of the maternal allele of the UBE3A gene on chromosome 15 (site 15q11.2–q13) and is characterized by severe mental retardation, lack of speech, epilepsy, microcephaly and a characteristic facial phenotype with a unique behavior in the form of frequent laughter. The combination of microcephaly, epilepsy, speechlessness and mental retardation poses a problem for differential diagnosis with many genetic diseases presenting with similar symptoms. Epileptic encephalopathy due to CDKL5 gene mutation and Rett syndrome have the greatest similarity. The hallmark of Angelman syndrome are laughter attacks and specific EEG changes. The authors have presented a table of the differential diagnosis of Angelman syndrome with some phenotypically similar genetic syndromes, indicating the most significant distinguishing features, which should facilitate for the pediatrician and neurologist the diagnostic path of establishing the correct diagnosis.
Collapse
Affiliation(s)
- Z. K. Gorchkhanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. A. Nikolaeva
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - A. M. Pivovarova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - S. V. Bochenkov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. D. Belousova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| |
Collapse
|
12
|
Viglione A, Sagona G, Carrara F, Amato G, Totaro V, Lupori L, Putignano E, Pizzorusso T, Mazziotti R. Behavioral impulsivity is associated with pupillary alterations and hyperactivity in CDKL5 mutant mice. Hum Mol Genet 2022; 31:4107-4120. [PMID: 35861639 DOI: 10.1093/hmg/ddac164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (Cdkl5) deficiency disorder (CDD) is a severe neurodevelopmental condition caused by mutations in the X-linked Cdkl5 gene. CDD is characterized by early-onset seizures in the first month of life, intellectual disability, motor and social impairment. No effective treatment is currently available and medical management is only symptomatic and supportive. Recently, mouse models of Cdkl5 disorder have demonstrated that mice lacking Cdkl5 exhibit autism-like phenotypes, hyperactivity and dysregulations of the arousal system, suggesting the possibility to use these features as translational biomarkers. In this study, we tested Cdkl5 male and female mutant mice in an appetitive operant conditioning chamber to assess cognitive and motor abilities, and performed pupillometry to assess the integrity of the arousal system. Then, we evaluated the performance of artificial intelligence models to classify the genotype of the animals from the behavioral and physiological phenotype. The behavioral results show that CDD mice display impulsivity, together with low levels of cognitive flexibility and perseverative behaviors. We assessed arousal levels by simultaneously recording pupil size and locomotor activity. Pupillometry reveals in CDD mice a smaller pupil size and an impaired response to unexpected stimuli associated with hyperlocomotion, demonstrating a global defect in arousal modulation. Finally, machine learning reveals that both behavioral and pupillometry parameters can be considered good predictors of CDD. Since early diagnosis is essential to evaluate treatment outcomes and pupillary measures can be performed easily, we proposed the monitoring of pupil size as a promising biomarker for CDD.
Collapse
Affiliation(s)
- Aurelia Viglione
- BIO@SNS Lab, Scuola Normale Superiore, via Moruzzi 1, 56124 Pisa, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128 Pisa, Italy
| | - Fabio Carrara
- ISTI-Istituto di Scienza e Tecnologia dell'Informazione, National Research Council, via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppe Amato
- ISTI-Istituto di Scienza e Tecnologia dell'Informazione, National Research Council, via Moruzzi 1, 56124 Pisa, Italy
| | - Valentino Totaro
- BIO@SNS Lab, Scuola Normale Superiore, via Moruzzi 1, 56124 Pisa, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, via Moruzzi 1, 56124 Pisa, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, via Moruzzi 1, 56124 Pisa, Italy.,Institute of Neuroscience, National Research Council, via Moruzzi 1, 56124 Pisa, Italy
| | - Raffaele Mazziotti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128 Pisa, Italy
| |
Collapse
|
13
|
Syrbe S. Developmental and epileptic encephalopathies - therapeutic consequences of genetic testing. MED GENET-BERLIN 2022; 34:215-224. [PMID: 38835873 PMCID: PMC11006352 DOI: 10.1515/medgen-2022-2145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Developmental and epileptic encephalopathies comprise a heterogeneous group of monogenic neurodevelopmental disorders characterized by early-onset seizures, marked epileptic activity and abnormal neurocognitive development. The identification of an increasing number of underlying genetic alterations and their pathophysiological roles in cellular signaling drives the way toward novel precision therapies. The implementation of novel treatments that target the underlying mechanisms gives hope for disease modification that will improve not only the seizure burden but also the neurodevelopmental outcome of affected children. So far, beneficial effects are mostly reported in individual trials and small numbers of patients. There is a need for international collaborative studies to define the natural history and relevant outcome measures and to test novel pharmacological approaches.
Collapse
Affiliation(s)
- Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Varela T, Varela D, Martins G, Conceição N, Cancela ML. Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorder. Sci Rep 2022; 12:9325. [PMID: 35665761 PMCID: PMC9167277 DOI: 10.1038/s41598-022-13364-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition characterized primarily by seizures and impairment of cognitive and motor skills. Additional phenotypes include microcephaly, dysmorphic facial features, and scoliosis. Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene, encoding a kinase essential for normal brain development and function, are responsible for CDD. Zebrafish is an accepted biomedical model for the study of several genetic diseases and has many advantages over other models. Therefore, this work aimed to characterize the phenotypic, behavioral, and molecular consequences of the Cdkl5 protein disruption in a cdkl5 mutant zebrafish line (sa21938). cdkl5sa21938 mutants displayed a reduced head size, suggesting microcephaly, a feature frequently observed in CDD individuals. Double staining revealed shorter craniofacial cartilage structures and decrease bone mineralization in cdkl5 homozygous zebrafish indicating an abnormal craniofacial cartilage development and impaired skeletal development. Motor behavior analysis showed that cdkl5sa21938 embryos had less frequency of double coiling suggesting impaired glutamatergic neurotransmission. Locomotor behavior analysis revealed that homozygous embryos swim shorter distances, indicative of impaired motor activity which is one of the main traits of CCD. Although no apparent spontaneous seizures were observed in these models, upon treatment with pentylenetetrazole, seizure behavior and an increase in the distance travelled were observed. Quantitative PCR showed that neuronal markers, including glutamatergic genes were dysregulated in cdkl5sa21938 mutant embryos. In conclusion, homozygous cdkl5sa21938 zebrafish mimic several characteristics of CDD, thus validating them as a suitable animal model to better understand the physiopathology of this disorder.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Débora Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Algarve Biomedical Center, University of Algarve, Faro, Portugal.
| |
Collapse
|
15
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
16
|
Serrano RJ, Lee C, Douek AM, Kaslin J, Bryson-Richardson RJ, Sztal TE. Novel pre-clinical model for CDKL5 Deficiency Disorder. Dis Model Mech 2021; 15:273746. [PMID: 34913468 PMCID: PMC8922025 DOI: 10.1242/dmm.049094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase-like-5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodegenerative disease characterised by early-onset epileptic seizures, low muscle tone, progressive intellectual disability and severe motor function. CDD affects ∼1 in 60,000 live births, with many patients experiencing a reduced quality of life due to the severity of their neurological symptoms and functional impairment. There are no effective therapies for CDD, with current treatments focusing on improving symptoms rather than addressing the underlying causes of the disorder. Zebrafish offer many unique advantages for high-throughput preclinical evaluation of potential therapies for neurological diseases, including CDD. In particular, the large number of offspring produced, together with the possibilities for in vivo imaging and genetic manipulation, allows for the detailed assessment of disease pathogenesis and therapeutic discovery. We have characterised a loss-of-function zebrafish model for CDD, containing a nonsense mutation in cdkl5. cdkl5 mutant zebrafish display defects in neuronal patterning, seizures, microcephaly, and reduced muscle function caused by impaired muscle innervation. This study provides a powerful vertebrate model for investigating CDD disease pathophysiology and allowing high-throughput screening for effective therapies. This article has an associated First Person interview with the first author of the paper. Summary: Characterisation of a novel loss-of-function zebrafish model for CDKL5 deficiency disorder, containing a nonsense mutation, demonstrates its utility for investigating disease aetiology and allowing high-throughput screening for potentially effective therapies.
Collapse
Affiliation(s)
- Rita J Serrano
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Clara Lee
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Alon M Douek
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Tamar E Sztal
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Negraes PD, Trujillo CA, Yu NK, Wu W, Yao H, Liang N, Lautz JD, Kwok E, McClatchy D, Diedrich J, de Bartolome SM, Truong J, Szeto R, Tran T, Herai RH, Smith SEP, Haddad GG, Yates JR, Muotri AR. Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Mol Psychiatry 2021; 26:7047-7068. [PMID: 33888873 PMCID: PMC8531162 DOI: 10.1038/s41380-021-01104-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
Early-onset epileptic encephalopathies are severe disorders often associated with specific genetic mutations. In this context, the CDKL5 deficiency disorder (CDD) is a neurodevelopmental condition characterized by early-onset seizures, intellectual delay, and motor dysfunction. Although crucial for proper brain development, the precise targets of CDKL5 and its relation to patients' symptoms are still unknown. Here, induced pluripotent stem cells derived from individuals deficient in CDKL5 protein were used to generate neural cells. Proteomic and phosphoproteomic approaches revealed disruption of several pathways, including microtubule-based processes and cytoskeleton organization. While CDD-derived neural progenitor cells have proliferation defects, neurons showed morphological alterations and compromised glutamatergic synaptogenesis. Moreover, the electrical activity of CDD cortical neurons revealed hyperexcitability during development, leading to an overly synchronized network. Many parameters of this hyperactive network were rescued by lead compounds selected from a human high-throughput drug screening platform. Our results enlighten cellular, molecular, and neural network mechanisms of genetic epilepsy that could ultimately promote novel therapeutic opportunities for patients.
Collapse
Affiliation(s)
- Priscilla D Negraes
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Cleber A Trujillo
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Nam-Kyung Yu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wei Wu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Hang Yao
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Liang
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Ellius Kwok
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McClatchy
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Justin Truong
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ryan Szeto
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Timothy Tran
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, USA.
| |
Collapse
|
18
|
Brock D, Fidell A, Thomas J, Juarez-Colunga E, Benke TA, Demarest S. Cerebral Visual Impairment in CDKL5 Deficiency Disorder Correlates With Developmental Achievement. J Child Neurol 2021; 36:974-980. [PMID: 34547934 PMCID: PMC9853471 DOI: 10.1177/08830738211019284] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder is a rare neurodevelopmental disorder characterized by infantile-onset refractory epilepsy, profound developmental delays, and cerebral visual impairment. Although there is evidence that the presence of cerebral visual impairment in CDKL5 deficiency disorder is common, the potential impact of cerebral visual impairment severity on developmental attainment has not been explored directly. Focusing on a cohort of 46 children with CDKL5 deficiency disorder, examination features indicative of cerebral visual impairment were quantified and compared to developmental achievement. The derived cerebral visual impairment severity score was inversely correlated with developmental attainment, bolstering the supposition that cerebral visual impairment severity may provide a useful early biomarker of disease severity and prognosis. This study demonstrates the utility of a cerebral visual impairment score to better capture the range of cerebral visual impairment severity in the CDKL5 deficiency disorder population and further elucidates the interaction between cerebral visual impairment and developmental outcomes.
Collapse
Affiliation(s)
- Dylan Brock
- Children’s Hospital Colorado, Department of Child Neurology, Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Fidell
- Children’s Hospital Colorado, Department of Child Neurology, Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Thomas
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Juarez-Colunga
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| | - Tim A. Benke
- Children’s Hospital Colorado, Department of Child Neurology, Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott Demarest
- Children’s Hospital Colorado, Department of Child Neurology, Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Denver School of Medicine, Anschutz Medical Campus, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Kluckova D, Kolnikova M, Medova V, Bognar C, Foltan T, Svecova L, Gnip A, Kadasi L, Soltysova A, Ficek A. Clinical manifestation of CDKL5 deficiency disorder and identified mutations in a cohort of Slovak patients. Epilepsy Res 2021; 176:106699. [PMID: 34229227 DOI: 10.1016/j.eplepsyres.2021.106699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an independent clinical entity associated with early-onset encephalopathy, which is often considered the type of epileptic encephalopathy with CDKL5 mutation also found in children diagnosed with early-onset seizure (Hanefeld) type of Rett syndrome, epileptic spasms, West syndrome, Lennox-Gastaut syndrome, or autism. Since early seizure onset is a prominent feature, in this study, a cohort of 54 unrelated patients consisting of 26 males and 28 females was selected for CDKL5 screening, with seizures presented before 12 months of age being the only clinical criterion. Five patients were found to have pathogenic or likely pathogenic variants in CDKL5 while 1 was found to have a variant of uncertain significance (p.L522V). Although CDKL5 variants are more frequently identified in female patients, we identified three male and three female patients (11.1 %, 6/54) in this study. Missense variant with unknown inheritance (p.L522V), de novo missense variant (p.E60 K), two de novo splicing (IVS15 + 1G > A, IVS16 + 2 T > A), and one de novo nonsense variant p.W125* were identified using Sanger sequencing. Whole exome analysis approach revealed de novo frameshift variant c.1247_1248delAG in a mosaic form in one of the males. Patient clinical features are reviewed and compared to those previously described in related literature. Variable clinical features were presented in CDKL5 positive patients characterised in this study. In addition to more common features, such as early epileptic seizures, severe intellectual disability, and gross motor impairment, inappropriate laughing/screaming spells and hypotonia appeared at the age of 1 year in all patients, regardless of the type of CDKL5 mutation or sex. All three CDKL5 positive males from our cohort were initially diagnosed with West syndrome, which suggests that the CDKL5 gene mutations are a significant cause of West syndrome phenotype, and also indicate the overlapping characteristics of these two clinical entities.
Collapse
Affiliation(s)
- Daniela Kluckova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Miriam Kolnikova
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Veronika Medova
- Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Csaba Bognar
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia
| | - Tomas Foltan
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Lucia Svecova
- Department of Paediatric Neurology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Andrej Gnip
- Medirex a.s., MEDIREX GROUP, Holubyho 35, 902 01, Pezinok, Slovakia
| | - Ludevit Kadasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia; Institute for Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, 842 15, Slovakia.
| |
Collapse
|
20
|
Aledo-Serrano Á, Gómez-Iglesias P, Toledano R, Garcia-Peñas JJ, Garcia-Morales I, Anciones C, Soto-Insuga V, Benke TA, Del Pino I, Gil-Nagel A. Sodium channel blockers for the treatment of epilepsy in CDKL5 deficiency disorder: Findings from a multicenter cohort. Epilepsy Behav 2021; 118:107946. [PMID: 33848848 DOI: 10.1016/j.yebeh.2021.107946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was aimed to analyze the effectiveness of sodium channel blockers (SCBs) in CDKL5 deficiency disorder (CDD)-related epilepsy. METHODS A retrospective, observational study was performed, including patients with CDD diagnosis evaluated between 2016 and 2019 at three tertiary Epilepsy Centers. Demographic, electroclinical and genetic features, as well as ASM treatments and their outcomes were analyzed, with special focus on SCBs. RESULTS Twenty-one patients evaluated at three tertiary Epilepsy Centers were included, of which 19 presented with epilepsy (90.5%); all had pathogenic mutations of CDKL5. Six patients (31.6%) were classified as SCB responders (more than 50% reduction), four being currently seizure free (mean seizure-free period of 8 years). Most frequent SCB drugs were oxcarbazepine (OXC), carbamazepine (CBZ), and lacosamide (LCM). None of them presented relevant adverse events. In contrast, three patients showed seizure aggravation in the non-responder group. When comparing both groups, responders had statistically significant younger age at SCB treatment and epilepsy onset, higher proportion of focal epileptiform activity and less frequent history of West syndrome. CONCLUSIONS The results of this study indicate that treatment with SCBs might be effective and safe in a subset of patients with CDD-related epilepsy.
Collapse
Affiliation(s)
- Ángel Aledo-Serrano
- Epilepsy Program. Neurology Department, Ruber Internacional Hospital, Madrid, Spain; Epilepsy Unit. Neuroscience Department, Corachan Clinic, Barcelona, Spain.
| | | | - Rafael Toledano
- Epilepsy Program. Neurology Department, Ruber Internacional Hospital, Madrid, Spain; Epilepsy Unit, Neurology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | - Juan Jose Garcia-Peñas
- Department of Pediatric Neurology, Niño Jesus University Children's Hospital, Madrid, Spain
| | - Irene Garcia-Morales
- Epilepsy Program. Neurology Department, Ruber Internacional Hospital, Madrid, Spain; Epilepsy Unit. Neurology Department, Clínico San Carlos University Hospital, Madrid, Spain
| | - Carla Anciones
- Epilepsy Program. Neurology Department, Ruber Internacional Hospital, Madrid, Spain
| | - Victor Soto-Insuga
- Department of Pediatric Neurology, Niño Jesus University Children's Hospital, Madrid, Spain
| | - Timothy A Benke
- Departments of Pediatrics, Neurology, and Pharmacology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
| | - Isabel Del Pino
- Principe Felipe Research Center (Centro de Investigación Principe Felipe, CIPF), Valencia, Spain
| | - Antonio Gil-Nagel
- Epilepsy Program. Neurology Department, Ruber Internacional Hospital, Madrid, Spain
| |
Collapse
|
21
|
Ciccia LM, Scalia B, Venti V, Pizzo F, Pappalardo MG, La Mendola FMC, Falsaperla R, Praticò AD. CDKL5 Gene: Beyond Rett Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.
Collapse
Affiliation(s)
- Lina Maria Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Pizzo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Grazia Pappalardo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
MacKay CI, Wong K, Demarest ST, Benke TA, Downs J, Leonard H. Exploring genotype-phenotype relationships in the CDKL5 deficiency disorder using an international dataset. Clin Genet 2020; 99:157-165. [PMID: 33047306 DOI: 10.1111/cge.13862] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Characterized by early-onset seizures, global developmental delay and severe motor deficits, CDKL5 deficiency disorder is caused by pathogenic variants in the cyclin-dependent kinase-like 5 gene. Previous efforts to investigate genotype-phenotype relationships have been limited due to small numbers of recurrent mutations and small cohort sizes. Using data from the International CDKL5 Disorder Database we examined genotype-phenotype relationships for 13 recurrent CDKL5 variants and the previously analyzed historic variant groupings. We have applied the CDKL5 Developmental Score (CDS) and an adapted version of the CDKL5 Clinical Severity Assessment (CCSA), to grade the severity of phenotype and developmental outcomes for 285 individuals with CDKL5 variants. Comparisons of adapted CCSA and CDS between recurrent variants and variant groups were performed using multiple linear regression adjusting for age and sex. Individuals with the missense variant, p.Arg178Trp, had the highest mean adapted CCSA and lowest mean developmental scores. Other variants producing severe phenotypes included p.Arg559* and p.Arg178Gln. Variants producing milder phenotypes included p.Arg134*, p.Arg550*, and p.Glu55Argfs*20. There are observed differences in phenotype severity and developmental outcomes for individuals with different CDKL5 variants. However, the historic variant groupings did not seem to reflect differences in phenotype severity or developmental outcomes as clearly as analyzed by individual variants.
Collapse
Affiliation(s)
- Conor I MacKay
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Scott T Demarest
- Children's Hospital Colorado, Aurora, Colorado, USA.,Departments of Pediatrics and Neurology, University of Colorado at Denver, Aurora, Colorado, USA
| | - Tim A Benke
- Children's Hospital Colorado, Aurora, Colorado, USA.,Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Miller CR, Lee K, Pfau RB, Reshmi SC, Corsmeier DJ, Hashimoto S, Dave-Wala A, Jayaraman V, Koboldt D, Matthews T, Mouhlas D, Stein M, McKinney A, Grossman T, Kelly BJ, White P, Magrini V, Wilson RK, Mardis ER, Cottrell CE. Disease-associated mosaic variation in clinical exome sequencing: a two-year pediatric tertiary care experience. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005231. [PMID: 32371413 PMCID: PMC7304353 DOI: 10.1101/mcs.a005231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
Exome sequencing (ES) has become an important tool in pediatric genomic medicine, improving identification of disease-associated variation due to assay breadth. Depth is also afforded by ES, enabling detection of lower-frequency mosaic variation compared to Sanger sequencing in the studied tissue, thus enhancing diagnostic yield. Within a pediatric tertiary-care hospital, we report two years of clinical ES data from probands evaluated for genetic disease to assess diagnostic yield, characteristics of causal variants, and prevalence of mosaicism among disease-causing variants. Exome-derived, phenotype-driven variant data from 357 probands was analyzed concurrent with parental ES data, when available. Blood was the source of nucleic acid. Sequence read alignments were manually reviewed for all assessed variants. Sanger sequencing was used for suspected de novo or mosaic variation. Clinical provider notes were reviewed to determine concordance between laboratory-reported data and the ordering provider's interpretation of variant-associated disease causality. Laboratory-derived diagnostic yield and provider-substantiated diagnoses had 91.4% concordance. The cohort returned 117 provider-substantiated diagnoses among 115 probands for a diagnostic yield of 32.2%. De novo variants represented 64.9% of disease-associated variation within trio analyses. Among the 115 probands, five harbored disease-associated somatic mosaic variation. Two additional probands were observed to inherit a disease-associated variant from an unaffected mosaic parent. Among inheritance patterns, de novo variation was the most frequent disease etiology. Somatic mosaicism is increasingly recognized as a significant contributor to genetic disease, particularly with increased sequence depth attainable from ES. This report highlights the potential and importance of detecting mosaicism in ES.
Collapse
Affiliation(s)
- Cecelia R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology
| | - Ruthann B Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shalini C Reshmi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Donald J Corsmeier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Sayaka Hashimoto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Ashita Dave-Wala
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Daniel Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Theodora Matthews
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Danielle Mouhlas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Maggie Stein
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Aimee McKinney
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Tom Grossman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pathology.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Kim JY, Bai Y, Jayne LA, Hector RD, Persaud AK, Ong SS, Rojesh S, Raj R, Feng MJHH, Chung S, Cianciolo RE, Christman JW, Campbell MJ, Gardner DS, Baker SD, Sparreboom A, Govindarajan R, Singh H, Chen T, Poi M, Susztak K, Cobb SR, Pabla NS. A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nat Commun 2020; 11:1924. [PMID: 32317630 PMCID: PMC7174303 DOI: 10.1038/s41467-020-15638-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI. Protein kinases have emerged as critical regulators of disease pathogenesis. Here, the authors have utilized kinome-wide screening approaches to reveal a pathogenic role of CDKL5 kinase in acute kidney injury, which is dependent on suppression of a SOX9-associated transcriptional network.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Bai
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Laura A Jayne
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ralph D Hector
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Avinash K Persaud
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Su Sien Ong
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shreshtha Rojesh
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Raj
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, USA
| | - Moray J Campbell
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sharyn D Baker
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Poi
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain & Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Navjot Singh Pabla
- Division of Pharmaceutics & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Yan Y, He D, Wu J, Hou R, Sun K, Li L. Novel CDKL5 mutations were found in patients in China: retrospective investigation in cases of CDKL5-related disorders. Ital J Pediatr 2020; 46:27. [PMID: 32111237 PMCID: PMC7048148 DOI: 10.1186/s13052-020-0775-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/16/2020] [Indexed: 01/29/2023] Open
Abstract
Objective CDKL5-related disorders (CDD) is an epileptic encephalopathy resulted of gene mutations of CDKL5. This study aimed to explore the development process of CDD and to expand its mutation spectrum. Methods Clinic datawas collected about three infantile epileptic encephalopathy cases diagnosed at Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine. Next generation sequencing technology was used to find three de novo mutations of CDKL5. We searched published literatures about CDKL5 in pubmed and made an analysis about our clinic data and the related literatures. Results The three patients were all girls. Their average onset age of seizures was around 2 months, and all of them have intractable epileptic seizures, severe intellectual disability, and hypotension. Among them, two presented infantile spasm and high arrhythmia in EEG, and the other manifested clonic seizure and broad epileptiform discharge in EEG. Extracerebral space widening in cranial MRIs was demonstrated in two cases. Visual evoked potential was abnormal in two cases. Seizures were resistant to all kinds of antiepileptic drugs (AEDs). Gene tests showed three de novo mutations of CDKL5: one was a truncated mutation (c.2254A > T,P.R752X, stop279), which was pathogenic according to the ACMG guide, the other two were missense mutations (c.377G > T,p.Cys126Phe) and a frameshift mutation (c.362-362insG(p.Ala122GlyfsTer7), which were likely pathogenic according to the ACMG. Conclusions All three de novo mutations are first reported. Based on the combined related literature and the manifestations observed, we diagnosed the three children as CDKL5-related disorders, and concluded that the de novo CDKL5 mutations are the reason for their epilepsy.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Dake He
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Jing Wu
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Ruolin Hou
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Kun Sun
- Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.
| | - Ling Li
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
27
|
CDKL5 Deficiency Disorder-A Complex Epileptic Encephalopathy. Brain Sci 2020; 10:brainsci10020107. [PMID: 32079229 PMCID: PMC7071516 DOI: 10.3390/brainsci10020107] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a complex of clinical symptoms resulting from the presence of non-functional CDKL5 protein, i.e., serine-threonine kinase (previously referred to as STK9), or its complete absence. The clinical picture is characterized by epileptic seizures (that start within the first three months of life and most often do not respond to pharmacological treatment), epileptic encephalopathy secondary to seizures, and retardation of psychomotor development, which are often observed already in the first months of life. Due to the fact that CDKL5 is located on the X chromosome, the prevalence of CDD among women is four times higher than in men. However, the course is usually more severe among male patients. Recently, many clinical centers have analyzed this condition and provided knowledge on the function of CDKL5 protein, the natural history of the disease, therapeutic options, and their effectiveness and prognosis. The International CDKL5 Disorder Database was established in 2012, which focuses its activity on expanding knowledge related to this condition and disseminating such knowledge to the families of patients.
Collapse
|
28
|
Fu C, Armstrong D, Marsh E, Lieberman D, Motil K, Witt R, Standridge S, Nues P, Lane J, Dinkel T, Coenraads M, von Hehn J, Jones M, Hale K, Suter B, Glaze D, Neul J, Percy A, Benke T. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr Open 2020; 4:e000717. [PMID: 32984552 PMCID: PMC7488790 DOI: 10.1136/bmjpo-2020-000717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe neurodevelopmental disorder with complex medical comorbidities extending beyond the nervous system requiring the attention of health professionals. There is no peer-reviewed, consensus-based therapeutic guidance to care in RTT. The objective was to provide consensus on guidance of best practice for addressing these concerns. METHODS Informed by the literature and using a modified Delphi approach, a consensus process was used to develop guidance for care in RTT by health professionals. RESULTS Typical RTT presents early in childhood in a clinically recognisable fashion. Multisystem comorbidities evolve throughout the lifespan requiring coordination of care between primary care and often multiple subspecialty providers. To assist health professionals and families in seeking best practice, a checklist and detailed references for guidance were developed by consensus. CONCLUSIONS The overall multisystem issues of RTT require primary care providers and other health professionals to manage complex medical comorbidities within the context of the whole individual and family. Given the median life expectancy well into the sixth decade, guidance is provided to health professionals to achieve current best possible outcomes for these special-needs individuals.
Collapse
Affiliation(s)
- Cary Fu
- Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dallas Armstrong
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Marsh
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Lieberman
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kathleen Motil
- Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Children's Nutrition Research Center, USDA ARS, Houston, Texas, USA
| | - Rochelle Witt
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shannon Standridge
- Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paige Nues
- International Rett Syndrome Foundation, Cincinnati, Ohio, USA
| | - Jane Lane
- Civitan International Research Center, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Tristen Dinkel
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Jana von Hehn
- Rett Syndrome Research Trust, New York, New York, USA
| | - Mary Jones
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Katie Hale
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Bernhard Suter
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA.,Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Glaze
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA.,Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffrey Neul
- Vanderbilt Kennedy Center, Nashville, Tennessee, USA.,Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Percy
- Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Timothy Benke
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA.,Pediatrics, Pharmacology, Neurology, Otolaryngology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
29
|
Demarest S, Pestana-Knight EM, Olson HE, Downs J, Marsh ED, Kaufmann WE, Partridge CA, Leonard H, Gwadry-Sridhar F, Frame KE, Cross JH, Chin RFM, Parikh S, Panzer A, Weisenberg J, Utley K, Jaksha A, Amin S, Khwaja O, Devinsky O, Neul JL, Percy AK, Benke TA. Severity Assessment in CDKL5 Deficiency Disorder. Pediatr Neurol 2019; 97:38-42. [PMID: 31147226 PMCID: PMC6659999 DOI: 10.1016/j.pediatrneurol.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathologic mutations in cyclin-dependent kinase-like 5 cause CDKL5 deficiency disorder, a genetic syndrome associated with severe epilepsy and cognitive, motor, visual, and autonomic disturbances. This disorder is a relatively common genetic cause of early-life epilepsy. A specific severity assessment is lacking, required to monitor the clinical course and needed to define the natural history and for clinical trial readiness. METHODS A severity assessment was developed based on clinical and research experience from the International Foundation for CDKL5 Research Centers of Excellence consortium and the National Institutes of Health Rett and Rett-Related Disorders Natural History Study consortium. An initial draft severity assessment was presented and reviewed at the annual CDKL5 Forum meeting (Boston, 2017). Subsequently it was iterated through four cycles of a modified Delphi process by a group of clinicians, researchers, industry, patient advisory groups, and parents familiar with this disorder until consensus was achieved. The revised version of the severity assessment was presented for review, comment, and piloting to families at the International Foundation for CDKL5 Research-sponsored family meeting (Colorado, 2018). Final revisions were based on this additional input. RESULTS The final severity assessment comprised 51 items that comprehensively describe domains of epilepsy; motor; cognition, behavior, vision, and speech; and autonomic functions. Parental ratings of therapy effectiveness and child and family functioning are also included. CONCLUSIONS A severity assessment was rapidly developed with input from multiple stakeholders. Refinement through ongoing validation is required for future clinical trials. The consensus methods employed for the development of severity assessment may be applicable to similar rare disorders.
Collapse
Affiliation(s)
- Scott Demarest
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic, Neurological Institute Cleveland, Ohio; Epilepsy Center, Cleveland, Ohio
| | - Heather E Olson
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital Boston, Massachusetts
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Walter E Kaufmann
- M.I.N.D. Institute, Department of Neurology, University of California Davis Health System, Sacramento, California; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Helen Leonard
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Femida Gwadry-Sridhar
- Department of Computer Science, University of Western Ontario and Pulse Infoframe, London, Ontario, Canada
| | | | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health & NIHR GOSH BRC, London, UK
| | - Richard F M Chin
- University of Edinburgh and Royal Hospital for Sick Children, Edinburgh, UK
| | | | | | - Judith Weisenberg
- Neurology, Division of Pediatric Neurology, Epilepsy Section, Washington University School of Medicine, St. Louis Children's Hospital, St Louis, Missouri
| | - Karen Utley
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | - Amanda Jaksha
- International Foundation for CDKL5 Research, Wadwsorth, Ohio
| | | | - Omar Khwaja
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development NORD, Basel, Switzerland
| | - Orrin Devinsky
- Department of Neurology, New York University, New York, New York
| | - Jeffery L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Tennessee
| | - Alan K Percy
- University of Alabama at Birmingham, Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, Birmingham, Alabama
| | - Tim A Benke
- Children's Hospital Colorado and University of Colorado School of Medicine Aurora, Colorado; Department of Pediatrics, Aurora, Colorado; Department of Pharmacology, Aurora, Colorado; Department of Neurology, Aurora, Colorado; Department of Otolaryngology, Aurora, Colorado.
| |
Collapse
|
30
|
Demarest ST, Olson HE, Moss A, Pestana-Knight E, Zhang X, Parikh S, Swanson LC, Riley KD, Bazin GA, Angione K, Niestroj LM, Lal D, Juarez-Colunga E, Benke TA. CDKL5 deficiency disorder: Relationship between genotype, epilepsy, cortical visual impairment, and development. Epilepsia 2019; 60:1733-1742. [PMID: 31313283 PMCID: PMC7098045 DOI: 10.1111/epi.16285] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The cyclin-dependent kinase like 5 (CDKL5) gene is a known cause of early onset developmental and epileptic encephalopathy, also known as CDKL5 deficiency disorder (CDD). We sought to (1) provide a description of seizure types in patients with CDD, (2) provide an assessment of the frequency of seizure-free periods and cortical visual impairment (CVI), (3) correlate these features with genotype and gender, and (4) correlate these features with developmental milestones. METHODS This is a cohort study of patients with CDD. Phenotypic features were explored and correlated with gene variant grouping and gender. A developmental score was created based on achieving seven primary milestones. Phenotypic variables were correlated with the developmental score to explore markers of better developmental outcomes. Multivariate linear regression was used to account for age at last visit. RESULTS Ninety-two patients with CDD were seen during the enrollment period. Eighteen were male (19%); median age at last visit was 5 years (interquartile range = 2.0-11.0). Eighty-one percent of patients developed epileptic spasms, but only 47% of those also had hypsarrhythmia. Previously described hypermotor-tonic-spasms sequence was seen in only 24% of patients, but 56% of patients had seizures with multiple phases (often tonic and spasms). Forty-three percent of patients experienced a seizure-free period ranging from 1 to >12 months, but only 6% were still seizure-free at the last visit. CVI was present in 75% of all CDD patients. None of these features was associated with genotype group or gender. CVI was correlated with reduced milestone achievement after adjusting for age at last visit and a history of hypsarrhythmia. SIGNIFICANCE The most common seizure types in CDD are epileptic spasms (often without hypsarrhythmia) and tonic seizures that may cluster together. CVI is a common feature in CDD and is correlated with achieving fewer milestones.
Collapse
Affiliation(s)
- Scott T Demarest
- Children's Hospital Colorado, Aurora, Colorado
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
- Department of Pediatrics, Colorado School of Public Health, Aurora, Colorado
- Department of Neurology, Colorado School of Public Health, Aurora, Colorado
| | - Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Angela Moss
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
| | - Elia Pestana-Knight
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Lerner Research Institute, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
| | - Xiaoming Zhang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Lerner Research Institute, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
| | - Sumit Parikh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
- Department of Neurogenetics, Lerner Research Institute, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Katherine D Riley
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Grace A Bazin
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Katie Angione
- Children's Hospital Colorado, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, Ohio
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Cleveland Clinic Children's, Cleveland, Ohio
- Stanley Center for Psychiatric Research, Cambridge, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Elizabeth Juarez-Colunga
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Tim A Benke
- Children's Hospital Colorado, Aurora, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
- Department of Pediatrics, Colorado School of Public Health, Aurora, Colorado
- Department of Neurology, Colorado School of Public Health, Aurora, Colorado
- Department of Pharmacology, Colorado School of Public Health, Aurora, Colorado
- Department of Otolaryngology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
31
|
Olson HE, Demarest ST, Pestana-Knight EM, Swanson LC, Iqbal S, Lal D, Leonard H, Cross JH, Devinsky O, Benke TA. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr Neurol 2019; 97:18-25. [PMID: 30928302 PMCID: PMC7120929 DOI: 10.1016/j.pediatrneurol.2019.02.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene CDKL5. This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. We review the clinical presentations and genetic variations in CDD based on a systematic literature review and experience in the CDKL5 Centers of Excellence. We propose minimum diagnostic criteria. Pathogenic variants include deletions, truncations, splice variants, and missense variants. Pathogenic missense variants occur exclusively within the kinase domain or affect splice sites. The CDKL5 protein is widely expressed in the brain, predominantly in neurons, with roles in cell proliferation, neuronal migration, axonal outgrowth, dendritic morphogenesis, and synapse development. The molecular biology of CDD is revealing opportunities in precision therapy, with phase 2 and 3 clinical trials underway or planned to assess disease specific and disease modifying treatments.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.
| | - Scott T Demarest
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado
| | - Elia M Pestana-Knight
- Cleveland Clinic Neurological Institute Epilepsy Center, Cleveland Clinic Neurological Institute Pediatric Neurology Department, Neurogenetics, Cleveland Clinic Children's, Cleveland, Ohio
| | - Lindsay C Swanson
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sumaiya Iqbal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - J Helen Cross
- UCL Great Ormond Street NIHR BRC Institute of Child Health, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, New York
| | - Tim A Benke
- Children's Hospital Colorado, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado; Department of Pharmacology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Neurology, University of Colorado, School of Medicine, Aurora, Colorado; Department of Otolaryngology, University of Colorado, School of Medicine, Aurora, Colorado
| |
Collapse
|
32
|
Ren E, Roncacé V, Trazzi S, Fuchs C, Medici G, Gennaccaro L, Loi M, Galvani G, Ye K, Rimondini R, Aicardi G, Ciani E. Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist. Front Cell Neurosci 2019; 13:169. [PMID: 31114483 PMCID: PMC6503158 DOI: 10.3389/fncel.2019.00169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental encephalopathy caused by mutations in the CDKL5 gene and characterized by early-onset epilepsy and intellectual and motor impairments. No cure is currently available for CDD patients, as limited knowledge of the pathology has hindered the development of therapeutics. Cdkl5 knockout (KO) mouse models, recently created to investigate the role of CDKL5 in the etiology of CDD, recapitulate various features of the disorder. Previous studies have shown alterations in synaptic plasticity and dendritic pattern in the cerebral cortex and in the hippocampus, but the knowledge of the molecular substrates underlying these alterations is still limited. Here, we have examined for the first time synaptic function and plasticity, dendritic morphology, and signal transduction pathways in the perirhinal cortex (PRC) of this mouse model. Being interconnected with a wide range of cortical and subcortical structures and involved in various cognitive processes, PRC provides a very interesting framework for examining how CDKL5 mutation leads to deficits at the synapse, circuit, and behavioral level. We found that long-term potentiation (LTP) was impaired, and that the TrkB/PLCγ1 pathway could be mechanistically involved in this alteration. PRC neurons in mutant mice showed a reduction in dendritic length, dendritic branches, PSD-95-positive puncta, GluA2-AMPA receptor levels, and spine density and maturation. These functional and structural deficits were associated with impairment in visual recognition memory. Interestingly, an in vivo treatment with a TrkB agonist (the 7,8-DHF prodrug R13) to trigger the TrkB/PLCγ1 pathway rescued defective LTP, dendritic pattern, PSD-95 and GluA2-AMPA receptor levels, and restored visual recognition memory in Cdkl5 KO mice. Present findings demonstrate a critical role of TrkB signaling in the synaptic development alterations due to CDKL5 mutation, and suggest the possibility of TrkB-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacé
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Keqiang Ye
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Roberto Rimondini
- Department of Biomedical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.,Interdepartmental Center "Luigi Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Guo H, Wang T, Wu H, Long M, Coe BP, Li H, Xun G, Ou J, Chen B, Duan G, Bai T, Zhao N, Shen Y, Li Y, Wang Y, Zhang Y, Baker C, Liu Y, Pang N, Huang L, Han L, Jia X, Liu C, Ni H, Yang X, Xia L, Chen J, Shen L, Li Y, Zhao R, Zhao W, Peng J, Pan Q, Long Z, Su W, Tan J, Du X, Ke X, Yao M, Hu Z, Zou X, Zhao J, Bernier RA, Eichler EE, Xia K. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism 2018; 9:64. [PMID: 30564305 PMCID: PMC6293633 DOI: 10.1186/s13229-018-0247-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/23/2018] [Indexed: 11/17/2022] Open
Abstract
Background We previously performed targeted sequencing of autism risk genes in probands from the Autism Clinical and Genetic Resources in China (ACGC) (phase I). Here, we expand this analysis to a larger cohort of patients (ACGC phase II) to better understand the prevalence, inheritance, and genotype-phenotype correlations of likely gene-disrupting (LGD) mutations for autism candidate genes originally identified in cohorts of European descent. Methods We sequenced 187 autism candidate genes in an additional 784 probands and 85 genes in 599 probands using single-molecule molecular inversion probes. We tested the inheritance of potentially pathogenic mutations, performed a meta-analysis of phase I and phase II data and combined our results with existing exome sequence data to investigate the phenotypes of carrier parents and patients with multiple hits in different autism risk genes. Results We validated recurrent, LGD, de novo mutations (DNMs) in 13 genes. We identified a potential novel risk gene (ZNF292), one novel gene with recurrent LGD DNMs (RALGAPB), as well as genes associated with macrocephaly (GIGYF2 and WDFY3). We identified the transmission of private LGD mutations in genes predominantly associated with DNMs and showed that parental carriers tended to share milder autism-related phenotypes. Patients that carried DNMs in two or more candidate genes show more severe phenotypes. Conclusions We identify new risk genes and transmission of deleterious mutations in genes primarily associated with DNMs. The fact that parental carriers show milder phenotypes and patients with multiple hits are more severe supports a multifactorial model of risk.
Collapse
Affiliation(s)
- Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA USA
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Tianyun Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Huidan Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Min Long
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Honghui Li
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi China
| | - Guanglei Xun
- Mental Health Center of Shandong Province, Jinan, Shandong China
| | - Jianjun Ou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Biyuan Chen
- Children Development Behavior Center of the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Guiqin Duan
- Center of Children Psychology and Behavior, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Ting Bai
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Ningxia Zhao
- Xi’an Encephalopathy Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi China
| | - Yidong Shen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yun Li
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, Jiangsu China
| | - Yazhe Wang
- Center of Children Psychology and Behavior, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Yu Zhang
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi China
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA USA
| | - Yanling Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Nan Pang
- Department of Pediatrics, the Xiangya Hospital, Central South University, Changsha, China
| | - Lian Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Lin Han
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Xiangbin Jia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Cenying Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Hailun Ni
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Xinyi Yang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Lu Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Jingjing Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Lu Shen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Ying Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Rongjuan Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Wenjing Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Jing Peng
- Department of Pediatrics, the Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Zhigao Long
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Wei Su
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Xiaogang Du
- Xi’an Encephalopathy Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi China
| | - Xiaoyan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, Jiangsu China
| | - Meiling Yao
- Center of Children Psychology and Behavior, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Xiaobing Zou
- Children Development Behavior Center of the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA USA
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
34
|
From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol 2018; 14:735-745. [DOI: 10.1038/s41582-018-0099-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Zhu YC, Xiong ZQ. Molecular and Synaptic Bases of CDKL5 Disorder. Dev Neurobiol 2018; 79:8-19. [PMID: 30246934 DOI: 10.1002/dneu.22639] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) encodes a serine/threonine kinase abundantly expressed in the brain. Mutations in CDKL5 have been associated with neurodevelopmental disorders characterized by early-onset epileptic encephalopathy and severe intellectual disability, suggesting that CDKL5 plays important roles in brain development and function. Recent studies using cultured neurons, knockout mice, and human iPSC-derived neurons have demonstrated that CDKL5 regulates axon outgrowth, dendritic morphogenesis, and synapse formation. The role of CDKL5 in maintaining synaptic function in the mature brain has also begun to emerge. Moreover, mouse models that are deficient for CDKL5 recapitulate some of the key clinical phenotypes in human patients. Here we review these findings related to the function of CDKL5 in the brain and discuss the underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Yong-Chuan Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder. Neural Plast 2018; 2018:9726950. [PMID: 29977282 PMCID: PMC5994305 DOI: 10.1155/2018/9726950] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/−) mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/− mice. We found that Cdkl5 +/− mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/− mice show age-related alterations in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/− mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.
Collapse
|
37
|
Ortega-Moreno L, Giráldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, Sánchez-Martín G, Díaz-Gómez E, Guerrero-López R, Serratosa JM. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. PLoS One 2017; 12:e0188978. [PMID: 29190809 PMCID: PMC5708701 DOI: 10.1371/journal.pone.0188978] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Pediatric epilepsies are a group of disorders with a broad phenotypic spectrum that are associated with great genetic heterogeneity, thus making sequential single-gene testing an impractical basis for diagnostic strategy. The advent of next-generation sequencing has increased the success rate of epilepsy diagnosis, and targeted resequencing using genetic panels is the a most cost-effective choice. We report the results found in a group of 87 patients with epilepsy and developmental delay using targeted next generation sequencing (custom-designed Haloplex panel). Using this gene panel, we were able to identify disease-causing variants in 17 out of 87 (19.5%) analyzed patients, all found in known epilepsy-associated genes (KCNQ2, CDKL5, STXBP1, SCN1A, PCDH19, POLG, SLC2A1, ARX, ALG13, CHD2, SYNGAP1, and GRIN1). Twelve of 18 variants arose de novo and 6 were novel. The highest yield was found in patients with onset in the first years of life, especially in patients classified as having early-onset epileptic encephalopathy. Knowledge of the underlying genetic cause provides essential information on prognosis and could be used to avoid unnecessary studies, which may result in a greater diagnostic cost-effectiveness.
Collapse
Affiliation(s)
- Laura Ortega-Moreno
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz G. Giráldez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Victor Soto-Insuga
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - María Rodrigo-Moreno
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Cristina Alarcón-Morcillo
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gema Sánchez-Martín
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Esther Díaz-Gómez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosa Guerrero-López
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M. Serratosa
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
38
|
Zhou A, Han S, Zhou ZJ. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder. ACTA ACUST UNITED AC 2017; 12:1-6. [PMID: 28580010 DOI: 10.1007/s11515-016-1438-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. METHODS A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. RESULTS On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. CONCLUSIONS Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.
Collapse
Affiliation(s)
- Ailing Zhou
- Jiaozhou People's Hospital, Jiaozhou, Shangdong 266300, China
| | - Song Han
- Jiaozhou People's Hospital, Jiaozhou, Shangdong 266300, China
| | - Zhaolan Joe Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Fehr S, Downs J, Ho G, de Klerk N, Forbes D, Christodoulou J, Williams S, Leonard H. Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet A 2016; 170:2860-2869. [DOI: 10.1002/ajmg.a.37851] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Stephanie Fehr
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
| | - Jenny Downs
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
- School of Physiotherapy and Exercise Science; Curtin University; Perth Western Australia Australia
| | - Gladys Ho
- Western Sydney Genetics Program; Children's Hospital at Westmead; Sydney New South Wales Australia
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney New South Wales Australia
| | - Nick de Klerk
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
| | - David Forbes
- School of Paediatrics and Child Health; The University of Western Australia; Perth Western Australia Australia
| | - John Christodoulou
- School of Paediatrics and Child Health; The University of Western Australia; Perth Western Australia Australia
| | - Simon Williams
- Department of Neurology and Rehabilitation; Princess Margaret Hospital; Perth Western Australia Australia
| | - Helen Leonard
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
| |
Collapse
|
40
|
Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G, Rimondini R, Kurz T, Bartesaghi R, Ciani E. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 2016; 25:3887-3907. [PMID: 27466189 DOI: 10.1093/hmg/ddw231] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Rocchina Viggiano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Emanuele Valli
- Department of Pharmacy and Biotechnology, and CIRI Health Sciences and Technologies
| | - Paulina Jedynak
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Finn K Hansen
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Düsseldorf, Germany
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, and CIRI Health Sciences and Technologies
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Düsseldorf, Germany
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
41
|
Mangatt M, Wong K, Anderson B, Epstein A, Hodgetts S, Leonard H, Downs J. Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome. Orphanet J Rare Dis 2016; 11:39. [PMID: 27080038 PMCID: PMC4832563 DOI: 10.1186/s13023-016-0418-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022] Open
Abstract
Background Initially described as an early onset seizure variant of Rett syndrome, the CDKL5 disorder is now considered as an independent entity. However, little is currently known about the full spectrum of comorbidities that affect these patients and available literature is limited to small case series. This study aimed to use a large international sample to examine the prevalence in this disorder of comorbidities of epilepsy, gastrointestinal problems including feeding difficulties, sleep and respiratory problems and scoliosis and their relationships with age and genotype. Prevalence and onset were also compared with those occurring in Rett syndrome. Methods Data for the CDKL5 disorder and Rett syndrome were sourced from the International CDKL5 Disorder Database (ICDD), InterRett and the Australian Rett syndrome Database (ARSD). Logistic regression (multivariate and univariate) was used to analyse the relationships between age group, mutation type and the prevalence of various comorbidities. Binary longitudinal data from the ARSD and the equivalent cross-sectional data from ICDD were examined using generalized linear models with generalized estimating equations. The Kaplan-Meier method was used to estimate the failure function for the two disorders and the log-rank test was used to compare the two functions. Results The likelihood of experiencing epilepsy, GI problems, respiratory problems, and scoliosis in the CDKL5 disorder increased with age and males were more vulnerable to respiratory and sleep problems than females. We did not identify any statistically significant relationships between mutation group and prevalence of comorbidities. Epilepsy, GI problems and sleep abnormalities were more common in the CDKL5 disorder than in Rett syndrome whilst scoliosis and respiratory problems were less prevalent. Conclusion This study captured a much clearer picture of the CDKL5 disorder than previously possible using the largest sample available to date. There were differences in the presentation of clinical features occurring in the CDKL5 disorder and in Rett syndrome, reinforcing the concept that CDKL5 is an independent disorder with its own distinctive characteristics.
Collapse
Affiliation(s)
- Meghana Mangatt
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,School of Anatomy, Physiology & Human Biology, the University of Western Australia, Perth, WA, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Barbara Anderson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Amy Epstein
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Stuart Hodgetts
- School of Anatomy, Physiology & Human Biology, the University of Western Australia, Perth, WA, Australia.,Western Australian Neuroscience Research Institute, Perth, WA, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| |
Collapse
|
42
|
Abstract
While genetic causes of epilepsy have been hypothesized from the time of Hippocrates, the advent of new genetic technologies has played a tremendous role in elucidating a growing number of specific genetic causes for the epilepsies. This progress has contributed vastly to our recognition of the epilepsies as a diverse group of disorders, the genetic mechanisms of which are heterogeneous. Genotype-phenotype correlation, however, is not always clear. Nonetheless, the developments in genetic diagnosis raise the promise of a future of personalized medicine. Multiple genetic tests are now available, but there is no one test for all possible genetic mutations, and the balance between cost and benefit must be weighed. A genetic diagnosis, however, can provide valuable information regarding comorbidities, prognosis, and even treatment, as well as allow for genetic counseling. In this review, we will discuss the genetic mechanisms of the epilepsies as well as the specifics of particular genetic epilepsy syndromes. We will include an overview of the available genetic testing methods, the application of clinical knowledge into the selection of genetic testing, genotype-phenotype correlations of epileptic disorders, and therapeutic advances as well as a discussion of the importance of genetic counseling.
Collapse
Affiliation(s)
- Christelle M El Achkar
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, and Harvard Medical School, Fegan 9, 300 Longwood Ave, Boston, MA, 02115, USA,
| | | | | | | |
Collapse
|
43
|
Gürsoy S, Erçal D. Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. J Child Neurol 2016; 31:523-32. [PMID: 26271793 DOI: 10.1177/0883073815599262] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Epileptic encephalopathies are characterized by recurrent clinical seizures and prominent interictal epileptiform discharges seen during the early infantile period. Although epileptic encephalopathies are mostly associated with structural brain defects and inherited metabolic disorders, pathogenic gene mutations may also be involved in the development of epileptic encephalopathies even when no clear genetic inheritance patterns or consanguinity exist. The most common epileptic encephalopathies are Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West syndrome and Dravet syndrome, which are usually unresponsive to traditional antiepileptic medication. Many of the diagnoses describe the phenotype of these electroclinical syndromes, but not the underlying causes. To date, approximately 265 genes have been defined in epilepsy and several genes including STXBP1, ARX, SLC25A22, KCNQ2, CDKL5, SCN1A, and PCDH19 have been found to be associated with early-onset epileptic encephalopathies. In this review, we aimed to present a diagnostic approach to primary genetic causes of early-onset epileptic encephalopathies.
Collapse
Affiliation(s)
- Semra Gürsoy
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| | - Derya Erçal
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
44
|
Fehr S, Leonard H, Ho G, Williams S, de Klerk N, Forbes D, Christodoulou J, Downs J. There is variability in the attainment of developmental milestones in the CDKL5 disorder. J Neurodev Disord 2015; 7:2. [PMID: 25657822 PMCID: PMC4318547 DOI: 10.1186/1866-1955-7-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022] Open
Abstract
Background Individuals with the CDKL5 disorder have been described as having severely impaired development. A few individuals have been reported having attained more milestones including walking and running. Our aim was to investigate variation in attainment of developmental milestones and associations with underlying genotype. Methods Data was sourced from the International CDKL5 Disorder Database, and individuals were included if they had a pathogenic or probably pathogenic CDKL5 mutation and information on early development. Kaplan-Meier time-to-event analyses investigated the occurrence of developmental milestones. Mutations were grouped by their structural/functional consequence, and Cox regression was used to investigate the relationship between genotype and milestone attainment. Results The study included 109 females and 18 males. By 5 years of age, only 75% of the females had attained independent sitting and 25% independent walking whilst a quarter of the males could sit independently by 1 year 3 months. Only one boy could walk independently. No clear relationship between mutation group and milestone attainment was present, although females with a late truncating mutation attained the most milestones. Conclusion Attainment of developmental milestones is severely impaired in the CDKL5 disorder, with the majority who did attain skills attaining them at a late age. It appears as though males are more severely impaired than the females. Larger studies are needed to further investigate the role of genotype on clinical variability.
Collapse
Affiliation(s)
- Stephanie Fehr
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia Australia
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW Australia
| | - Simon Williams
- Department of Neurology and Rehabilitation, Princess Margaret Hospital, Perth, Western Australia Australia
| | - Nick de Klerk
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia Australia
| | - David Forbes
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia Australia
| | - John Christodoulou
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW Australia ; Disciplines of Paediatrics & Child Health and Genetic Medicine, University of Sydney, Sydney, NSW Australia
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia Australia ; School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia Australia
| |
Collapse
|
45
|
Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calzà L, Bartesaghi R, Ciani E. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Neurobiol Dis 2014; 70:53-68. [PMID: 24952363 PMCID: PMC4146476 DOI: 10.1016/j.nbd.2014.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Rett's syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3β signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene. Loss of Cdkl5 decreases survival of postmitotic granule cells. Loss of Cdkl5 results in dendritic hypotrophy of newborn granule cells. Loss of Cdkl5 impairs hippocampus-dependent behavior. Loss of Cdkl5 alters the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Roberta Torricella
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Italy
| | - Rocchina Viggiano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Elena Amendola
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Cornelius Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Laura Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
46
|
Wilmshurst JM, Berg AT, Lagae L, Newton CR, Cross JH. The challenges and innovations for therapy in children with epilepsy. Nat Rev Neurol 2014; 10:249-60. [PMID: 24709890 DOI: 10.1038/nrneurol.2014.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major advances have been made in the diagnosis, evaluation and management of children with epilepsy over the past 15 years. There has been a marked increase in genetic diagnoses of a number of key childhood-onset epilepsy syndromes, such as Dravet syndrome, which has been linked to mutations in the SCN1A gene. The reorganization and reclassification of epilepsies, devised by the International League Against Epilepsy, has stimulated specialists to reassess their diagnostic practices; however, many studies have not addressed the global issues in treating children with epilepsy-specifically, the challenges of diagnosis through to optimal, and appropriate, therapeutic management. Also, Class I evidence-based data that are needed as a foundation for the development of treatment guidelines worldwide are lacking. Epilepsy is common, and the impact of this disease crosses age ranges and should be managed at all levels of care from community to quaternary care. In this Review, existing data and new therapeutic management approaches are discussed with the aim of highlighting the incidence of standard practices that may not be based on clinical evidence.
Collapse
Affiliation(s)
- Jo M Wilmshurst
- Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch 7700, South Africa
| | - Anne T Berg
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL 60611, USA
| | - Lieven Lagae
- Department of Pediatric Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Charles R Newton
- Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, PO Box 230, Kilifi 80108, Kenya
| | - J Helen Cross
- UCL Institute of Child Health, 4/5 Long Yard, London WC1N 3LU, UK
| |
Collapse
|
47
|
Zhao Y, Zhang X, Bao X, Zhang Q, Zhang J, Cao G, Zhang J, Li J, Wei L, Pan H, Wu X. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients. BMC MEDICAL GENETICS 2014; 15:24. [PMID: 24564546 PMCID: PMC3938974 DOI: 10.1186/1471-2350-15-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/12/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. METHODS The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. RESULTS De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. CONCLUSIONS Mutations in CDKL5 gene are responsible for 7 with Hanefeld variants of RTT and 2 with early-onset epileptic encephalopathy in 71 girls as well as for 1 infantile spasms in 31 males. There are some differences in the phenotypes among genders with CDKL5 gene mutations and CDKL5 gene mutation analysis should be considered in both genders.
Collapse
Affiliation(s)
| | | | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Das DK, Mehta B, Menon SR, Raha S, Udani V. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome. Neuromolecular Med 2012; 15:218-25. [PMID: 23242510 DOI: 10.1007/s12017-012-8212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for cellular localization through protein-protein interaction; any mutations in this domain might alter this function of the protein. This is the first report from India showing the mutation in CDKL5 gene in Indian cases of Rett syndrome. Our study emphasizes the role of CDKL5 mutation screening in cases of atypical Rett syndrome with congenital seizure variant.
Collapse
Affiliation(s)
- Dhanjit Kumar Das
- Genetic Research Centre, National Institute for Research in Reproductive Health (ICMR), Jahangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | | | | | | | | |
Collapse
|