1
|
Ciaccio EJ, Lee AR, Lebovits J, Wolf RL, Lewis SK, Ciacci C, Green PHR. Psychological, Psychiatric, and Organic Brain Manifestations of Celiac Disease. Dig Dis 2024; 42:419-444. [PMID: 38861947 DOI: 10.1159/000534219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Celiac disease is an autoimmune condition that affects approximately 1% of the population worldwide. Although its main impact often concerns the small intestine, resulting in villous atrophy and nutrient malabsorption, it can also cause systemic manifestations, particularly when undiagnosed or left untreated. METHOD Attention is directed to the possible psychological, psychiatric, and organic brain manifestations of celiac disease. Specific topics related to the influence and risk of such manifestations with respect to celiac disease are defined and discussed. Overall, eighteen main topics are considered, sifted from over 500 references. RESULTS The most often studied topics were found to be the effect on quality of life, organic brain dysfunction and ataxia, epilepsy, Down syndrome, generalized psychological disorders, eating dysfunction, depression, and schizophrenia. For most every topic, although many studies report a connection to celiac disease, there are often one or more contrary studies and opinions. A bibliographic analysis of the cited articles was also done. There has been a sharp increase in interest in this research since 1990. Recently published articles tend to receive more referencing, up to as many as 15 citations per year, suggesting an increasing impact of the topics. The number of manuscript pages per article has also tended to increase, up to as many as 12 pages. The impact factor of the publishing journal has remained level over the years. CONCLUSION This compendium may be useful in developing a consensus regarding psychological, psychiatric, and organic brain manifestations that can occur in celiac disease and for determining the best direction for ongoing research focus.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Anne R Lee
- Department of Medicine - Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Jessica Lebovits
- Department of Medicine - Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Randi L Wolf
- Teachers College, Columbia University, New York, New York, USA
| | - Suzanne K Lewis
- Department of Medicine - Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Carolina Ciacci
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, Università degli Studi di Salerno, Salerno, Italy
| | - Peter H R Green
- Department of Medicine - Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Almandil NB, AlSulaiman A, Aldakeel SA, Alkuroud DN, Aljofi HE, Alzahrani S, Al-mana A, Alfuraih AA, Alabdali M, Alkhamis FA, AbdulAzeez S, Borgio JF. Integration of Transcriptome and Exome Genotyping Identifies Significant Variants with Autism Spectrum Disorder. Pharmaceuticals (Basel) 2022; 15:ph15020158. [PMID: 35215271 PMCID: PMC8880056 DOI: 10.3390/ph15020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Autism is a complex disease with genetic predisposition factors. Real factors for treatment and early diagnosis are yet to be defined. This study integrated transcriptome and exome genotyping for identifying functional variants associated with autism spectrum disorder and their impact on gene expression to find significant variations. More than 1800 patients were screened, and 70 (47 male/23 female) with an average age of 7.56 ± 3.68 years fulfilled the DSM-5 criteria for autism. Analysis revealed 682 SNPs of 589 genes significantly (p < 0.001) associated with autism among the putative functional exonic variants (n = 243,345) studied. Olfactory receptor genes on chromosome 6 were significant after Bonferroni correction (α = 0.05/243345 = 2.05 × 10−7) with a high degree of linkage disequilibrium on 6p22.1 (p = 6.71 × 10−9). The differentially expressed gene analysis of autistic patients compared to controls in whole RNA sequencing identified significantly upregulated (foldchange ≥ 0.8 and p-value ≤ 0.05; n = 125) and downregulated (foldchange ≤ −0.8 and p-value ≤ 0.05; n = 117) genes. The integration of significantly up- and downregulated genes and genes of significant SNPs identified regulatory variants (rs6657480, rs3130780, and rs1940475) associated with the up- (ITGB3BP) and downregulation (DDR1 and MMP8) of genes in autism spectrum disorder in people of Arab ancestries. The significant variants could be a biomarker of interest for identifying early autism among Arabs and helping to characterize the genes involved in the susceptibility mechanisms for autistic subjects.
Collapse
Affiliation(s)
- Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdulla AlSulaiman
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Sumayh A. Aldakeel
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Deem N. Alkuroud
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Halah Egal Aljofi
- Environmental Health Research Area, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Safah Alzahrani
- Department of Mental Health, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.); (A.A.-m.)
- King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Aishah Al-mana
- Department of Mental Health, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.); (A.A.-m.)
- King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Asma A. Alfuraih
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - Majed Alabdali
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Fahd A. Alkhamis
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (M.A.); (F.A.A.)
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (S.A.A.); (D.N.A.); (A.A.A.); (S.A.)
- Correspondence: ; Tel.: +966-13-3330864
| |
Collapse
|
3
|
Chasovskikh NY, Grechishnikova AY. Functional Annotation of Genes of Predisposition to Schizophrenia and Celiac Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Abstract
Myosin XVI (Myo16), a vertebrate-specific motor protein, is a recently discovered member of the myosin superfamily. The detailed functionality regarding myosin XVI requires elucidating or clarification; however, it appears to portray an important role in neural development and in the proper functioning of the nervous system. It is expressed in the largest amount in neural tissues in the late embryonic-early postnatal period, specifically the time in which neuronal cell migration and dendritic elaboration coincide. The impaired expression of myosin XVI has been found lurking in the background of several neuropsychiatric disorders including autism, schizophrenia and/or bipolar disorders.Two principal isoforms of class XVI myosins have been thus far described: Myo16a, the tailless cytoplasmic isoform and Myo16b, the full-length molecule featuring both cytoplasmic and nuclear localization. Both isoforms contain a class-specific N-terminal ankyrin repeat domain that binds to the protein phosphatase catalytic subunit. Myo16b, the predominant isoform, exhibits a diverse function. In the cytoplasm, it participates in the reorganization of the actin cytoskeleton through activation of the PI3K pathway and the WAVE-complex, while in the nucleus it may possess a role in cell cycle regulation. Based on the sequence, myosin XVI may have a compromised ATPase activity, implying a potential stationary role.
Collapse
Affiliation(s)
- Beáta Bugyi
- Department of Biophysics, University of Pécs, Medical School, Pécs, Hungary
| | - András Kengyel
- Department of Biophysics, University of Pécs, Medical School, Pécs, Hungary.
| |
Collapse
|
5
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
6
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
7
|
Fukuda T, Yanagi S. Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; 74:3533-3552. [PMID: 28516224 PMCID: PMC11107632 DOI: 10.1007/s00018-017-2539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
8
|
Brietzke E, Cerqueira RO, Mansur RB, McIntyre RS. Gluten related illnesses and severe mental disorders: a comprehensive review. Neurosci Biobehav Rev 2017; 84:368-375. [PMID: 28830676 DOI: 10.1016/j.neubiorev.2017.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
Abstract
The putative role of gluten in the pathophysiology of severe mental illnesses remains uncertain and there is doubt about the possible benefit of gluten-free diets for individuals affected by psychosis and mood disorders. The objective of this review was to summarize the findings linking gluten related conditions to pathophysiological substrates implicated in schizophrenia and mood disorders and review the evidences of potential benefits of glute-free diets in these populations. A literature search was conducted within PubMed and Scielo databases including references from inception until March 1st 2017. The strategy search was to use the key words "gluten", "celiac disease", "wheat", "bipolar disorder", "mood disorders", "psychosis", "schizophrenia", "depression". In the review about the potential efficacy of gluten-free diets in severe mental illnesses, we included only studies with original data, including cross sectional and longitudinal studies and clinical trials. Book chapters, review articles and meta-analysis and republished data were excluded. Although the current available evidences suggest that people with celiac disease or gluten allergy could have a slightly higher risk of schizophrenia and mood disorders compared to the general population, the literature review reveals significant inaccuracies in the data. There is insufficient evidence to recommend gluten-free diets for populations with psychosis and mood disorders.
Collapse
Affiliation(s)
- Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil; Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada.
| | - Raphael O Cerqueira
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Rodrigo B Mansur
- Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychpharmachology Unit (MDPU), Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
9
|
Ergün C, Urhan M, Ayer A. A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutr Neurosci 2017; 21:455-466. [PMID: 28393621 DOI: 10.1080/1028415x.2017.1313569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Schizophrenia is a chronic disease that possesses various clinical manifestations. It presents rather heterogeneous characteristics with respect to onset type, symptoms, and the course of the disease. Although the lifetime prevalence is as low as 1%, it can cause serious disability. Thus, it is very important to develop efficient treatment methods. In some studies, it is hypothesized that removing gluten from the diet leads to a significant improvement in disease symptoms. Epidemiological studies revealed that the prevalence of celiac disease among schizophrenic patients is almost two times higher than that of the general population. OBJECTIVE In this review, we evaluate the effects of gluten and celiac disease on the onset of schizophrenia. Efficacy of gluten-free diet applications, antibody response against gluten, and the interaction of the brain-gut axis and the presence of common genetic points are also investigated. METHODS Without any publication date restriction, Pubmed database searches were made for 'schizophrenia, gluten, gliadin, celiac disease, exorphin, brain-gut axis, psychiatric disorders.' The keywords and the articles about the schizophrenia-celiac disease relationship are included in our review. RESULTS Several studies presented evidence to suggest that symptoms associated with schizophrenia were minimized when gluten was excluded from patients' diets. Immunological searches revealed that most schizophrenic patients with increased anti-gliadin antibodies did not possess celiac disease; yet, the presence of increased antibodies against gliadin can be the share point of the immunological abnormalities found in both of the diseases. DISCUSSION There were no consistent results in the clinical, immunological, microbiological, and epidemiological studies that investigated the relationship between schizophrenia and celiac disease. This presents a need for a larger scale study to confirm the presence of this suggested correlation between schizophrenia and celiac disease. The underlying mechanisms between the two diseases should be explored.
Collapse
Affiliation(s)
- Can Ergün
- a Faculty of Health Sciences, Department of Nutrition and Dietetics , Bahçeşehir University , Beşiktaş, Istanbul , Turkey
| | - Murat Urhan
- b Manisa Mental Health and Diseases Hospital , Şehitler Street, 45020 Manisa , Turkey
| | - Ahmet Ayer
- b Manisa Mental Health and Diseases Hospital , Şehitler Street, 45020 Manisa , Turkey
| |
Collapse
|
10
|
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176:23-35. [PMID: 25034760 PMCID: PMC4294997 DOI: 10.1016/j.schres.2014.06.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - William W. Eaton
- Department of Mental Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
11
|
The identification of novel genetic variants associated with antipsychotic treatment response outcomes in first-episode schizophrenia patients. Pharmacogenet Genomics 2016; 26:235-42. [DOI: 10.1097/fpc.0000000000000213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2014; 75:300-6. [PMID: 24199668 PMCID: PMC8797267 DOI: 10.1016/j.biopsych.2013.09.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
Abstract
This review summarizes the epidemiologic evidence linking autoimmune diseases and psychosis. The associations between autoimmune diseases and psychosis have been studied for more than a half century, but research has intensified within the last decades, since psychosis has been associated with genetic markers of the immune system and with excess autoreactivity and other immune alterations. A range of psychiatric disorders, including psychosis, have been observed to occur more frequently in some autoimmune diseases, such as systemic lupus erythematosus and multiple sclerosis. Many autoimmune diseases involve multiple organs and general dysfunction of the immune system, which could affect the brain and induce psychiatric symptoms. Most studies have been cross-sectional, observing an increased prevalence of a broad number of autoimmune diseases in people with psychotic disorders. Furthermore, there is some evidence of associations of psychosis with a family history of autoimmune disorders and vice versa. Additionally, several autoimmune diseases, individually and in aggregate, have been identified as raising the risk for psychotic disorders in longitudinal studies. The associations have been suspected to be caused by inflammation or brain-reactive antibodies associated with the autoimmune diseases. However, the associations could also be caused by shared genetic factors or common etiologic components such as infections. Infections can induce the development of autoimmune diseases and autoantibodies, possibly affecting the brain. Autoimmune diseases and brain-reactive antibodies should be considered by clinicians in the treatment of individuals with psychotic symptoms, and even if the association is not causal, treatment would probably still improve quality of life and survival.
Collapse
Affiliation(s)
- Michael E Benros
- National Centre for Register-Based Research, Aarhus University, Aarhus; Mental Health Centre Copenhagen, University of Copenhagen, Faculty of Health Sciences, Copenhagen; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Preben B Mortensen
- National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| |
Collapse
|
13
|
Chen Y, Tian L, Zhang F, Liu C, Lu T, Ruan Y, Wang L, Yan H, Yan J, Liu Q, Zhang H, Ma W, Yang J, Li K, Lv L, Zhang D, Yue W. Myosin Vb gene is associated with schizophrenia in Chinese Han population. Psychiatry Res 2013; 207:13-8. [PMID: 23561489 DOI: 10.1016/j.psychres.2013.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 11/27/2022]
Abstract
Myosin Vb (MYO5B) has recently been implicated in the etiology of bipolar disorder in a genome-wide association study (GWAS). This gene is involved in amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit glutamate receptor 1 (GluR1) recycling and plays an important role in the primary excitatory neurotransmission. Dysfunction of the brain glutamate system has been postulated to be involved in the pathophysiology in schizophrenia. To further investigate the association between MYO5B polymorphisms and schizophrenia, we genotyped nine single nucleotide polymorphisms (SNPs) in an independent sample of 1463 individuals with schizophrenia and 1563 healthy control subjects, and detected three SNPs and two haplotype blocks which displayed significant association with schizophrenia. This association was further strengthened by the results of meta-analysis. Our data strongly supported that the MYO5B gene might be associated with schizophrenia in the Chinese Han population and they have implications for understanding the glutamate hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Yaguang Chen
- Institute of Mental Health, Peking University, 51 Hua Yuan Bei Road, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schreiner MJ, Lazaro MT, Jalbrzikowski M, Bearden CE. Converging levels of analysis on a genomic hotspot for psychosis: insights from 22q11.2 deletion syndrome. Neuropharmacology 2013; 68:157-73. [PMID: 23098994 PMCID: PMC3677073 DOI: 10.1016/j.neuropharm.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1-2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, microRNA processing, and post-translational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder's association with schizophrenia. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Matthew J. Schreiner
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | - Maria T. Lazaro
- Interdepartmental Neuroscience Program, University of California, Los Angeles, USA
| | | | - Carrie E. Bearden
- Department of Psychology, University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| |
Collapse
|
15
|
Romanos J, Rybak A, Wijmenga C, Wapenaar MC. Molecular diagnosis of celiac disease: are we there yet? ACTA ACUST UNITED AC 2013; 2:399-416. [PMID: 23495707 DOI: 10.1517/17530059.2.4.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Celiac disease (CD) is a complex genetic disorder of the small intestine resulting from aberrant cellular responses to gluten peptides. It may affect as much as 1% of the Western population and the only treatment is a lifelong gluten-free diet. Allelic variants of the HLA-DQ locus, coding for the HLA-DQ2 and HLA-DQ8 molecules, contribute to ∼ 40% of CD etiology, whereas other genes, such as MYO9B, CTLA4, IL2, IL21, PARD3 and MAGI2, have only a modest effect. Most of these genes have shown varied association among different populations and an overlap with other autoimmune or inflammatory disorders, indicating that such disorders may share common pathways. OBJECTIVES In this review, a molecular approach into diagnostics of celiac disease is shown. CONCLUSIONS Genome-wide association studies will allow more genes to be identified, and knowing how risk variants combine will help to predict better the risk for the individual. HLA typing can already be used to identify high-risk individuals.
Collapse
Affiliation(s)
- Jihane Romanos
- PhD student University of Groningen, University Medical Center Groningen, Department of Genetics, PO Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Law MH, Bradford M, McNamara N, Gajda A, Wei J. No association observed between schizophrenia and non-HLA coeliac disease genes: integration with the initial MYO9B association with coeliac disease. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:709-19. [PMID: 21688385 DOI: 10.1002/ajmg.b.31213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/31/2011] [Indexed: 12/23/2022]
Abstract
Schizophrenia is a severe psychotic illness with a heterogeneous presentation and a devastating impact on social and occupational function. Worldwide variations in schizophrenia incidence rates suggest that local conditions may modify disease risk. The human leukocyte antigen (HLA) region has been confirmed to be associated with schizophrenia by genome-wide association studies in populations across the world. While the presence of autoimmune processes in a subgroup of schizophrenia cases is contentious, the immune system could allow environmental exposures to lead to schizophrenia by generating improper immune response. To investigate this topic, we reviewed the current evidence of the relationship between schizophrenia and coeliac disease. Based on this review, we performed genetic analysis of the MYO9B gene and the IL-2/IL-21 locus by genotyping SNPs that have been previously associated with coeliac disease or schizophrenia in 223 families, 108 unrelated individuals with schizophrenia and 120 controls. Finding no evidence for association with these two loci in our study samples, we applied meta-analytic techniques to combine our findings with previous reports. This synthesis, in light of our review of previous reports, suggests a differing developmental trajectory for schizophrenia and coeliac disease. It is possible that these two conditions do not share any functional overlap.
Collapse
Affiliation(s)
- Matthew H Law
- Genetics and Immunology Group, UHI Department of Diabetes and Cardiovascular Science, Centre for Health Science, Inverness, UK
| | | | | | | | | |
Collapse
|
17
|
Cascella NG, Kryszak D, Bhatti B, Gregory P, Kelly DL, Mc Evoy JP, Fasano A, Eaton WW. Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr Bull 2011; 37:94-100. [PMID: 19494248 PMCID: PMC3004201 DOI: 10.1093/schbul/sbp055] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Celiac disease (CD) and schizophrenia have approximately the same prevalence, but epidemiologic data show higher prevalence of CD among schizophrenia patients. The reason for this higher co-occurrence is not known, but the clinical knowledge about the presence of immunologic markers for CD or gluten intolerance in schizophrenia patients may have implications for treatment. Our goal was to evaluate antibody prevalence to gliadin (AGA), transglutaminase (tTG), and endomysium (EMA) in a group of individuals with schizophrenia and a comparison group. AGA, tTG, and EMA antibodies were assayed in 1401 schizophrenia patients who were part of the Clinical Antipsychotic Trials of Intervention Effectiveness study and 900 controls. Psychopathology in schizophrenia patients was assessed using the Positive and Negative Symptoms Scale (PANSS). Logistic regression was used to assess the difference in the frequency of AGA, immunoglobulin A (IgA), and tTG antibodies, adjusting for age, sex, and race. Linear regression was used to predict PANSS scores from AGA and tTG antibodies adjusting for age, gender, and race. Among schizophrenia patients, 23.1% had moderate to high levels of IgA-AGA compared with 3.1% of the comparison group (χ(2) = 1885, df = 2, P < .001.) Moderate to high levels of tTG antibodies were present in 5.4% of schizophrenia patients vs 0.80% of the comparison group (χ(2) = 392.0, df = 2, P < .001). Adjustments for sex, age, and race had trivial effects on the differences. Regression analyses failed to predict PANSS scores from AGA and tTG antibodies. Persons with schizophrenia have higher than expected titers of antibodies related to CD and gluten sensitivity.
Collapse
Affiliation(s)
- Nicola G Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 144, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Samaroo D, Dickerson F, Kasarda DD, Green PHR, Briani C, Yolken RH, Alaedini A. Novel immune response to gluten in individuals with schizophrenia. Schizophr Res 2010; 118:248-55. [PMID: 19748229 PMCID: PMC2856786 DOI: 10.1016/j.schres.2009.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/07/2009] [Accepted: 08/11/2009] [Indexed: 02/06/2023]
Abstract
A link between celiac disease and schizophrenia has been postulated for several years, based primarily on reports of elevated levels of antibody to gliadin in patients. We sought to examine the proposed connection between schizophrenia and celiac disease by characterizing the molecular specificity and mechanism of the anti-gliadin immune response in a subset of individuals with schizophrenia. Blood samples from individuals with schizophrenia and elevated anti-gliadin antibody titer were examined for celiac disease-associated biomarkers, including antibodies to transglutaminase 2 (TG2) enzyme and deamidated gliadin peptides, as well as the HLA-DQ2 and -DQ8 MHC genes. The anti-gliadin antibody response was further characterized through examination of reactivity towards chromatographically separated gluten proteins. Target proteins of interest were identified by peptide mass mapping. In contrast to celiac disease patients, an association between the anti-gliadin immune response and anti-TG2 antibody or HLA-DQ2 and -DQ8 markers was not found in individuals with schizophrenia. In addition, the majority of individuals with schizophrenia and anti-gliadin antibody did not exhibit antibody reactivity to deamidated gliadin peptides. Further characterization of the antibody specificity revealed preferential reactivity towards different gluten proteins in the schizophrenia and celiac disease groups. These findings indicate that the anti-gliadin immune response in schizophrenia has a different antigenic specificity from that in celiac disease and is independent of the action of transglutaminase enzyme and HLA-DQ2/DQ8. Meanwhile, the presence of elevated levels of antibodies to specific gluten proteins points to shared immunologic abnormalities in a subset of schizophrenia patients. Further characterization and understanding of the immune response to gluten in schizophrenia may provide novel insights into the etiopathogenesis of specific disease phenotypes.
Collapse
Affiliation(s)
- Diana Samaroo
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY
| | | | - Donald D. Kasarda
- Western Regional Research Center, U.S. Department of Agriculture, Albany, CA
| | - Peter H. R. Green
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, MD
| | - Armin Alaedini
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
19
|
Einarsdottir E, Koskinen LLE, Dukes E, Kainu K, Suomela S, Lappalainen M, Ziberna F, Korponay-Szabo IR, Kurppa K, Kaukinen K, Adány R, Pocsai Z, Széles G, Färkkilä M, Turunen U, Halme L, Paavola-Sakki P, Not T, Vatta S, Ventura A, Löfberg R, Torkvist L, Bresso F, Halfvarson J, Mäki M, Kontula K, Saarialho-Kere U, Kere J, D'Amato M, Saavalainen P. IL23R in the Swedish, Finnish, Hungarian and Italian populations: association with IBD and psoriasis, and linkage to celiac disease. BMC MEDICAL GENETICS 2009; 10:8. [PMID: 19175939 PMCID: PMC2642807 DOI: 10.1186/1471-2350-10-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/28/2009] [Indexed: 12/24/2022]
Abstract
Background Association of the interleukin-23 receptor (IL23R) with inflammatory bowel disease (IBD) has been confirmed in several populations. IL23R also associates with psoriasis, suggesting that the gene may be an important candidate for many chronic inflammatory diseases. Methods We studied association of single-nucleotide variants in IL23R with IBD in Swedish patients, in both Crohn's disease (CD) and ulcerative colitis (UC) subsets. The same genetic variants were also studied in Finnish patients with psoriasis or celiac disease, and in Hungarian and Italian patients with celiac disease. Results Association of IL23R with IBD was replicated in our Swedish patients, and linkage and association of the IL23R region with psoriasis was found in the Finnish population. The IL23R region was also linked to celiac disease in Finnish families, but no association of IL23R variants with celiac disease was found in the Finnish, Hungarian or Italian samples. Conclusion Our study is the first to demonstrate association of IL23R with CD and UC in Swedish patients with IBD. It is also the first study to report linkage and association of the IL23R region with psoriasis in the Finnish population. Importantly, this is the first report of linkage of the IL23R region to celiac disease, a chronic inflammatory condition in which IL23R has not been previously implicated.
Collapse
Affiliation(s)
- Elisabet Einarsdottir
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|