1
|
Russo C, Aliberti F, Ferrara UP, Russo C, De Gennaro DV, Cristofano A, Nastro A, Cicala D, Spennato P, Quarantelli M, Aiello M, Soricelli A, Smaldone G, Onorini N, De Martino L, Picariello S, Parlato S, Mirabelli P, Quaglietta L, Covelli EM, Cinalli G. Neuroimaging in Nonsyndromic Craniosynostosis: Key Concepts to Unlock Innovation. Diagnostics (Basel) 2024; 14:1842. [PMID: 39272627 PMCID: PMC11394062 DOI: 10.3390/diagnostics14171842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Craniosynostoses (CRS) are caused by the premature fusion of one or more cranial sutures, with isolated nonsyndromic CRS accounting for most of the clinical manifestations. Such premature suture fusion impacts both skull and brain morphology and involves regions far beyond the immediate area of fusion. The combined use of different neuroimaging tools allows for an accurate depiction of the most prominent clinical-radiological features in nonsyndromic CRS but can also contribute to a deeper investigation of more subtle alterations in the underlying nervous tissue organization that may impact normal brain development. This review paper aims to provide a comprehensive framework for a better understanding of the present and future potential applications of neuroimaging techniques for evaluating nonsyndromic CRS, highlighting strategies for optimizing their use in clinical practice and offering an overview of the most relevant technological advancements in terms of diagnostic performance, radiation exposure, and cost-effectiveness.
Collapse
Affiliation(s)
- Camilla Russo
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Ferdinando Aliberti
- Cranio-Maxillo-Facial Surgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Ursula Pia Ferrara
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Carmela Russo
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Domenico Vincenzo De Gennaro
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Adriana Cristofano
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Anna Nastro
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Domenico Cicala
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Pietro Spennato
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructures and Bioimaging, Italian National Research Council, 80145 Naples, Italy
| | | | | | | | - Nicola Onorini
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Lucia De Martino
- Neuro-Oncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Stefania Picariello
- Neuro-Oncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Stefano Parlato
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Peppino Mirabelli
- Clinical and Translational Research Unit, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Lucia Quaglietta
- Neuro-Oncology Unit, Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Eugenio Maria Covelli
- Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| |
Collapse
|
2
|
Gallagher ER, Chow P, Mills MR, Perry H, Tam AC, Rosenbluth G, Gutierrez YR, Shamshoni JK, Matthews M, Schweitzer DN, Hing A. Genetic Testing in Craniofacial Care: Development of Algorithms for Testing Patients with Orofacial Clefting, Branchial Arch Anomalies, and Craniosynostosis. Cleft Palate Craniofac J 2024:10556656241276857. [PMID: 39155612 DOI: 10.1177/10556656241276857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE To develop consensus-based algorithms for genetic testing in patients with common craniofacial conditions. DESIGN An online collaborative consisting of online meetings, independent work, and feedback across groups. Setting/Participants: A collaborative of genetics and pediatrics providers from three regional craniofacial centers (four institutions). METHODS Collaborative participants agreed upon a shared initial framework, developed algorithms independently, and presented/tested the algorithms with a national audience. Algorithms were modified based on consensus feedback. RESULTS The collaborative group developed final algorithms for genetic testing in patients with orofacial cleft, branchial arch conditions, and craniosynostosis. CONCLUSIONS Timely and accurate diagnosis of genetic conditions can support medical management recommendations that result in safer surgical interventions. Algorithms can help guide best-practices for testing, particularly in institutions without easy access to genetics providers.
Collapse
Affiliation(s)
| | - Penny Chow
- Seattle Children's Hospital, Seattle, WA, USA
| | | | - Hazel Perry
- University of California San Francisco, San Francisco, CA, USA
| | - Allison C Tam
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Anne Hing
- Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
3
|
Zucchelli M, Ruggiero F, Babini M, Lefosse M, Borghi A, Rodriguez-Florez N, Tarsitano A, Nicolini F, Galassi E. Surgical strategy in treatment of metopic synostosis in a single centre experience: technical note and quantitative analysis of the outcomes. Childs Nerv Syst 2024:10.1007/s00381-024-06520-7. [PMID: 39001880 DOI: 10.1007/s00381-024-06520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Trigonocephaly is the most common craniosynostosis involving orbits. Although some degree of agreement has been reached regarding surgical timing and indications for treatment, there is no consensus regarding the ideal operative technique to guarantee an optimal morphological outcome. The purpose of this study is to describe both strategies and to compare morphological outcomes by means of morphological surface analysis obtained from three-dimensional (3D) stereophotogrammetry, with two different techniques. METHODS We retrospectively investigated 43 patients with metopic synostosis surgically treated between 2004 and 2020. Two different techniques were applied, addressed as technique A and B. Ten patients undergone postoperative 3d stereophotogrammetry were enrolled, and cephalometric measurements were taken and compared to a cohort of unaffected patients matched by age and gender. RESULTS Comparison of the groups demonstrated a hypercorrection of the metopic angle of the second technique, associated with a slightly lower correction of the interfrontoparietal diameter. The metopic angle showed to be significantly undercorrected with the first method. CONCLUSIONS Alternated barrel staving technique appears to be a quick and satisfactory method in cranial remodelling for metopic synostosis. It guarantees an optimal aesthetic result in the first years after surgery.
Collapse
Affiliation(s)
- Mino Zucchelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Pediatric Neurosurgery, Bologna, Italy
| | - Federica Ruggiero
- Oral and Maxillofacial Surgery Unit, AUSL Bologna, Bellaria Maggiore Hospital, Bologna, Italy.
- DIBINEM, Alma Mater Studiorum Unversity of Bologna, Bologna, Italy.
| | - Micol Babini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Pediatric Neurosurgery, Bologna, Italy
| | - Mariella Lefosse
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Pediatric Neurosurgery, Bologna, Italy
| | - Alessandro Borghi
- Department of Engineering, Durham University, Durham, UK
- Great Ormond Street Institute of Child Health, University College of London, London, UK
- Great Ormond Street Hospital for Children, Craniofacial Unit, London, UK
| | - Naiara Rodriguez-Florez
- Universidad de Navarra, TECNUN Escuela de Ingeneiros, San Sebastian, Spain
- Basque Foundation for Science, Bilbao, Spain
| | - Achille Tarsitano
- DIBINEM, Alma Mater Studiorum Unversity of Bologna, Bologna, Italy
- Oral and Maxillofacial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, 40138, Bologna, Italy
| | - Francesca Nicolini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Pediatric Neurosurgery, Bologna, Italy
| | - Ercole Galassi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Pediatric Neurosurgery, Bologna, Italy
| |
Collapse
|
4
|
Musolf AM, Justice CM, Erdogan-Yildirim Z, Goovaerts S, Cuellar A, Shaffer JR, Marazita ML, Claes P, Weinberg SM, Li J, Senders C, Zwienenberg M, Simeonov E, Kaneva R, Roscioli T, Di Pietro L, Barba M, Lattanzi W, Cunningham ML, Romitti PA, Boyadjiev SA. Whole genome sequencing identifies associations for nonsyndromic sagittal craniosynostosis with the intergenic region of BMP2 and noncoding RNA gene LINC01428. Sci Rep 2024; 14:8533. [PMID: 38609424 PMCID: PMC11014861 DOI: 10.1038/s41598-024-58343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Craniosynostosis (CS) is a major birth defect resulting from premature fusion of cranial sutures. Nonsyndromic CS occurs more frequently than syndromic CS, with sagittal nonsyndromic craniosynostosis (sNCS) presenting as the most common CS phenotype. Previous genome-wide association and targeted sequencing analyses of sNCS have identified multiple associated loci, with the strongest association on chromosome 20. Herein, we report the first whole-genome sequencing study of sNCS using 63 proband-parent trios. Sequencing data for these trios were analyzed using the transmission disequilibrium test (TDT) and rare variant TDT (rvTDT) to identify high-risk rare gene variants. Sequencing data were also examined for copy number variants (CNVs) and de novo variants. TDT analysis identified a highly significant locus at 20p12.3, localized to the intergenic region between BMP2 and the noncoding RNA gene LINC01428. Three variants (rs6054763, rs6054764, rs932517) were identified as potential causal variants due to their probability of being transcription factor binding sites, deleterious combined annotation dependent depletion scores, and high minor allele enrichment in probands. Morphometric analysis of cranial vault shape in an unaffected cohort validated the effect of these three single nucleotide variants (SNVs) on dolichocephaly. No genome-wide significant rare variants, de novo loci, or CNVs were identified. Future efforts to identify risk variants for sNCS should include sequencing of larger and more diverse population samples and increased omics analyses, such as RNA-seq and ATAC-seq.
Collapse
Affiliation(s)
- Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Cristina M Justice
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zeynep Erdogan-Yildirim
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT-PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Araceli Cuellar
- Department of Pediatrics, University of California Davis, Sacramento, CA, 95817, USA
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT-PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jae Li
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, 95618, USA
| | - Craig Senders
- Department of Otolaryngology, Head and Neck Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Marike Zwienenberg
- Department of Neurosurgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Emil Simeonov
- Pediatric Clinic, Alexandrovska University Hospital, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Tony Roscioli
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Lorena Di Pietro
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Marta Barba
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Wanda Lattanzi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Michael L Cunningham
- Seattle Children's Craniofacial Center, Center of Developmental Biology and Regenerative Medicine and Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
5
|
Rudolph CM, Awad AN, Toth K, Adamo MA, Carpenter C. Endoscopic Strip Craniectomy and Helmet Therapy for Sagittal Craniosynostosis: An Analysis of Cranial Growth Changes in the Early Postoperative Period. Cleft Palate Craniofac J 2024; 61:458-468. [PMID: 36217735 DOI: 10.1177/10556656221131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The purpose of this study is to analyze cranial width and length growth curves in the early postoperative period of patients by undergoing endoscopic sagittal strip craniectomy (ESC) to determine the timing of the maximal growth curve change. By analyzing the complex interplay of cephalic length and width measurements, we hope to better understand the cephalic index (CI) growth curve during this early period. This is the first of a multistep process to elucidate the ideal cranial remolding orthosis (CRO) treatment duration. DESIGN Retrospective review. SETTING Tertiary academic institution. PATIENTS Children with isolated sagittal craniosynostosis. INTERVENTIONS ESC and postoperative CRO treatment (2015-2019). MAIN OUTCOME MEASURES One cranial orthotist obtained preoperative and postoperative measurements. The maximal rate of change of width, length, and CI were compared against the postoperative week these occurred. RESULTS Thirteen children (mean age: 3.3 months, average preoperative CI: 73.4) underwent this intervention. CI reached its highest growth rate by 4.9 average weeks postoperatively, which correlated with the maximal width growth rate (5.2 weeks). Length curves reached their maximal growth rate by 15.5 weeks. CI peaked (81.3) by 22.7 weeks postoperatively, a significant increase from baseline. CONCLUSIONS Following ESC, in the early postoperative period, the CI growth curve has 4 phases: initial rapid expansion, early and late slowed expansion, and plateau, followed by possible regression phases. This highlights the importance of early postoperative CRO initiation, CRO compliance, and properly fitting CROs, especially in the first 2 phases. This data sets the stage for investigating the ideal treatment length.
Collapse
Affiliation(s)
| | - Amanda N Awad
- Division of Plastic Surgery, Albany Medical Center, Albany, NY, USA
| | | | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Courtney Carpenter
- Cleft-Craniofacial Center, Division of Plastic Surgery, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
6
|
Albaugh SL, Diaz A, Wang E, Shen TC, Williams L, He TC, Reid RR. Systematic Review of Nonsyndromic Craniosynostosis: Genomic Alterations and Impacted Signaling Pathways. Plast Reconstr Surg 2024; 153:383e-396e. [PMID: 37070824 DOI: 10.1097/prs.0000000000010522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
BACKGROUND Genetic research in nonsyndromic craniosynostosis remains limited compared with syndromic craniosynostosis. This systematic review aimed to comprehensively summarize the genetic literature of nonsyndromic craniosynostosis and highlight key signaling pathways. METHODS The authors performed a systematic literature search of PubMed, Ovid, and Google Scholar databases from inception until December of 2021 using search terms related to nonsyndromic craniosynostosis and genetics. Two reviewers screened titles and abstract for relevance, and three reviewers independently extracted study characteristics and genetic data. Gene networks were constructed using Search Tool for Retrieval of Interacting Genes/Proteins (version 11) analysis. RESULTS Thirty-three articles published between 2001 and 2020 met inclusion criteria. Studies were further classified into candidate gene screening and variant identification studies ( n = 16), genetic expression studies ( n = 13), and common and rare variant association studies ( n = 4). Most studies were good quality. Using our curated list of 116 genes extracted from the studies, two main networks were constructed. CONCLUSIONS This systematic review concerns the genetics of nonsyndromic craniosynostosis, with network construction revealing TGF-β/BMP, Wnt, and NF-κB/RANKL as important signaling pathways. Future studies should focus on rare rather than common variants to examine the missing heritability in this defect and, going forward, adopt a standard definition.
Collapse
Affiliation(s)
| | - Ashley Diaz
- From the Pritzker School of Medicine, University of Chicago
| | - Esther Wang
- From the Pritzker School of Medicine, University of Chicago
| | - Timothy C Shen
- From the Pritzker School of Medicine, University of Chicago
| | - Lydia Williams
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic and Reconstructive Surgery
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago Medical Center
| | - Russell R Reid
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic and Reconstructive Surgery
| |
Collapse
|
7
|
Topa A, Rohlin A, Fehr A, Lovmar L, Stenman G, Tarnow P, Maltese G, Bhatti-Søfteland M, Kölby L. The value of genome-wide analysis in craniosynostosis. Front Genet 2024; 14:1322462. [PMID: 38318288 PMCID: PMC10839781 DOI: 10.3389/fgene.2023.1322462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Background: This study assessed the diagnostic yield of high-throughput sequencing methods in a cohort of craniosynostosis (CS) patients not presenting causal variants identified through previous targeted analysis. Methods: Whole-genome or whole-exome sequencing (WGS/WES) was performed in a cohort of 59 patients (from 57 families) assessed by retrospective phenotyping as having syndromic or nonsyndromic CS. Results: A syndromic form was identified in 51% of the unrelated cases. A genetic cause was identified in 38% of syndromic cases, with novel variants detected in FGFR2 (a rare Alu insertion), TWIST1, TCF12, KIAA0586, HDAC9, FOXP1, and NSD2. Additionally, we report two patients with rare recurrent variants in KAT6A and YY1 as well as two patients with structural genomic aberrations: one with a 22q13 duplication and one with a complex rearrangement involving chromosome 2 (2p25 duplication including SOX11 and deletion of 2q22). Moreover, we identified potentially relevant variants in 87% of the remaining families with no previously detected causal variants, including novel variants in ADAMTSL4, ASH1L, ATRX, C2CD3, CHD5, ERF, H4C5, IFT122, IFT140, KDM6B, KMT2D, LTBP1, MAP3K7, NOTCH2, NSD1, SOS1, SPRY1, POLR2A, PRRX1, RECQL4, TAB2, TAOK1, TET3, TGFBR1, TCF20, and ZBTB20. Conclusion: These results confirm WGS/WES as a powerful diagnostic tool capable of either targeted in silico or broad genomic analysis depending on phenotypic presentation (e.g., classical or unusual forms of syndromic CS).
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Tarnow
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Giovanni Maltese
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Madiha Bhatti-Søfteland
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
8
|
Gaillard L, Goverde A, Weerts MJA, de Klein A, Mathijssen IMJ, Van Dooren MF. Genetic diagnostic yield in an 11-year cohort of craniosynostosis patients. Eur J Med Genet 2023; 66:104843. [PMID: 37716645 DOI: 10.1016/j.ejmg.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Craniosynostosis may present in isolation, 'non-syndromic', or with additional congenital anomalies/neurodevelopmental disorders, 'syndromic'. Clinical focus shifted from confirming classical syndromic cases to offering genetic testing to all craniosynostosis patients. This retrospective study assesses diagnostic yield of molecular testing by investigating prevalences of chromosomal and monogenic (likely) pathogenic variants in an 11-year cohort of 1020 craniosynostosis patients. 502 children underwent genetic testing. Pathogenic variants were identified in 174 patients (35%). Diagnostic yield was significantly higher in syndromic craniosynostosis (62%) than in non-syndromic craniosynostosis (6%). Before whole exome sequencing (WES) emerged, single-gene testing was performed using Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA). Diagnostic yield was 11% and was highest for EFNB1, FGFR2, FGFR3, and IL11RA. Diagnostic yield for copy number variant analysis using microarray was 8%. From 2015 onwards, the WES craniosynostosis panel was implemented, with a yield of 10%. In unsolved, mainly syndromic, cases suspected of a genetic cause, additional WES panels (multiple congenital anomalies (MCA)/intellectual disability (ID)) or open exome analysis were performed with an 18% diagnostic yield. To conclude, microarray and the WES craniosynostosis panel are key to identifying pathogenic variants. in craniosynostosis patients. Given the advances in genetic diagnostics, we should look beyond the scope of the WES craniosynostosis panel and consider extensive genetic diagnostics (e.g. open exome sequencing, whole genome sequencing, RNA sequencing and episignature analysis) if no diagnosis is obtained through microarray and/or WES craniosynostosis panel. If parents are uncomfortable with more extensive diagnostics, MCA or ID panels may be considered.
Collapse
Affiliation(s)
- Linda Gaillard
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, Rotterdam, the Netherlands.
| | - Anne Goverde
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marjolein J A Weerts
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Annelies de Klein
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, Rotterdam, the Netherlands
| | - Marieke F Van Dooren
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Marincak Vrankova Z, Krivanek J, Danek Z, Zelinka J, Brysova A, Izakovicova Holla L, Hartsfield JK, Borilova Linhartova P. Candidate genes for obstructive sleep apnea in non-syndromic children with craniofacial dysmorphisms - a narrative review. Front Pediatr 2023; 11:1117493. [PMID: 37441579 PMCID: PMC10334820 DOI: 10.3389/fped.2023.1117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric obstructive sleep apnea (POSA) is a complex disease with multifactorial etiopathogenesis. The presence of craniofacial dysmorphisms influencing the patency of the upper airway is considered a risk factor for POSA development. The craniofacial features associated with sleep-related breathing disorders (SRBD) - craniosynostosis, retrognathia and micrognathia, midface and maxillary hypoplasia - have high heritability and, in a less severe form, could be also found in non-syndromic children suffering from POSA. As genetic factors play a role in both POSA and craniofacial dysmorphisms, we hypothesize that some genes associated with specific craniofacial features that are involved in the development of the orofacial area may be also considered candidate genes for POSA. The genetic background of POSA in children is less explored than in adults; so far, only one genome-wide association study for POSA has been conducted; however, children with craniofacial disorders were excluded from that study. In this narrative review, we discuss syndromes that are commonly associated with severe craniofacial dysmorphisms and a high prevalence of sleep-related breathing disorders (SRBD), including POSA. We also summarized information about their genetic background and based on this, proposed 30 candidate genes for POSA affecting craniofacial development that may play a role in children with syndromes, and identified seven of these genes that were previously associated with craniofacial features risky for POSA development in non-syndromic children. The evidence-based approach supports the proposition that variants of these candidate genes could lead to POSA phenotype even in these children, and, thus, should be considered in future research in the general pediatric population.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Danek
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Zelinka
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alena Brysova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James K. Hartsfield
- E. Preston Hicks Professor of Orthodontics and Oral Health Research, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core, Lexington, KE, United States
| | - Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with the University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
10
|
Neurosurgical aspects of Noonan syndrome. Childs Nerv Syst 2023; 39:849-856. [PMID: 36847963 DOI: 10.1007/s00381-023-05888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Noonan syndrome (NS) is a rare neurodevelopmental syndrome characterized by dysmorphic features, congenital heart defects, neurodevelopmental delay, and bleeding diathesis. Though rare, several neurosurgical manifestations have been associated with NS, such as Chiari malformation (CM-I), syringomyelia, brain tumors, moyamoya, and craniosynostosis. We describe our experience in treating children with NS and various neurosurgical conditions, and review the current literature on neurosurgical aspects of NS. METHODS Data were retrospectively collected from the medical records of children with NS who were operated at a tertiary pediatric neurosurgery department, between 2014 and 2021. Inclusion criteria were clinical or genetic diagnosis of NS, age < 18 years at treatment, and need for a neurosurgical intervention of any kind. RESULTS Five cases fulfilled the inclusion criteria. Two had tumors, one underwent surgical resection. Three had CM-I, syringomyelia, and hydrocephalus, of whom one also had craniosynostosis. Comorbidities included pulmonary stenosis in two patients and hypertrophic cardiomyopathy in one. Three patients had bleeding diathesis, two of them with abnormal coagulation tests. Four patients were treated preoperatively with tranexamic acid, and two with Von Willebrand factor or platelets (1 each). One patient with a clinical bleeding predisposition developed hematomyelia following a syringe-subarachnoid shunt revision. CONCLUSIONS NS is associated with a spectrum of central nervous system abnormalities, some of which with known etiology, while in others a pathophysiological mechanism has been suggested in the literature. When operating on a child with NS, a meticulous anesthetic, hematologic, and cardiac evaluation should be conducted. Neurosurgical interventions should then be planned accordingly.
Collapse
|
11
|
Ahmadpour S, Foghi K. A rare case of the scaphocephalic skull of an adult male. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2022. [DOI: 10.1186/s41935-022-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Scaphocephaly is a craniofacial anomaly where the skull is disproportionately long and narrow. Premature closure of the sagittal suture is thought to be at the core of the etiopathology for scaphocephaly.
Case presentation
The skull is a well-preserved skull found in an antiquated graveyard at Parkand village Daregaz, Iran, with no visible signs of surgical manipulation. The craniofacial indices were measured. The maximum cranial length was 200 mm, and the measured length of nasion-bregma was 140mm, whereas most of the measurements were less than the normal scaphocephalic indices. Another morphological finding was the flattening of the frontal bone.
Conclusions
The cranial vault morphometry and morphology of the presented case fit the scalp. In addition to the characteristics of scaphocephaly, the presented skull was of a rare trait, frontal flattening, which has not been reported before.
Collapse
|
12
|
Moddemann MK, Kieslich M, Koenig R. Intrafamilial variability in six family members with ERF-related craniosynostosis syndrome type 4. Am J Med Genet A 2022; 188:2969-2975. [PMID: 35852485 DOI: 10.1002/ajmg.a.62900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/31/2023]
Abstract
ERF-related craniosynostosis syndrome type 4 (CRS4, OMIM #600775) is a rare autosomal dominant malformation syndrome, caused by pathogenic variants in the ERF gene and characterized by craniosynostosis, developmental delay, and dysmorphic features such as hypertelorism, exophthalmos, depressed nasal bridge, and retrognathia. So far, there are mostly individual reports and only a few descriptions of families with more than two affected patients, allowing statements about the penetrance of a certain variant and its variability only to a limited extent. In this study, we report an in-depth analysis of the clinical course of six family members from three generations with the novel heterozygous nonsense variant c.286A>T (p.Lys96*) in the ERF gene. At the time of examination, all of the six patients showed mild dysmorphic features and brachydactyly, five were overweight/obese and had delayed speech development, and four were short in stature. Hyperactivity, a short concentration span and a history of learning difficulties were found in half of the affected family members. To this day, none of the patients developed increased intracranial hypertension that would require surgical intervention. This work provides further information on the expressive variability of an ERF variant in six members of one family and focuses on the need for close neuropediatric surveillance.
Collapse
Affiliation(s)
- Marina K Moddemann
- Department of Human Genetics, Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Matthias Kieslich
- Division of Neurology, Neurometabolics and Prevention, Department of Pediatrics, Faculty of Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - Rainer Koenig
- Department of Human Genetics, Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| |
Collapse
|
13
|
TBX3 and EFNA4 Variant in a Family with Ulnar-Mammary Syndrome and Sagittal Craniosynostosis. Genes (Basel) 2022; 13:genes13091649. [PMID: 36140816 PMCID: PMC9498434 DOI: 10.3390/genes13091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
Ulnar-mammary syndrome (UMS) is a rare, autosomal dominant disorder characterized by anomalies affecting the limbs, apocrine glands, dentition, and genital development. This syndrome is caused by haploinsufficiency in the T-Box3 gene (TBX3), with considerable variability in the clinical phenotype being observed even within families. We describe a one-year-old female with unilateral, postaxial polydactyly, and bilateral fifth fingernail duplication. Next-generation sequencing revealed a novel, likely pathogenic, variant predicted to affect the canonical splice site in intron 3 of the TBX3 gene (c.804 + 1G > A, IVS3 + 1G > A). This variant was inherited from the proband’s father who was also diagnosed with UMS with the additional clinical finding of congenital, sagittal craniosynostosis. Subsequent whole genome analysis in the proband’s father detected a variant in the EFNA4 gene (c.178C > T, p.His60Tyr), which has only been reported to be associated with sagittal craniosynostosis in one patient prior to this report but reported in other cranial suture synostosis. The findings in this family extend the genotypic spectrum of UMS, as well as the phenotypic spectrum of EFNA4-related craniosynostosis.
Collapse
|
14
|
Eisová S, Velemínský P, Velemínská J, Bruner E. Diploic vein morphology in normal and craniosynostotic adult human skulls. J Morphol 2022; 283:1318-1336. [PMID: 36059180 DOI: 10.1002/jmor.21505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Diploic veins (DV) run within the cranial diploe, where they leave channels that can be studied in osteological samples. This study investigates overall DV variability in human adults and the effects of sex, age, cranial dimensions, and dysmorphogenesis associated with craniosynostosis (CS). The morphology of macroscopic diploic channels was analyzed in a set of the qualitative and quantitative variables in computed tomography-images of crania of anatomically normal and craniosynostotic adult individuals. Macroscopic diploic channels occur most frequently in the frontal and parietal bones, often with a bilaterally symmetrical pattern. DV-features (especially DV-pattern) are characterized by high individual diversity. On average, there are 5.4 ± 3.5 large macroscopic channels (with diameters >1 mm) per individual, with a mean diameter of 1.7 ± 0.4 mm. Age and sex have minor effects on DV, and cranial proportions significantly influence DV only in CS skulls. CS is associated with changes in the DV numbers, distributions, and diameters. Craniosynostotic skulls, especially brachycephalic skulls, generally present smaller DV diameters, and dolichocephalic skulls display increased number of frontal DV. CS, associated with altered cranial dimensions, suture imbalance, increased intracranial pressure, and with changes of the endocranial craniovascular system, significantly also affects the macroscopic morphology of DV in adults, in terms of both structural (topological redistribution) and functional factors. The research on craniovascular morphology and CS may be of interest in biological anthropology, paleopathology, medicine (e.g., surgical planning), but also in zoology and paleontology.
Collapse
Affiliation(s)
- Stanislava Eisová
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic.,Katedra antropologie a genetiky člověka, Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Petr Velemínský
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic
| | - Jana Velemínská
- Katedra antropologie a genetiky člověka, Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
15
|
Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors. Cell Rep 2022; 40:111045. [PMID: 35830813 PMCID: PMC9595211 DOI: 10.1016/j.celrep.2022.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes. Angelozzi and colleagues establish a detailed transcriptomic atlas of mouse embryonic craniogenesis and use mutant mice to show that SOXC (SOX4, SOX11, and SOX12 transcription factors) critically support osteogenesis and dermogenesis by promoting the expression of dynamic cellular and molecular properties of progenitor populations. SOXC could similarly affect many other processes.
Collapse
|
16
|
Lo Vecchio F, Tabolacci E, Nobile V, Pomponi MG, Pietrobono R, Neri G, Amenta S, Candida E, Grippaudo C, Lo Cascio E, Vita A, Tiberio F, Arcovito A, Lattanzi W, Genuardi M, Chiurazzi P. Mother and Daughter Carrying of the Same Pathogenic Variant in FGFR2 with Discordant Phenotype. Genes (Basel) 2022; 13:genes13071161. [PMID: 35885943 PMCID: PMC9319849 DOI: 10.3390/genes13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Craniosynostosis are a heterogeneous group of genetic conditions characterized by the premature fusion of the skull bones. The most common forms of craniosynostosis are Crouzon, Apert and Pfeiffer syndromes. They differ from each other in various additional clinical manifestations, e.g., syndactyly is typical of Apert and rare in Pfeiffer syndrome. Their inheritance is autosomal dominant with incomplete penetrance and one of the main genes responsible for these syndromes is FGFR2, mapped on chromosome 10, encoding fibroblast growth factor receptor 2. We report an FGFR2 gene variant in a mother and daughter who present with different clinical features of Crouzon syndrome. The daughter is more severely affected than her mother, as also verified by a careful study of the face and oral cavity. The c.1032G>A transition in exon 8, already reported as a synonymous p.Ala344 = variant in Crouzon patients, also activates a new donor splice site leading to the loss of 51 nucleotides and the in-frame removal of 17 amino acids. We observed lower FGFR2 transcriptional and translational levels in the daughter compared to the mother and healthy controls. A preliminary functional assay and a molecular modeling added further details to explain the discordant phenotype of the two patients.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy; (F.L.V.); (M.G.P.); (S.A.); (M.G.)
| | - Elisabetta Tabolacci
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
| | - Veronica Nobile
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
| | - Maria Grazia Pomponi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy; (F.L.V.); (M.G.P.); (S.A.); (M.G.)
| | - Roberta Pietrobono
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
| | - Giovanni Neri
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
| | - Simona Amenta
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy; (F.L.V.); (M.G.P.); (S.A.); (M.G.)
| | | | - Cristina Grippaudo
- Dipartimento Testa Collo, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.A.); (E.L.C.)
| | - Alessia Vita
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy; (A.V.); (F.T.)
| | - Federica Tiberio
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy; (A.V.); (F.T.)
| | - Alessandro Arcovito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.A.); (E.L.C.)
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy;
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy; (A.V.); (F.T.)
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy; (F.L.V.); (M.G.P.); (S.A.); (M.G.)
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Roma, Italy; (F.L.V.); (M.G.P.); (S.A.); (M.G.)
- Dipartimento Universitario Scienze Della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.T.); (V.N.); (R.P.); (G.N.)
- Correspondence: ; Tel.: +39-06-3015-4606
| |
Collapse
|
17
|
ASSAMADI M, EL HADWE S, BARRIT S, GILIS N, DE WITTE O. Concordant non-syndromic sagittal craniosynostoses in dizygotic twins discordant for sex. Chirurgia (Bucur) 2022. [DOI: 10.23736/s0394-9508.21.05272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Justice CM, Musolf AM, Cuellar A, Lattanzi W, Simeonov E, Kaneva R, Paschall J, Cunningham M, Wilkie AOM, Wilson AF, Romitti PA, Boyadjiev SA. Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis. Genes (Basel) 2022; 13:816. [PMID: 35627201 PMCID: PMC9141801 DOI: 10.3390/genes13050816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Craniosynostosis (CS) is a major birth defect in which one or more skull sutures fuse prematurely. We previously performed a genome-wide association study (GWAS) for sagittal non-syndromic CS (sNCS), identifying associations downstream from BMP2 on 20p12.3 and intronic to BBS9 on 7p14.3; analyses of imputed variants in DLG1 on 3q29 were also genome-wide significant. We followed this work with a GWAS for metopic non-syndromic NCS (mNCS), discovering a significant association intronic to BMP7 on 20q13.31. In the current study, we sequenced the associated regions on 3q29, 7p14.3, and 20p12.3, including two candidate genes (BMP2 and BMPER) near some of these regions in 83 sNCS child-parent trios, and sequenced regions on 7p14.3 and 20q13.2-q13.32 in 80 mNCS child-parent trios. These child-parent trios were selected from the original GWAS cohorts if the probands carried at least one copy of the top associated GWAS variant (rs1884302 C allele for sNCS; rs6127972 T allele for mNCS). Many of the variants sequenced in these targeted regions are strongly predicted to be within binding sites for transcription factors involved in craniofacial development or bone morphogenesis. Variants enriched in more than one trio and predicted to be damaging to gene function are prioritized for functional studies.
Collapse
Affiliation(s)
- Cristina M. Justice
- Genometrics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institute of Health (NIH), Baltimore, MD 21224, USA; (C.M.J.); (A.F.W.)
| | - Anthony M. Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institute of Health (NIH), Baltimore, MD 21224, USA;
| | - Araceli Cuellar
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA;
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emil Simeonov
- Pediatric Clinic, Alexandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Justin Paschall
- Bioinformatics Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institute of Health (NIH), Bethesda, MD 20892, USA;
| | - Michael Cunningham
- Seattle Children’s Craniofacial Center, Center of Developmental Biology and Regenerative Medicine and Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA;
| | - Andrew O. M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK;
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DS, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DS, UK
| | - Alexander F. Wilson
- Genometrics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institute of Health (NIH), Baltimore, MD 21224, USA; (C.M.J.); (A.F.W.)
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA;
| |
Collapse
|
19
|
Modi RN, Belza CC, Kamel GN, McKee RM, Carbullido MK, Gosman AA. Delayed Presentation of Sagittal Suture Craniosynostosis. Ann Plast Surg 2022; 88:S351-S356. [PMID: 37740467 DOI: 10.1097/sap.0000000000003137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
BACKGROUND Sagittal craniosynostosis typically presents as dolichocephaly or less frequently as clinocephaly, a "saddle-shaped" phenotype. This project aimed to characterize clinically relevant differences between sagittal synostosis phenotypes and examine the etiology of the delay in presentation. METHODS An institutional review board-approved retrospective review was performed from January 1999 to November 2018 at a single institution. Analyses examined correlations between subphenotype, time of presentation, minor suture fusion, developmental delay, and operative technique. RESULTS One hundred sixty patients diagnosed with single-suture sagittal craniosynostosis were identified. A total of 30.6% had a saddle phenotype (n = 49) and 69.4% had dolichocephaly (n = 111). Patients with the saddle phenotype were more likely to present with a developmental delay and to have at least 1 minor suture fused than patients with dolichocephaly were. Patients with the saddle phenotype presented for surgery at an older age and were more likely to undergo open cranial vault repair, with increased blood loss, higher transfusion volume, and longer time. CONCLUSIONS This study highlights clinical differences in sagittal craniosynostosis phenotypes and shows that developmental delay is an initial presentation of the saddle phenotype. The saddle phenotype also correlated with fusion of the minor squamous and sphenoid sutures. The link between developmental delay and minor suture fusion was notable and should be explored with a larger sample size. Patients with saddle synostosis present for surgery at an older age than patients with dolichocephaly and therefore are more likely to receive open cranial vault repair, with a taxing intraoperative experience characterized by increased blood loss, increased transfusions, and longer operation time.
Collapse
|
20
|
Golinko M, Bonfield C. Clinical staging of craniosynostosis: a call for investigation and collaboration. Childs Nerv Syst 2022; 38:857-859. [PMID: 35266036 DOI: 10.1007/s00381-022-05476-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Michael Golinko
- Department of Plastic Surgery- Director of the Cleft & Craniofacial Program Bonfield, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN, 37232, USA. .,Deparment of Neurological Surgery- Neurosurgery Director of the Craniofacial Progam, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN, 37232, USA.
| | - Christopher Bonfield
- Department of Plastic Surgery- Director of the Cleft & Craniofacial Program Bonfield, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN, 37232, USA
| |
Collapse
|
21
|
Bukowska-Olech E, Sowińska-Seidler A, Larysz D, Gawliński P, Koczyk G, Popiel D, Gurba-Bryśkiewicz L, Materna-Kiryluk A, Adamek Z, Szczepankiewicz A, Dominiak P, Glista F, Matuszewska K, Jamsheer A. Results from Genetic Studies in Patients Affected with Craniosynostosis: Clinical and Molecular Aspects. Front Mol Biosci 2022; 9:865494. [PMID: 35591945 PMCID: PMC9112228 DOI: 10.3389/fmolb.2022.865494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue. Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2. Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations’ type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest. Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- *Correspondence: Ewelina Bukowska-Olech, ; Aleksander Jamsheer,
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Dawid Larysz
- Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Prof. St. Popowski Regional Specialized Children's Hospital, Olsztyn, Poland
| | - Paweł Gawliński
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Grzegorz Koczyk
- Centers for Medical Genetics GENESIS, Poznan, Poland
- Biometry and Bioinformatics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | | | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Filip Glista
- Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Matuszewska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
- *Correspondence: Ewelina Bukowska-Olech, ; Aleksander Jamsheer,
| |
Collapse
|
22
|
Multi-suture craniosynostosis in c.1570C>T (p.Arg524Trp) mutated TRAF7: a case report. Childs Nerv Syst 2022; 38:843-846. [PMID: 34247275 DOI: 10.1007/s00381-021-05285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Craniosynostosis is a condition of premature fusion of the cranial sutures. Multi-suture craniosynostosis has been found to be associated with a number of syndromes and underlying gene mutations. Tumour necrosis factor receptor-associated factors (TRAFs) are a family of adaptor proteins interacting with cell surface receptors or other signalling molecules. TRAF7 is one of the factors involved in multiple biologic processes, including ubiquitination, myogenesis and toll-like receptor signalling. Here, we report a child who presented with multi-suture craniosynostosis and had the uncommon c.1570C>T (p.Arg524Trp) variant of TRAF7.
Collapse
|
23
|
Topa A, Rohlin A, Andersson MK, Fehr A, Lovmar L, Stenman G, Kölby L. The outcome of targeted NGS screening in patients with syndromic forms of sagittal and pansynostosis - IL11RA is an emerging core-gene for pansynostosis. Eur J Med Genet 2022; 65:104476. [PMID: 35331937 DOI: 10.1016/j.ejmg.2022.104476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Here, we have studied the prevalence and spectrum of genetic alterations in syndromic forms of sagittal and pansynostosis. Eighteen patients with sagittal synostosis (isolated or combined with other synostoses, except coronal) or pansynostosis were phenotypically assessed by retrospective analysis of medical records, three-dimensional computed tomography skull reconstructions, and registered photos. Patient DNAs were analyzed using a targeted next-generation sequencing (NGS) panel including 63 craniosynostosis (CS) related genes. Pathogenic and likely pathogenic variants were found in 72% of the cases, mainly affecting FGFR2, TWIST1, IL11RA, and SKI. Two patients that were negative at NGS screening - one with a supernumerary marker chromosome with duplication of 15q25.2q26.3 and one with a pathogenic PHEX variant - were identified using microarray and single gene analysis, respectively. The overall diagnostic rate in the cohort was thus 83%. We identified two novel likely pathogenic variants in FGFR2 (NM_022970.3: c.811_812delGGinsCC, p.Gly271Pro) and TWIST1 (NM_000474.3: c.476T > A, p.Leu159His), and a novel variant of unclear phenotypic significance in RUNX2 (NM_001024630.3: c.340G > A, p.Val114Ile) which could suggest a modulatory effect. Notably, we also identified three new patients with pansynostosis and a Crouzon-like phenotype with IL11RA mutation. Targeted NGS using a broad panel of CS-related genes is a simple and powerful tool for detecting pathogenic mutations in patients with syndromic forms of CS and multiple suture involvement, in particular pansynostosis. Our results provide additional evidence of an association between pansynostosis and IL11RA, an emerging core gene for autosomal recessive CS.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K Andersson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - André Fehr
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
24
|
Tønne E, Due-Tønnessen BJ, Vigeland MD, Amundsen SS, Ribarska T, Åsten PM, Sheng Y, Helseth E, Gilfillan GD, Mero IL, Heimdal KR. Whole-exome sequencing in syndromic craniosynostosis increases diagnostic yield and identifies candidate genes in osteogenic signaling pathways. Am J Med Genet A 2022; 188:1464-1475. [PMID: 35080095 DOI: 10.1002/ajmg.a.62663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Craniosynostosis (CS) is a common congenital anomaly defined by premature fusion of one or more cranial sutures. Syndromic CS involves additional organ anomalies or neurocognitive deficits and accounts for 25%-30% of the cases. In a recent population-based study by our group, 84% of the syndromic CS cases had a genetically verified diagnosis after targeted analyses. A number of different genetic causes were detected, confirming that syndromic CS is highly heterogeneous. In this study, we performed whole-exome sequencing of 10 children and parents from the same cohort where previous genetic results were negative. We detected pathogenic, or likely pathogenic, variants in four additional genes (NFIA, EXTL3, POLR2A, and FOXP2) associated with rare conditions. In two of these (POLR2A and FOXP2), CS has not previously been reported. We further detected a rare predicted damaging variant in SH3BP4, which has not previously been related to human disease. All findings were clustered in genes involved in the pathways of osteogenesis and suture patency. We conclude that whole-exome sequencing expands the list of genes associated with syndromic CS, and provides new candidate genes in osteogenic signaling pathways.
Collapse
Affiliation(s)
- Elin Tønne
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Bernt Johan Due-Tønnessen
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Teodora Ribarska
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Gregor Duncan Gilfillan
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil Riddervold Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Erika Kague,
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
26
|
Nuri T, Ota M, Ueda K, Iseki S. Quantitative Morphologic Analysis of Cranial Vault in Twist1+/- Mice: Implications in Craniosynostosis. Plast Reconstr Surg 2022; 149:28e-37e. [PMID: 34936613 DOI: 10.1097/prs.0000000000008665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The haploinsufficiency in the TWIST1 gene encoding a basic helix-loop-helix transcription factor is a cause of one of the craniosynostosis syndromes, Saethre-Chotzen syndrome. Patients with craniosynostosis usually require operative release of affected sutures, which makes it difficult to observe the long-term consequence of suture fusion on craniofacial growth. METHODS In this study, we performed quantitative analysis of morphologic changes of the skull in Twist1 heterozygously-deleted mice (Twist1+/-) with micro-computed tomographic images. RESULTS In Twist1+/- mice, fusion of the coronal suture began before postnatal day 14 and progressed until postnatal day 56, during which morphologic changes occurred. The growth of the skull was not achieved by a constant increase in the measured distances in wild type mice; some distances in the top-basal axis were decreased during the observation period. In the Twist1+/- mouse, growth in the top-basal axis was accelerated and that of the frontal cranium was reduced. In the unicoronal suture fusion mouse, the length of the zygomatic arch of affected side was shorter in the Twist1+/- mouse. In one postnatal day 56 Twist1+/- mouse with bilateral coronal suture fusion, asymmetric zygomatic arch length was identified. CONCLUSION The authors'results suggest that measuring the length of the left and right zygomatic arches may be useful for early diagnosis of coronal suture fusion and for estimation of the timing of synostosis, and that more detailed study on the growth pattern of the normal and the synostosed skull could provide prediction of the risk of resynostosis. CLINICAL RELEVANCE STATEMENT The data from this study can be useful to better understand the cranial growth pattern in patients with craniosynostosis.
Collapse
Affiliation(s)
- Takashi Nuri
- From the Department of Plastic Reconstructive Surgery, Osaka Medical College; Food and Nutrition, Japan Women's University; and Molecular Craniofacial Embryology, Tokyo Medical and Dental University
| | - Masato Ota
- From the Department of Plastic Reconstructive Surgery, Osaka Medical College; Food and Nutrition, Japan Women's University; and Molecular Craniofacial Embryology, Tokyo Medical and Dental University
| | - Koichi Ueda
- From the Department of Plastic Reconstructive Surgery, Osaka Medical College; Food and Nutrition, Japan Women's University; and Molecular Craniofacial Embryology, Tokyo Medical and Dental University
| | - Sachiko Iseki
- From the Department of Plastic Reconstructive Surgery, Osaka Medical College; Food and Nutrition, Japan Women's University; and Molecular Craniofacial Embryology, Tokyo Medical and Dental University
| |
Collapse
|
27
|
Eisová S, Naňka O, Velemínský P, Bruner E. Craniovascular traits and braincase morphology in craniosynostotic human skulls. J Anat 2021; 239:1050-1065. [PMID: 34240418 PMCID: PMC8546506 DOI: 10.1111/joa.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Middle meningeal vessels, dural venous sinuses, and emissary veins leave imprints and canals in the endocranium, and thus provide evidence of vascular patterns in osteological samples. This paper investigates whether craniovascular morphology undergoes changes in craniosynostotic human skulls, and if specific alterations may reflect structural and functional relationships in the cranium. The analyzed osteological sample consists of adult individuals with craniosynostoses generally associated with dolichocephalic or brachycephalic proportions, and a control sample of anatomically normal adult skulls. The pattern and dominance of the middle meningeal artery, the morphology of the confluence of the sinuses, and the size and number of the emissary foramina were evaluated. Craniovascular morphology was more diverse in craniosynostotic skulls than in anatomically normal skulls. The craniosynostotic skulls often displayed enlarged occipito-marginal sinuses and more numerous emissary foramina. The craniosynostotic skulls associated with more brachycephalic morphology often presented enlarged emissary foramina, while the craniosynostotic skulls associated with dolichocephalic effects frequently displayed more developed posterior branches of the middle meningeal artery. The course and morphology of the middle meningeal vessels, dural venous sinuses, and emissary veins in craniosynostotic skulls can be related to the redistribution of growth forces, higher intracranial pressure, venous hypertension, or thermal constraints. These functional and structural changes are of interest in both anthropology and medicine, involving epigenetic traits that concern the functional and ontogenetic balance between soft and hard tissues.
Collapse
Affiliation(s)
- Stanislava Eisová
- Katedra antropologie a genetiky člověkaPřírodovědecká fakultaUniverzita KarlovaPragueCzech Republic
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Ondřej Naňka
- Anatomický ústav1. lékařská fakultaUniverzita KarlovaPragueCzech Republic
| | - Petr Velemínský
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Emiliano Bruner
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
28
|
Di Pietro L, Barba M, Palacios D, Tiberio F, Prampolini C, Baranzini M, Parolini O, Arcovito A, Lattanzi W. Shaping modern human skull through epigenetic, transcriptional and post-transcriptional regulation of the RUNX2 master bone gene. Sci Rep 2021; 11:21316. [PMID: 34716352 PMCID: PMC8556228 DOI: 10.1038/s41598-021-00511-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
RUNX2 encodes the master bone transcription factor driving skeletal development in vertebrates, and playing a specific role in craniofacial and skull morphogenesis. The anatomically modern human (AMH) features sequence changes in the RUNX2 locus compared with archaic hominins' species. We aimed to understand how these changes may have contributed to human skull globularization occurred in recent evolution. We compared in silico AMH and archaic hominins' genomes, and used mesenchymal stromal cells isolated from skull sutures of craniosynostosis patients for in vitro functional assays. We detected 459 and 470 nucleotide changes in noncoding regions of the AMH RUNX2 locus, compared with the Neandertal and Denisovan genomes, respectively. Three nucleotide changes in the proximal promoter were predicted to alter the binding of the zinc finger protein Znf263 and long-distance interactions with other cis-regulatory regions. By surface plasmon resonance, we selected nucleotide substitutions in the 3'UTRs able to affect miRNA binding affinity. Specifically, miR-3150a-3p and miR-6785-5p expression inversely correlated with RUNX2 expression during in vitro osteogenic differentiation. The expression of two long non-coding RNAs, AL096865.1 and RUNX2-AS1, within the same locus, was modulated during in vitro osteogenic differentiation and correlated with the expression of specific RUNX2 isoforms. Our data suggest that RUNX2 may have undergone adaptive phenotypic evolution caused by epigenetic and post-transcriptional regulatory mechanisms, which may explain the delayed suture fusion leading to the present-day globular skull shape.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Palacios
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Tiberio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mirko Baranzini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Arcovito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
29
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
30
|
Tønne E, Due-Tønnessen BJ, Mero IL, Wiig US, Kulseth MA, Vigeland MD, Sheng Y, von der Lippe C, Tveten K, Meling TR, Helseth E, Heimdal KR. Benefits of clinical criteria and high-throughput sequencing for diagnosing children with syndromic craniosynostosis. Eur J Hum Genet 2021; 29:920-929. [PMID: 33288889 PMCID: PMC8187391 DOI: 10.1038/s41431-020-00788-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
An accurate diagnosis of syndromic craniosynostosis (CS) is important for personalized treatment, surveillance, and genetic counselling. We describe detailed clinical criteria for syndromic CS and the distribution of genetic diagnoses within the cohort. The prospective registry of the Norwegian National Unit for Craniofacial Surgery was used to retrieve individuals with syndromic CS born between 1 January 2002 and 30 June 2019. All individuals were assessed by a clinical geneticist and classified using defined clinical criteria. A stepwise approach consisting of single-gene analysis, comparative genomic hybridization (aCGH), and exome-based high-throughput sequencing, first filtering for 72 genes associated with syndromic CS, followed by an extended trio-based panel of 1570 genes were offered to all syndromic CS cases. A total of 381 individuals were registered with CS, of whom 104 (27%) were clinically classified as syndromic CS. Using the single-gene analysis, aCGH, and custom-designed panel, a genetic diagnosis was confirmed in 73% of the individuals (n = 94). The diagnostic yield increased to 84% after adding the results from the extended trio-based panel. Common causes of syndromic CS were found in 53 individuals (56%), whereas 26 (28%) had other genetic syndromes, including 17 individuals with syndromes not commonly associated with CS. Only 15 individuals (16%) had negative genetic analyses. Using the defined combination of clinical criteria, we detected among the highest numbers of syndromic CS cases reported, confirmed by a high genetic diagnostic yield of 84%. The observed genetic heterogeneity encourages a broad genetic approach in diagnosing syndromic CS.
Collapse
Affiliation(s)
- Elin Tønne
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway.
| | - Bernt Johan Due-Tønnessen
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ulrikke Straume Wiig
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Charlotte von der Lippe
- Centre for Rare Disorders, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Torstein Ragnar Meling
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Ketil Riddervold Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Bala K, Cuellar A, Herren AW, Boyadjiev SA. Identification of differentially expressed proteins between fused and open sutures in sagittal nonsyndromic craniosynostosis during suture development by quantitative proteomic analysis. Proteomics Clin Appl 2021; 15:e2000031. [PMID: 33580899 DOI: 10.1002/prca.202000031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Nonsyndromic craniosynostosis (NCS), the premature fusion of cranial sutures, results in an abnormal skull shape and is associated with a significant morbidity. Proteomics is a promising tool for disease characterization and biomarker discovery; we aimed to identify biologically relevant differentially expressed proteins for NCS. EXPERIMENTAL DESIGN Label-based quantitative proteomic profiling using TMT was performed on protein extracted from mesenchymal stem cells, osteoblasts and bone tissue of five open and five fused sutures of sagittal NCS (sNCS) and analyzed using quantitative LC-MS/MS based bottom-up proteomics. Differential protein abundance between open and fused sutures was determined to identify biologically relevant proteins of interest. Proteins were validated in an independent sample set by western blot and immunohistochemistry. RESULTS We observed 838 differentially expressed proteins between open and fused sutures of sNCS. Decorin, lumican, and asporin were significantly downregulated while COL4A1 and TGFβ1|1 were upregulated in fused compared to open sutures. CONCLUSIONS AND CLINICAL RELEVANCE The majority of significantly differentially expressed proteins between open and fused sutures were observed in the proteomes of osteoblasts suggesting that protein changes contributing to premature sagittal suture fusion occur predominantly at the osteoblast level. Our findings suggest a possible ineffective ECM deposition at the osteoblast cell stage.
Collapse
Affiliation(s)
- Krithi Bala
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Araceli Cuellar
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Anthony W Herren
- UC Davis Genome Center, University of California Davis, Davis, California, USA
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| |
Collapse
|
32
|
Bin Alamer O, Jimenez AE, Azad TD. Single-suture craniosynostosis and the epigenome: current evidence and a review of epigenetic principles. Neurosurg Focus 2021; 50:E10. [PMID: 33794485 DOI: 10.3171/2021.1.focus201008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 11/06/2022]
Abstract
Craniosynostosis (CS) is a congenital disease that arises due to premature ossification of single or multiple sutures, which results in skull deformities. The surgical management of single-suture CS continues to evolve and is driven by a robust body of clinical research; however, the molecular underpinnings of CS remain poorly understood. Despite long-standing hypotheses regarding the interaction of genetic predisposition and environmental factors, formal investigation of the epigenetic underpinnings of CS has been limited. In an effort to catalyze further investigation into the epigenetic basis of CS, the authors review the fundamentals of epigenetics, discuss recent studies that shed light on this emerging field, and offer hypotheses regarding the role of epigenetic mechanisms in the development of single-suture CS.
Collapse
Affiliation(s)
- Othman Bin Alamer
- 1School of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; and
| | - Adrian E Jimenez
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Tej D Azad
- 2Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
33
|
Katsianou M, Papavassiliou KA, Zoi I, Gargalionis AN, Panagopoulos D, Themistocleous MS, Piperi C, Papavassiliou AG, Basdra EK. Polycystin-1 modulates RUNX2 activation and osteocalcin gene expression via ERK signalling in a human craniosynostosis cell model. J Cell Mol Med 2021; 25:3216-3225. [PMID: 33656806 PMCID: PMC8034462 DOI: 10.1111/jcmm.16391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.
Collapse
Affiliation(s)
- Maira Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Legare JM, Pauli RM, Hecht JT, Bober MB, Smid CJ, Modaff P, Little ME, Rodriguez-Buritica DF, Serna ME, Alade AY, Liu C, Hoover-Fong JE, Hashmi SS. CLARITY: Co-occurrences in achondroplasia-craniosynostosis, seizures, and decreased risk of diabetes mellitus. Am J Med Genet A 2021; 185:1168-1174. [PMID: 33496070 DOI: 10.1002/ajmg.a.62096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Achondroplasia is the most common disproportionate short statured skeletal dysplasia with a prevalence of approximately 1:20,000-30,000. We created the largest database to date of a historical cohort of 1374 patients with achondroplasia (CLARITY-aChondropLasia nAtuRal hIsTory studY). This cohort was queried for the presence of unrecognized or under-recognized features associated with achondroplasia. Craniosynostosis was found to co-occur with achondroplasia in 9 (0.65%) patients in this cohort, which is much higher than the general population prevalence of 3.1-7.2 per 10,000. In addition, 27 patients had seizures (2.0%), an apparent excess as compared to the general population. Only two people had diabetes despite a high rate of adult obesity. This report documents for the first time an increased prevalence of craniosynostosis in persons with achondroplasia, and adds support to previous observations of an apparently higher than expected prevalence of seizures and lower prevalence of diabetes mellitus.
Collapse
Affiliation(s)
- Janet M Legare
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard M Pauli
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Michael B Bober
- Department of Pediatrics, A. l. duPont Hospital for Children, Thomas Jefferson University, Wilmington, Delaware, USA
| | - Cory J Smid
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Genetics, Children's Wisconsin; Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Peggy Modaff
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mary Ellen Little
- Department of Pediatrics, A. l. duPont Hospital for Children, Thomas Jefferson University, Wilmington, Delaware, USA
| | | | - Maria Elena Serna
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| | | | - Chengxin Liu
- Greenberg Center for Skeletal Dysplasias, McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie E Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - S Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School at UT Health, Houston, Texas, USA
| |
Collapse
|
35
|
Xu C, Xu J, Zhang X, Xu S, Liu Q, Weng Z, Gu A. Serum nickel is associated with craniosynostosis risk: Evidence from humans and mice. ENVIRONMENT INTERNATIONAL 2021; 146:106289. [PMID: 33276314 DOI: 10.1016/j.envint.2020.106289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND To date, few studies have explored the effects of exposure to metal mixtures on adverse developmental outcomes, and no reported studies have linked metal exposure to craniosynostosis (CS). The purpose of this study is to investigate the association between metal exposure and the risk of CS by conducting epidemiological and experimental studies. METHODS Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentrations of 6 metals (chromium [Cr], nickel [Ni], tin [Sn], arsenic [As], thallium [Tl], and lead [Pb]) in serum samples from 174 CS patients and 85 control individuals. Non-syndromic patients with isolated sagittal suture closure were selected as the case group, and healthy children matched by sex and age were selected as controls. Bayesian kernel machine regression (BKMR) models were used to account for joint metal effects. Multiple logistic regression analysis was used to explore the association between metal concentration and CS occurrence, with adjustment for potential confounders. During pregnancy, mice were exposed to Ni (0, 0.05, or 0.1 g/kg/day) until weaning, and the widths of the sutures and shapes of the skull were analysed by micro-CT 3D imaging and histological analysis. MC3T3-E1 cells were treated with Ni (0, 0.005, or 0.05 μg/mL) for 72 h. Alkaline phosphate (ALP) staining and Alizarin red staining were performed to observe the development of osteoblasts. The expression levels of osteoblast-related genes were also detected. RESULTS A positive association between the metal mixture and CS risk was observed based on population data; the Ni group had the highest conditional posterior inclusion probability (PIP), at 0.8416, and in the fully adjusted model, the highest Ni exposure level had a more significant association with CS (coefficient = 2.65, 95% CI: 0.29, 5.02) than the lowest Ni exposure level. The mean widths of the sagittal sutures in mice were 8.8 ± 0.6 mm in the control group, 8.0 ± 0.8 mm in the 0.05 g/kg/day group and 6.8 ± 0.4 mm in the 0.1 g/kg/day group. After Ni exposure, ALP gene expression in skull tissue was increased, and ALP activity was increased in MC3T3-E1 cells. Moreover, increased collagen content in mouse skull sections and elevated osteocalcin (OCN) expression in MC3T3-E1 cells were observed in the Ni-treated groups compared to the control group. CONCLUSIONS This study is the first to provide evidence that increased serum Ni was associated with an increased risk of CS. Early life exposure to Ni promoted osteogenesis during skull growth, which may contribute to the development of CS.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Shuqin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of the Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Wu Y, Peng M, Chen J, Suo J, Zou S, Xu Y, Wilkie AOM, Zou W, Mu X, Wang S. A custom-designed panel sequencing study in 201 Chinese patients with craniosynostosis revealed novel variants and distinct mutation spectra. J Genet Genomics 2020; 48:167-171. [PMID: 33547006 DOI: 10.1016/j.jgg.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Meifang Peng
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jieyi Chen
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinlong Suo
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sihai Zou
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yanqing Xu
- Forest Ridge School of the Sacred Heart, Bellevue, WA 98006, USA
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Weiguo Zou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiongzheng Mu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
37
|
Morice A, Cornette R, Giudice A, Collet C, Paternoster G, Arnaud É, Galliani E, Picard A, Legeai-Mallet L, Khonsari RH. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 2020; 141:115600. [PMID: 32822871 DOI: 10.1016/j.bone.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Syndromic craniosynostoses are defined by the premature fusion of one or more cranial and facial sutures, leading to skull vault deformation, and midfacial retrusion. More recently, mandibular shape modifications have been described in FGFR-related craniosynostoses, which represent almost 75% of the syndromic craniosynostoses. Here, further characterisation of the mandibular phenotype in FGFR-related craniosynostoses is provided in order to confirm mandibular shape modifications, as this could contribute to a better understanding of the involvement of the FGFR pathway in craniofacial development. The aim of our study was to analyse early mandibular morphology in a cohort of patients with FGFR2- (Crouzon and Apert) and FGFR3- (Muenke and Crouzonodermoskeletal) related syndromic craniosynostoses. We used a comparative geometric morphometric approach based on 3D imaging. Thirty-one anatomical landmarks and eleven curves with sliding semi-landmarks were defined to model the shape of the mandible. In total, 40 patients (12 with Crouzon, 12 with Apert, 12 with Muenke and 4 with Crouzonodermoskeletal syndromes) and 40 age and sex-matched controls were included (mean age: 13.7 months ±11.9). Mandibular shape differed significantly between controls and each patient group based on geometric morphometrics. Mandibular shape in FGFR2-craniosynostoses was characterized by open gonial angle, short ramus height, and high and prominent symphysis. Short ramus height appeared more pronounced in Apert than in Crouzon syndrome. Additionally, narrow inter-condylar and inter-gonial distances were observed in Crouzon syndrome. Mandibular shape in FGFR3-craniosynostoses was characterized by high and prominent symphysis and narrow inter-gonial distance. In addition, narrow condylar processes affected patients with Crouzonodermoskeletal syndrome. Statistical analysis of variance showed significant clustering of Apert and Crouzon, Crouzon and Muenke, and Apert and Muenke patients (p < 0.05). Our results confirm distinct mandibular shapes at early ages in FGFR2- (Crouzon and Apert syndromes) and FGFR3-related syndromic craniosynostoses (Muenke and Crouzonodermoskeletal syndromes) and reinforce the hypothesis of genotype-phenotype correspondence concerning mandibular morphology.
Collapse
Affiliation(s)
- A Morice
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France.
| | - R Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - A Giudice
- Università Degli Studi di Catanzaro 'Magna Graecia', Catanzaro, Italy
| | - C Collet
- BIOSCAR, INSERM U1132, Université de Paris, Hôpital Lariboisière, 75010 Paris, France; Service de Biochimie et Biologie Moléculaire, CHU-Paris-GH Saint Louis Lariboisière Widal, Paris, France
| | - G Paternoster
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - É Arnaud
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - E Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - A Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - L Legeai-Mallet
- Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France
| | - R H Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France; Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| |
Collapse
|
38
|
Abdelhamid K, Konci R, ElHawary H, Gorgy A, Smith L. Advanced parental age: Is it contributing to an increased incidence of non-syndromic craniosynostosis? A review of case-control studies. J Oral Biol Craniofac Res 2020; 11:78-83. [PMID: 33376670 DOI: 10.1016/j.jobcr.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Craniosynostosis (CS) is a congenital birth defect characterized by the premature fusion of one or several calvarial suture(s). CS could lead to serious complications, such as intracranial hypertension and neurodevelopmental impairment. There is an increasing trend in the prevalence of CS - 75% of which are of non-syndromic type (NSCS). In parallel, there is a steady rise in the average maternal age. The goal of this paper was to review the literature to clearly identify any associations between parental age and NSCS. This review was performed and reported in compliance with PRISMA guidelines. Methods The PUBMED and EMBASE databases were systematically searched, and all studies that observed the relationship between maternal and/or paternal age on NSCS were included. The articles were then assessed for methodological quality using the Newcastle-Ottawa Scale (NOS). The effect of advanced maternal and/or paternal age on the incidence of NSCS was identified by the prevalence ratios reported at a confidence interval of 95%. Results Six retrospective case-control studies, reporting on a total of 3267 cases of NSCS were included in this review. While there were some inconsistencies in the findings of the different studies, the majority reported a positive correlation between advanced maternal and/or paternal age and an increased incidence of NSCS. Conclusion This review identified an association between advanced parental age and an increased incidence of NSCS.
Collapse
Affiliation(s)
- Kenzy Abdelhamid
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Rea Konci
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| | - Hassan ElHawary
- Division of Plastic and Reconstructive Surgery, McGill University, Montreal, Quebec, Canada
| | - Andrew Gorgy
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
39
|
Abstract
INTRODUCTION Craniosynostosis is characterized by the fusion of 1 or more sutures of the skull leading to craniofacial deformations. Our aim is to describe the dental malocclusion associated with craniosynostosis, syndromic, or nonsyndromic, and also the treatment used and its stability. MATERIAL AND METHODS This retrospective study included all patients who presented at our Department for facial growth monitoring and occlusal management following syndromic and nonsyndromic craniosynostosis. Inclusion began in January 1996 and ended in December 2015 to ensure sufficient follow-up. Orthognathic surgery was performed after the end of growth. Dental occlusion was evaluated clinically and radiographically. RESULTS Fifty-five patients were included with 18 syndromic cases. The majority of patients presented with class III malocclusion (69.1%), especially syndromic cases (94.7%) and brachycephalies (96.3%). Conversely, scaphocephalies are associated with class II malocclusions. Thirty-nine patients underwent orthodontic treatment associated with orthognathic surgery to correct their malocclusion. In 4 cases, optimal dental occlusion was achieved with orthodontic treatment alone. Forty patients achieved stable optimal final dental occlusion. Optimal dental occlusion was achieved in 76.9% of the nonsurgically treated craniosynostosis patients and 68.9% of the surgically treated craniosynostosis patients. DISCUSSION Sutural fusion induces a facial growth restrictions and dental malocclusions. Several mechanisms may be responsible for these malocclusions: positional anomaly of the jaws due to the cranial deformity, associated anomaly of the facial sutures, or osteocartilagenous system diseases. Early craniosynostosis management does not avoid the occurrence of malocclusion, which will require orthodontic treatment and orthognathic surgery for their management.
Collapse
|
40
|
Quon JL, Grant GA. Commentary: Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing. Neurosurgery 2020; 87:E108-E109. [DOI: 10.1093/neuros/nyz531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 11/12/2022] Open
|
41
|
Justice CM, Cuellar A, Bala K, Sabourin JA, Cunningham ML, Crawford K, Phipps JM, Zhou Y, Cilliers D, Byren JC, Johnson D, Wall SA, Morton JEV, Noons P, Sweeney E, Weber A, Rees KEM, Wilson LC, Simeonov E, Kaneva R, Yaneva N, Georgiev K, Bussarsky A, Senders C, Zwienenberg M, Boggan J, Roscioli T, Tamburrini G, Barba M, Conway K, Sheffield VC, Brody L, Mills JL, Kay D, Sicko RJ, Langlois PH, Tittle RK, Botto LD, Jenkins MM, LaSalle JM, Lattanzi W, Wilkie AOM, Wilson AF, Romitti PA, Boyadjiev SA. A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum Genet 2020; 139:1077-1090. [PMID: 32266521 PMCID: PMC7415527 DOI: 10.1007/s00439-020-02157-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.
Collapse
Affiliation(s)
- Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Araceli Cuellar
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA
| | - Krithi Bala
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA
| | - Jeremy A Sabourin
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Michael L Cunningham
- Department of Pediatrics, Division of Craniofacial Medicine, Seattle Children's Craniofacial Center, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Karen Crawford
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Julie M Phipps
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Yan Zhou
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jo C Byren
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
- Birmingham Craniofacial Unit, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Peter Noons
- Birmingham Craniofacial Unit, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, England, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, England, UK
| | - Katie E M Rees
- Clinical Genetics Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Louise C Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Emil Simeonov
- National Institute of Pediatrics, Sofia Medical University, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Nadezhda Yaneva
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology "Maichin Dom", Medical University of Sofia, Sofia, Bulgaria
| | - Kiril Georgiev
- Department of Neurosurgery, University Hospital 'St. Ivan Rilski', Medical University of Sofia, Sofia, Bulgaria
| | - Assen Bussarsky
- Department of Neurosurgery, University Hospital 'St. Ivan Rilski', Medical University of Sofia, Sofia, Bulgaria
| | - Craig Senders
- Department of Otolaryngology, Head and Neck Surgery, University of California Davis, Sacramento, CA, USA
| | - Marike Zwienenberg
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - James Boggan
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - Tony Roscioli
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Neurosurgery, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Experimental Biology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Kristin Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N Riverside Dr, S416 CPHB, Iowa City, IA, 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Lawrence Brody
- Gene and Environment Interaction Section, NHGRI, Bethesda, NIHMD, USA
| | - James L Mills
- Epidemiology Branch, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Denise Kay
- Division of Genetics, NYS Department of Health, Wadsworth CenterAlbany, NY, USA
| | - Robert J Sicko
- Division of Genetics, NYS Department of Health, Wadsworth CenterAlbany, NY, USA
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, TX, USA
| | - Rachel K Tittle
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Lorenzo D Botto
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Experimental Biology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander F Wilson
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N Riverside Dr, S416 CPHB, Iowa City, IA, 52242, USA.
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Cuellar A, Bala K, Di Pietro L, Barba M, Yagnik G, Liu JL, Stevens C, Hur DJ, Ingersoll RG, Justice CM, Drissi H, Kim J, Lattanzi W, Boyadjiev SA. Gain-of-function variants and overexpression of RUNX2 in patients with nonsyndromic midline craniosynostosis. Bone 2020; 137:115395. [PMID: 32360898 PMCID: PMC7358991 DOI: 10.1016/j.bone.2020.115395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Craniosynostosis (CS), the premature fusion of one or more cranial sutures, is a relatively common congenital anomaly, occurring in 3-5 per 10,000 live births. Nonsyndromic CS (NCS) accounts for up to 80% of all CS cases, yet the genetic factors contributing to the disorder remain largely unknown. The RUNX2 gene, encoding a transcription factor critical for bone and skull development, is a well known CS candidate gene, as copy number variations of this gene locus have been found in patients with syndromic craniosynostosis. In the present study, we aimed to characterize RUNX2 to better understand its role in the genetic etiology and in the molecular mechanisms underlying midline suture ossification in NCS. We report four nonsynonymous variants, one intronic variant and one 18 bp in-frame deletion in RUNX2 not found in our study control population. Significant difference in allele frequency (AF) for the deletion variant RUNX2 p.Ala84-Ala89del (ClinVar 257,095; dbSNP rs11498192) was observed in our sagittal NCS cohort when compared to the general population (P = 1.28 × 10-6), suggesting a possible role in the etiology of NCS. Dual-luciferase assays showed that three of four tested RUNX2 variants conferred a gain-of-function effect on RUNX2, further suggesting their putative pathogenicity in the tested NCS cases. Downregulation of RUNX2 expression was observed in prematurely ossified midline sutures. Metopic sites showed significant downregulation of promoter 1-specific isoforms compared to sagittal sites. Suture-derived mesenchymal stromal cells showed an increased expression of RUNX2 over matched unfused suture derived cells. This demonstrates that RUNX2, and particularly the distal promoter 1-isoform group, are overexpressed in the osteogenic precursors within the pathological suture sites.
Collapse
Affiliation(s)
- Araceli Cuellar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Krithi Bala
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Garima Yagnik
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jia Lie Liu
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christina Stevens
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - David J Hur
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roxann G Ingersoll
- Mc-Kusick-Nathans Institute of Genetic Medicine, Johns Hopkins, Baltimore, MD, USA
| | - Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinoh Kim
- Department of Biological Sciences, College of Veterinary Medicine, Iowa State University, IA, USA
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Biologia Applicata, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
43
|
Di Pietro L, Barba M, Prampolini C, Ceccariglia S, Frassanito P, Vita A, Guadagni E, Bonvissuto D, Massimi L, Tamburrini G, Parolini O, Lattanzi W. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Int J Mol Sci 2020; 21:E4356. [PMID: 32575385 PMCID: PMC7352200 DOI: 10.3390/ijms21124356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Sabrina Ceccariglia
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Paolo Frassanito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Enrico Guadagni
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Davide Bonvissuto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| |
Collapse
|
44
|
Bukowska-Olech E, Dmitrzak-Węglarz M, Larysz D, Wojciechowicz B, Simon D, Walczak-Sztulpa J, Jamsheer A. Compound craniosynostosis, intellectual disability, and Noonan-like facial dysmorphism associated with 7q32.3-q35 deletion. Birth Defects Res 2020; 112:740-748. [PMID: 32529787 DOI: 10.1002/bdr2.1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Craniosynostosis (CS) is the premature fusion of the cranial sutures, occurring either in isolated or syndromic form. Syndromic CS, which was described in over 180 genetic syndromes, accounts for 15-30% of all CS cases and usually originates from mutations within the FGFR1, FGFR2, FGFR3, and TWIST1 genes. However, causative alterations in other genes, or rarely copy number variations (CNVs) were also reported. In this article, we describe a patient with Noonan-like facial dysmorphism accompanied by intellectual disability and compound CS, involving coronal, sagittal, and squamous sutures. METHODS We applied karyotyping, copy number variations analysis using array comparative genomic hybridization, and microarray-based genes expresion analysis. RESULTS We have shown that the index carried a large and rare heterozygous deletion, which encompassed 12.782 Mb and mapped to a chromosomal region of 7q32.3-q35 (HG38 - chr7:131837067-144607071). The aberration comprised 109 protein-coding genes, including BRAF, that encodes serine/threonine-protein kinase B-Raf, being a part of the RAS/MAPK signaling pathway. DISCUSSION The RAS/MAPK pathway plays an essential role in human development; hence, its dysregulation not surprisingly results in severe congenital anomalies, such as phenotypically overlapping syndromes termed RASopathies. To our best knowledge, we report here the first CNV causing haploinsufficiency of BRAF, resulting in dysregulation of the RAS/MAPK cascade, and consequently, in the phenotype observed in our patient. To conclude, with this report, we have pointed to the involvement of the RAS/MAPK signaling pathway in CS development. Moreover, we have shown that the molecular analysis based on both DNA and RNA profiling, undoubtedly constitutes a comprehensive diagnostic and research strategy for elucidating a cause of genetic diseases.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Dawid Larysz
- Department of Radiotherapy, The Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, Gliwice, Poland
| | | | - Dorota Simon
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| |
Collapse
|
45
|
Ferri J. What major developments are looming in maxillofacial surgery? JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:329. [PMID: 32450318 DOI: 10.1016/j.jormas.2020.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Affiliation(s)
- J Ferri
- Department of Stomatology and Oral and Maxillofacial Surgery, Hôpital R.-Salengro, 59337 Lille cedex, France.
| |
Collapse
|
46
|
Körberg I, Nowinski D, Bondeson ML, Melin M, Kölby L, Stattin EL. A progressive and complex clinical course in two family members with ERF-related craniosynostosis: a case report. BMC MEDICAL GENETICS 2020; 21:90. [PMID: 32370745 PMCID: PMC7201657 DOI: 10.1186/s12881-020-01015-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/29/2020] [Indexed: 01/08/2023]
Abstract
Background ERF-related craniosynostosis are a rare, complex, premature trisutural fusion associated with a broad spectrum of clinical features and heterogeneous aetiology. Here we describe two cases with the same pathogenic variant and a detailed description of their clinical course. Case presentation Two subjects; a boy with a BLSS requiring repeated skull expansions and his mother who had been operated once for sagittal synostosis. Both developed intracranial hypertension at some point during the course, which was for both verified by formal invasive intracranial pressure monitoring. Exome sequencing revealed a pathogenic truncating frame shift variant in the ERF gene. Conclusions Here we describe a boy and his mother with different craniosynostosis patterns, but both with verified intracranial hypertension and heterozygosity for a truncating variant of ERF c.1201_1202delAA (p.Lys401Glufs*10). Our work provides supplementary evidence in support of previous phenotypic descriptions of ERF-related craniosynostosis, particularly late presentation, an evolving synostotic pattern and variable expressivity even among affected family members.
Collapse
Affiliation(s)
- Izabella Körberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden.
| | - Daniel Nowinski
- Department of Surgical Sciences, Plastic Surgery, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Malin Melin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
47
|
An Investigation of Brain Functional Connectivity by Form of Craniosynostosis. J Craniofac Surg 2020; 30:1719-1723. [PMID: 31022138 DOI: 10.1097/scs.0000000000005537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Long-term neurocognitive sequelae of nonsyndromic craniosynostosis (NSC) patients are just beginning to be clarified. This study uses functional MRI (fMRI) to determine if there is evidence of altered brain functional connectivity in NSC, and whether these aberrations vary by form of synostosis. METHODS Twenty adolescent participants with surgically treated NSC (10 sagittal synostosis, 5 right unilateral coronal synostosis [UCS], 5 metopic synostosis [MSO]) were individually matched to controls by age, gender, and handedness. A subgroup of MSO was classified as severe metopic synostosis (SMS) based on the endocranial bifrontal angle. Resting state fMRI was acquired in a 3T Siemens TIM Trio scanner (Erlangen, Germany), and data were motion corrected and then analyzed with BioImage Suite (Yale School of Medicine). Resulting group-level t-maps were cluster corrected with nonparametric permutation tests. A region of interest analysis was performed based on the left Brodmann's Areas 7, 39, and 40. RESULTS Sagittal synostosis had decreased whole-brain intrinsic connectivity compared to controls in the superior parietal lobules and the angular gyrus (P = 0.071). Unilateral coronal synostosis had decreased intrinsic connectivity throughout the prefrontal cortex (P = 0.031). The MSO cohort did not have significant findings on intrinsic connectivity, but the SMS subgroup had significantly decreased connectivity among multiple subcortical structures. CONCLUSION Sagittal synostosis had decreased connectivity in regions associated with visuomotor integration and attention, while UCS had decreased connectivity in circuits crucial in executive function and cognition. Finally, severity of metopic synostosis may influence the degree of neurocognitive aberration. This study provides data suggestive of long-term sequelae of NSC that varies by suture type, which may underlie different phenotypes of neurocognitive impairment.
Collapse
|
48
|
Incidence of Familial Craniosynostosis Among Patients With Nonsyndromic Craniosynostosis. J Craniofac Surg 2020; 30:e514-e517. [PMID: 30921071 DOI: 10.1097/scs.0000000000005419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Craniosynostosis has an incidence of 1 in 2000 to 2500 live births, and is categorized into syndromic and nonsyndromic types. Nonsyndromic ones can be familial in which more than one of the family members are involved. METHODS This is a prospective study which is carried out from April 2015 to January 2018 in 2 academic hospitals. Those patients who had nonsyndromic craniosynostosis and completed medical follow-up were included in the study as well as their 1st degree relatives. Age of patients, gender, existing consanguineous marriage, type of deliveries, type of pregnancy (assisted reproductive technologies [ART] versus sexual intercourse), severity and type of craniosynostosis were gathered. RESULTS Ninety-four (46.0%), 58 (28.4%), 28 (13.7%), 16 (7.8%), and 8 (3.9%) of patients had trigonocephaly, scaphocephaly, anterior plagiocephaly, complex, and brachycephaly, respectively. A total number of 204 patients were included in the study. Of all 204 families which were included, 30 (14.7%) families had positive familial history. Familial patients were determined in 10, 15, 8, 1, and 5 patients with scaphocephaly, trigonocephaly, anterior plagiocephaly, rachycephaly, and mixed type. Male to female ratio was 2:1, 1.9:1, 1.3:1, 1:1, and 1:1 for scaphocephaly, trigonocephaly, anterior plagiocephaly, brachycephaly, and mixed craniosynostosis. Twelve (5.9%) women had applied ART. CONCLUSION Present study reveals that metopic suture is the most frequent craniosynostosis within nonsyndromic types. All the types of nonsyndromic craniosynostosis had male prevalence but for complex one which was equal in both gender. Nonsyndromic craniosynostosis in about 14.7% of patients was familial.
Collapse
|
49
|
Secondary Suture Fusion after Primary Correction of Nonsyndromic Craniosynostosis: Recognition of the Problem and Identification of Risk Factors. Plast Reconstr Surg 2020; 145:493-503. [DOI: 10.1097/prs.0000000000006491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
The Influence of Epigenetic Factors in Four Pairs of Twins With Non-Syndromic Craniosynostosis. J Craniofac Surg 2020; 31:283-285. [DOI: 10.1097/scs.0000000000006064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|